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Introduction

The next decade is expected to be an exciting period of modern high-energy physics.
In some months, the first results from the world’s largest and highest-energy particle
accelerator, the Large Hadron Collider (LHC), will be available. Its objective is to
investigate the properties of the basic constituents of matter together with those of
the fundamental interactions in nature in a range of energy never reached, at tera-
electronvolt (TeV) energies. The currently consistent theory that provides a frame-
work for describing all observed high-energy phenomena is the standard model (SM)
of electroweak and strong interactions. Among the vast list of "Greatest Puzzles'
[1], the standard model answers the important question of the origin of mass. Inde-
pendently of each other, the Scott Peter Higgs and two belgian physicists, Francois
Englert and Robert Brout, proposed in 1964 a mechanism of spontaneous symmetry
breaking to give masses to the particles that respects the requirement of renormal-
izability and gauge invariance [2, 3]. Thanks to this mechanism, it was possible to
join electromagnetism with the weak force in a single quantum field theory to obtain
a common symmetry, the electroweak symmetry. Deciphering the mechanism that
breaks the electroweak symmetry and generates the masses of the known fundamen-
tal particles is one of the central challenges of particle physics [4].

The electroweak theory, proposed by Glashow [5], Salam [6] and Weinberg [7], is
based on the gauge symmetry group SU(2), x U(1)y of weak left-handed isospin
and hypercharge. An SU(2), doublet of complex scalars fields is introduced and
its neutral component develops a non-zero vacuum expectation value. As a conse-
quence the electroweak symmetry is broken to the electromagnetic one. Three of the
four degrees of freedom introduced with the doublet confer masses to the weak force
carriers W* and Z while the photon remains massless. The remaining one corre-
sponds to the scalar Brout-Englert-Higgs boson. This mechanism can also explain
the mass of the quarks and leptons through Yukawa interactions with the scalar
field and its conjugate. Combined with Quantum ChromoDynamics (QCD) that is
the theory of strong interactions between the colored quarks based on the symmetry
group SU(3)¢, the standard model describes three of the four interactions in nature
and is based on the symmetry group SU(3)c x SU(2)r x U(1)y. The predictive



power of the SM was first demonstrated by the observation of neutral weak currents
at the end of the seventies. Then the SM was confirmed by a large amount of well
understood experimental data, hundreds of its predictions have been verified with
impressive precision in dozens of experiments generating billions of data points at
the current energies, hundreds of GeV’s [8].

However, despite its great success in explaining all available data, the standard
model has serious inadequacies and there are several phenomenological indications
that all questions cannot find an answer in the SM. The arguments supporting an
extension of the standard model can be classified in three categories. First, it requires
the existence of a massive scalar particle, the Brout-Englert-Higgs boson, that is a
major ingredient of the electroweak theory and thus of the standard model. The
discovery of this new particle appears as the main challenge of the LHC. Most of the
particle physicists currently work on experiments which will permit, in a few years,
to discover the Higgs boson or to show that it does not exist. In the latter case,
the standard model should be strongly modified and a new mechanism would have
to be found allowing to explain the origin of mass. Second, the SM may appear as
unnatural for various reasons. For example, it does not give an explanation for the
fermion mass spectrum, in particular the small neutrino masses and the unnaturally
small Higgs boson mass. This is the hierarchy problem. Third, this model does
not include gravitation. This is partly because at the level of elementary particles
the gravitational force is many orders of magnitude weaker and can be ignored!.
Moreover, the SM cannot be easily extended to include gravity. These reasons lead
physicists to wonder what are the possibilities beyond the standard model. A rich
spectrum of theories has been proposed and some of them aimed at the unification
of all fundamental forces including gravity. Among these are supersymmetry, extra
dimensions, little Higgs, technicolor theories, etc. In general, these theories involve
a set of new physical states interacting with the SM particles. Several of these
theories predict different kinds of distinct new signals in particle collisions at multi-
TeV energies [9]. So, in this case, their masses are in the reach of the LHC, and so
these particles are expected to be produced and to decay (or escape) in (from) the
detectors. In the large amount of data that will be collected, the challenge will be
to extract these new physics traces [10]. In order to detect these new imprints, we
should be prepared to discover this expected new physics beyond the SM.

The Two-Higgs-Doublet Model (2HDM) is one of the simplest beyond the stan-
dard model extension of the Higgs mechanism of the electroweak symmetry breaking
which may arise naturally in the scalar sector of various theories. In this model, we

'The quantum effects of gravity become important in describing particle interactions at the
Planck scale. This refers to either a very large energy scale (1.22 - 1019 GeV) or a very tiny size
scale (1.616 - 1073% meters).



introduce two doublets of scalar fields ¢; and ¢, characterized by an appropriately
constructed scalar potential. The most general Higgs potential of 2HDM that is
invariant and renormalizable contains 14 free parameters. This large number of free
parameters makes the analysis of the most general model very complicated. Many
studies have considered restricted models, analysing specific cases with only few non-
zero free parameters, and have noted that these already lead to a rich spectrum of
different and interesting phenomenologies. The resulting phenomenology is specific
for the initial choice of free parameters of the Higgs potential. In this work, we
are concerned in finding all possibilities the introduction of a second doublet offers
and in generating an exhaustive list of possible phenomenologies. Thus, we must
consider the most general 2HDM without imposing any special relations among the
parameters.

Unfortunately, we cannot analyze the most general 2HDM with straightforward
algebra. A problem arises at the first step of the treatment of the most general 2HDM:
the minimization of the most general scalar potential leads to coupled equations that
cannot be solved. A method to circumvent this computational difficulty is necessary.
However, before analyzing the most general 2HDM, we need to review the Higgs
mechanism in the SM. This is the subject of the first chapter. This one will review
the standard model, focusing on the implementation of the spontaneous symmetry
breaking mechanism. In the second chapter, various motivations for extensions of
the SM scalar sector are reviewed and two-Higgs-doublet models are introduced as
possible extensions. Moreover, we consider some specific cases of 2HDM that lead
to interesting characteristics. In the third chapter, we give motivations to study the
most general 2HDM and we review a method recently developed [11] that allows
one to circumvent the computational difficulties that arise when studying the most
general 2HDM. In this approach, one first establishes the structure behind 2HDM
and then reformulates the minimization problem. And in the fourth and last chapter,
we will present a new calculation deriving a formalism to study the first step in the
dynamic of the most general 2HDM : we will develop a method to compute masses
of Higgs bosons in any type of vacua and in any 2HDM.



Chapter 1

The Higgs mechanism in the
standard model

In order to motivate the study of the two-Higgs-doublet model (2HDM), it is nec-
essary to review the minimal standard model. It is based on two main principles :
first the extension of the gauge invariance principle as a local concept [12], and sec-
ond the spontaneous symmetry breaking mechanism [13]. The introduction of local
gauge invariance generates the gauge bosons as well as the interactions of these gauge
bosons with fermions, and also, if the gauge group is non abelian, among the gauge
bosons themselves. The combination of local gauge invariance with the spontaneous
symmetry breaking mechanism leads to the Higgs mechanism which generates the
masses of weak vector bosons and fermions. Since the 2HDM is an extension of the
symmetry breaking sector, in this chapter, we are going to review the mechanism
of electroweak symmetry breaking and focus on the Higgs particle of the standard
model.

1.1 Interactions and local gauge invariance

In the standard model, the three interactions, electromagnetic, weak and strong,
are derived from a gauge principle similar to that in electromagnetism. The gauge
principle can be stated as follow. Consider a matter system that is invariant under a
global group G of transformations. Gauging this symmetry consists in enlarging the
global group to a local gauge invariance. Such a symmetry requires the existence of
a massless vector field for each symmetry generator to which the matter field current
becomes coupled. The interactions among these fields are highly restricted by the
gauge symmetry. Gauge symmetry is defined by a Lie group, the gauge group [14].
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The gauge groups appearing in the SM are the U(1) group of phase transformations
that is abelian and has only one generator, and the group SU(N), a subgroup of U(N)
where the matrices are not only unitary but also have a determinant 1. This last
group is a non-abelian group that has N? — 1 generators. So, a field theory with local
gauge symmetry contains matter fields and gauge fields. We will see later that the
representations of the matter fields, that are specified by irreducible representation
of the group and which can have different dimensionalities for the SU(N) group, are
subtle. Moreover, we will see that the mass of some of these gauge bosons comes
from the Higgs mechanism.

Indeed, the standard model is a non-abelian gauge theory with the symmetry
group SU(2) xU(1) x SU(3). The group of the strong interaction is the SU(3)¢ color
group of Quantum ChromoDynamics (QCD). Quantum chromodynamics describes
the strong interaction between quarks that arises from the exchange of eight massless
gluons that couple to the color charge of the fermions. These are the eight gluon
fields Gf.(a=1,2,...,8) corresponding to the color SU(3)c group which is not abelian.
The electroweak theory, which describes the electromagnetic and weak interactions
between quarks and leptons, is based on the electroweak gauge symmetry group
SU(2)r x U(1)y of Glashow, Weinberg, and Salam. In this work we are concerned
with the electroweak theory. We are going to review the local gauge invariance
concept in more details and apply it to the electroweak theory.

1.1.1 Local gauge invariance

The first interaction described as a gauge theory was Quantum ElectroDynamics
(QED). The starting point is that Maxwell’s equations are invariant under a local
gauge transformation of the form:

A, — A+ 0ua(x), (1.1)

where A, is the four-vector potential.

As for the free Dirac lagrangian

ﬁDiT(IC = ¢(17“au)¢a (12)

it is invariant under the global phase shift ¢ — e“¢. It is possible to extend this global
symmetry to a local one. Such locality is accomplished by replacing the derivative
0, by the covariant derivative D,,:

D, = 9, +ieQA, (1.3)
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where e() is the electric charge of the current coupled to A,. When the local trans-

formation
(b _ 6—ier¢(x)¢ (14)

arises, A, is a four vector-field that transforms as (1.1). So, the derivative behaves
under a gauge transformation exactly as the field itself. The free Dirac lagrangian
becomes

»CDimc = &(Z’V“Du)qs = &(W“au)cb + @'QQAHQE’Y“QS = Efree - A,u*]'u . (1'5)

This new lagrangian is invariant under the combined transformations (1.4) and
(1.1).

To get the lagrangian of the interaction of the four-vector electromagnetic po-
tential A, with a fermionic field ¢, i.e. the QED lagrangian, we need to add the
kinetic term that describes the propagation of free photons, —%FWF H - which leads
to Maxwell’s equations, and that is also locally gauge invariant. Therefore, the QED
lagrangian is

. 1 y
»CDirac - Qb(l’y'uDu)qa - ZF;WFM (16)
where
F,, = D,A, —D,A,. (1.7)

The lagrangian is invariant under local gauge transformations from the group U(1).

We have, though, generated the matter-radiation coupling by imposing the gauge
symmetry to be local. To preserve locality we have introduced into the covariant
derivative a four-vector field A, which is a gauge field. We have also added a pa-
rameter (), that is the electric charge. It acts as a generator for the local group
transformations U(x) = e~?2@)  According to the Noether’s theorem, because of
the continuous symmetry, there is a conserved quantity that is the electric charge.
The massless gauge boson associated with the local U(1) symmetry is the photon
that couples the electric charge of the fermions. Therefore, QED is an abelian the-
ory with the symmetry group U(1) and one gauge field, the electromagnetic field,
with the photon being the gauge boson. Let us use this principle to construct the
electroweak theory.

1.1.2 Weak interactions

To describe the electroweak theory we use, in addition to the U(1) group, the SU(2)
group that is a non abelian group whose generators obey the Lie algebra of the ro-
tation group in three dimensions SO(3) (i.e. they are isomorphic). An important

10
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feature of weak interactions is that they violate parity in the charged-current in-
teractions (by exchange of charged bosons W' and W ™). The result is that only
left-handed particles are sensitive to charged current weak interactions'. So, one
must introduce a new quantum number, the weak isospin, /. This number, asso-
ciated with the group SU(2)., corresponds to the weak charge. Particles having
a weak isospin different from zero are sensitive to W exchange while those whose
weak isospin is null are not sensitive to it. One can write the representation of the
fermions as the sum of two spinors: one of left helicity P, and the other of right
helicity Pg:

1 1

The left- and right-handed components of any fermions are assigned to different
representations of the SU(2) x U(1) gauge group. The weak isospin of the fermions
of left helicity is I = %, the third component of weak isospin /3 can thus take values of
i%. One can consequently group the fermions of left helicity in doublets of particles
of SU(2)r. Also, one introduces weak hypercharge, noted Y. This quantum number,
associated with the group U(1)y, makes possible to connect the electric charge and
the weak isospin by the Gell-Mann—Nishijima formula:
1

Q:13+§Y, (1.9)
such that the electric charge is conserved by electroweak interactions. Therefore, we
characterize the SU(2), x U(1)y theory by the left-handed quarks :

a-(z), a-(0), (i), o

with weak isospin I = % and weak hypercharge Y (Qr) = é; and by the left-handed

leptons :
% v v
LS = © , LY = " , L7 = T , 1.11
=), mm(r), (), o

with weak isospin I = % and weak hypercharge Y (L) = —1.

For the fermions of right helicity, the weak isospin is null. The third component
can thus be only 0. That corresponds to singlets of fermions:

U}%’Q’S = UR, CR,lR (112)

"We don’t know if this parity violation is an asymmetry in the laws in nature , or a left-right
symmetry that is hidden.

11
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and

Dll:é2’3 = dR,SR,bR (113)
for the right-handed quarks, with weak hypercharge Y (Ug) = % and Y (Dg) = —%
and

B = et (1.14)

for the right-handed leptons with hypercharge Y (Egr) = —2. Since the doublets and
the singlets have a non-zero hypercharge, they have electromagnetic interactions.
Moreover, the quarks are triplets under the SU(3)¢ group and so can interact via
strong interactions, while leptons are color singlets.

Multiplet Particles SU(3). x SU(2), x U(1)y
Generations
LL VE ) Vli ) l/z (1727_1)
¢ L K L T L
ER e]_% ) ,uf_z ) 7-15 (1717'2)
U c t
QL < d ) ) ( S > ) < b ) (3727+1/3)
L L L
Ur UR, CR, IR (3,1,+4/3)
DR dR7 SR, bR (3717_2/3)

Table 1.1: SM Particles content [15].

So, the matter fields are composed of three generations of fermions : left-handed
fermions that are weak SU(2), isodoublets, and right-handed fermions that are weak
isosinglets. The electroweak theory is based on the electroweak gauge symmetry
group SU(2), x U(1)y of Glashow, Weinberg, and Salam, where SU(2), is the weak
isospin symmetry group suggested by the left-handed doublets and U(1)y is the
weak-hypercharge phase symmetry group. This model gives a unified description of
weak and electromagnetic interactions. It is not really a unification but this the-
ory put mathematically in a same gauge symmetry group these two interactions,
and therefore, there are two different coupling constants ¢ and ¢". These coupling
constants describe the intensity of the electroweak interactions. Vectorial fields are
associated with each generator of the electroweak gauge group and mediate the cor-
responding interaction. The field (weak isoscalar) B, is related to the generator Y of
U(1)y and has a coupling constant g', and the three fields W** (weak isovectors)
are related to the three generators T} 23 of SU(2)., and have a coupling constant

g.

The electroweak interactions of gauge bosons and of the matter fields are intro-
duced by requiring that the lagrangian of all the free particles be invariant under local

12
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gauge transformations from the SU(2); x U(1)y gauge group. The gauge transfor-
mations from this group are of course different for the left-and right-handed fermions.
This invariance imposes the conservation of charges Y and I5. The lagrangian of the
electroweak interaction, without mass terms for fermions and gauge bosons, is

1 vifsa 1 v
L= Lgauge + Lfe'rmz'ons - _ZW(QJ‘ Wuy - EBH B,uz/ + Lfermions ’ (]-]-5)
where - -
Lfermions = QSRZ./Y,U‘aILQSR + ¢Li7uau¢lz = Lleptons + Lqum’ks s (116)

and with the strength tensors of these fields written as
Wi, = 0,Wy — ,W; + geWIWy, (1.17)

and
B, =0,B,—0,B,. (1.18)

It is necessary to replace the partial derivative in £ fepmions by the covariant derivative
in order to obtain the local gauge invariance:

Y
—B

5 By (1.19)

D, =0, —wgW,T, —ig

The matter fields are thus minimally coupled to the gauge fields V,, through the
covariant derivative which leads to unique couplings:

—gipVu"o. (1.20)

The isospin operator, that are equivalent to half of the non-commuting 2-by-2 Pauli
matrices, obeys to the commutation relation

T3, 1] = i€ Tk (1.21)
while, of course, the hypercharge operator obeys
Y, Y] =0. (1.22)

Because the SU(2) group is non-Abelian, there are triple and quartic self-interactions
between its gauge bosons. The lagrangian (1.15) is thus invariant under the local
SU(2)r, x U(1) gauge transformations for fermions and gauge fields:

op(x) — e @TH@DT 6, (1), Gp(z) — DT pp(x), (1.23)

-, -

mg@yemgm)—;@@ug—@@)xm@@y

13



CHAPTER 1. THE HIGGS MECHANISM IN THE STANDARD MODEL

1
B, (z) — Byu(z) — ?auﬁ(z) )
where «a(z) and ((z) are arbitrary functions of space-time.

Despite the fact that using local gauge invariance as a dynamical principle we
predict the correct particle physics phenomenology, up to now, the gauge fields and
the fermions fields have been assumed to be massless. However, in the physical world,
the three weak gauge bosons and the fermions are massive. The consequence of the
mass of the weak gauge bosons is that fundamental interactions do not have all the
same range. Electromagnetism and gravitation are of infinite range, indeed their
gauge boson are massless, the photon and the hypothetical graviton. The strong and
weak interactions act with a short range. For the weak interaction, this is explained
by the fact that the gauge bosons have a mass. For the strong interaction, gluons do
not have mass, however one explains the short range by the phenomenon of contain-
ment. Therefore, to build a gauge theory which describes the weak interactions, it is
necessary to generate a mass term for gauge bosons. However, if we add a mass term,
%M2WMW“, for the gauge bosons, this will violate the local SU(2), x U(1)y gauge
invariance. Moreover, because the two chiralities are in different representations of
SU(2), the mass term for the fermions, connecting them, cannot be gauge invari-
ant. A mass term —mfggfgzﬁf for each fermion f cannot be added in the lagrangian.
Thus the incorporation of mass terms for gauge bosons and for fermions leads to a
breakdown of the local SU(2) x U(1) gauge invariance. The solution is to introduce
a new scalar SU(2), field ¢ and to choose an appropriately constructed potential
for this field such that it is minimized when ¢ has an expectation value v. Then, we
can write a Yukawa interaction term coupling left-and right-chiral fermions to this
new scalar field. This create a fermion mass term proportional to this expectation
value : vggfqbf. Through this mechanism, that is called the Higgs mechanism, the
gauge bosons also acquire a mass. The Higgs field ¢ can therefore be described as
the source of all masses in the SM. This mechanism is an example of spontaneous
symmetry breaking mechanism [16, 17].

1.2 Spontaneous symmetry breaking

A symmetry is spontaneously broken if the lagrangian of a system is invariant under
some symmetries whereas the ground state is not. So the ground state doesn’t
possess the same symmetries as its lagrangian. The term spontaneous comes from the
fact that a system tends spontaneously towards its ground state. This spontaneous
symmetry breaking leads to the existence of several vacua. One then selects a vacuum

14
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on which we base the theory. We will see that the minima of a theory are not
necessarily the points of higher symmetries of the potential.

Let us give an example of spontaneously broken symmetry.

1.2.1 Example

Consider a lagrangian density, which dictates how a system will behave, for a complex
scalar field ¢ = %(% + i), that is a function of the spatial coordinate x :

L=0"9"0.0—V(9) (1.24)
with a potential of the form :
V(¢) = 1’0" 0+ A" 0)* = 120 + Aol . (1.25)

This lagrangian has a global U(1) symmetry describing rotations in the complex
plane. This means that it is invariant under global gauge transformations

¢_>q5:ei9 )

The ¢*-term describes self interaction with intensity A. The potential cannot have
terms ¢™ with a power larger than four, n > 4, because they produce infinities in
observables, the theory would be non-renormalizable. The constants y? and \ are
both real and A is positive to make the total field energy bounded from below. In
order to analyze the dynamics of the system described by the lagrangian, we have
to find minimum or minima of the potential and choose one minimum that will give
a main vacuum state of the system, the lowest energy state. The next step is to
find an excitation spectrum of the system. For this, we decompose the field ¢ in the
vicinity of the main state and find excited states.

We require that the vacuum is invariant under Lorentz transformations and trans-
lations, this implies that ¢(x) is a constant in this vacuum state. According to the
parameter p? | two different possibilities can happen for the vacuum state. When
(% > 0, the minimum potential energy is reached at ¢ = 0. This means that the
vacuum expectation value for the field ¢g = (0|¢|0) = 0. The lagrangian describes
a scalar particle of mass p. If now p? < 0, the minimum energy no longer corre-
sponds to a unique value of ¢. The field acquires a vacuum expectation value and
the minimum of the potential is at

2

2 H
_ 1.2

15
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so the energy is degenerate with the minimum as a circle in the complex plane :

— 2 .
¢m:w§%yﬂ 0<6<2r. (1.27)

There is an infinite number of possible solutions. Without loss of generality, as the
lagrangian is invariant under rotations in the complex plane of ¢, we can set 6 = 0

such that
[— 2 v
= — = —. 1.28
¢‘/7nin 2)\ \/§ ( )

So, V(¢) has a minimum values

by 4
V(@)min = == <0 (1.29)
along a circle of radius v in the (¢1, ¢2) plane, where v? = —“72 = ¢? + ¢3. The

lagrangian no longer describes a particles of mass .

Figure 1.1: The potential V in the case py* > 0 (left) and p? < 0 (right) [16].

Quantum field theory demands that the vacuum be unique so that perturbation
expansions must be calculated around that point. So, let us choose one minimum on
the circle and develop the theory around this minimum. This choice leads us to the
breaking of the symmetry. A theory where the vacuum has less symmetry than the
lagrangian is called a theory with spontaneous symmetry breaking. By simplicity,
we can take the real scalar field with the non-zero expectation value ¢; = v and the
imaginary part, (0|¢2|0) = 0. Then, we parametrize ¢, with two real fields ¢ and 7,
as

1
\/5( o(z) +in(zr)) (1.30)
where (0|o(z)|0) = 0 and (0|n(x)|0) = 0. Now, we expand all the terms in the
lagrangian in series in the small parameter o(x) + in(x) around the minimum of the
potential. The lagrangian, in terms of ¢ and 7, becomes

4

1 1 1 A
L= 58“0@0 — Mo + 58“77@77 — \vo® — \von? — Z/\(O'Q + )2 + UT

(1.31)

We can see that ¢ and 7 are two real Klein-Gordon fields. The o (Higgs) field is
massive and will have mass m, = vv/2\ arising from the o2 term, while the 7 field
is massless. The remaining terms in the lagrangian can be treated as interactions
among the o and 7 particles through perturbation theory.
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We have seen in this example that the spontaneous symmetry breaking of the
U(1) symmetry that arises from the degenerate energy minimum of the lagrangian
can create a perturbative theory with a massive scalar boson, the Higgs boson and
a massless field. This is an example of the Golstone theorem.

1.2.2 Mass matrix and Goldstone theorem

The Goldstone theorem has two important consequences for spontaneous global sym-
metry breaking :

o The lagrangian remains invariant but the state of minimal energy, the vacuum
state, is not invariant any more. As the excited states are obtained from the
action of generators on the vacuum, symmetry is not manifest any longer in
the spectrum of the states.

o There exist some physical massless states. Their properties are connected to
those of the generators of the symmetry breaking. These are the Goldstone
bosons. There are as many Goldstone bosons than broken generators.

Now we are going to illustrate another formulation of this theorem [18]. Let us
consider a theory involving several classical scalar fields ¢;(z), with a lagrangian of
the form

L=K-V(¢). (1.32)
¢o,; are constant fields that minimizes V', so that
(g‘/) —0. (1.33)
Pi di=di0

These constant fields will minimize the Hamiltonian and therefore the energy. Thus,
they define the vacuum state.

If now we expand V about this minimum, we get :

1 0*V
V(¢) = V(o) + §(¢ — $0)i(¢ — ¢o); (@@8@) . + . (1.34)
Then we redefine the fields: ¢;(z) = ¢i(x) — ¢o,; and we call the quadratic term the
mass matrix 2y
mZ, = ( ) : 1.35
1=\ o600, , (1.8

This matrix is symmetric because derivatives are commuting and the eigenvalues of
this matrices give the masses of the field. They are always positive or null since ¢; o is
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a minimum. Each continuous symmetry of £ that is not a symmetry of ¢g gives rise
to a zero eigenvalue of this mass matrix. This is another formulation the Goldstone
theorem which states that for every spontaneously broken continuous symmetry , a
massless particle appears.

However, in the SM, the lagrangian possesses a local gauge symmetry. Therefore,
the consequences of the symmetry breaking are different. Some Goldstone bosons
become new longitudinal polarization states of the gauge bosons, the latter become
massive and the former disappear from the spectrum. This phenomenon is called
the Higgs mechanism.

1.2.3 Higgs mechanism in an abelian case

Let us first consider an abelian model with a single vector boson, the electromagnetic
field A,,, associated with a U(1) local symmetry and a complex scalar field ¢ :

L= 1 FuF* 4+ (D) (D*6) ~ V(6) (1.36)

where the potential is the same as in section 1.2.1. The field strength and the
covariant derivative are defined in terms of A, with a coupling constant e as in (1.7)
and (1.3) with @ = 1. The lagrangian is therefore renormalizable and invariant
under the local U(1) gauge transformation of the fields :

o(x) — e“Wo(z),  Au(x) — Ay(x) + iaua(w) (1.37)

where «(z) is an arbitrary function of space-time.

For 42 > 0, one finds the QED lagrangian for a charged scalar particle of mass p
with ¢* self-interactions. For p? < 0, the field ¢(x) acquires a vacuum expectation
value (cf. section 1.2.1). As in section 1.2.1, to find energies of the particles, we have
to choose one of the minima and develop the lagrangian in the vicinity of it. The
complex field ¢ can be parametrized as

]. ]_ 7 in(x
6() = 5+ o(@) +in(a)) = (0 + o' (2)e ™ (1.38)
We use the freedom of gauge transformations and we choose a(z) = —@. With this

particular choice, called the unitary gauge, the gauge transformation becomes:

2 4(2), Au(r) — Au(x) — —0,(z). (1.39)

€V
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Therefore the field ¢ takes the parametrized form :

1
o(z) = %(U +o(x)), (1.40)

and the lagrangian becomes :

62U2 2

1 1
L= 00,0 =Mo" = (B P+ AN+ %AMA“(ZUU +0?)

2
1 )
—\vod — “\ot + v

; y (1.41)

As in section 1.2.1, the scalar field o becomes massive, it has positive mass
my = vv2X. We see that n(x) disappears from £. In fact, the degree of freedom
associated with the would-be Goldstone field 7(x) can be seen as a longitudinal degree
of freedom of the field A,(z), that have now three degrees of freedom. Therefore, A,
acquires a non zero mass:

m? = e*v?. (1.42)
The U(1) symmetry is not apparent anymore in this lagrangian. Therefore, the sym-
metry is spontaneously broken, this is the Brout-Englert-Higgs (BEH) mechanism
that allows the gauge bosons to acquire a non zero mass. For each massive gauge
boson, one Goldstone scalar must disappear from the physical spectrum in order to
conserve the number of degrees of freedom.

So, we have illustrated the fact that the Goldstone theorem is generalized when
a local gauge symmetry is broken: the would-be Goldstone bosons are absorbed by
the massless gauge bosons that become massive and thus remove the massless scalars
from the spectrum.

1.2.4 Electroweak theory with spontaneously symmetry break-
ing

In the non-abelian SU(2)., x U(1)y electroweak theory, one needs to generate masses
for the three gauge bosons W* and Z but the photon must remain massless, and
QED must remain an exact symmetry so that the electric charge is conserved [19].
Therefore, one needs at least three degrees of freedom for the scalar field to be
absorbed as the longitudinal degrees of freedom of these vector fields. We start with
a theory with a SU(2),, gauge symmetry. To break the symmetry spontaneously, let
us introduce a complex SU(2),, doublet of scalar fields

I 2 W T AR ey 20
¢_<¢0>_\/§<¢3+i¢4>' (1.43)
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It is the simplest choice to group the four fields into one SU(2), representation.
However, this theory leads to system with no massless gauge bosons. We therefore
introduce an additional U(1) gauge symmetry. We give to the scalar field a weak
hypercharge charge Y = 1 under this U(1) symmetry.

We add to the lagrangian (1.16) new gauge invariant terms for the interaction
and propagation of the scalars :

Ly = (D"¢)' (Do) = V(67 0) (1.44)
where the potential has the form
V(9') = 1i*(6'0) + Mo'9)? = 1?|9]* + || (1.45)
and the product ¢f¢ can be expressed as:
1
616 = 66t + 0" = (6 + 63+ 6F + 03 (1.46)

For u? > 0, the state of lower energy corresponds to the annulment of the fields, so
there is no spontaneously symmetry breaking. The electroweak symmetry is sponta-
neously broken if the parameter 42 is negative. In this case, the fundamental state is
not unique, it corresponds to a circle of degenerated fundamental states as in (1.27).
To preserve electric charge conservation, i.e. the U(1)gpp symmetry, this nonzero
vacuum expectation value cannot be reached in the charged direction. Gauge in-
variance gives us the freedom to choose the state of minimum energy. The vacuum
expectation value can be rotated using a SU(2), x U(1)y gauge transformation to

take the form : )
_ 1[0 _ (N
0lol0) = 5 ( 0 ) - (u) | (1.47)

where the neutral component ¢3 of the doublet field develops a nonzero value. This
vacuum expectation value will break the gauge symmetry

In order to develop the theory around this minimum, we write the field ¢ in terms
of four fields & 2 3(z) and H(z) as

o0 (i)~ (ol ) 09

Then, we proceed as in the previous section. We perform an SU(2), gauge
transformation on this field :

o(z) — 6(%&&%)(%) = ( l(fo(x)) ) : (1.50)

V2
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The three fields &; are three Goldstone bosons that will give masses to the three weak
gauge fields. Spontaneous symmetry breaking will lead to a massive boson from the
field H(x), the Higgs boson. The gauge boson mass terms come from the square of
the covariant derivative

1
D, =0, —igWT, —ig §B#Y, (1.51)

evaluated at the scalar field expectation value. The relevant terms, since ¥ = 1,
are

1 1, 1,
AL = 5(0 v)(gW T, + 59 B,)(gW*T, + 59 B") ( 2 > . (1.52)
Using T* = %, the evaluation of the matrix product leads to
102 /
AL = ST [RWE + (W2 + (—gWS + g Bu)?. (1.53)

There are three massive vector bosons, which we will notate as follows:

e

1 1i72 0 _
f \/ﬁ(WM:FZWM)’ 7 =

Cm (Wi -gB). (159)

g*+yg

The fourth vector field, orthogonal to ZS, remains massless since it doesn’t appear
in the lagrangian :

1 :
Ay = ————(gW3+gB,). (1.55)
Y T '

Mass terms are terms that are bilinear in W+, Z, A:
v v ;
mw =93 mZ:§\/92+92, ma=0. (1.56)

Thus, by spontaneously breaking the symmetry SU(2), x U(1)y to U(1)gep,
three Goldstone bosons have been absorbed by the W and Z bosons to form their
longitudinal components and to get their masses. Since the U(1)y symmetry is
unbroken, the photon, which is associated to its generator, remains massless as should
be.

The physical bosons observed in interactions are the photon A and the W* and
Z bosons. In fact, W= bosons are mass eigenstates while WS and B, mix to give
the two physical bosons A, and Z,:

(5= (ot e ) ()
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with? m4 = 0 and myy = my cos Oy .

The weak mixing angle 6y to change from the (W3, B) basis to the (Z°, A) basis

is defined as ,

cos Oy = L, sin Oy = 97, (1.57)
so, that
g/
tan Oy = = . (1.58)
g

With the same doublet of scalar fields ¢, we can also generate the fermion masses.
Indeed, we can add SU(2), x U(1), gauge-invariant Yukawa interactions between
the scalar fields and the fermions which are SU(2) doublets or singlets. For exam-

ple,

Ly ukawa = —QrAadDr — Qrru¢Ur — LiNGER + h.c. (1.59)
where the SU(2),, doublet
~ . . ¢0* )
= ’LT =
e = ( %
has an hypercharge Y = —1 such that the total hypercharge of each term equals

zero. After the spontaneous symmetry breaking of the electroweak symmetry, these
Yukawa interactions provide mass terms m,, 4; = )\u,d,l% to all fermions.

Thus, with the same isodoublet ¢ of scalar fields, we have generated the masses
of both the weak vector bosons W#, Z and the fermions, while preserving the gauge
symmetry in the lagrangian.

1.2.5 The Higgs boson

The mass and self-interaction parts of the Higgs lagrangian comlerom the scalar
potential V' (¢) and from the kinetic part. Using the relation v* = —£-, the lagrangian
of the Higgs fields is thus

1 A
L= §8MH8“H — \W?H? — \wH? — ZH‘*. (1.60)
Therefore, the Higgs boson mass is
m3 = 2 \? = —2u° (1.61)

2An important parameter of the SM is p = (coszluv/‘/mz> and it was experimentally confirmed to

be very close to 1.
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where A\ is the Higgs self-coupling parameter. Since A is unknown at present, the
value of the standard model Higgs boson mass is not predicted. However, theoretical
considerations place constraints on the Higgs boson mass. For example, a lower limit
on mpy can be derived from the requirement of vacuum stability. Similarly, an upper
bound on my is obtained from the requirement that the perturbative description of
the theory remains valid.

From this lagrangian, we can derive the Feynman rules for the Higgs self-interaction
vertices. These are:
2 2
m A m
v 4 v?
The Higgs boson couplings to gauge bosons and fermions are:

2 2
.m m .
Iuif = ZTfa grvvV = —227V7 gupvy = —21— . (1.63)

where V' =W or Z. The Higgs couplings to fermions (bosons) are thus predicted to
be proportional to the corresponding particle masses (squared-masses). So, in Higgs
production and decay processes, the dominant mechanisms involve the coupling of the
Higgs boson to the heaviest particles that are W=, Z and the third generation quarks
and leptons. This characteristic coupling of the Higgs is a useful tool in searching
for it. The vacuum expectation value v is fixed in terms of the W mass determined
by the value of the Fermi constant G that appears in the old four-fermion theory

of weak interactions: )
1 \/§g2 2
my = —qu = .
w g 8G,

: (1.64)

Muon decay, that occurs through gauge interactions mediated by W boson exchange,
is a particular process through which G is measured very accurately. The actually
accepted value is v ~ 246 GeV.

Despite the great successes of the LEP, SLC and Tevatron colliders in verifying
many detailed aspects of the standard model, the Higgs boson is still missing. Very
precise experiments, which allow a sensitivity to quantum corrections, have been
made in the last fifteen years and at the same time, a large theoretical effort has been
devoted to the calculation of the radiative corrections to the electroweak observables.
Indeed, except for the Higgs mass, all the parameters of the SM have been determined
experimentally with a great accuracy. Using these parameters, one can in principle
calculate any physical observable and compare the result with experiments. For
example, the couplings of quarks and leptons to the weak gauge bosons W+ and Z
are indeed precisely those prescribed by gauge symmetry. The triple gauge vertices
AWW and ZWW have also been found in agreement with the specific predictions
of the electroweak gauge theory. For more details of all these results, see [19].
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The big remaining questions are about the nature and the properties of the Higgs
particle. In fact, the Higgs boson has not been observed yet and we don’t know its
mass. Nevertheless, the precision electroweak data impose some strong constraints,
and seem to provide strong support for the standard model with a weakly-coupled
Higgs boson. The radiative corrections computed in the SM when compared to the
data on precision electroweak tests lead to a clear indication for a light Higgs. Indeed,
the present experimental information on the Higgs sector can be summarized as
follows. The relation m#, = m?% cos 6%, has been experimentally proved. Direct recent
measurements at LEP-II have excluded a SM Higgs boson with a mass my < 114.4
GeV at 95% C.L. This lower bound has been derived from the failure to see the
Higgs boson being produced at the LEP machine. The present experimental upper
limit on mpy is: my < 190 GeV. This upper bound is a constraint from the required
agreement between theorical calculations of electroweak observables including the
Higgs as a virtual state, and precision measurements. Moreover, recently, for the
first time the Tevatron excludes a SM Higgs boson mass range [160-170] GeV beyond
the LEP limit at 95% CL [20].

The quest for the Higgs boson is the main priority of the LHC. There are several
ways, depending on the mass of this boson, to observe it. One way the Higgs boson
may be produced at the LHC is when two gluons split into a top/anti-top pair which
then combine to make a neutral Higgs. One other possible way of formation of a
neutral Higgs boson would be to start from two quarks that exchange electroweak
bosons. The Higgs boson has also a number of indirect effects. For example, Higgs
loops result in tiny corrections to W and Z masses. Further details of the basic
properties of the SM Higgs boson and of its decay modes and main production
mechanisms are given in the Higgs hunter’s guide [21].

All these properties and these experimental possibilities and limitations discussed
aboved refer only to the minimal SM Higgs boson. In the next chapter, we will con-
sider more complicated Higgs sectors whose results will be different. However, these
high-precision electroweak data are a useful tool in the search for indirect effects,
through possible small deviations of the experimental results from the theoretical
predictions of the minimal SM, and constitute an excellent probe of its still untested
scalar sector, as well as a probe of new physics beyond the SM, [19].
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Chapter 2

The Two-Higgs-Doublet-Model

Despite the success of the standard model in describing all known experimental
data available today and in particular of the electroweak theory with one SU(2).
Higgs doublet, which provides a successful description for the observed electroweak
phenomena, the necessity for new physics is not recent [22, 23]. Observed neutrino
oscillation phenomenon [24], implying that the neutrino has a non-zero mass, which
is not part of the original standard model of particle physics, confirmed that the SM
had inadequacies that can only find an explanation in some extensions. Moreover, the
Higgs sector is still unknown since no Higss boson has been discovered yet. Therefore,
there is no reason to assume that the Higgs sector contains only one doublet.

In this chapter, we are going to review some shortbacks of the SM so that the
necessity to expand it will appear clearly. Then we will detail several motivations
to extend the Higgs sector and especially motivations for a two-Higgs-doublet model
(2HDM) that is the simplest extension compatible with the gauge invariance of the
minimal Higgs sector. We will introduce this model and detail some of its proper-
ties.

2.1 Inadequacies of the standard model

It is very surprising that the standard model describes so well the observed phe-
nomena whereas it doesn’t explain the quantum numbers of the particles, it doesn’t
predict the mass spectrum, it doesn’t include gravity, it doesn’t explain the three
generations of fermions, etc. Let us detail some reasons the SM cannot be the whole
theory describing Nature.
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2.1.1 Neutrinos

Neutrinos, that only participate to weak processes through the exchange of W and
Z bosons, were assumed to be massless and only left-handed. However, there is
experimental evidence that neutrinos are massive through the observation of the
neutrino oscillation phenomenon [25]. Neutrino oscillations come from the fact that
eigenstates of mass are not eigenstates of flavour which can happen if the mass terms
involve mixing. So, the neutrino oscillation phenomenon in which a neutrino of one
flavour spontaneously converts itself into another one of different flavour during free
propagation is possible only if neutrinos are massive. Those masses are extremely
tiny (sub-eV) compared to the masses of the other particles.

The tiny values the neutrino masses and the fact that only left-handed neutrinos
are natural in the SM suggest that the neutrino masses have an origin different from
those of other elementary fermions, the quarks and charged leptons.

2.1.2 Dark matter

In 1932, astrophysicists discovered that there was a large contribution of non—baryonic
and non-luminous matter to the critical density of the Universe [26]. They called
it the dark matter. They observed that the density of known matter, i.e. baryonic
matter, represents less than 4 % of the total energy density of the universe. Now, it
is known that nearly a quarter of the energy content of the Universe is due to a form
of distributed matter, i.e. the dark matter, that has gravitational interaction but
that is non-luminous and electrically neutral. The remainder is completely unknown
for us and one attributes it to a kind of dark energy.

A plausible explanation would be that the dark matter is due to the dominant
presence of some new kind of stable or very long-lived electrically neutral particle(s)
without strong! and electromagnetic interactions. Moreover, it is know that this
dark matter is cold [27], this means that it has a non-relativistic velocity distribution.
The SM does not include any candidate particle to account for such a dark matter
component. Its presence would therefore require an extension of the model. If it has
weak interactions, it should be producible at the LHC.

'If dark matter can interact via strong interactions, that would have interfered with the nucle-
osynthesis process.
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2.1.3 Hierarchy problem

We have seen in the previous chapter that in the standard model, the electroweak
theory is an SU(2); x U(1)y theory that is spontancously broken to the U(1)grp
gauge symmetry. The electroweak symmetry breaking is described by the Higgs
mechanism which provides masses for gauge bosons, and respect gauge invariance
and renormalizability. Its realization is based on a single complex SU(2);, doublet
of scalar fields that will acquire a non-zero vacuum expectation value. Three of
these scalar fields are absorbed by the three weak gauge bosons that acquire masses
and the remaining one, the physical Higgs boson, couples to the gauge and matter
fields and self-interacts via the quartic scalar potential. At the classical level, this
above statement makes good sense. However, a problem arises when one tries to take
quantum loop corrections into account. In fact, contrarily to fermions masses that
are protected by chiral symmetry, masses of elementary scalar fields are unstable
under quantum corrections. In fact, the squared physical renormalized Higgs-boson
mass m?; that is expected to be of the order of the squared vacuum expectation value
v? of the Higgs field, receives large quantum corrections that quadratically depend
on the cutoff A:

sm2, o O (O‘) A2, (2.1)
T

a being the fine-structure constant. Thus, if one makes the reasonable requirement
that the quantum correction to the mass should not be too large as compared with
the original mass, one is forced to keep a cutoff within an order of magnitude of
the mass, which in the case of the electroweak theory is about 1 TeV. Indeed, if we
extend the theory to the Plank scale, upper scale beyond which we cannot neglect
quantum gravity, then the natural value of the Higgs mass will be the Planck scale,
an energy scale around 1.22 x 10?8 eV. This is an other question the SM doesn’t
answer: why are there 17 orders of magnitude which separate the electroweak scale
from the Planck scale 7 Of course, we can choose the renormalization such that
the Higgs boson mass is fixed to the range of values in which it is experimentally
required to be. Such a fine tuning is considered unnatural. Moreover, this procedure
of renormalization would need to be repeated order by order in perturbation theory
making the theory somewhat unnatural. Since the Higgs boson mass is around 100
Gev, this problem leads to say that the SM is only valid within an order of magnitude
of that. An other hierarchy problem is about masses: why is the top quark 4 x 10°
times heavier than the electron?
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2.2 Physics beyond the standard model and mo-
tivations for a 2HDM

During the last decades there were numerous attempts to find physics beyond the
SM. Some of them are based on an extended Higgs sector. Indeed, the scalar sector of
the standard model described in the previous chapter is minimal, this means that the
associated Higgs representation? is the simplest possibility allowing for non vanishing
mass terms for weak bosons and fermions after spontaneous symmetry breaking.
Nevertheless, the mechanism of electroweak symmetry breaking with one doublet is
still not confirmed. Therefore, one may consider larger or additional representations.
Motivations to enlarge the Higgs sector [28] can be related to the requirements of
higher scale symmetries, like supersymmetry, grand unification theories, etc, or they
can be justified by phenomenological arguments, such as the possibility of new sources
of CP violation.

In this work we are concerned with the simplest extension of the scalar sector: the
two-Higgs-doublet models (2HDM) that require the introduction of a second Higgs
doublet. Let us concentrate on the motivations for such an extension of the Higgs
sector.

2.2.1 Theories behind the SM with a higher symmetry

Supersymmetry

Supersymmetry is often considered as the most attractive extension of the standard
model as it solves some of the problems mentioned above [15]. It predicts the ex-
istence of a partner to every known particle which differs by % unit of spin, so the
supersymmetry is a symmetry that transforms fermions into bosons and vice-versa.
In this model, the SM must therefore be extended by adding a new elementary par-
ticle, called a superpartner or a sparticle, for every known particle. However, if
supersymmetry were exact, these would have the same masses as the ordinary parti-
cles. That is in contradiction with observations as we know that the selectron mass is
different from the electron mass, and therefore supersymmetry is a broken symmetry
and various scenarios have been proposed.

Supersymmmetry provides a solution to the hierarchy problem, provides unifica-
tion of the three interactions at the grand unification theory scale and has a possible
candidate for the dark matter.

2The smallest representation containing the three would-be Goldstone fields associated with the
three massive gauge bosons and the Higgs scalar is a single SU(2) doublet.
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The simplest supersymmetric extension of the standard model is the Minimal
Supersymmetric Standard Model (MSSM), which contains at least two fundamental
Higgs fields that are responsible for the generation of masses. This model requires a
second Higgs doublet to preserve the cancellation of gauge anomalies. So, the Higgs
sector of this model is a 2HDM which contains two chiral Higgs supermultiplets that
are distinguished by the sign of their hypercharge. The theoretical structure of the
MSSM Higgs sector is constrained by supersymmetry, leading to numerous relations
among Higgs masses and couplings.

Grand Unification theories

Grand Unified Theories (GUTS) aim at the ambitious task of unifying strong and
electroweak gauge interactions in a non-abelian gauge theory based on a single com-
pact Lie group that contains the standard model group SU(3)¢ x SU(2), x U(1)y.
Several Lie groups have been considered, from the simplest, SU(5) [29], SO(10), to
larger groups as Eg models. In general, unification theories have some common and
interesting characteristics. For example, they include gauge couplings unification at
very high energy. However, due to the presence of new very massive gauge bosons,
they also allow, in general, proton decay which is the most dramatic prediction com-
ing from unification.

We need to break the Lie group to the SU(3)¢ x SU(2) x U(1)y group. To do so,
different Higgs representation are required. In general, this implies the presence of
an extended scalar sector at the electroweak scale. For example, a two-Higgs-doublet
model in needed to break SO(10) to the SM group .

2.2.2 Phenomenology arguments
Sources of CP violation in the Higgs sector

One of the reasons for introducing an extended Higgs sector with two Higgs doublets
was to implement CP violation via the Higgs sector [30]. The phenomenon of CP
violation plays an important role both in the study of weak interactions in particle
physics and also in cosmology. Indeed, it is a necessary ingredient to explain the
dominance of matter over antimatter in the present Universe. In the SM, hermitic-
ity requires that the parameters of the scalar potential are real. consequently, the
resulting bosonic sector of the electroweak theory is CP-conserving. CP violation
arises through a non vanishing complex phase in the CKM matrix. However, this
mechanism cannot account by itself for the observed baryon asymmetry. The main
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reason is that the CP violating effects associated with the three generations CKM
matrix are too small.

Extensions of the SM scalar sector can provide a solution to this problem. Indeed,
in the two-Higgs-doublet models, for example, the CP symmetry can be violated
explicitly in the scalar sector. CP violation can appear if some of the coefficients
in the 2HDM potential are complex. However, the requirement of neutral flavour
conservation restricts the possibilities for CP violation.

Dark matter

A potential candidate for dark matter is the lightest supersymmetric particle (LSP),
in most cases a neutralino or a gravitino.

Moreover, a specific 2HDM called the inert model [31], requiring a two-Higgs-
doublet extension of the SM scalar sector, could be a candidate to explain dark
matter. The main feature of this model is a Z; symmetry which remains unbroken,
imposing one of the doublet to acquire a null vacuum expectation value. This doublet,
called the inert Higgs doublet, has neither vacuum expectation value nor couplings
to quarks and leptons but it has a non zero mass. After mixing, the lightest particle
might compose the dark matter while the usual Higgs boson is heavy (> 400 GeV)
and does not contradict the precision EW tests.

Yukawa couplings and Fermion mass spectrum

The Standard model doesn’t explain the fermion mass spectrum, which is related
to the Yukawa couplings between the Higgs field and the fermions. These couplings
are completely arbitrary, and so cannot explain why there are three generations of
particles or the large spectrum of masses.

For example, the top and bottom quarks of the third generation have very differ-
ent masses , Moy ~ 174 GeV while mporom = 5 GeV. In a model with one doublet,
all quarks receive their masses from the same doublet. In a model with two doublets,
the Yukawa coupling can be more natural because it is possible to generate Yukawa
couplings such that the bottom quark receives its mass from one doublet and the top
from another doublet.
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2.3 The two-Higgs-Doublet Model

The two-Higgs-Doublet Model (2HDM) is the simplest extension of the standard
model (SM) with one extra scalar doublet which contains more physical neutral and
charged Higgs fields. Therefore, this model contains two complex doublets of scalar

fields, ¢ and ¢s:
b
b = ( Zo ) (2.2)

with i=1,2. Hence, there are eight degrees of freedom that will be used to give masses
to the gauge bosons. In some cases, after symmetry breaking, three Goldstone bosons
provide the longitudinal modes of the bosons W# and Z, that become massive. And
there will remain five physical Higgs bosons : three neutral ones hy, ho, h3 and two
charged ones H*.

2.3.1 Lagrangian for the 2HDM

The spontaneous electroweak symmetry breaking via the Higgs mechanism is de-
scribed by the most general SU(2),, x U(1)y invariant lagrangian for the 2HDM that
can be written as

Lonpm = Ly + Lyukawa + L - (2.3)

Lsyr describes the SU(2), x U(1)y standard model interactions of gauge bosons
and fermions, Ly, rewe describes the Yukawa interactions of fermions with Higgs
scalars. These two terms will not be discussed here because they are not relevant in
our analysis. The Higgs scalar lagrangian L is

Ly= > (Dugi)"(D'¢i) — Vi (¢, ¢2) - (2.4)

i=1,2

These terms replace the kinetic term and the Higgs potential in the standard
model lagrangian with the same covariant derivative:

. irra Y
D, =0, —wgW,T, —ig EB‘“
where T, and Y are the generator of weak-isospin and weak-hypercharge transfor-
mations.

(2.5)

In order to keep, for the quantity p = ( COSZ’MV/VmZ), the value p = 1 at tree level,
both Higgs fields should be weak isodoublets (I = 1/2) with hypercharges Y = +1.
Here, we use Y = +1 for both doublets. In the MSSM, Y; = 1,Y; = —1 |, but our

results hold up to redefinitions.
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The 2HDM potential

The most general gauge invariant and renormalizable potential V(¢q,¢s) for the
2HDM is defined in the 8-dimensional space of Higgs field and is a hermitian com-
bination of the electroweak-invariant combinations (¢1é1), (dhes) , (d1ds), (dher).
(¢ ¢;), 1,5 = 1,2. In models of electroweak interactions with spontaneously broken
gauge invariance, renormalizability limits to four the degree of the Higgs potential,
terms of order greater than four have to be excluded because they are not renor-
malizable, therefore, the maximum power of the combination (gbj ¢;) is 2. The most
general two-Higgs-doublet potential is conventionally parametrized in a generic basis
as :
Ve =W+ V)

where

Vo = g lmh(6l6n) + mi6hen) + mi(olen) + mi(ole)]
Vi = Aol + 20k + 2 (010 (0hon) +
2 (6162)(8hon) + 5 As(0162)? + X6k +
{[Ae(@ld1) + Ar(pha)] (0 ¢) + hoc.}. (2.6)

This general potential with all quadratic and quartic terms contains 14 real free
parameters (in contrast to only two real parameters for one doublet) : the real
parameters (by hermiticity of the potential) m?,, m3,, A1, A2, A3, A4 and the complex
parameters m?,, As, Ag, \7.

This potential is responsible for the stability and the symmetry-breaking of the
model. After the electroweak symmetry breaking, it is responsible, with the interac-
tion terms from the kinetic terms, for the generation of gauge bosons masses. But
the large number of free parameters makes the characterization of the symmetry
breaking for different regions in parameter space very complicated. Moreover, we
will see that the potential of the 2HDM can have extrema with different physical
properties.

In contrast with the standard model, the potential is not unique. Each set of
parameters will lead to different mass eigenstates, interactions, Feynman rules, etc.
Therefore, the 2HDM is governed by the choice of the Higgs potential parameters and
moreover by the Yukawa couplings of the two scalar doublets to the three generations
of quarks and leptons.

The parameters depend on the choice of the ¢; — ¢, basis. In writing (2.6), we
have implicitly chosen a basis in the two-dimensional space of the scalar fields. In
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order to allow for other bases, we will see later that it is convenient rewrite (2.6) in
a covariant form and to analyze the properties of the potential, such as its stability
and its spontaneous symmetry breaking, in terms of covariant quantities.

2.4 Constraints on the Higgs Langrangian

2.4.1 Positivity constraints

These are conditions on the parameters from the requirement of a stable vacuum. To
have a stable vacuum, the potential must be positive at large quasiclassical values of
fields ¢; and ¢9 for any directions in the (¢q, ¢o) plane.

2.4.2 Minimum constraints

The minimum constraints are the conditions ensuring that the extremum is a mini-
mum for all directions in the (¢1, ¢2) plane, except in the direction of the Goldstone
modes. This condition is realized if the mass matrix of the Higgs fields is definite
positive.

2.4.3 Perturbativity and tree-level unitarity constraints

The quartic terms of the Higgs potential ();) are transformed to the quartic self-
couplings of the physical Higgs bosons. In fact, the tree-level amplitudes® for the
scattering of longitudinal gauge bosons at high energy can be related to the corre-
sponding amplitudes in which the longitudinal gauge bosons are replaced by Gold-
stone bosons and the latter can be computed in terms of quartic coupling A;. They
lead, at tree level, to the s-wave couplings Higgs-Higgs and W, W and W H, etc. By
imposing tree-level unitarity constraints on these amplitudes, one can derive upper
bounds on the values of certain combinations of Higgs quartic couplings. Tree-level
unitarity constraints were obtained in the 2HDM with CP-violation in [32].

The perturbativity condition for the validity of a tree-level approximation in the
description of interactions of the lightest Higgs boson may be less restrictive than
the unitarity constraints.

3Tree level approximation means that we do not consider loops in calculation.
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2.5 Particular cases of 2HDM

In many applications, we don’t need to consider the most general 2HDM with the
14 parameters in the scalar potential. There exist different versions of 2HDM with
different choices of the parameters that have interesting characteristics.

For example, as studied in the first article about the 2HDM [30], if V is Z,
symmetric under the transformations: ¢; — —@1, @2 — ¢o, then there is no
¢1 «— ¢ transition (or vice versa) and this implies \g = Az = m?, = 0. Then, in
this case all coefficients of the potential are real and it describes the theory with-
out CP violation in the Higgs sector. However, if it contains some complex coeffi-
cients, these make CP violation in Higgs sector possible. For a detail discussion, see

[33].
Another important illustration of 2HDM is the minimal supersymmetric model.

This is based on a specific version of 2HDM with A\; = Ay = =23 and Ay = \g =
A7 = 0, to break the electroweak symmetry.

There also exists, as we have mentioned above, a specific 2HDM model which
could explain dark matter, the inert model.

To show the new phenomenologies of extended scalar models, we are going to
analyze a very simple case with two complex fields. We will see first of all that the
analysis of this simple case leads to rather cumbersome calculations, such as the
minimization of the potential, or the computation of mass matrices, but also that
this model already displays interesting and novel characteristics.

2.5.1 A simple case of 2HDM

For simplicity, let ¢; and ¢ denote two scalar Higgs fields (and not doublets) and let
us consider a case where A\; = Xy, and Ay = A5 = \¢ = Ay = m?, = 0, so that

1
Vu = —i[m?1(¢f¢1)+m§2(¢§r¢2)]

A A A
+5 (67007 + 5(0562)° + T (67 61)(65 62). (27)

We choose, among different forms of the lagrangian describing the same physical
reality, a specific one in which the vacuum expectation values of both Higgs fields are
real. This will simplify the analysis of this problem. This lagrangian, obtained by an
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appropriate U(1)y transformation, is such that the scalar field vacuum expectation
values are of the form :

1 1
<<Z51> = ﬁvla <¢2> = ﬁ?&

with v, and vy real and positive.

Positivity conditions
In order to have a stable vacuum, the potential has to be bounded from below. Let

us derive the constraints on the parameters A; such that it is satisfied. It is sufficient
to look at the quartic terms :

G105 (65 0nV+ (6T 60) 85 62) = (61 60)— (B0 + (6 61) (95 62))

The positivity conditions are :

A>0, A+2A3>0.

Parameters of the potential are also constrained by demanding that the extremum
is a minimum. These constraints will be derived later.

Extrema of the Higgs potential
Ground states are described by the constant fields that minimize the potential. So,

to find the excitation spectrum of the system, we need the extrema of the potential.
The conditions for extrema of the scalar potential

(gv> _ (2‘/> —0 (2.8)
1 d1=(¢1),p2=(¢2) P2 d1=(¢1),p2=(¢2)

define the vacuum expectation values {(¢1) , (¢2).

In our case, the conditions are

%(—m%l + )\vf + /\303) =0, %(—m%Q + )\Ug + /\32}%) =0. (2.9)

Therefore, there are four possible phases :
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the phase A with v; = 0 and vy = 0,
the phase By with v; # 0 and v, = 0,

the phase By with v = 0 and vy # 0,
the phase C' with v; # 0 and v # 0,

These phases lead to different symmetries. The conditions to have a minimum
for the four phases are derived in the appendix.

The phase A corresponds to the case without symmetry breaking since the poten-
tial has one global extremum at the origin that is a minimum if the Higgs parameters
obey conditions spelled out in the appendix.

Electroweak symmetry breaking arises if the minimum of the potential occurs for
nonzero expectation values of the scalars fields. This happen in the phases By , By
and C'.

The phases By and By correspond to the case where the potential acquires two
extrema in one direction in the (¢y, @) plane that are symmetric compared to the
origin and have the same depth. In the phase B; (Bs), the potential has two global
minima in the ¢; (¢2) direction, one for ¢; = % (¢2 = %) and one for ¢, = — %

V2
(P = —%) as the potential is a polynomial function of (¢f¢;), i = 1,2. Then, we
have to choose among these two minima one of them, that breaks the symmetry, and
develop the theory in the vicinity of this minimum of the potential. In this case,

only one of the scalar fields will couple to fermions as in the inert model.

The phase C happens when the potential acquires four minima, the first two in
the ¢, direction corresponding to ¢ = % and ¢ = —% that are symmetric relative
to the origin. And the second two in the ¢y direction corresponding to ¢ = % and
¢2 = —% that are symmetric relative to the origin too. In this phase, the two Higgs
fields can couple to fermions in different ways.

Therefore, this model is governed by the choice of the Higgs potential and the
Yukawa couplings of the two scalar fields to the three generations of fermions.

Phase diagrams

We have three phase diagrams in function of the values of the parameters A and
As3. We observe phase transitions (change of minima) upon continuous change of

2
parameters m;;.
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1. /\>/\3>0

Figure 2.1: The phase diagram for A > A3 > 0

In this case, depending on the values of the parameters m?j, the four differ-
ent phases are possible. Upon crossing the line separated this phases, phase

transitions take place.

When the two mass parameters m?, and m3, are both negative, the potential
has one global minimum at the origin and so it is stable (phase A). When m?,
or m3, become zero, phase transition takes place :

o If m2, becomes zero and then positive, the potential transits to the phase
B,. Then, if m3, becomes also positive, when m3, = %m%l, a new tran-

sition takes place; the potential is then in the phase C.

o If m2, becomes zero and then positive, the potential transits to the phase
Bi. Then, if m}, becomes also positive, when m3, = 32m},, a new tran-

sition takes place; the potential is then in the phase C.
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Figure 2.2: The phase diagram for A3 > A > 0

With this choice of values for the parameters A and A3, we can see that the phase

C is not possible and that the phases By and By coexist between m3, = ’\fm%l
and m3, = 4*m?,. In this zone, where the parameters m3$, and m3, are positive

A2 2 A3 2 : : 2 _ 2
and such that LM < my < gtmi, above the bisectrix mj; = m3,, the

minima of the phase B, are the global ones while those of the phase By are
local, whereas below it, the minima of the phase B; are global. Moreover, as
in the previous case, when the two mass parameters m?, and m3, are both
negative, the potential is in the phase A, and transition to the phase B; or By
takes place when one of these two parameters becomes zero.
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Figure 2.3: The phase diagram for 0 > A3 > —\

The approach here is similar to the one used to analyze the first phase diagram
(Figure 2.1). Depending on the values of the parameters m?, and m3,, the four
phases, A, C', By, Bs, are possible.

In this very simple case, we note that interesting phenomena happen : depending
on the choice of parameters, different phases and different Yukawa couplings for the
two fields are possible.
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Chapter 3

The most general two Higgs
doublet model

3.1 Motivations

In this Chapter we study in detail the 2HDM with the most general form of the
potential. Before we come to the calculations, we first give several motivations.

First, there are a lot of possible models containing two Higgs doublets with differ-
ent choices of the parameters in the potential. It has been observed that sometimes
they lead to different phenomenologies, and sometime to very similar ones. This leads
to the conjecture that there exist some classes of models with different parametriza-
tions but similar physics. So, a general question arises: what are the relations among
various particular realizations of 2HDM?

Another observation is that most of the specific models studied in literature had
quite simple potentials, which can be studied with usual algebra. This simplicity
is always the result of some additional symmetry in 2HDM. Usually, one studies
Zy symmetry, U(1) symmetry or C'P-symmetry of the Higgs potential. It has been
noted that such symmetries can be implemented in seemingly different ways, but still
leading to similar physics. So, it is desirable to establish a complete list of possible
symmetries and their phenomenological consequences. This was the main theme of
several recent works on so-called generalized C P-transformations [34, 35, 36]. This
list will be useful for building further models with predefined symmetries.

It is also interesting to see what happens if these symmetries are broken [37],
because restrictions coming from experimental data can also accommodate this sit-
uation.
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In addition, the general 2HDM can be useful for the Minimal Supersymmetric
standard model, MSSM. At tree level this model uses a very simple variant of 2HDM,
but the Higgs potential can receive loop corrections from new supersymmetric par-
ticles. These loop corrections introduce effective couplings among the Higgs fields,
which were absent at tree level. Therefore, as stated in [38], one can describe the
Higgs-sector of the (broken) MSSM by an effective field theory consisting of the most
general two-Higgs-doublet model.

All this shows that it is very useful to study the most general Higgs potential of
2HDM without imposing any special relation among the parameters. So, we want to
describe the whole list of physical possibilities, which are offered by the introduction
of the second doublet.

3.2 Difficulties with a straightforward approach to
the most general 2HDM

Let us start by introducing the following notation:

Pa = ( i; ) : (3.1)

Note that here both ¢; and ¢, are electroweak doublets themselves, so that although
a=1,2, ¢, effectively incorporates 4 complex fields. So, one should remember that
in the definition of ¢, there is a hidden electroweak index. Let us write the general
Higgs potential in the following form:

Vir = Yaldh) + 5 Zasea(8160) (616) 32

where Y, and Z,;.4, constructed from the Higgs potential parameters, represent mass
terms and quartic couplings respectively and the indices run from 1 to 2. The basic
objects used here (¢!¢,) are electroweak scalar products of doublets ¢, and ¢, so
that (¢l¢,) is a 2-by-2 matrix and has no electroweak indices. The number of free
parameters in tensors is restricted by the symmetry

Zabcd = chab . (33)
Hermiticity of V' also implies
Yab = (}/bzz)*? Zabcd = (Zbadc)* . (34)

These relations reduce the number of parameters: Y, has 4 free parameters and
Zapeq has 10. In total, as we have seen in the previous chapter, the potential contains
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14 free parameters. These can match the standard 2HDM notation given in (2.6),
see [38].

The first step towards phenomenology is to find the minimum of the potential.
For example, following [38], we assume that the vacuum respects the electromagnetic
gauge symmetry. That is, the expectation value of ¢; and ¢, are assumed to be
aligned in SU(2), space, and we follow the standard convention, after using the
appropriate SU(2), transformation, only neutral components of the doublets acquire
non-zero expectation values:

v v

where ¥, = (¥, 72) is a vector of unit norm in the space of doublets. Taking the
derivative of eq.(3.2) with respect to ¢y, and setting (¢?) = 73 0a, we find the covariant
form for the scalar potential extremum conditions:

U (3.5)

1
U (Yap + 51)2Zabcdv}*ﬁb) =0. (3.6)

Unfortunately, these coupled equations cannot be solved explicitly. That is, we
cannot find (¢,) is terms of Yy, and Zgpq. It means that we can do nothing in the
general 2HDM with straightforward algebra.

One can try, of course, to analyze the general 2HDM numerically. However, with
14 free parameters it becomes a very complicated task. There are indeed some papers
where this approach is used to study the symmetries of the vacuum [39] or the masses
of the Higgs bosons [40], but the results are very inconclusive.

Another method has been suggested in [11, 41], that allows one to analyze many
characteristics of the most general 2HDM without the need to compute the exact
position of the global minimum of the potential. In this formalism, we first establish
the structure behind 2HDM and then, we reformulate the problem of minimization
in geometric terms. This method cannot, of course, give the explicit solutions to
the minimization problem, but using it one can obtain some information about the
number of minima of the potential, symmetries of the minima, prove several coexis-
tence theorems, and give a full description of the phase diagram of the model. We
will explain the essence of this method in this chapter and we will use it in the next
chapter to study the masses of the general 2HDM.

3.3 Reparametrization symmetry

The starting point of this method is the reparametrization symmetry of the 2HDM
potential.
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In the most general two-Higgs-doublet model (2HDM), the Higgs potential de-
pends on the Higgs fields, ¢; and ¢, and on coupling constants \;, m?j: V(A m?j, ba)-
The physical observables, such as vacuum expectation values and masses of the
physical bosons, are functions of these coupling constants but not of the fields them-
selves.

Consider now the same Higgs potential but with another set of parameters:
V(A mfj, ¢a). If we perform a linear transformation of the Higgs fields

¢o¢ - an = Raﬁ¢ﬁ7 (37)

then the potential will keep its generic form, but with redefined parameters. Some-
times it is possible to find such transformation of the fields, which brings the potential
back to the form with original coefficients V()\i,m?j, gzga) When it is the case, the
physics encoded in V (A, m};, ¢o) and in Vi, my;, o) = V (A, m3, $a) is the same,
because it does not depend on the fields. Therefore, by construction, the potential
with coefficients \;, m7; and that with coefficients i, 1my; describe the same physical
reality. In this case, we say that the theory has reparametrization invariance. It is
easy to prove that such transformations form a group, which we call reparametriza-

tion group.

This is a very general property. We want to find its explicit realization in 2HDM.
So, we first find the full reparametrization group, then find the best way to imple-
ment it, and then establish to which representations of this group the fields and
the parameters correspond. The physical observables must correspond to the singlet
representation of this group; so they must be obtained by a complete convolution of
a given representation of parameters.

We start by establishing the reparametrization group. In the 2HDM we have
two Higgs doublets with the same quantum numbers. Therefore, these two different
Higgs doublets can also be viewed as two components of a single complex 2-vector

¢:<$). (3.8)

As we said, the Higgs potential keeps its generic form under the action of the group
of invertible linear transformations of a complex-valued 2-vector ®. This group
contains all complex 2-by-2 matrices with non-zero determinant. This group is called
the general linear group GL(2,C'). This is an 8-dimensional Lie group that can be
written as

GL(2,C) = C* x SL(2,C), (3.9)

where C* is the subgroup of multiplication of ® by non-zero complex numbers. Mul-
tiplication of all the fields by the same real nonzero constant can be compensated by
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a rescaling of all the observables, whereas SL(2,C) embraces all non-trivial trans-
formations. This is the reparametrization group of our problem.

The fields are in the fundamental representation of this group, while the coeffi-
cients are in tensorial representations, as seen in (3.2). So, we have constructed, in
principle, a reparametrization-covariant description of the potential, in which all the
objects are some specific representations of the reparametrization group. We showed
also that the physical observables must be reparametrization-invariant. So, we want
to establish a reparametrization-covariant method of calculating these physical ob-
servables. Reparametrization-covariant methods are useful, because one can use the
freedom to choose a convenient Higgs-field basis for the description of the Higgs po-
tential, prove something in this basis, rewrite it in a covariant way, and then switch
to another basis, if necessary.

However, before we do this, we introduce a much more transparent way to study
the reparametrization properties of the potential, which we are now going to de-
scribe.

3.4 The orbit space of the 2HDM potential

The Higgs potential of the 2HDM is gauge invariant. It means that it remains abso-
lutely the same if we make an SU(2), x U(1)y transformation inside each doublet.
The electroweak gauge group has 4 generators. Therefore, if we start with a specific
point in the 8-dimensional space of Higgs fields and apply the gauge transformations,
we will get a 4-dimensional hypersurface. This surface is called a gauge orbit.

The Higgs potential is equal for any points inside any chosen orbit. Points within
the same orbit are indistinguishable for the Higgs potential and orbits never intersect.
Therefore, one can simplify the problem by introducing the space of gauge orbits
and think that the Higgs potential is defined in this orbit space instead of the 8-
dimensional space of Higgs fields. By counting dimensions we see that the orbit
space must itself be 4-dimensional.

To specify the orbit space, let us note that the Higgs potential depends on the
fields via SU(2), x U(1)y invariant scalar products (¢1éy), (dhea), (d1d2), (dher).

Therefore, the values of all combinations (gbj ¢;) can be used to define the orbit.
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3.4.1 The orbit space

Let us introduce a four-vector

T'u = (7"0,7’1') = (¢TJM¢)’ (310)
uw=0,1,2,3 with
ro = (@Tq)) = (¢J{¢1> + (¢£¢2) (3.11)
and
(8501) + (] 62) 2Re(¢]¢s)
ri = (®lo®) = | —i((¢]d) — (¥)61)) | = | 2Im(¢]ps) (3.12)
(6l1) — (d5¢2) |1]* — [2]?

where o; are the Pauli matrices. When @ is transformed by a GL(2,C') transforma-
tion, ro and r; transform as a single 4-vector r* = (1o, 7;). So, the scalars rq and r;
are parts of a single irreducible representation of SO(3,1). This four vector is gauge
invariant and parametrizes the gauge orbits in the space of the Higgs fields.

Since potentials are invariant under the global phase rotations of both doublets
¢; — e ' with common phase oy, the same set of observables can be described
by a class of lagrangians that differ from each other by independent phase rotations
for each doublet, accompanied by compensating phase rotations of parameters of the
lagrangian. This is a particular case of reparametrization invariance, a rephasing
invariance. Therefore, if we multiply ¢; and ¢9 by a common phase factor, this does
not change r#, therefore, each r* parametrizes a U(1) orbit in the 8-dimensional
space of fields. The potential being also U(1)-invariant can be defined in this 1 + 3-
dimensional orbit space. The SL(2,C) group of transformation of ® induces the
proper Lorentz group SO(3,1) of transformation of 7.

This group includes 3D rotations of the vectors r; induced by SU(2) and also
boosts along the three axes that mix ry and ;. Thus, the orbit space composed by
all possible vectors r#, is equipped with the Minkowski space structure with metric
g = diag(1,—1,—1, —1) that relates covariant and contravariant vectors.

In fact, the orbit space in 2HDM is not the entire Minkowski space. The square
of the four-vector r* is invariant under any proper Lorentz transformation and since
¢1 and ¢ are complex, we can show that it is non-negative:

r?=rtr, =g —r] = 4[(8]d1)(#hd2) — (¢1¢2)(dhen)] (3.13)

¢1:<le>, (,152:(2;) (3.14)
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and if we use angle notation to represent a complex number with amplitude and
phase
ay = ]allewl, b1 = ]bl\elel, A9 = |a2]e’¢2, b2 = ’b2’6192 (315)

we find

(8161)(Php2) — (Pleo)(d5d1) = (Jar||ba| — |ba]|as])?
+2]ar ||by ||as|[b2[L — cos(8y — b2 — ¢1 + ¢2)].

(3.16)
This means that r#r, > 0. We can notice that r#r, = 0 if
b
@:L‘A:C’ 01 — 0y = 1 — y = (3.17)
ai| by

In this case,
_( lagle’™ _{ Clayle@= \ o ai]e
o1 = ( ’b1|6i91 , 2= C/|b1|€i(917a) =Ce |bl|e"91 ) (3.18)

So, the surface of the future light-cone, 7#r, = 0, corresponds to the situation
when the two Higgs fields ¢; and ¢, are proportional to each other.

Therefore, since 7% > 0 and the value of 7* are not restricted from above, the orbit
space lies inside and on the border of the future light-cone (LC™") in the Minkowski
space. And the reparametrization group in the orbit space, SO(3,1), as expected,
leaves the orbit space invariant.

Now, the Higgs potential can be rewritten in the orbit space as :

1
Vg = —B,r" + iAWr“r” (3.19)
where 1
Bt = Z(mfl + m%% —2Re m%Qv 2Im m%Qv _mil + m%2)7 (320)
7>\1;>\2 + /\3 —Re(/\g + /\7) Im(/\ﬁ + /\7) —7>\1;)\2
A . 1 —R@()\G + )\7) )\4 + Re)\5 —]m)\5 RG()\G - )\7)
ool Im(he + A7) —Im)\s A — Reds  —Im(Ag — A7)

—7A1;)\2 R@(/\@ — /\7) —]m(/\ﬁ — /\7) 7>\1—5>\2 — /\3

(3.21)

We obtained a more compact reparametrization-covariant description of the po-
tential. The reparametrization group is now SO(1,3), the two fields are grouped in
the fundamental representation of this group, and the coefficients are grouped into
fundamental and rank-2 tensorial representations.
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3.4.2 Reparametrization and kinetic term

The canonically normalized gauge covariant kinetic energy terms of the scalar fields
are invariant under arbitrary global U(2) transformations in the complex two-dimensional
space spanned by the two fields. Thus, we are free to redefine our two scalar fields

by making an arbitrary U(2) transformation.

However, transformations from the reparametrization group SL(2,C') modify the
Higgs kinetic term. Therefore, in order to restore a canonical form of the kinetic
term a field renormalization is needed in addition to the transformation. The kinetic
term can be written in the reparametrization covariant form

K = K,p" (3.22)

with
P = (0a®) o"(0"®) (3.23)

where « indicates the true space-time coordinates and p the coordinate in the Higgs
orbit space. The reparametrization transformation laws of p* are the same as for r*.
In a generic frame, K, = (1,0,0,0). Upon SL(2,C) transformations of the Higgs
fields, spacelike components of K, become non-zero still keeping K, K* = 1 because
Lorentz transformations from SO(3,1) group preserve the quadratic form. So, the
full Higgs lagrangian includes also the kinetic term, which can be off-diagonal in a
general case (that is, doublets ¢; and ¢, can mix).

Note that there is a very general physical argument that says that in any basis
the four-vector K* always lies inside the future light-cone. In fact, the requirement
that the energy density must be positive, implies that K, lies inside the future
lightcone: Ky, > 0, K#K, > 0. This condition remains true under an arbitrary
SO(1,3) transformation.

The kinetic term contains the terms with covariant derivatives and through these,
the scalars have couplings to the gauge bosons. So, these coupling are also not
reparametrization invariant, but should be rather described in a reparametrization-
covariant way. We will not discuss these couplings here.

The quantities K*, B* transform as four-vectors, and A, transforms as a four-
tensor. These three objects give a complete description of the Higgs lagrangian.
Therefore, the physical observables must appear as complete convolutions of K#, B*
and A,

We do not need the four-vector K, in the search for the minimum of the potential.
The structure of this term does not affect the position of the stationary points.
However it affects the mass matrix at this minimum.
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3.4.3 Positivity conditions

The tensor A, has an important property, which originates from the positivity
condition.

In order to have a stable vacuum, the potential has to be bounded from below in
the entire ¢;-space. This means that the potential must be positive at large values
of fields for any direction in the (¢1¢2) plane. Therefore, the potential is stable if its
quartic part Vj, increases in all directions in the entire ¢;-space. In other words, the
positivity condition leads to inequalities between the coefficients .

Such conditions were found explicitly only for simple potentials, for example for
potentials with A\¢ = A\; = 0 [42]. For the most general case, nobody has found
these explicit inequalities, because the most general case is algebraically very com-
plicated.

We are working in the orbit space, so that these conditions are imposed on A, .
In the orbit space, Vj is positive definite if A, is positive definite on and inside the
future light-cone, that is, A, 7#r” > 0 on and inside the LC". As was proved in
[43], this is equivalent to the statement that A, is diagonalizable by an SO(3,1)
transformation and that after diagonalization it has form

A 0 0 0

o —=Ar0 0
Aw=1 10 A 0O (3.24)

0 0 0 —As

with Ag > Ay, Ay, As. It is obvious that if A, satisfies this condition, the positive
definiteness is assured. It has been proved in [43] that this condition follows from the
positive definiteness of A,,. Finding the eigenvalues explicitly in terms of A; requires
to solve the characteristic equation of the fourth order, which constitutes one of the
computational difficulties of the straightforward algebra. We will never need these
explicit expressions, because we will always compute other properties using only the
eigenvalues.

3.5 Vacua in 2HDM

We are interested, in principle, in dynamics of the 2HDM. But first we would like
to understand the vacuum structure of this model. As we already mentioned, a
problem already arises in this first step : the minimization of the 2HDM potential
leads to a system of coupled equations that cannot be solved. We are going to use the
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formalism developed in the previous section and rewrite this minimization problem
in the orbit space as in [11]. So, in this section, we are interested in the vacuum
expectation value of the four-vector r#, (r*). In the next chapter, we will study the
first step of the dynamic of the most general 2HDM by computing a new formalism
to get masses of Higgs bosons.

Indeed, the problem of minimization of some group-invariant potential is simpli-
fied if one switches from the space of Higgs fields to the orbit space. Thanks to this
formalism, we can learn about the ground state of the 2HDM without finding its lo-
cation explicitly. We will also note that different kinds of vacuum states with various
physical properties are possible depending on interrelation among the parameters of
the potential, [44].

3.5.1 Extrema of the 2HDM

The extrema of the potential define the vacuum expectation values (¢;), i = 1,2, of

the fields ¢; via :
() Lo (M) -
@i i=(i) a¢1 di=(d:)

Depending on the parameters, these equations could have the electroweak sym-
metry conserving solution (¢;) = 0 or they could have several electroweak symmetry
breaking solutions.

If we use the phase freedom of the lagrangian and if we choose appropriately the
3 axis in the isospin space, the most general electroweak symmetry breaking vacuum
expectation can be written in the form :

o= () =5 { k) (3.20)

where v; and vy are real.

The two Higgs doublets have an hypercharge one and the upper component of
these doublets corresponds to a 3-component of the isospin I3 = % while the down-
component to I3 = % Using the Gell-Mann—Nishijima formula that relates isospin
and electric charge, we deduce that the u # 0 solution corresponds to a charged
vacuum while the u = 0 solution, which corresponds to the situation where the two
Higgs fields are proportional, is a neutral vacuum since it remains invariant under
U(1)gep transformations.

Let us express the minimization problem in the orbit space. The latter is a region
with border in the Minkowski space, so several possibilities must be considered when
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searching for the stationary point of the potential (it would better to say stationary
orbit).

The first possibility is when (r#) = 0. This extremum is located at the origin of
the future light-cone LC*. This corresponds to the point (¢1) = (¢2) = 0. This is
thus the electroweak symmetry conserving extremum point. The breaking vacuum
is located on the surface (rr, = 0) or inside (r#r, # 0) the future light cone LC™.
In this case, it has been proved in [11] that the 2HDM potential bounded from
below cannot have nontrivial maxima, so all nontrivial extrema are either minima
or saddle points. When it lies inside LC™", a stationary orbit in the Higgs field
space corresponds also to a stationary point in the orbit space. This is the charged
breaking vacuum. When it lies on the surface, a stationary orbit doesn’t necessarily
correspond to a stationary point since now there are conditions on r* because it must
lie on the surface of the future lightcone. As we mentioned just above, the neutral
minimum arises when the two Higgs fields are proportional. In the orbit space, this
condition is satisfied when (r*)(r,) = 0.

Therefore, the minimum of (3.19) corresponding to the vacuum expectation value
(r,) can be of the following three types:

o (r*) = 0 corresponds to (¢1) = 0 and (¢9) = 0. It is the electroweak conserving
minimum.

o (r") # 0 and (r*)(r,) = 0 corresponds to the neutral vacuum.

o (r") # 0 and (r*)(r,) > 0. In this case one cannot set to zero the upper
components in both doublets (¢;) simultaneously, and this corresponds to the
charge-breaking minimum.

And these three possibilities correspond to the following parts of the orbit space:
the origin, the surface, and the interior of the future lightcone.

3.5.2 Electroweak symmetry conserving minimum
The point (¢1) = (¢2) = 0 is the electroweak symmetry conserving extremum point.
Its nature depends on mfj:
o It is a minimum if det|mg;| > 0 and m?, < 0,m3, <O0.
o It is a maximum if det|mg;| > 0 and m?, > 0,m3, > 0.
o It is a saddle point if det|mg;| < 0.
No other extremum can be a maximum of the Higgs potential in the 2HDM, as is

proved in [11].
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3.5.3 Electroweak symmetry breaking minimum

The stationary orbit is composed of stationary points and the conditions for the
stationary point of the Higgs potential are:

v orr v

= =d'é, =0 , =1,2 3.27
8(?1 a¢j 87’” 1 é,u ) ? 9 ) ( )
where
df = JZ-@- ) 5u = —B,L + Au,,r” ) (3.28)
with ' ‘
ot = (0 ") = (I,0"). (3.29)

Since both real and imaginary parts have to be set to zero, this gives a system of
four equations. We introduce the light-cone vectors

ny =(1,0,0,1), n" =(1,0,0,-1), 3.30
+

and the transverse unit vectors

¢ = (0,1,0,0), e =(0,0,1,0). (3.31)
Therefore,
df = 01101 + 0l9bs = (¢1, P2, —iha, ¢1) = nlLdy + (e —ieh)pa, (3.32)
and
dy = 0h101 + 0hods = (¢2, @1, 001, —Pa) = nl s + (e +ich)Pr . (3.33)

Now, we can rewrite the equations for the minimization of the potential as
Gl & + da(el —ie5)§, =0, (3.34)

Pan €, + P1 (el +ieh)E, =0. (3.35)

Charged-breaking extremum
In this extremum, the interaction of gauge bosons with fermions will not preserve the

electric charge and the photon become massive. Certainly, this case is not realized
in our world.
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In this case, the minimum lies inside LC'", the two doublets are nonzero and are
not proportional to each other. Therefore, the equations for the minimization splits
into a pair of conditions that correspond to vanishing coefficients in front of ¢; and
¢o separately. We obtain

&l =0, &nt =0, (3.36)
el =0, &eh=0, (3.37)

from which we get £# = 0. Therefore
A (r,) = B". (3.38)

This is an inhomogeneous system of linear equations.

o If all eigenvalues of A, are nonzero, A, is an invertible operator and a solution
always exists and is unique. The solution is then

(") = (A"HBY (3.39)

However, the requirement that (r#) must lie inside the future lightcone leads
to conditions on B*: a physical solution exists if B* lies inside a specific cone
with the apex at the origin. In this case, the theorem of non-coexistence of
charge-breaking and neutral minima asserts that all neutral extrema are saddle
points. Moreover, we can rewrite the potential as:

1 1
Vo= Bt SAurtr = SA (= (ATEBY) (Y — (A7) BY) + C
1

= Shu(r =)~ 1)+ C (3.40)

where C is a constant, b* = (A7')“B” and we have shifted the minimum to
zero. Therefore, in order for the potential to have a minimum, the condition

A (=) (" =b") >0, V(" —1b")

has to be satisfied. This means that the charge-breaking stationary point is a
minimum if and only if A,, is definite positive in the entire Minkowski space,
ie. ifall A; <0,i=1,2,3.

« If at least one eigenvalues of A, is zero, then A, is not invertible. In this case,
the specific cone in which B, has to lie in order to have a physical solution is
of smaller dimension
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Neutral extremum

This solution obeys the U(1) symmetry of electromagnetism. The neutral vacuum
solutions are located on the border of the orbit space 7#r, = 0. We have mentioned
that this situation happens when the two Higgs doublets ¢; and ¢, are proportional
to each other and that a neutral stationary orbit of the potential in the space of
Higgs fields does not necessarily correspond to a stationary point in the orbit space.
This is because we limit the region where we search minima with a border that is
the surface of the LC™. We call, to simplify, a neutral stationary point, a point in
the orbit space that corresponds to the neutral stationary orbit in the space of Higgs
fields.

In order to get conditions for the extrema lying on the surface of the LC™, one
needs a lagrangian multiplier £
9 £

w(‘/ - 57’“7‘“) =0=A"(r,) =& (r")y=B",  (r,)(") =0. (3.41)

We can simplify the analysis. We know that LC™ is invariant under SO(3,1)
transformations. Therefore, we can perform a boost to align the timelike principal
axis of A* with the future line of LCT such as A% = 0. Moreover, we can take a point
rt = %02(1,7_1’) lying on LC" and perform a 3D rotation that makes r* = %v2ni,
which corresponds to setting ¢, = 0. Therefore, as £, # 0 and r* is proportional to

n’y, we get from the four equations (3.35)

gt #£0. (3.42)

We can choose £ = ¢n! Therefore the equation for the minimization becomes

1
iA“”v2n+l, —¢&nll = B*. (3.43)

From this equation, depending on the position of B*, different possibilities exist.
This system can have up to six solutions, among which there are at most two local
minima, while the other are saddle points.

This formalism, based on the reparametrization property, turns out to be a power-
ful tool in the analysis of the existence and number of extrema of the scalar potential
and their classification according to whether the extremum is a minimum or a saddle
point and of neutral or charge breaking nature. So, the key point is that we don’t
need to manipulate high-order algebraic equations in order to learn about the general
structure of the 2HDM vacuum. In this approach geometric constructions appear
naturally in the orbit space and allow to prove various theorems concerning the num-
ber, the coexistence and the nature of the extrema, and also to find conditions for
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which the symmetry is broken and establish the phase diagram of the scalar sector
of 2HDM, see [11].
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Chapter 4

Dynamics of the general 2HDM

When we study field theories with spontaneous symmetry breaking, we first find the
vacuum state and then we describe excitations above this vacuum. The vacuum state
is given by the minimum or minima of the Higgs potential. This was the subject
of the previous chapter [|. The next step is to analyze the dynamics of the system
described by the 2HDM. It includes, in particular, the following tasks:

« finding the excitations of the scalar sector of 2HDM and calculating their mass
spectrum;

« finding the interaction among these excitations;

« establishing the interaction of these scalar particles with fermions and gauge
bosons.

In short, one needs to calculate the dynamics of 2HDM.

Let us focus here only on the scalar sector of the theory. The scalar lagrangian
of the most general 2HDM, including a generic kinetic term, can be written in terms
of the two complex doublets ¢; and ¢, of scalar fields:

L=K—Vy—Vi=(0a0:)'Ki;(0°0;) — ¢] Bij; + ;Zijkl(¢j¢j)(¢};¢l)- (4.1)

Here all indices run from 1 to 2. After spontaneous symmetry breaking these doublets
acquire non-trivial vacuum expectation values, so that one can introduce the physical
scalar bosons ¢;:

¢i = (i) + @i -
If we know the vacuum expectation values, we could rewrite this lagrangian using
the physical scalar fields:

L(9i, 0ati) — L((B4) + #is Oatpi) -
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Then, using this lagrangian one can in principle calculate various n-point correlation
functions of physical scalar bosons:

This notation is rather schematic because the n indices iy, ...,%, not only give the
number of doublets, but also specify the field. Besides, one can consider similar
correlation functions with conjugate fields.

The most important among them is the two-point correlation function V5, that
is, the propagator. Three-point and four-point correlation function V3 and V), are
given, at the tree level, by the couplings of the potential, while even higher order
correlation functions are given by some specific convolutions of these. With V5, V3,
V4, one can formulate Feynman rules of the model and one can, in principle, calculate
any scattering process in the scalar sector.

These correlation functions, V,,, however, have the same important problem as
the lagrangian itself: their general form is redundant. Indeed, each V,, contains
elements which depend on the basis for representing the Higgs fields, so they do not
reflect the physical content of the model, but just depend on the way we describe it.
These elements, which are not basis-invariant, are unphysical. On the other hand,
there are several basis-invariant combinations in each V,,, which are truly important
for the physical content of the most general 2HDM. It is these invariant quantities
that we want to find.

Unfortunately, it is very difficult to compute them working in the space of the
scalar fields. We know from the previous chapter that this task is simplified if we
switch from the space of Higgs fields to the orbit space. In this formalism, all
basis-invariant quantities can be represented via full contractions of K,, A,, and
B, and invariant tensors g,, and €,,,,. Therefore, a natural task is to find these
basis-invariant quantities.

This is an outline of a long and complicated program. In this work, we will focus
only on one particular task: calculating the basis-invariant elements in V5. These
elements are the masses of the physical Higgs bosons.

4.1 Basis-invariant calculation of masses in a free
theory with two scalars

In order to illustrate the essence of this task, let us first consider a very simple model:
a free scalar theory with two complex scalars.
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4.1.1 Mass Matrix

Let us first illustrate an important fact: the mass matrix itself is a basis-dependent
quantity.

Consider the lagrangian for two complex scalar fields ¢; and ¢,, in matrix
form:
Lo=K =V =3 [(0u00)(0"6:) —miolon] . (43)
i=1,2
In this case we have no interaction between the fields ¢, and ¢, so that m? and m3
represent the masses squared of these particles.

As we have seen in previous papers, transformations from the reparametrization
group GL(2,C') of the Higgs fields modify the Higgs kinetic term. The full Higgs
lagrangian can therefore includes kinetic terms which can be off-diagonal in the
general case. Therefore, we need to deal with non-diagonal kinetic terms and consider
a lagrangian in the following general form:

£ = (0a0:)'K;5(0°0;) — 6! Bijb;. (4.4)
where the potential V = quBiquj has an extremum at (¢;) = 0.

In this simple case, each index ¢ in the n-point correlation function takes the
values 1 or 2. For the two-point correlation function one gets the following form
w d'r e f : 2 -1
Vali: ) = [ e 0Tl @), 010) =i [Kyw? = By, (45)

where K;; and B;; are the same as in the lagrangian.

This expression can be derived in the following way. We start with the path
integral formulation of our model.

Z2(J) = {010}y = [ Det [ ata1e+sa (4.6

where L is the lagrangian (4.4) and D¢ = []; D¢; is the functional measure in our
case, and J¢ = JI (x)¢;(x) + ¢! (x)J;(z). Then we proceeding in the standard way,
see for example [45], but we keep track of non-diagonal K;; and B;;. We get for the
action

dp - ~ o x ~
S = / 2 |61(p) (Kip* = Bi)i(—p) + T (0)di(—p) + Ji(=p)dl(p)] . (4.7)
where tilde indicates Fourier transformed quantities. Now as usual we shift the

fields:

&(p) = dilp) — (Kp* + B);;*J;,  &l(p) = dl(p) — JI(Kp* + B);;", (4.8)
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then use (0]0),—¢o = 1 and obtain

[ d'p 13
2 = e [ G - B ) (4.9)
= exp {z’/d%d%’Jj(z)Azj(w — ') J;(a") (4.10)
We have defined the propagator
/ d4p ip(z—a’ 2 -1
Ajj(z— ") :/(27T)4€p( )(Kp - B)i; (4.11)

which proves (4.5).

Note that the propagator is also the Green’s function of the equation of motion,
see Eq. (4.14) below:

This can be seen directly by plugging (4.11) into (4.12).

Now let us derive the mass matrix in two specific bases and show that they are
different.

First, let us calculate the Lagrange equations from lagrangian (4.4):

oL oL

0aa(aa¢m — 8¢I» =0. (4.13)
We get the following equations of motion:
K;;U¢; + Bijo; = 0. (4.14)
If we multiply this equation by K1, we get
O¢; + (K~'B)ij¢; = 0. (4.15)

Therefore, we get a set of Klein-Gordon equations for fields ¢;. Their mass matriz,
in this basis, is
M;; = (K™ 'B),;. (4.16)

Let us now calculate the mass matrix in another way, by performing a transfor-

mation of the fields which makes the kinetic term of the lagrangian (4.4) diagonal.
So, we perform a transformation on the fields:

by — ¢y = Tyudby @T — éj = @T'Tjﬁa (4.17)
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where T is some invertible 2-by-2 matrix, i.e. T € GL(2,C).

The lagrangian becomes:
L = (0air) Ty Ky Ty (0% byr) — G4 T3 By Tyje (4.18)

We choose T so that the kinetic term becomes diagonal, that is, T7TKT = I. There-
fore

K=THh Y1) *'=T1TH™"* — TI'=K". (4.19)
Therefore, in this new basis, the mass matriz becomes:
M, = (T'BT);; . (4.20)
Since matrices 7" and B do not necessarily commute, one can see that

which confirms that the mass matrix is a basis dependent quantity. As a consequence,
V5 is also a basis-dependent quantity.

Nevertheless, we can easily prove that the masses of the physical scalar bosons,
my and msy, being the eigenvalues of the mass matrices, are the same for these two
bases. Indeed, these masses can be calculated from the traces of powers of the mass
matrix. We have

Tr(T'BT) = Tr(TT'B) = Tr(K~'B). (4.22)

Here we used (4.19) and the cyclic property of the trace. So,
m3 +m3=Tr(M)=Tr(M). (4.23)
We can also calculate the trace of the square of the mass matrix:
Tr(T'BTT'BT) = Tr(TT'BTT'B) = Tr(K'BK'B), (4.24)

so that
mi +mi =Tr(M?) =Tr(M?). (4.25)

The same equality is also valid for any power of the mass matrices. We note that
what is basis independent is the eigenvalues of the mass matrix. We can also calculate
the determinant of the mass matrix via the traces,

2Det(M) = [Tr(M))* —Tr(M?) = [Tr(K 'B))? —Tr(K 'BK'B)
[Tr(M"))? = Tr(M?). (4.26)

Therefore,
Det(M) = Det(M') = mim3 . (4.27)
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4.1.2 Masses in the four-vector formalism

Anticipating work with 2HDM, we should also show how the masses in this simple
problem can be calculated in the four-vector formalism.

The lagrangian (4.4) can be written, in the orbit space in a compact form as
L=K,p'— B,r". (4.28)

The minimum of the potential is at (r*) = 0, since r* = (®Tg#®). The kinetic term
written in the reparametrization covariant form is :

K = (0.0:)Kij(0°¢;) = K.p,  p" = (0a®) 0" (0%D). (4.29)

In the usual basis, with the diagonal kinetic term, the kinetic four-vector K, =
(1,0,0,0). Upon an GL(C,2) transformation of the fields, which corresponds to
an SO(3,1) transformation in the orbit space, spacelike components of K, become
non-zero, boosts make K, a nontrivial vector. But, since Lorentz transformations
conserve quadratic forms, K, always obeys K,K* = 1 and always lies inside the
future light cone.

One can reformulate the theory using quantities defined in the orbit space. In
particular, we have the following correspondence :

degrees of freedom (bi, 05) — T
reparametrization group SL(2,C) — SO(3,1) (4.30)
parameters K;;,B;; — K., B,

What we want to calculate is the analogous table for the masses:

m?+mi Tr(K;;' Bjm) — 7

mi+md o Tr(K; Bk Bu) — ? (4.31)

The matrix K;; and B;; are 2-by-2 hermitian matrices, so we can express them

in the covariant notation, using o, = (09, 0,) With 09 = I and o, the Pauli matrices
with a = 1,2, 3, as

KU == KHO'M = K()O'O - Kaga; (432)

Bij = BMO'M = B()O'O - BaO'a (433)
where K, = (Ko, K,) and B, = (By, B,).

We will need the inverse matrix of K;;. This inverse exists and can be written,
using o, = (I, —0,), as
_ (K"7,,)i;
(K™Y = =57 (4.34)
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where K? = K,K" = 1. Let us derive this relation. We must have K;'K;; = ;.
Let us look at the quantity K, K,o"c". Since K, K, is a symmetric Lorentz tensor,
we need the symmetric part of o#c”. Let us compute it

v
00 | 0% = I

07 OEOO'i = —gt (4.35)
10 OjO’O = ot

ij | oo = —0UI —ieTkok

Since, d;; is symmetric and " is antisymmetric, the symmetric part of o#c” is
1 iy 1% 1 v
5(0“0 +ovot) = g". (4.36)

We now contract ¢ with K, K, and we find that

K Koo K,K*
DA i | (4.37)
K, Kkr  KiK,

which proves (4.34).

We are now ready to calculate the traces of the mass matrix in the four-vector
formalism.

_ K'e, K'BY
Tr(M)=Tr(K'B)=Tr ( KQ“B ay> = ?TT(U#UV). (4.38)

Using T7r(5,0,) = 2¢,, and K% =1, we finally get:
Tr(M)=mi+mj=2K"B, =2(KB). (4.39)

In order to calculate masses, one needs to derive Tr(M?).

Tr(M?*) = Tr(K'BK'B)=Tr(K",B"0,K"5,B%0s)
K'B"K™B’Tr(6,0,6,05) . (4.40)

Let us show that
Tr(a_uo_ua_‘ro_&) — 2(gu1/g7'6 o g,uTgV(S + guégm' o Z'E;WT(S) ] (441)

First, we can express this trace in terms of its symmetric and antisymmetric parts.
We have shown that the symmetric part of g#o” is g"”, therefore

gho¥ = g" + 11" (4.42)
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with [I"* = —II"*. Using the relation between the sigma matrices 0%0? = ie®¢o°+§,
we get

% =0 MO% = —je"o" (4.43)

Therefore, since Tr(c®) = 0, we get
Tr(5,0,0,05) = Tr(g"g™1) + Tr(I1" 1) (4.44)
Direct calculation shows that

TT(H;WHTJ) _ 2( g,uTgV5 + g,LL(SguT ,ul/‘r&) (445>

where we have used the fact that €?¢ = ¢0¢ = 0cab and g9 = —§9%. So we have

proved (1.41).
Eventually, one gets
Tr(M?) =mi+m; =2(KB)(KB) — K*B?, (4.46)
where (KB) = K, B".
Now, we can calculate the determinant
Det(M) = m2m? — ; [Tr(M)2 - Tr(M?)] = B2 (4.47)

Now, as we know the trace and the determinant of the mass matrix, we are able
to calculate the masses themselves, m? and m3. To this end, we need to solve the
following system of equations

mims = B%,  mj+mj =2(KB). (4.48)

We get that
m3, m3 = (KB)+/(KB)?— B2. (4.49)

Let us make a simple analysis of these results.

First, the quantity (KB)? — B? is always positive because K, lies inside the
future light-cone. Indeed, this quantity is Lorentz-invariant, we can calculate it in
a particular frame, in which K, = (1,0,0,0). In this frame, this quantity becomes
B2+ B2+ B2 = | B|?, which is of course positive. Therefore, in this frame the masses
take a snnple form:

m2, m2 = By £ |B]|. (4.50)

Now let us find conditions in terms of B* for which this is the minimum of the
potential. An extremum is a minimum if all the eigenvalues of the mass matrix, the
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squares of the particles masses, are positive. Therefore, we have the minimum if
DetM > 0 and TrM > 0. Looking at (4.50), we see that both m? are positive if
By > 0 and By > |B|. It means that B* lies inside the future light-cone. This is a
basis-invariant statement.

The phase transition happens when one of the eigenvalues becomes zero, that is
DetM = 0. So, the phase transition takes place if

Bi = B} + B3 + Bj . (4.51)

Therefore, the phase transition takes place on the surface of the forward light-
cone.

4.1.3 Mass matrices for the interacting field theory

In an interacting theory, after spontaneous symmetry breaking, the mass terms can
depend on @, pTe!, iy, . So it is convenient to decompose ¢ into its real and
imaginary parts:

¢o = (Rep, Img),
where a = 1, 2.

Next, let us introduce two new quantities.

First, we define an effective matrix B, as

B(eff) _ 1 0V

= = ) 4.52
ab 2 a¢aa¢b ( )
This matrix is:
?v 9%V 9%V - 92V 9V
o0p | Bptogt 2890890* t (390&@ N 8@*%*)
- (9%V 9%V 0V %V + ?v
Opdyp Opt et 00y Opt ot A0t

This second derivative matrix should be taken at the minimum.

Indeed, if ¢y, is a constant field that minimizes the Higgs potential and if we
expand the potential around this minimum, we get :

V(O) = Vi) + (0= uhalo— o (5] e 45
@ %o

The coefficient of the quadratic term is a symmetric matrix whose eigenvalues, if
the kinetic term is diagonal, give the masses of the fields. They are always positive
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or null since ¢y is a minimum. Then, as we have seen that a reprametrization of
the Higgs fields modifies the kinetic term which may become non-diagonal, we also
introduce an effective kinetic matrix K:

K$ID = OL (4.54)
“ T (0ata)O(Oats) '
Then we use the same formalism as before with the mass matrix
(M)ay = (KB (4.55)

4.2 Trace of the mass matrices in 2HDM

Let us apply this approach to the two Higgs doublet model. As we have seen, in the
r* space, the lagrangian of the most general 2HDM can be written in a covariant
way as

1
Ly =K, p"+ B,r" — iAWr“r”. (4.56)

As we have mentioned, we have three phases in 2HDM : electroweak symmetric,
charge breaking, and neutral®.

We are going to consider each of these vacua, but before doing this let us extend
the formalism we have developed in the previous section to the case of two doublets
of scalar fields.

4.2.1 Two complex doublets

We are going to use another notation and consider another vector ¢, with a =
1,2,3,4,5,6,7,8 defined as

¢a = (Reqﬁm, Imgbm, Regbg,T, ITTLng’T, Regbl’l, Imgbl’l, Regbg’l, Imgbg’l). (457)

With this notation 7* becomes
rt = olo,® = ¢, X ¢y, (4.58)

where we introduced a new set of real symmetric 8-by-8 Y-matrices. X9 is just
the unit matrix, while explicit form of 3? can be immediately reconstructed from

'For each type of minimum, there are always four different masses.
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the definitions (see Appendix B). Since the upper and lower components of the
doublets are not mixed by the Higgs potential, matrices ¥¢ have a block-diagonal
form, composed of identical 4-by-4 matrices. Below, we will often deal with these
4-by-4 matrices, denoting them by the same letter . Which set of matrices is being
used, 4-by-4 or 8-by-8, should be clear from the context.

Here some properties of these Y-matrices:

YESY 4 XV = 290 (4.59)

1 _ _
5(2”2/)2# + IHTPTY) = gUPYF 4 ghPYY — ghv e (4.60)
(4.61)

They also share with ¢ an important property:
{057} =267 -1,

where brackets denote the anticommutator. In contrast to o, the matrices 3’ do not
form a closed algebra, but they belong to a larger algebra (3%,II%), described in the
Appendix B.

With these Y-matrices, we can use the same formalism as before.

4.2.2 The electroweak symmetric vacuum

In this phase the minimum of the potential is at (r*) = 0, which corresponds to
(¢;) = 0. The electroweak symmetry is not broken, so this is the EW-conserving
minimum.

The four complex fields have only two different masses, because up and down
components enter the expressions in the same way. We have the same results as
before except for an extra factor 2:

Tr(M) = 2m3 +2m3 = —4(KB), (4.62)
Tr(M?) = 2m} + 2m; = 4[2(KB)(K B) — B?]. (4.63)
The relation between the determinant and the traces is now different:
1 2
Det(M) = m*mi — (8{[T7~(M)]2 - 2Tr(M2)})) . (4.64)
So,
Det(M) = (BQ)Q. (4.65)
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And the masses are

m3, m5 = —(KB) +./(KB)? - B2, (4.66)

The analysis of these results is similar to the one we did in the section. 4.1.2.

In the same particular frame, in which K, = (1,0,0,0), the masses take the simple
form:

m?, mi = —By+ |B|. (4.67)

These masses can be calculated in terms of m?2,, m3,, m2,. Let us remind the reader

of the expression of B*:

1
B = Z(m% + mgm —2Re m%% 2Im m%Qv —m% + mg2) . (4.68)

So,
- 1 1 1
|B| = 1(4\m32|2 + mill + m§2 - 2m31m§2)2 , Bo= Z(mfl + m%Q) .
Therefore the masses become:

1 1
mi, my = — iy +mdy) £ (4l il g, —2miymiy) (4.69)

Now let us find conditions in terms of B*, when this is the minimum of the
potential. We have the minimum if DetM > 0 and TrM > 0. Looking at (4.67),
we see that both m? are positive if By < 0 and |By| > |§| This means that B, lies
inside the past light cone, LC ™.

4.2.3 Charged vacuum
We know that for the charged vacuum, the minimum of the potential
1
V=-B,r"+ §AW7““7“” (4.70)
is at
(r*y = (A"HLBY (4.71)
if A* is not singular.

Now let us calculate the mass matrix. According to (4.1.3) , we first compute the
second-derivative matrix of the potential:

ort
00,

= 251 by, (4.72)
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ov ort oV B or#

000 06,00 06, 47
where ¢, = (=B, + A,,r"). Therefore,
0?V 0*V ort or?
- = =_— — A,. 4.74
<a¢aa¢b>ch ((9(;5@891)1,) oo 00.00 " (4.74)
Thus the second derivative matrix of the potential is
1 [ 0*V
- = 25 by Sl = BT 4.
2 <a¢aa¢b>0h aa Qba ¢b bbb v ab ( 75)

Then, we compute the second derivative of the kinetic term, which gives the same
result as before:
0L
8<aa¢a)a(aa¢b)

= K, = Ky, (4.76)

Now, having found Béif 7 and Ky, we can proceed with the calculation of the
trace of the mass matrix. However, there is one tricky issue. We should remember
that these matrices must be calculated at the point of the minimum. However, we
do not know the values of (¢,) at the minimum; we know only (r#) at this point.
Therefore, we will need to convert ¢, ¢y into r*.

We have
Tr(M) = 2Tr(K 'S budp Sy uw) (4.77)
where K~ = K “E_]“ as in the previous section. Thus
Tr(M) = 2K,A,,Tr(X0. 5" ¢udwy,) . (4.78)

As the trace is cyclic

Tr(M) = 2K,AuTr(ow S5, 50, Shydu)
= 2K,A, ¢SV SPSH
= 2K, p(g" S + gy — gHSr)¢ (4.79)

where we have used the properties of the 3 matrices and neglected the antisymmetric
part of X#XPYHF since A, is symmetric. We see that now everything is expressed
in terms of r* = ¢'XF ¢, which we now replace with ¥ = (A~1)#B”. Finally we
get

Tr(M) =2[2(KB) — (Kb)Tr(\)]. (4.80)

where (Kb) = K,b* and TrA = A, g"".
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Let us make a cross-check. Consider a simple case when B* is proportional to
K*. Then, we can switch to the basis where

K" =(1,0,0,0), B"=(B"0,0,0), (4.81)

while A, can be arbitrary. In this frame, the expression giving the trace is simplified
to

Tr(M) = 2[2A%by — b°Tr(A)]. (4.82)
USil’lg TT(A) = Auyg‘mj = AOO - AH - A22 - A33, we find that

This is consistent with results found in [11].

We can also in principle calculate the trace of any power of the mass matrix. For
example,

Tr(M?*) = 2[2(KB)(KB)+2(KAK)(BA'B) — 4(KA'B)(KAB)
+(KA'B)(KA'B)Tr(A%)]. (4.84)

We could also calculate in principle the determinant of the mass matrix.

4.2.4 Neutral vacuum

The neutral minimum is characterized by non-zero §, # 0. Therefore, the second-
derivative matrix is

2 \ 9¢a0¢y,

while the second-derivative matrix for the kinetic term remains the same. The trace
of the mass matrix then becomes

1 0%V
( ) = &30 + 251 bu b S (4.85)

Tr(M) = Tr(K,%°6,5") + 2Tr(K, S Y 6o S A, (4.86)

where for simplicity we omitted all field indices. Using the properties of the X
matrices, we get

Tr(M) = 4K, " +4K,A(r") — 2K,(r")Tr(A) (4.87)
= 4K, (-B"+ A"(r,)) + 4K, A5 (") — 2K, (r*")Tr(A)  (4.88)

since §, = (=B, + A,,rY) and 7 = ¢, X5, ¢p. Finally,

Tr(M) = —4(KB) + 8(KA(r)) — 2(K (r))Tr(A) (4.89)
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This is a universal formula for all neutral vacua, even if there are two minima of the
potential with different (r#).

Again, the formalism that we have developed allows in principle to calculate the
trace of any power of the mass matrix, and finally to find the masses themselves of
absolutely any 2HDM.
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Conclusion

The end of the twentieth century celebrated the triumph of the standard model of
the electroweak and strong interactions of elementary particles. The electroweak
theory, describing the electromagnetic and weak interactions between quarks and
leptons, combined with quantum chromodynamics, the theory of strong interactions
between quarks, provides a unified framework to describe three of the four forces in
nature. We have seen in the first chapter that the Higgs mechanism, introduced in the
electroweak theory to give mass to all particles of the SM, leads to the introduction
of a new scalar particle, the Higgs boson. The discovery of this particle is of great
importance. Indeed, the various experiments carried out during the last decades
established that the SM is the correct effective theory of the strong and electroweak
interactions at presently accessible energies. However, these experiments failed to
find the new type of particle that is the Higgs boson. Only constraints on its mass
have been inferred from the high-precision data. Finding this particle is the main
goal of the present high-energy accelerators: the Tevatron and the CERN Large
Hadron Collider.

Moreover, during this period, a large number of theoretical advances on the
properties of the Higgs boson were performed. This was done both in the framework
of the SM and of its various possible extensions. Indeed, in the second part, we
have detailed some motivations to extend the SM. Furthermore, the mechanism of
spontaneous electroweak symmetry breaking in the SM generates the weak vector
boson masses in a way that is minimal, and there is no reason to assume that
the Higgs mechanism is minimal. In several theories beyond the SM, the Higgs
sector involves larger and/or additional representations. There are various theories
going beyond the standard model, however one has no hint from experimental data
supporting one of these theories. We know from the corrections to the Higgs mass
that new physics could be at a scale of one or few TeV. It would be possible then to
see effects beyond the standard model (SM) at the LHC. The Large Hadron Collider
was indeed built with the intent of testing various predictions of high-energy physics,
as the existence of the Higgs boson and of the large family of new particles predicted
by supersymmetry. It is why we are entering a decisive period in high-energy physics.
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Is this new physics supersymmetry, or does it involve extra dimensions, or something
else 7 Therefore, we should be prepared to discover this expected new physics beyond
the SM.

That is why in the course of this work we have examined one of the simplest
extensions of the Higgs mechanism: the two-higgs-doublet model which is a common
structure of various theories beyond the SM. This extension can satisfy existing the-
oretical and experimental constraints and give rise to interesting phenomenologies
at high-energy colliders. We have presented its main properties and shown with a
specific example that a model with two Higgs doublets leads to a new phenomenology
that was not possible with one doublet. However, if experimental data reveal the
existence of a Higgs sector beyond that of the standard model, it will be crucial to
test whether the observed scalar spectrum is consistent with a 2HDM interpretation.
In order to be completely general within this framework, one should allow for the
most general 2HDM when confronting the data. So, it is necessary to study the
most general two-higgs-doublet model. However, as we have noted we cannot ana-
lyze the most general 2HDM with straightforward algebra. So, to circumvent these
difficulties, we have used a method recently developed that allows one to analyze
many characteristics of the most general 2HDM without the need to compute the
exact position of the global minimum of the potential. In this approach, we first
establish the structure behind 2HDM : the space of gauge orbits of the Higgs po-
tential has 1 + 3-dimensional Minkowski space structure. Then, we reformulate the
problem of minimization in geometric terms. In the last part, we have carried out
the first step towards an understanding of the dynamics of 2HDM. We worked out
the formalism to compute the traces of any power of the mass matrix in any type of
minimum in a general 2HDM. Then, one can in principle get the masses themselves.
The algebraical calculation is very difficult, though, because one would need to solve
equations of fourth order. However, there might exist a geometric formulation of
these mass matrices. Indeed, it is known that surfaces of phase transitions in the
space of B, have a rather simple shape. But these surfaces correspond to one of the
masses going to zero. Therefore, there should indeed be some simple expression for
the determinant of the mass matrix. Maybe with a geometric formulation one can
advance further and study the spectrum of the scalar sector of 2HDM in even greater
detail.
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Appendix A:
Simple case of 2ZHDM

Here, we derive the conditions to have a minimum for the four possible phases in the
particular simple case with two complex scalar fields of section 2.5.1 leading to the
three phase diagrams 2.1, 2.2 and 2.3.

Phase A
The phase A appears when the vacuum expectation values of the two fields are zero:

vy = 0 and vy = 0. In this case there always exists an extremum. Let us construct
the mass matrix. We need the second derivative of the potential :

( o’V ) __mi ( 0V ) __mh
0p10¢, 120,090 2 Opo0¢s 1=0.03=0 2

e I ) N
8¢18¢2 v1=0,v2=0 ’ 8¢28¢1 v1=0,v2=0

and we obtain the following mass matrix :

mi
- 0

The conditions ensuring that above extremum is a minimum are realized if the
mass matrix is positive definite, so if the eigenvalues (the physical mass squared) are
positive. So, if m?, and m?, are negative, the potential has a minimum VA and )3
with A > 0 and A + A3 > 0. This is the global minimum at the origin.
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Phase B;

The phase B; appears when v; # 0 and vs = 0. In this case, the conditions for the
stationary points of the Higgs potential are:

oV
v —0
<a¢1 > v17#0,v2=0

—m§1+)\v%:0:>)\v%:m%1:>mfl>0

<W> 0
a¢2 v17#0,v2=0

it

and

is always possible as vy = 0.

The mass matrix is

2
VT 0
( 0 —L(—md+ Aed) ) (4.90)

2
. The potential has a minimum if the eigenvalues are positive,

= —m3y + A3v? > 0.

2
Using the first condition of the minimization, we replace v} by %

X

A

We distinguish three cases depending on the values of the parameters \ and
A3

1. A>A3>0

2. A3>A>0

3. 0> A3 > =\

Phase B,

The phase B, appears when v; = 0 and vy # 0. This case is very similar to the
previous one.
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In this case, there always exists a extremum in the ¢; direction as v; = 0.
In the ¢, direction, the condition for extrema is:
—M3e + A5 =0 = \vj = My = M3y > 0.
The mass matrix is
( _%(_m% +A303) 0 )
0 viN )

We have a minimum if the eigenvalues are positive, i.e. if

al

)\m§2>0.

2

Phase C

The phase C appears when v; # 0 and vy # 0. The extrema appear for

2 2

2
V5 NN (4.91)
and ) )
p? = TUA T My (4.92)

A2 =3

As previously, we distinguish three cases depending on the values of the param-
eters A and As.

1. A>A3>0
In this case, A> — A2 > 0 and so v? > 0 and v3 > 0 if
Ami; — Agmay > 0

and
2 2

The second derivatives of the potential in this case are :

ov 1 1
() = —=(—m3, + M} + A303) + —v12Xv; = \vf,
0 170,270 2 2

oV 1 1
() = —=(—mdy + M} + Asv}) + sviAvy = Aoy . (4.93)
092 v1 70,0270 2 2
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Because from the extrema conditions : —m?; + Avi 4+ A\3v3 = 0. And

(52V> _ ( il ) — Agvv
agblagbz v1#£0,v27#0 a¢26¢1 v17#0,v27#0 o

We get the following mass matrix :

)\’U% )\31)1’02
)\31}11}2 )\U% '
Let us derive the conditions for the eigenvalues to be positive. The eigenvalues
a are given by the characteristic equation :

o — aX(v] +v3) +vivs (A = A3) =0,

Avi+v3) >0

and
Vi (A2 — A3 > 0.

Therefore, the eigenvalues are positive. The potential has four minima, the
first two corresponding to v; and —v; with the same depth and the second two
corresponding to v, and —v, with the same depth too.

A3 > A>0

In this case, A2 — A\? < 0 and so v? > 0 and v3 > 0 if
Am?2, — Asm2, <0

and

We get the same mass matrix as in the previous case and so the same charac-
teristic equation but
AMvi+v3) >0

and
vui(\ = A3 <0,

and so, the eigenvalues are not both positive and the potential has no minimum.
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In this case, A2 — A2 > 0 and v} > 0 ans v3 > 0 if

and
2 2

With the same argument as in the previous case, the eigenvalues are both
positive and the potential has four minima.
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Appendix B:
Algebra of matrices ¢* and II#

The full 8-by-8 matrices ¥¢ have block-diagonal form and are built from two identical
4-by-4 matrices, which we also denote by the same letter »’s and whose properties
we describe here. X° is just the unit matrix, while the explicit expressions of X
are:

0010 00 0 0 10 0 O
. 0001 . o o —10 , o1 0 o0
=11 000| o1 00| *“|loo-1 0
0100 1 0 0 0 00 0 -1

They satisfy an important property:

(SIS = 2697,

The set of ¥’s is not closed under taking commutators. Instead, they can be
expressed via real antisymmetric matrices IT°:

0 1 0 O

i _ 0 o | -1 0 0 O

I =11I"%" ,where 1II" = 00 0 1

0 0 -1 0

The 7° matrix has the following properties:

o’ = -1 (4.94)
¥ = —nr (4.95)
Gty = 0" (4.96)
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Moreover, the atrix 1Y commutes with all X¢.

The set of matrices ¥¢ and II* now forms the algebra:
(X0, 50] = 26VFITF (8 T1] = —269RR [T TH] = —269F 117 . (4.97)

Note that IT* do form a closed algebra. The algebra of X and II* is isomorphic to
the usual Poincaré algebra of the generators of boosts and rotations.

78



Bibliography

C. Quigg, “Nature’s greatest puzzles,” In the Proceedings of 32nd SLAC Summer
Institute on Particle Physics (SSI 2004): Natures Greatest Puzzles, Menlo Park,
California, 2-13 Aug 2004, pp L001 [arXiv:hep-ph/0502070].

P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev.
Lett. 13, 508 - 509 (1964).

F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector
Mesons,” Phys. Rev. Lett. 13, 321 - 323 (1964).

M. S. Carena and H. E. Haber, “Higgs boson theory and phenomenology.,” Prog.
Part. Nucl. Phys. 50 (2003) 63 [arXiv:hep-ph/0208209).

H. Georgi and S. L. Glashow , “Gauge Theory of Weak and Electromagnetic
Interactions with Han-Nambu Quarks,” Phys. Rev. D7, 561 - 563 (1973).

A. Salam and J. C. Ward, “Gauge Theory of Elementary Interactions,” Phys.
Rev. 136, B763 - B768 (1964).

S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19, 1264 - 1266 (1967) .

S. Mukhi and P. Roy, “Developments in high energy theory”, arXiv:0905.1793v1
[physics.pop-ph]| 12 May (2009).

J. L. Feng, C. G. Lester, Y. Nir and Y. Shadmi, “The Standard Model and
Supersymmetric Flavor Puzzles at the Large Hadron Collider,” Phys. Rev. D
77 (2008) 076002 [arXiv:0712.0674 [hep-ph]].

G. Altarelli, “New Physics and the LHC,” arXiv:0805.1992 [hep-ph].

[. P. Ivanov, “Minkowski space structure of the Higgs potential in 2HDM,”
Phys. Rev. D 75 (2007) 035001 [Erratum-ibid. D 76 (2007) 039902] [arXiv:hep-
ph/0609018].

C. N. Yang, and R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge
Invariance,” Phys. Rev. 96, 191 - 195 (1954).

79



13
14
15
16

[17]

18
19
20
21
22]

[23]

[24]

[25]

[26]
[27]

R. Brout, “A brief course in spontaneous symmetry breaking. I: The paleolitic
age,” arXiv:hep-th/0203096.

Fl. Stancu, “Group Theory in Subnuclear Physics,” (Oxford University Press:
New York, 1996)

J. Welzel, D. Gherson and J. R. Ellis, “New particle physics. (In French),”
arXiv:hep-ph/0506163.

C. Quigg, “Spontaneous Symmetry Breaking as a Basis of Particle Mass,” Rept.
Prog. Phys. 70 (2007) 1019 [arXiv:0704.2232 [hep-ph]].

V. A. Bednyakov, N. D. Giokaris and A. V. Bednyakov, “On Higgs mass gen-
eration mechanism in the standard model,” Phys. Part. Nucl. 39 (2008) 13
[arXiv:hep-ph/0703280].

M. Peskin and D. Schroeder, “An Introduction to Quantum Field Theory,”
(Westview Press: New York, 1995).

A. Djouadi, “The Anatomy of electro-weak symmetry breaking. I: The Higgs bo-
son in the standard model,” Phys. Rept. 457 (2008) 1 [arXiv:hep-ph/0503172].

A. Sopczak [CDF Collaboration and D0 Collaboration], “Status of Higgs Boson
Searches at the Tevatron,” arXiv:0903.4312 [hep-ph].

J. F. Gunion, H. E. Haber, G. Krane and S. Dawson, “The Higgs Hunter’s
Guide,” (Westview Press: New York, 1990).

G. Altarelli, “The electroweak interactions in the standard model and beyond,”
arXiv:hep-ph/0406270.

W. J. Marciano, “Precision electroweak measurements and the Higgs mass,”
In the Proceedings of 32nd SLAC Summer Institute on Particle Physics (SSI
2004): Natures Greatest Puzzles, Menlo Park, California, 2-13 Aug 2004, pp
L009 [arXiv:hep-ph/0411179).

D. G. Michael et al. [MINOS Collaboration], “Observation of muon neutrino
disappearance with the MINOS detectors and the Phys. Rev. Lett. 97 (2006)
191801 [arXiv:hep-ex/0607088].

Y. Ashie et al. [Super-Kamiokande Collaboration], “Evidence for an oscillatory
signature in atmospheric neutrino Phys. Rev. Lett. 93 (2004) 101801 [arXiv:hep-
ex/0404034).

J. Einasto, “Dark Matter,” arXiv:0901.0632 [astro-ph.CO].

Y

P. L. Biermann and F. Munyaneza, “The nature of dark matter,” arXiv:astro-

ph/0702164.

80



[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[42]

J. F. Gunion, “Extended Higgs sectors,” arXiv:hep-ph/0212150.

H. Georgi an S. L. Galshow, “Unity of All Elementary-Particle Forces,” Phys.
Rev. Lett. 32, 438 - 441 (1974).

T. D. Lee, “A Theory of Spontaneous T Violation,” Phys. Rev. D 8, 1226 - 1239
(1973) 1226.

L. Lopez Honorez, E. Nezri, J. F. Oliver and M. H. G. Tytgat, “The inert doublet
model: An archetype for dark matter,” JCAP 0702 (2007) 028 [arXiv:hep-
ph/0612275].

I. F. Gingburg and I. P. Ivanov, “Tree-level unitarity constraints in the 2HDM
with CP-violation,” arXiv:hep-ph/0312374.

[. F. Ginzburg and M. Krawczyk, “Symmetries of two Higgs doublet model and
CP violation,” Phys. Rev. D 72 (2005) 115013 [arXiv:hep-ph/0408011].

M. Maniatis and O. Nachtmann, “On the phenomenology of a two-Higgs-doublet
model with maximal CP symmetry JHEP 0905 (2009) 028 [arXiv:0901.4341

[hep-ph]].

P. M. Ferreira, H. E. Haber and J. P. Silva, “Generalized CP symmetries and
special regions of parameter space in the arXiv:0902.1537 [hep-ph].

M. Maniatis, A. von Manteuffel and O. Nachtmann, “CP Violation in the Gen-
eral Two-Higgs-Doublet Model: a Geometric View,” Eur. Phys. J. C 57 (2008)
719 [arXiv:0707.3344 [hep-ph]].

A. Barroso, P. M. Ferreira and R. Santos, “Charge and CP symmetry break-
ing in two Higgs doublet models,” Phys. Lett. B 632 (2006) 684 [arXiv:hep-
ph/0507224).

S. Davidson and H. E. Haber, “Basis-independent methods for the two-Higgs-
doublet model,” Phys. Rev. D 72 (2005) 035004 [Erratum-ibid. D 72 (2005)
099902] [arXiv:hep-ph/0504050].

A. Barroso, P. M. Ferreira and R. Santos, “Neutral minima in two-Higgs doublet
models,” Phys. Lett. B 652 (2007) 181 [arXiv:hep-ph/0702098].

P. M. Ferreira and D. R. T. Jones, “Bounds on scalar masses in two Higgs
doublet models,” arXiv:0903.2856 [hep-ph].

I. P. Ivanov, “Minkowski space structure of the Higgs potential in 2HDM:
II. Minima, symmetries, and topology,” Phys. Rev. D 77 (2008) 015017
[arXiv:0710.3490 [hep-ph]].

I. F. Ginzburg and M. Krawczyk, “Symmetries of two Higgs doublet model and

81



CP violation,” Phys. Rev. D 72 (2005) 115013 [arXiv:hep-ph/0408011].

[43] I. P. Ivanov, “General two-order-parameter Ginzburg-Landau model with
quadratic and quartic interactions,” Phys. Rev. E 79, 021116 (2009) [19 pages]
[arXiv:0802.2107v2].

[44] 1. F. Ginzburg and K. A. Kanishev, “Different vacua in 2HDM,” Phys. Rev. D
76 (2007) 095013 [arXiv:0704.3664 [hep-ph]].

[45] M. Srednicki, “Quantum Field Theory,” (Cambridge University Press, New
York,2007).

82



