nécessaire. En fait, en ajoutant à cette eau trouble trois ou quatre gouttes d'une solution de chlorure ferrique par litre, ce qui représente environ deux millièmes de composé ferrique, la flocculation reprend avec une activité telle que le liquide se trouve entièrement clarifié après une dizaine d'heures. Ce fait nous ramène au problème déjà traité de l'élimination des matières humiques par les composés ferriques.

Conclusions.

Les composés calciques des eaux naturelles n'ont pas de couleur propre et ne sont pas cause de la couleur verte observée le plus souvent dans les eaux calcareuses passant pour limpides. La couleur verte que l'on constate encore après l'élimination des matières colorées qui se trouvaient dans l'eau est la conséquence de la diffraction de la lumière par les particules invisibles que l'eau renferme toujours et dont on peut démontrer la réalité par un rayon lumineux intense.

Les composés calciques exercent une action puissante d'élimination sur les composés ferriques contenus dans l'eau. Conjointement avec ces derniers, ils provoquent également l'élimination des matières humiques qui altèrent si facilement la couleur propre de l'eau, et loin d'être des agents d'altération, ils sont, au contraire, les plus grands protecteurs du bleu de l'eau.

Si toutes les eaux calcareuses de la nature ne sont pas bleues, c'est qu'il se produit, chez un certain nombre, un état d'équilibre stationnaire entre l'action purifiante de leurs composés calciques et l'afflux perpétuel des composés humiques et ferriques qui auraient chacun pour résultat de faire disparaître la couleur bleue de l'eau sous l'épaisseur de leur teinte brune. La nuance bleue plus ou moins verdâtre que nous constatons peut nous renseigner sur le point où cet état d'équilibre entre les agents antagonistes se trouve fixé.

Sur la couleur du glycol éthylénique et de la glycérine.

Bulletin de l'Académie royale de Belgique [Classe des sciences], n° 12, pp. 1051-1056, 1910.

Il y a quelques années déjà (*), je me suis assuré que nombre de substances regardées alors comme incolores, possédaient, au contraire, une coloration spéciale, caractéristique. Il a suffi, pour cela, de les observer sous une épaisseur plus grande que celle qui se trouve ordinairement en usage dans les manipulations courantes. L'histoire de ces substances rappelle donc celle de l'eau qui ne dévoile non plus sa belle couleur bleue qu'à la condition d'être contemplée en masse.

L'étude de la couleur des corps a un intérêt scientifique au même titre que celle de toute autre propriété de la matière, ne fût-ce que parce qu'elle dissipe l'erreur de jugement que l'on a involontairement commise quand on a fait des observations dans des conditions trop peu objectives. De plus, la connaissance de la couleur des corps peut faire saisir certaines relations intéressantes entre la composition ou la structure moléculaire des corps et leurs propriétés optiques. A cet égard, je rappellerai que les alcools se sont montrés d'autant plus bleus, sous grande épaisseur, que leur chaîne carbonée était plus court. Leur analogie avec l'eau, démontrée déjà par leurs propriétés chimiques, trouve donc son expression aussi dans les propriétés physiques. L'alcool méthylique, CH₃OH, le plus voisin de l'eau, est le plus bleu, tandis que l'alcool amylique, C₆H₇OH, a une

(*) Sur la couleur des alcools comparée à la couleur de l'eau *(Bull. de l'Acad. roy. de Belgique, 3e série, t. XXXI, pp. 246-256, 1895)*, et sur la couleur et le spectre lumineux de quelques corps organiques *(ibid., t. XXXII, pp. 48-54, 1896).*
nuance verte. Celle-ci provient de ce que les corps hydrocarbonés, C₅H₄, ne sont pas incolores, mais d'autant plus jaunes que le nombre d'atomes de carbone de leur molécule est plus grand (*). Le jaune, dû à la partie hydrocarbonée de la molécule d'alcool, s'associant avec le bleu propre au caractère eau, ou, d'une façon plus précise, au groupe OH, produit, dans notre oeil, la sensation de vert.

La couleur d'un alcool répond donc à la structure de sa molécule.

Ce point étant établi, j'ai cherché à savoir si le groupe CO était aussi de nature à modifier la couleur des substances hydrocarbonées. Le résultat a été négatif; on peut le traduire en disant que le groupe CO n'est pas chromogène. Cette conclusion se trouve vérifiée par le fait que les acides organiques C₅H₅O₂ ont fait voir la même couleur que les alcools; le groupe CO n'a donc pas d'effet plus marqué que le groupement hydrocarboné lui-même.

Enfin, il ne sera peut-être pas inutile de rappeler qu'au cours de ces recherches (**), j'ai pu constater que les groupes hydrocarbonés tels que CH₃, C₅H₅, etc., sont décelables par l'analyse spectrale quel que soit l'éther dans la composition duquel ils entrent. Ces groupes produisent, dans le spectre de la lumière qui a traversé les substances organiques passant pour incolores, des bandes d'absorption caractéristiques, dont la position est, à peu de chose près, indépendante de la composition intégrale du corps. En un mot, l'analyse spectrale d'un éther simple, mixte ou composé permet de reconnaître les groupes alkyles qu'il contient, comme elle découvre, instantanément, certains éléments dans les matières minérales.

**

Les recherches que je viens de rappeler sont restées inachevées par suite de la difficulté de se procurer les matières à utiliser, à la fois, en quantités suffisantes pour pouvoir être observées sous plusieurs mètres d'épaisseur et à un degré de pureté tel que leur couleur ne soit pas altérée.

Je me trouve néanmoins en état, aujourd'hui, d'apporter un léger complément aux observations précédentes; celui-ci touche la question de savoir si l'accumulation de groupes chromogènes, par exemple de groupes — OH, dans une même molécule, exerce une influence sur l'intensité de la coloration du composé. Cette question est intéressante parce que, suivant la réponse positive ou négative qu'elle recevra, on saura si l'origine de la couleur se trouve vraiment dans les parties constituant la molécule, ou bien dans la molécule elle-même considérée comme un ensemble.

A cet effet, j'ai comparé la couleur du glycol, C₅H₄(OH)₂, avec celle de l'alcool éthylique, C₅H₁₂.OH. Dans ces substances, le chaînon carbone a la même longueur C₅ et les corps ne diffèrent, en somme, que parce que l'un d'eux est deux fois plus alcool que l'autre, si l'on peut s'exprimer de la sorte. Si le glycol est vraiment plus bleu que l'alcool, toutes autres conditions restant égales, le rôle de colorant joué par le groupe OH sera établi et l'on devra lui reconnaître une influence colligative.

A l'occasion de cet examen, j'ai repris aussi, à titre de contrôle, les observations que j'avais faites antérieurement sur la glycérine, C₅H₁₂(OH)₃ (**). La matière dont je m'étais servi dans mes premières observations m'a paru laisser à désirer dans sa transparence; elle pouvait donc avoir conduit à une conclusion erronée.

A la vérité, la glycérine n'est pas tout à fait comparable avec le glycol et encore moins avec l'alcool, puisque sa molécule renferme un atome de carbone de plus; mais il est quand même utile de l'examiner pour s'assurer si l'effet des trois groupes oxhydryles OH l'emporte, ou non, sur celui du chaînon carbone.

**

L'examen des substances a eu lieu, comme dans mes observations antérieures, dans de longs tubes en verre enveloppés de papier noir et placés parallèlement pour faciliter les comparaisons.

Comme il s'agissait surtout de vérifier l'effet produit par les groupes OH, il fallait nécessairement prendre une disposition telle que la lumière traversât le même nombre de molécules de l'une et

(*) Loc. cit., t. XXXI, pp. 292 et suiv.
(**) Sur le spectre d'absorption de quelques corps organiques incolores. [Bull. de l'Acad. roy. de Belgique, t. XXXIII, pp. 169-195, 1897.]

de l'autre substance avant de pénétrer dans l'œil de l'observateur.

Pour cela, il suffit de donner aux tubes une longueur proportionnelle au volume moléculaire respectif des corps, c'est-à-dire au quotient du poids moléculaire par la densité. Ainsi, le tube rempli d'alcool doit, par exemple, avoir une longueur de 3°,75 et le tube du glycol 4°,96, les volumes moléculaires de ces substances étant respectivement 57,5 et 49,6. Pour la glycérine, il faut, de même, un tube de 7°,25, comme on peut le calculer.

Toutefois, ces dimensions théoriques ont dû être modifiées au cours des observations parce que l'expérience a montré l'imposibilité de préparer du glycol, ou de la glycérine, dans un état complètement sec, sans provoquer une altération de leur couleur propre.

Ce fait ayant une grande importance pour le problème qui nous occupe, je crois devoir entrer dans quelques détails à son sujet.

Je dois le glycol qui m'a servi à l'obligeance de M. S. Schwers, étudiant, qui a bien voulu préparer, pour ces observations, près de 1 kg de matière pure. Il me sera permis, en le remerciant encore, de rendre hommage à son habileté et à sa persévérance.

Le produit, parfaitement limpide, d'ailleurs, s'est montré jaunâtre et non bleu, dans le tube de 4°,96. Pour m'assurer si cette couleur jaunâtre était essentielle ou peut-être accidentelle, j'ai abandonné le glycol à la lumière du jour pendant plusieurs mois, puis je l'ai examiné à nouveau : je l'ai trouvé plus foncé que d'abord. On doit conclure de là que le glycol pur s'alterm lentement, comme une foule de corps organiques, et qu'il se charge de matières brunes qui, à la vérité, ne se révèlent que sous une grande épaisseur de matière. Il est, dès lors, probable que le produit qui a été examiné d’abord était déjà en voie d’altération.

J'ai essayé de le débarrasser de ses matières brunes en le soumettant à une nouvelle distillation dans le vide ; mais le résultat n'a pas répondu à mon attente. J'ai pensé alors pouvoir retenir les matières brunes par la filtration répétée sur du noir animal fraîchement calciné. L'effet produit a été désastreux : le glycol, quoique d'apparence bien limpide sous faible épaisseur, était devenu presque opaque sur l'épaisseur de 4°,96 à la suite de ce traitement. Je l'ai éclairé alors fortement, après l'avoir retiré du tube, suivant la méthode que j'ai pratiquée déjà en 1899 (*) pour découvrir les parcelles ultramicroscopiques, et il a été facile de constater, dans ces conditions, la présence de légions de particules de charbon ; celles-ci, qui provenaient évidemment du noir animal, ne se laissaient retenir par aucun filtre.

Les conditions étant telles, il fallait renoncer à la solution du problème posé. Me souvenant, cependant, de la facilité avec laquelle j'avais pu préparer, antérieurement, de l'eau optiquement vide, par la simple filtration sur une couche épaisse de noir animal, j'ai pensé à m'assurer si la présence d'un peu d'eau dans le glycol ne rendrait pas la filtration sur le noir efficace. Une objection se dressait, à la vérité, devant cette manière de faire : il était à craindre que l'addition de l'eau ne changeât la couleur propre du glycol ; mais j'ai pu m'assurer que cette crainte était vaine. En effet, après avoir ajouté au glycol sec environ le cinquième de son volume d'eau, soit, en poids, près de 15 %, je l'ai examiné dans le tube de 4°,96. Sa nuance n'avait pas changé d'une manière visible (**), ce qui prouve que l'addition de l'eau ne modifie pas la couleur.

J'ai agité ensuite le liquide avec du noir animal récemment calciné, puis je l'ai filtré à plusieurs reprises au travers du noir. Cette fois, il est devenu bien limpide et il était bleu dans le tube de 4°,96. Ceci montre donc que la couleur jaune-brun vue d'abord était due à la présence accidentelle de matières étrangères que le noir animal retient, mais seulement en présence d'une certaine quantité d'eau.

J'ajouterai que la glycérine se comporte comme le glycol vis-à-vis du noir animal. De la glycérine distillée récemment dans le vide, avec le secours d'un courant de vapeur d'eau, puis desséchée autant que possible, s'est montrée veritable sous grande épaisseur, ainsi que je l'avais déjà constaté en 1899 (loc. cit.). En la traitant par le noir

(*) Voir : Sur la diffusion de la lumière par les solutions et Sur l'illumination de quelques verres. (Bull. de l'Acad. roy. de Belgique [Classe des sciences]. 1899, p. 307, et 1900, pp. 1014 et suiv.) Malgré la date de ces travaux, l'ultramicroscopie passée, aujourd'hui, comme due exclusivement à Stoeihtof et Zeilmansky, qui sont pourtant venus plus tard !

(**) Il est à remarquer que la quantité d'eau mêlée au glycol équivalait à une épaisseur de 99 centimètres seulement (4°,96 \(\times \frac{1}{5} \)) et que sous cette épaisseur la couleur de l'eau est à peine perceptible.
animal, on l'assombrit ; mais si on l'additionne d'eau, à raison de \(\frac{1}{6} \) environ de son volume, elle abandonne ses substances colorantes au noir animal.

J'ai tenté à m'assurer si l'alcool sec, lui-même (\(C_6 H_5 OH \)), se comporte comme le glycol ou la glycérine. En fait, de l'alcool distillé, qui était bleu sous une épaisseur de \(5^\circ 73 \), est devenu jaune sombre après cinq filtrations sur du noir animal ; il ne s'est clarifié, par filtration, qu'après avoir été mêlé d'eau ; alors sa couleur a reparu dans toute sa pureté.

Cette question du rôle joué par l'eau dans l'absorption des matières colorantes par le noir animal demande à être élucidée, mais, pour ne pas nous écarter de notre sujet actuel, nous allons procéder à la comparaison de la couleur des liquides dont nous disposons.

**

Nous devons, tout d'abord, modifier les longueurs des tubes d'observation de manière à tenir compte de la proportion d'eau introduite dans le glycol et dans la glycérine.

On remarquera d'abord que puisque le glycol renferme le cinquième de son volume d'eau, on pourra assimilier le tube de \(4^\circ 96 \) à un tube de \(5^\circ 97 \) rempli de glycol sec, qui serait suivi d'un tube de \(0^\circ 99 \) rempli d'eau, car : \(4^\circ 96 : 5 = 0^\circ 99 \). Cette remarque servira de base pour la construction du tube à glycérine, ainsi que du tube à alcool.

Le volume moléculaire de la glycérine étant \(23/1,27 = 72,5 \), tandis que celui du glycol est \(62/1,25 = 49,6 \), on connaîtra l'épaisseur de glycérine à comparer avec \(5^\circ 97 \) de glycol (voir plus haut) par la relation

\[
49,6 : 72,5 = 3,97 : x ; \quad \text{d'où} \quad x = 5^\circ 80 ;
\]

or, la glycérine ayant été additionnée d'eau à raison de \(\frac{1}{6} \) de son volume, l'épaisseur \(5^\circ 80 \) devra être augmentée de \(3^\circ 80 \) : \(5 = 1^\circ 16 \), de sorte que la longueur totale du tube à glycérine chargée d'eau qui contiendra, en tout, autant de molécules de \(C_2 H_5 (OH)_2 \) et de \(H_2 O \) qu'un tube de \(4^\circ 95 \) de glycol chargé de la même proportion d'eau, sera, avec une approximation suffisante :

\[
5^\circ 80 + 1^\circ 16 = 6^\circ 96 .
\]

On calcule de même que le tube à alcool chargé d'eau, à comparer avec les précédents, devra mesurer \(5^\circ 60 \).

A côté de ces trois tubes, j'en ai placé un quatrième, de \(2^\circ 87 \) de long, destiné à recevoir de l'eau pure, afin de comparer.

Passons, à présent, aux résultats des observations définitives.

Nous pouvons les énoncer en forme de conclusions de ces recherches :

1° Dans les conditions réalisées, les quatre substances : glycérine, glycol, alcool et eau, sont bleues.

Bien qu'une mesure quantitative de l'intensité de la couleur bleue ne soit pas possible, pour le moment, surtout par suite de l'incertitude qui règne, malgré tout, au regard de la pureté absolue des corps à comparer, on est frappé des faits suivants :

2° L'alcool et l'eau donnent la même impression de bleu. Le ton verdâtre que j'avais vu lors de mes premières observations, en 1890, ne s'est pas manifesté cette fois ; il est plus que probable qu'il devait son origine à une purification moins complète de l'alcool.

3° Le glycol et la glycérine sont d'un bleu plus foncé que l'alcool ; ils laissent passer moins de lumière que l'alcool ou l'eau. Une estimation photométrique faite par interposition de lames de verre enfermés entre les tubes et l'œil, permet de dire que le glycol est moins transparent de moitié environ que l'alcool. Ce résultat concorde avec le fait que la molécule de glycol contient deux fois autant de groupes OH que la molécule d'alcool.

4° La transparence de la glycérine ne diffère pas beaucoup de celle du glycol, de sorte que l'effet des groupes OH ne se marque pas d'une manière simple. Ceci peut être dû, soit à un défaut de pureté de la glycérine employée, soit à cette circonstance que la molécule de glycérine étant plus riche en carbone que celle du glycol, ne souffre pas une comparaison immédiate.

En somme, il est établi que les corps carbonés qui renferment un ou plusieurs groupes OH ont, comme l'eau pure, une couleur bleue. L'intensité de cette couleur étant en rapport avec le nombre de ces groupes OH contenus dans les molécules, si elle ne lui est pas directement proportionnelle, on doit regarder l'origine des phénomènes de coloration des substances, ici reprises, comme en relation étroite avec la nature et le nombre des parties dont les molécules sont formées plutôt qu'avec la nature de la molécule considérée dans son ensemble.