

MULTIFRACTALITY IN THE KICKED ROTATOR

JOHN MARTIN¹, IGNACIO GARCÍA-MATA², OLIVIER GIRAUD^{3,4}, AND BERTRAND GEORGEOT³

1 Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège, 4000 Liège, Belgium

2 Departamento de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica, C1429BNP Buenos Aires, Argentina

3 Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, 31062 Toulouse, France

4 Université Paris Sud, LPTMS, CNRS, 91405 Orsay, France

arXiv:1007.1404

MULTIFRACTALITY OF WAVE FUNCTIONS

Multifractal exponents D_q ($q \in \mathbb{R}$) can be defined from the scaling with N of the moments P_q of wave functions in a Hilbert space of dimension N [1],

$$P_q = \sum_{i=1}^N |\psi_i|^{2q} \propto N^{-D_q(q-1)}$$

The wave functions in Hilbert space of increasing dimensions are considered as the same distribution at smaller and smaller scales. Alternatively, the multifractal exponents can be obtained through the quantum wavelet transform [2]. The singularity spectrum $f(\alpha)$ is the Legendre transform of $\tau_q \equiv D_q(q-1)$

$$f(\alpha) = \min_q (q\alpha - \tau_q)$$

For systems with disorder (\Rightarrow ensemble of wave functions), two types of exponents should be distinguished according to the kind of average :

- scaling of $\langle P_q \rangle \rightarrow D_q$ (average exponent)
- scaling of $\langle \ln(P_q) \rangle \rightarrow D_q^{\text{typ}}$ (typical exponent)

These two kinds of exponents coincide for q values such that the distribution of moments $\mathcal{P}(P_q)$ falls off faster than $1/P_q^2$ [1]. At the 3D-Anderson transition, the anomalous exponents $\Delta_q \equiv (D_q - 1)(q-1)$ should obey the symmetry $\Delta_q = \Delta_{1-q}$ [1].

[1] F. Evers & A. Mirlin, RMP **80**, 1355 (2008).

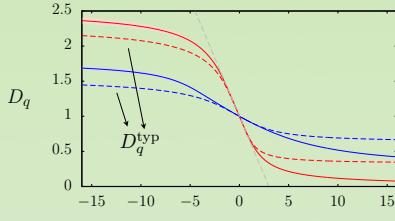
[2] I. García-Mata *et al.*, PRA **79**, 052321 (2009).

MULTIFRACTAL EXPONENTS : RESULTS

Intermediate map : For $\gamma = a/b$ ($a, b \in \mathbb{N}_0$), we find for $|q/b| \lesssim 0.1$

$$D_q \approx 1 - \frac{q}{b} \Leftrightarrow f(\alpha) \approx 1 - \frac{b}{4} \left(\alpha - 1 - \frac{1}{b} \right)^2$$

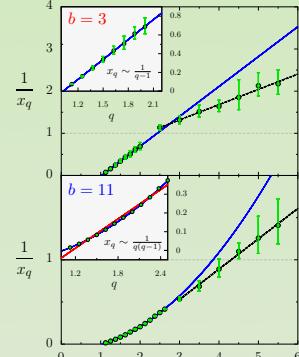
$b = 3, b = 11$



Confirmation of the link between D_2 and the level compressibility χ [7]

$$\chi = \frac{1}{2} \left(1 - \frac{D_2}{D_0} \right) \approx \frac{1}{b}$$

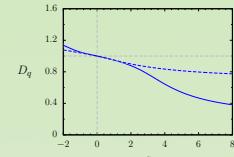
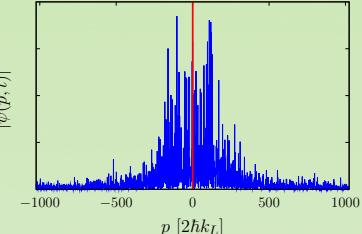
Fall-off exponent x_q : $\mathcal{P}(P_q) \propto 1/P_q^{1+x_q}$



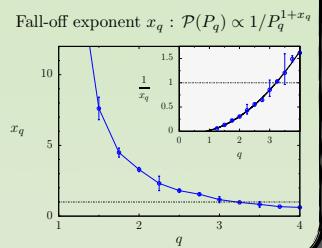
1D Anderson map :

- $k < 1.8$: localized
- $k \approx 1.8$: multifractal
- $k > 1.8$: ergodic

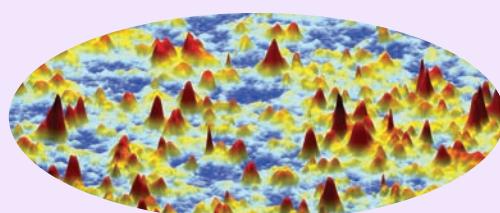
Parameters : $k = 1.81$, $t = 10^8$ kicks, $N = 2048$



multifractality !



[7] J. T. Chalker *et al.*, JETP Lett. **64**, 386 (1996).



LA LIBERTÉ DE CHERCHER