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or Be-doped GaAs samples show no evidence of
any special length scale or of a sharp peak near
the EF in the autocorrelation function.

Continuous phase transitions, such as the
metal-insulator transition, are typically char-
acterized by a correlation length, which describes
the exponential decay of spatial fluctuations when
a system is tuned near the phase transition. At
the critical point, this correlation length diverges
and spatial fluctuations and other physical prop-
erties display power-law spatial characteristics.
In the noninteracting limit, the transition be-
tween a metal and an insulator occurs by tuning
the chemical potential relative to the mobility
edge. Mapping the spatial structure of the elec-
tronic states as a function of energy can be used
to determine the correlation length and to probe
the critical properties for such a transition be-
tween extended and localized states (4, 5, 8). In
our experiments, the distance dependence of
the energy-resolved autocorrelation function
C(E,r) for the 1.5% sample (Fig. 4C) appears to
follow a power-law at EF, while at nearby en-
ergies it falls off exponentially (see inset). These
observations, together with the apparent diver-
gence of the correlation at a specific energy, are
indeed signatures of the critical phenomena asso-
ciated with a metal-insulator transition. However,
our observation that the longest-ranged correla-
tions are centered at EF, as opposed to some other
energy, which could be identified as a mobility
edge, signifies the importance of electron-electron
interactions in the observed correlations.

Given the importance of electron-electron in-
teractions, the conductance maps are perhaps
more precisely identified as probing the spatial
nature of quasiparticle excitations of a many-body
system rather than simply imaging single-electron
states in the noninteracting limit. Currently there
are no theoretical models of the real-space struc-
ture of these excitations near the metal-insulator
transition in a strongly interacting and disor-
dered system, although there is continued effort
to understand the nature of such transitions in
the presence of interactions (5, 27). Neverthe-
less, we suspect that the correlation length asso-
ciated with these excitations will become shorter
due to multiparticle processes and inelastic ef-
fects at energies away from EF. Our experimental
results for the least conducting sample (1.5%)
indicate that the correlation length x is indeed
suppressed away from EF, roughly following
(E − EF)

−1 (dashed line in Fig. 4A). At EF, for
this sample, these correlations decay in space
following a power-law r−h, with h = 1.2 T 0.3.

Despite the importance of strong interactions,
many of the predictions for the noninteracting
limit still appear to apply. Weakly disordered
extended states are expected to show Gaussian
distributions of the LDOS, indicating that these
states have a finite probability to be present over
the entire system. In contrast, near the metal-
insulator transition wide distributions are ex-
pected, especially in local quantities such as the
LDOS, which begin to cross over from Gaussian

to log-normal distributions even in the limit of
weak localization (28, 29). Spectroscopic maps
of the density of states at EF for three different
dopings (Fig. 5, A to C) show different degrees
of spatial variations; however, their histograms
(Fig. 5D) are similar in being skewed log-normal
distributions where the mean is not representa-
tive of the distribution due to rare large values.

Decreasing the doping skews the distribution fur-
ther in a systematic fashion away from Gaussian
and toward a log-normal distribution. For compar-
ison, a histogram of the LDOS for states deep in
the valence band for the least doped sample (gray
circles in Fig. 5D) shows a Gaussian distribution.

Based on the predictions for the noninteract-
ing limit, we expect critical states to have a spa-

Fig. 5. The spatial variations of the LDOS at the Fermi level, with their histogram and multifractal
spectrum. The LDOS mapping of a 700 Å by 700 Å area of (A) Ga0.985Mn0.015As, (B) Ga0.97Mn0.03As, and
(C) Ga0.95Mn0.05As. (D) The normalized histogram of the maps presented in (A) to (C). The local values of
the dI/dV are normalized by the average value of each map. The inset shows the multifractal spectrum,
f(a), near the value a0 where the maximum value occurs. For comparison, the results of a similar analysis
over a LDOS map at −100 mV (valence band states) for the 1.5% doped sample are also shown.
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We also consider a 1D system with incommensurate frequencies,
which has been shown to display an Anderson-like transition [5].
The system, which is a generalization of the quantum kicked
rotator model, is defined by

ψ̄ = Uψ = e−iV (q,t)eiφpψ

where V (q, t) = k(1 + 0.75 cos ω1t cos ω2t) cos q with ω1 = 2πλ−1,
ω2 = 2πλ−2, λ ≈ 1.3247, and where φp are random phases. This
model shows the Anderson transition at k ≈ 1.8.

[5] G. Casti et al., PRL 62, 345 (1989).
[6] J. Chabé et al., PRL 101, 255702 (2008).

In this work, we consider the ”intermediate map” defined on the
torus by

p̄ = p + γ (mod 1)
q̄ = q + 2p̄ (mod 1)

(γ ∈ R)

where p is the momentum and q the angle variable. The
corresponding quantum evolution is given by

ψ̄ = Ûψ = e−2iπp̂2/Ne2iπγq̂ψ

A whole ensemble of Û matrices can be constructed by taking
instead of 2iπp̂2/N independent uniformly distributed random
phases. The eigenvectors of Û show intermediate spectral
statistics [3] and are multifractal [4].
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1D Anderson map :

k < 1.8 : localized
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k > 1.8 : ergodic
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Fall-off exponent xq : P(Pq) ∝ 1/P
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Multifractal exponents Dq (q ∈ R) can be defined from the

scaling with N of the moments Pq of wave functions in a Hilbert

space of dimension N [1],

Pq =

N�

i=1

|ψi|2q ∝ N−Dq(q−1)

The wave functions in Hilbert space of increasing dimensions are

considered as the same distribution at smaller and smaller scales.

Alternatively, the multifractal exponents can be obtained

through the quantum wavelet transform [2]. The singularity

spectrum f(α) is the Legendre transform of τq ≡ Dq(q − 1)

f(α) = min
q

(qα− τq)

For systems with disorder (⇒ ensemble of wave functions), two

types of exponents should be distinguished according to the kind

of average :

• scaling of �Pq� → Dq (average exponent)

• scaling of �ln(Pq)� → Dtyp
q (typical exponent)

These two kinds of exponents coincide for q values such that the

distribution of moments P(Pq) falls off faster than 1/P 2
q [1]. At

the 3D-Anderson transition, the anomalous exponents

∆q ≡ (Dq − 1)(q − 1) should obey the symmetry ∆q = ∆1−q [1].
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Parameters : k = 1.81,
t = 108 kicks
N=2048
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