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Abstract

The electrical characteristics of organic light emitting devices containing a continuous distribution of trap states 
in the forbidden gap are obtained by numerically solving the basic semiconductor equations for the steady state 
and under small-signal conditions. The spatially-dependent occupied trap states, which are described by an 
explicit density of states function, modify the charge distribution within the structure and the shape of the 
electric field and the carrier current densities. The effect of the modulation frequency, the applied voltage and the 
device temperature are studied for a hole conducting layer with a trap density of states consisting of a double 
gaussian profile and for a given set of microscopic parameters including the carrier mobilities and thermal 
velocities, the capture cross sections, and the residual shallow impurity concentration. The frequency-dependent 
loss and capacitance curves are obtained for various experimental conditions, like temperature and applied 
steady-state voltage. Effects of parameters describing electrical contacts and trap density of states are shown. 
Such results are particularly useful for the analysis of experimental electrical characteristics obtained by thermal 
admittance spectroscopy.

1    INTRODUCTION

The electrical characteristics of organic semiconductors have intensively been studied during the last decade as 
devices based on these materials are used as electroluminescent diodes (OLED) or as organic transistors [1]. The 
organic semiconductors are known to frequently present trap states in the forbidden gap, with energies between 
the occupied HOMO levels and the empty LUMO levels. These states result either from structural defects or 
from extensive doping. They appear either as discrete levels or with a continuous energy distribution. The 
existence of these continuous energy trap states was mentioned with various energy density of states (DOS). The 
functional dependence can be for example exponential, single gaussian or multiple gaussian [2-8].

Traps play an important role in electroluminescent diodes. In inorganic materials it is known that traps, 
especially when located in the mid-gap region, yield non-radiative recombination paths reducing the light 
emitting efficiency of the diodes. In organic diodes, the current-voltage characteristics are in many cases 
determined by trap-controlled space charge limited currents, which indicates that the electrical and consequently 
the optical properties are related to the spatial and the energetic distribution of trap states. In order to optimize 
performances of any given structure it is mandatory to understand the underlying microscopic mechanisms and 
in particular, the role traps play in the electrical conduction of the free electrons and holes.

Impedance spectroscopy is the classical technique for probing traps in inorganic as well as in organic materials. 
Within this technique, a small ac component of frequency ƒ is superimposed to the steady state applied voltage 
V0, yielding electrical characteristics presented as frequency-dependent real or imaginary parts of the admittance, 
or equivalently, of the impedance or the dielectric function. The as-obtained results are frequently interpreted in 
terms of equivalent electrical circuits [9-16]. Transient capacitance measurements have also been used to 
determine trap concentrations and trap activation energies [17, 18].

In this paper, we present a theoretical study of the electrical conduction under small-signal conditions of organic 
devices having a continuous distribution of trap states in the forbidden gap. The devices under consideration are 
built of one or several layers of organic materials. Carriers are injected by metallic contacts and, after transport 
and radiative recombination, they yield visible light [1]. The polymeric or low-molecular weight materials are 
treated within a description derived for devices made from inorganic semiconductors like e.g. silicon. This 
implies use of band diagrams and conduction characterised by electron and hole mobilities.

The formalism includes explicitly the interaction of the defect states with both the valence and the conduction 
band, even as for traps close to a band edge, a situation occurring in organic semiconductors, the effect of the 
other band can be neglected. The exchange of trap states and conduction or valence band is treated within a 
Shockley-Read-Hall description. The analysis starts from the classical semiconductor equations, widely used in 
the description of electronic devices. Application to structures made of organic materials may be considered as a 
first approximation, due to the inherent complexity of these materials. But, at present, it is the only way to have a 
tractable description of the electrical conduction processes. The basic equations are Poisson's equation and the 
continuity equation for electrons, holes and occupied defect levels. The traps are introduced with their explicit 
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energy distribution. Under steady-state conditions, the presence of traps modifies the charge distribution inside 
the structure, which modifies in turn the electric field distribution and the current densities. When an additional 
ac voltage is applied, the trap states are able to respond to the applied voltage up to a characteristic frequency, 
which depends on microscopic parameters such as the trap concentration, their ionization energy, the carrier 
mobilities and capture cross sections. The traps contribute to the frequency-dependence of the resulting 
capacitance and conductance.

Numerical application is made to a typical structure, illustrating the microscopic response of the organic material 
to the applied ac-voltage. In the first step, the steady-state equations are solved, which yields the energy band 
diagram, electron, hole and occupied defect distributions, as well as current densities and transition rates 
between trap states and bands. The small-signal analysis then yields the position-dependent amplitudes of the 
same quantities, from which the macroscopically interesting quantities, such as admittance and impedance, can 
be obtained and compared to experiment.

The paper is organized as follows. In Section 2, the basic formal developments are given. In Section 3 results for 
a numerical application to a typical device are shown. Section 4 summarises and concludes the paper.

2    BASIC FORMALISM

We briefly recall the basic equations for semiconductor devices [19], and their extension to materials with a 
continuous distribution of non-interacting defect states [20]. The formal developments are applied to a structure 
with planar geometry comprising one or several organic layers sandwiched between two metallic electrodes. 
Therefore, all quantities depend only on one spatial variable x. The treatments generally used to study devices 
made of inorganic substances are applied to the organic materials. The occupied HOMO levels play the role of 
the valence band and the unoccupied LUMO levels give the conduction band. They are separated by an empty 
gap of value Eg. The free electron and hole concentrations are given in terms of the electron and hole quasi-
Fermi levels Fn and Fp by

where Ec and Ev are respectively the conduction and valence band edges and Nc and Nv the effective conduction 
and valence band densities of states. The band edges Ec and Ev are position-dependent and related to the 
electrostatic potential by

where  is the electron affinity.

Defects are present with a density of states Dt(Et) depending on the defect energy Et inside the gap. Position 
dependence of Dt could also be included. Integration of Dt over the gap yields the total defect concentration Nt. 
The occupation function ft(Et) is given at thermal equilibrium by Fermi-Dirac statistics.

Defects states are either of donor or acceptor type. Acceptor states are neutral when empty and negatively 
charged when occupied by electrons. Donors are neutral when occupied and positively charged when empty. The 
number of occupied states nt(x) at a given position x, is then obtained by integration over the gap region of the 
product dt(Et) =ft(Et) Dt(Et), where both factors can depend on position x.

The electrical potential  obeys Poisson's equation

where ND and NA are the shallow donor and acceptor concentrations and Ct is the trap charge concentration. Ct 
equals -nt for acceptor states and equals (Nt - nt) for donor states, q is the electronic charge. The continuity 
equations for electrons, holes and occupied defect states are
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In these equations, Jn and Jp are the electron and hole current densities. They are given by the sum of a drift and 
a diffusion term, according to

where E is the electric field, µn is the electron mobility and Dn is the diffusion constant. Einstein relations 
between µnand Dn are assumed. The expression of Jp is similar. Rbb is a band to band recombination term given 
by

where Br is a recombination constant and ni the intrinsic carrier concentration. The dependence on the 
concentrations n and p is similar to that in the bimolecular recombination term as used in organic 
semiconductors.

Rnt and Rpt are the total electron transition rates from conduction band to trap states and from trap states to the 
valence band. Rnt is the integral over the band gap of the electron transition rate per unit energy

with

Similarly, Rpt is the integral over the band gap of the transition rate for electrons per unit energy

with

Here g is the degeneracy factor, σn and σp are the electron and hole capture cross sections and vth are the carrier 
thermal velocities.

Each defect level is supposed to interact independently with the valence and conduction band. The interaction 
between trap states is neglected, which is certainly justified at trap concentrations for which hopping 
mechanisms between various defect states can be neglected.

Under steady-state conditions, Eq. (8) leads to the relation rnt (Et) - rpt (Et) = 0, from which the steady-state 
occupation function can be deduced.

This quantity is, in the general case, position-dependent, as it depends on the electron and hole concentration. It 
reduces to the Fermi-Dirac shape only under thermal equilibrium conditions. This allows to replace ft in the 
various expressions of nt, Rnt and Rpt in the steady-state equations by expression (13) and finally reduces the 
initial set of 4 equations to a set of 3 equations, as the defect variable is eliminated.

In the study of the ac response under small-signal conditions, a sinusoidal potential of amplitude  << kT/q and 
of frequency ƒ = ω/2π is added to the steady-state voltage V0:

Within the small-signal approximation, all quantities can be written as the sum of a steady-state plus a harmonic 
term. All higher order terms are neglected. Labelling the steady-state term with an index 0 and the ac component 
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with a tilde, one has e.g. for the potential, the electron concentration and the hole concentration

The amplitudes of the ac quantities, labelled by a tilde, are complex quantities, the different physical quantities 
do not necessarily vary in phase with the applied voltage. From the continuity equation for the defect states and 
under the same assumption of non-interacting states, one obtains the ac component of the occupation function

where n0,p0 are the steady-state values for V= V0, and

From this the ac component (x) is obtained by integration. The ac components of the transition rates rnt and rpt 
are obtained by developing relations (11) and (12), retaining only first order terms. The total transition rates
and are then obtained by integration. As for the steady-state case, the ac problem can be reduced to a set of 
three equations, whose variables are ,  and . In addition to the electron and hole ac current densities and 

, the total current density contains the displacement current term  . The sum of these three terms 

yield the total current which has to be constant with respect to position x.

For the numerical resolution of both the steady-state and small-signal equations, one expresses all terms as 
functions of the electrical potential (ψand of the electron and hole Fermi-levels Fn and Fp, using relations (1) and 
(2) for the steady-state part. For the ac components of n and p, one obtains by inserting relations (16) and (17) 
into (1) and (2), making use of (3) and (4), retaining only first order terms

The position-dependent occupied ac-defect state concentration (x) is obtained by numerical integration of the 
product of the defect density of states Dt(Et) and the ac-occupation function (x, Et), as given by relation (18)

The steady-state and small-signal equations are of similar form, they therefore can be solved along the same 
numerical procedure. After scaling and discretization according to a variable size mesh, the resulting second-
order non-linear equations are linearized in terms of small corrections of the variables and iterated until 
convergence is achieved.

As boundary conditions, contacts are supposed to be of the Schottky type, where electron and hole currents at the 
contacts are expressed in terms on effective surface recombination velocities [21].

This yields all dc and ac components of the involved physical quantities. The small-signal conductance G and 
capacitance C are obtained from the complex admittance which is decomposed into an equivalent parallel 
conductance and capacitance

These quantities can be compared with experimentally obtained admittance measurements.

3    NUMERICAL RESULTS

3.1    Parameters of model structure

As a typical organic diode structure, we consider a single organic layer sandwiched between two metallic 
electrodes. As thickness of the layer, we have taken 0.12 µm and an energy gap of 2.4 eV. At the left edge, a hole 
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injection barrier of 0.2 eV corresponds to the anode and at the right edge, an electron injection barrier of 0.6 eV 
corresponds to the cathode. These parameters are representative of typical hole-injection materials like poly
(para-phenylene vinylene) (PPV) with indium-tin oxide (ITO) as anode and Ca as cathode materials [21-24]. The 
conduction and valence band effective densities of states are taken as NC = NV = 5 × 1020cm 3. A shallow 
acceptor concentration NA = 2 ×1016cm 3 is assumed. The relative permittivity was taken as εr =3. The electron 
and hole mobilities are taken respectively as µn= l × 105 cm2/Vs and µp= 1 × 10 3cm2/Vs. Temperature, electric-
field and trap-concentration dependences of the mobilities are neglected. A total trap concentration Nt = 5 × 
1016cm3 is taken. The density of states function Dt(Et) has been taken as the sum of two gaussian distributions Et1 
and Et2, with mean values E1 and E2 defined with respect to the valence band edge Ev, (E1 - Ev) = 0.3 eV and (E2 
- Ev) = 0.5 eV. The relative standard deviation are respectively σE1 = 50 meV and σE2 = 20 meV. This allows to 
show simultaneously the response of a relatively narrow distribution (Et2) and a broad distribution (Et1). 
Experimentally, trap states appear either as discrete levels, or as continuous distributions, which are either 
exponential or gaussian. The kind of distribution we haven chosen has been observed from thermally-stimulated 
current measurements (TSC) in N,N'-di-(1-naphtyl)-N,N'-diphenylbenzidine (α-NPD) doped with 4,4',4"-tris-(N-
(l-naphthyl)-N-phenylamino)-triphenylamine (1-Naph-DATA) [6, 7]. The capture cross sections have been taken 
equal to 1015cm2, and the electron and hole thermal velocities equal to 10 m/s. The traps are supposed to be of 
electron acceptor type, i.e. empty when neutral.

Fig. 1: (online colour at: www.pss-a.com) Energy band diagram for organic layer between anode (left) and 
cathode (right), at thermal equilibrium, with T = 300 K, Eg = 2.4 eV, NA = 2 × 1016cm-3, Nt = 5×1016cm-3. The 
mean trap energies are at (E1 -Ev) = 0.3 eV, (E2 = Ev) = 0.5 eV, with standard deviations σm = 50 meV and σE2 = 
20 meV for the two Gaussian distributions. Trap bands are shown with E1 ± σEl and E2±σE2.

Fig. 2: (online colour at: www.pss-a.com) Steady state and absolute value of small-signal ac-component at V0 = 
0 V, V = 5 meV and frequency ƒ= 0.01 Hz, for hole concentration p and concentration of occupied trap states ηt; 
x1 and x2 are the maxima of the occupied defect modulation.
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3.2    Band diagram and concentrations

In Fig. 1, we show the energy band diagram at zero volt applied voltage, i.e. at thermal equilibrium. The electron 
and hole quasi-Fermi levels are equal to the equilibrium Fermi energy. They intersect the two bands 
corresponding to the trap states Et1 and Et2. In Fig. 2, we show the steady-state hole concentration p0 and 
occupied trap concentration nt0. The hole concentration p0 at thermal equilibrium is important only close to the 
anode. Except for this particular region, the hole concentration is small, as the hole Fermi level is far above the 
valence band edge. At this voltage value, the semiconductor is nearly empty of free charges. With increasing 
positive bias, the hole concentration will progressively increase, leading to conduction above an applied voltage 
of about 1 V.

The x-dependence of the occupied defect concentration nt0 results from the position of the local defect bands 
with respect to the common Fermi-level, as is illustrated by Fig. 1. All defect levels are occupied for x greater 
than 0.01 µm. Below this value nt0 decreases, when the Et2 band crosses the Fermi level around x = 0. A further 
decrease is realized when the Et1 band crosses the Fermi level. In the same figure, we show the absolute value 
(which is practically equal to the real part) of the ac-components of p and nt at a frequency of 0.01 Hz. The ac-
hole amplitude extends over the left part of the structure, with a maximum value around -0.04 µm. The 
occupied level amplitude shows a two-peak structure with maximum values at x1 = -0.015 µm for the 
modulated Et1 states and at x2 = 0.04 µm for the Et2 states. On the energy band diagram, the values x1 and x2 
correspond to those positions where the bending of the defect band with respect to the hole Fermi-level Fp is 
strongest, when the ac-voltage is applied. For trap states close to the valence band edge, as is the case here, the 
trap states are effectively nearly in equilibrium with the valence band. The larger x-extent of the response of the 
Et1 states is not only due to the larger width of the DOS function, but also to the fact that the intersection region 
between Fp and Et1 is larger than for the corresponding Et2 situation.

Fig. 3 (online colour at: www.pss-a.com) Density of states function Dt(Et) as function of trap energy Et The 
valence band edge Ev is the zero of energy. At x = x1 occupied steady-state trap concentration dt0 and real and 
imaginary part of ac-occupied trap concentration dt at frequency ƒ= 0.01 Hz.
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Fig. 4 Density of states function Dt(Et), occupied steady-state trap concentration dt0 and real and imaginary part 
of ac-occupied trap concentration dt atx = x2 at frequency ƒ= 0.01 Hz.

3.3    Local response of the defects

The microscopic situation is depicted in Figs. 3 and 4, with the plot of the detailed response for the individual 
trap states at the two particular positions x1 and x2, for the particular modulation frequency ƒ= 0.01 Hz. Together 
with the density of states function Dt, the occupied states function dt0 = Dtft0 is given, which depends on the local 
position of the quasi-Fermi levels.

The real part of the ac occupation function is the dominant component at this frequency. It describes the filling 
and emptying of the respective states which occurs for Et1 values between 0.2 eV and 0.4 eV above the valence 
band edge at x1 and for Et2 states between 0.45 eV and 0.55 eV above Ev around x2. For these particular 
positions, the response is only due to the states whose position is close to that of the hole quasi-Fermi-level, the 
other states remaining either occupied or empty. The imaginary part of the hole transition rate reproduces the 
same shape as the modulated defect occupation function.

Fig. 5 (online colour at: www.pss-a.com) Real and imaginary part of ac amplitude of hole current density Jp 
displacement current density JD and total current density Jt.
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3.4    Current density

In Fig. 5, the real and imaginary parts of the ac-hole current density and of the displacement current density

are shown, the electron current contribution being negligible for this particular system. For the voltage 
situation V0 = 0, the imaginary part, i.e. the capacitive part of the total current, is the dominant contribution. 
From the decrease of the hole current, one can see where the filling and emptying of the trap states takes place. 
The region between -0.05 µm and -0.01 µm corresponds to charging and emptying of the Et1 traps, whereas the 
region from -0.01 µm to 0.01 µm corresponds to the Et2 states.

3.5    Electrical characteristics

From the as-obtained results, one produces the loss curve, i.e. G/ω as function of frequency and the capacitance-
frequency-curve as given in Fig. 6. The C-f curve presents several steps, each corresponding to a mechanism 
where one element in the structure no longer responds to the applied voltage modulation. The remaining high-
frequency value of 22 nF/cm2 corresponds to the dielectric capacitance. Any decrease in the C-f curve goes in 
parallel with a maximum of the G/ω curve. The peak at f = 0.25 Hz is due to the response of the Et2 states, 
whereas the peak around 150 Hz is due to the Et1 states. The latter having a larger width of the density of states 
function contribute with a larger peak in the G/ω curve. The last peak at 107Hz is due to the modulation of the 
hole concentration around the anode contact, which leads to a RsCd cut-off. Here Cd is the capacitance associated 
with this charge modulation close to the anode contact, as illustrated by Fig. 2, and Rs is the series resistance of 
the structure. No charge modulation occurs around the cathode, at least for the V0 = 0 case, therefore there is no 
cut-off associated with this contact.

The ac curves depend strongly on the parameters used to describe the trap states. For organic compounds, their 
precise value is not known in any case. As one can see from the relations (12) and (19), the trap response 
depends essentially on the energy position Et relative to the valence or conduction band, the carrier thermal 
velocity and the capture cross section. For σp, we have taken 10-15 cm2, but lower values down to 10-20 cm2 have 
been reported [25]. The value of 10 m/s for the thermal velocity corresponds to a material where a hopping 
mechanism leads to a rather efficient carrier conduction [26]. Band or ballistic transport would lead to a value of 
107 cm/s, similar to that of a standard inorganic semiconductor, like silicon [22]. Taking an ionisation energy of 
the trap states of 0.7 eV instead of 0.5 eV produces at room temperature a shift of the defect cut-off frequency of 
the order of 3 decades. Admittance curves at different temperatures should give an additional information on the 
physical parameters, even if the thermal velocity and the capture cross section will be associated as a product. 
Therefore, we show in Fig. 7, the G/ω curves for 5 different temperatures. The structure around 107Hz is not 
reproduced, as its position only slightly changes when the hole mobility µp is constant. With a temperature-
dependent hole mobility, the position of this peak would scale with µp. With decreasing temperature, both defect-
related peaks move to lower frequencies. Deducing directly ionisation energies from Arrhenius plots requires 
some care, even in the case of discrete levels [27]. In the example treated here, the Arrhenius plot yields an 
activation energy of 0.49 eV for the lowest peak, and a value of 0.26 eV for the highest peak. The values are 
close, but not identical to the mean energies of the gaussian density of states functions E2 and E1. The difference 
being due to the broadening of the defect states and to the fact that the frequency ωA, as given by relation (19) is 
not strictly equal to the hole emission rate ep.

The Cole-Cole diagrams given in Fig. 8 illustrate the effect of the applied steady-state voltage V0 on the ac-
response of the structure. Whereas the plot of G/ω as function of C is a nearly perfect circle for the RsCd part of 
the response, there is an enlargement of the circle for the Et2 contribution, which is even more pronounced for 
the Et1 contribution. This reflects the effect of the width of the gaussian density of states function. Discrete levels 
would have led to perfect circles in the latter case. This type of diagram may give a hint for establishing 
equivalent electrical circuits, but in the case of a continuous distribution of trap states, this would require a series 
of distributed elements, with an increasing number of parameters corresponding to the various elements.

Interpretation of experimentally obtained electrical characteristics is a delicate task as this spectroscopic 
technique yields a global response. Features can be interpreted as being due to different layers of various 
compositions [1] or to a temperature dependence of the conductivity with a given activation energy [13]. An 
alternative way to explain the observed results would be to attribute them to trap states with a certain density of 
states function. Impedance spectroscopy measurements on different PPV derivatives [13] show loss curves with 
a three-peak structure similar to those given in Figs. 6 and 7. The lowest peak is at very low frequency, at about 
10 2 Hz. An intermediate peak around 103 Hz at room temperature moves to lower frequencies with decreasing 
temperature, with activation energies in the range 0.40 eV to 0.46 eV. A higher structure above 106Hz could be 
due

 to a RC cut-off implying a series resistance effect.
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Fig. 6 Loss function G/ω and capacitance C as function of frequency for structure defined in Fig. 1 at steady-
state voltage V0 = 0 V and temperature T=300K.

Fig. 7 Loss function G/ω as function of frequency for temperatures T = 320 K, 300 K, 280 K, 260 K and 240 K.

Fig. 8 Cole-Cole diagram for temperature T = 300 K and steady-state applied voltages V0 = -0.4 V, 0 V, 0.2 V 
and 0.4 V. Frequency is increasing from right to left.
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3.6    Effect of contacts and trap DOS functions

Once the formalism established, it is easy to study numerically the physical implications of the presence of traps 
on the electrical characteristics. Modifying the parameters in a given value range, allows to see whether or not 
this may lead to an quantitative modification of the electrical characteristics.

First to get an observable feature like a peak in the loss curve or a step in the capacitance-frequency response, it 
is necessary that the defect-related cut-off frequency falls within the accessible range of standard admittance-
meters, which is typically from 10-2Hz to several MHz. The order of magnitude of the trap characteristic 
frequencies is typically given by the electron or hole thermal emission rates, as given by Eqs. (11) and (12). At 
room temperature, the effective valence band or conduction band density of states is typically 1021 cm-3. Taking 
the degeneracy factor equal to 1, the remaining critical parameters are the trap energy and the capture 
coefficients cp or cn. A defect located for example 0.5 eV from the valence or conduction band edge requires 
values of cn, cp between 10-14 and 10-6 s 1 to lead to an observable feature. The capture coefficients appear as 
products of the capture cross sections σn or σp and the respective thermal velocities vth. For organic 
semiconductors, these parameters are not very well determined. Capture cross sections appear in the literature 
with values between 10-14 to 10-20 cm2. Taking the upper value, the thermal velocity should be greater than 1 cm/
s. With the lower value a thermal velocity of 106 cm/s is necessary. As a consequence, defects will not be 
observable in any case.

Fig. 9 (online colour at: www.pss-a.com) Capacitance-frequency curves for T =300 K, steady-state applied 
voltage V0 = 0V, with various combinations of left-hand hole injection barrier height qΦBL and right-hand 
electron injection barrier height qΦBR, with (qΦBL, qΦBR) = (0.2 eV, 0.6 eV) curve (a); (0.2 eV, 0.9 eV) curve (b); 
(0.2 eV, 0.3 eV) curve (c) and (0.05 eV, 0.6 eV) curve (d).

In Fig. 9, we show the capacitance-frequency curves for four different combinations of the left-hand and right-
hand metallic contacts, with the double gaussian DOS distribution and V0 = 0 V, all other parameters identical to 
those used along the paper. Curve (a) corresponds to the combination qΦBL = 0.2 eV and qΦBR = 0.6 eV, where 
qΦBL denotes the hole injection barrier at the left contact and qΦBR the electron injection barrier at the right 
contact. In curves (b) and (c) the left barrier is kept equal to 0.2 eV, whereas the right-hand barrier is set equal to 
respectively 0.9 eV and 0.3 eV. In curve (d) we have taken qΦBL = 0.05 eV and qΦBR = 0.6 eV. Modifying the 
values of the barrier-heights does of course not shift the position of the cut-off frequencies and the peaks in the 
loss-curve. The figure allows to illustrate two aspects inherent in the effect of a modification of the contact 
characteristic parameters on the resulting small-signal response. When comparing curves (a), (b) and (c) the 
capacitance in the frequency-range before any of the two cut-off frequencies is strongest for case (b), followed 
by case (a) and finally (c). This corresponds to the classification according to the total variation of the band 
edges or the defect bands over the width of the structure of respectively 1.3 eV, 1.6 eV and 1.9 eV. At zero 
applied voltage the hole Fermi-level is constant throughout the device, the three configurations correspond to an 
increasing angle between the Fermi-level and the defect states in the intersection region, i.e. where the 
occupation of the states is modified when an ac-voltage is applied. The smaller the angle, the larger the width of 
band of states which are filled and emptied and the larger the resulting contribution of the trap states to the 
capacitance. A similar effect could be produced through modification of the distance between the two etallic 
contacts. These conclusions hold as long as a modification of one of the barrier heights only leads to a uniform 
bending of the band diagram. The parameter set used for case (d) leads to a total variation of the band edges of 
1.75 eV. One would therefore expect a resulting capacitance curve at midway between curves (a) and (b). The 
curve (d) shown in the Fig. 9, is however very close to curve (a). This can only be understood with a detailed 
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analysis of the band diagram which for this case yields a bending close to the left contact, nearly equal to the 
modification of the hole injection barrier and a nearly unmodified structure for x values larger than -0.04 µm.

The effect of the variation of the parameter set will be illustrated on two cases.

In Fig. 10 we show the effect of the shape of the density of states function Dt. We have analysed four different 
cases corresponding to a discrete trap, a gaussian distribution, a rectangular shape and an exponential DOS 
function, all having the same total trap concentration of 5 × 1016 cm 3. The discrete trap is located 0.3 eV above 
the valence band edge, the single gaussian distribution has the same mean value of 0.3 eV above Ev and a 
standard deviation of 0.05 eV. The distribution of rectangular shape is centred at 0.3 eV above Ev and has a total 
width of 0.3 eV, the exponential distribution has a exp (-(Et-Ev)/Eλ) dependence, with Eλ = 0.3 eV. The resulting 
peak in the G/ω curve is strongest with the smallest width for the case of the discrete trap state, as expected. The 
gaussian peak is still centred around the mean frequency value, whereas the response of the rectangular 
distribution shifts to lower frequencies, a consequence of the fact that the displacement of the Fermi level due to 
the applied voltage does not cover the whole defect band. The exponential DOS leads to a structureless, nearly 
constant contribution to the G/ω function.

Fig. 10 (online colour at: www.pss-a.com) G/ω as function of frequency for discrete trap state at 0.3 eV above 
the valence band edge Ev (curve a), Gaussian distribution with mean value of 0.3 eV above Ev and standard 
deviation σE = 0.05 eV (curve b), DOS function with rectangular shape centered at 0.3 eV above Ev and width of 
0.3 eV (curve c), and exponential distribution with decay length Eλ = 0.3 eV. Integrated defect concentration is 
Nt = 5 × 1016 cm 3 in all cases.

4    CONCLUSION

We have presented the small-signal analysis of an organic diode with a continuous distribution of trap states. 
Numerical application has been made to a hole conducting layer with a trap density of states composed of two 
gaussian functions. It illustrates the various steps leading from the applied modulating voltage to the 
macroscopic electrical characteristics. The formalism can of course be used to study more complex systems, 
such as structures consisting of several layers of organic semiconductors, or traps with a space-dependent 
concentration, as is the case for interface traps. The microscopic parameters can be extended to any density of 
states function, with energy-dependent parameters like capture cross sections, or trap depending carrier 
mobilities. These developments may help in the interpretation of the electrical characteristics of organic diodes, 
complementing the analysis by equivalent electrical circuits. It constitutes an approach giving access to 
microscopic information on the trap states, leading finally to a better understanding of the mechanisms 
governing the light emission efficiency of organic light emitting structures.
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