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2 Sobolev Institute of Mathematics, Novosibirsk, Russia

3 LNF INFN, Frascati, Italy

Abstract

The idea of the vector dominance is still in use in various analyses of experimental
data of photon-hadron reactions. It makes sense, therefore, to recast results of micro-
scopic calculations of such reactions in this language. Here we present the diffractive
DIS ρ3 production as a specific correction to the generalized vector dominance. We per-
form a coupled channel analysis of spin-orbital excitations in diffractive photoproduction
and reiterate the point that ρ3 in diffractive DIS will be sensitive to a novel aspect of
diffraction.

1 Introduction

The study of photon-hadron collisions in 1960’s was driven to large extent by the Vector
Dominance Model (VDM), the idea that the photon in such reactions behaves as a universal
combination of hadrons with the photon’s quantum numbers, see review [1]. In its simplest
form, one assumes that the “hadronic part” of a physical photon in a given isospin-flavor
channel is saturated by the ground state vector meson V contribution. If accompanied with
the assumption that the subsequent interaction of this meson is a one-channel process, it
yields direct relations among the cross sections of different processes, such as σ(γp → V p),
σtot(V p), and σtot(γp) as well as decay width Γ(V → e+e−). Lifting some of these restrictions
has lead to Generalized Vector Dominance (GVD) models, which provided rather good overall
description of the data on the medium energy photon-hadron interactions.

The advent of partonic description of high-energy reactions as well as a vast amount of
new data has set boundaries of the applicability of VDM/GVD. A particularly transparent
insight into the nature of vector dominance is offered by the color dipole approach [2] (see
next Section). Still, the physically appealing idea behind the vector dominance makes it an
interesting exercise to recast results of a microscopic theory in a VDM-like form. An example
of such analysis was given in Ref. [3] where the photoproduction of the radially excited meson
ρ(2S) off nuclei was found to be due to the off-diagonal transitions among different radial
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excitations in diffraction. In a more recent example, [4, 5], the GVD was used to study the
nature of a narrow dip structure in the 6π final state located near M6π ∼ 1.9 GeV.

In this paper we discuss the recent results on diffractive ρ3 production [6], obtained within
the kt-factorization approach, in the GVD language. The ρ3(1690) meson cannot couple
directly to the photon and therefore it is absent in the annihilation e+e− → γ∗ → hadrons.
But it can be produced diffractively, since diffraction conserves only the P - and C-parities
but not the projectile spin J . Thus, ρ3 production can be interpreted as a specific correction
to the vector dominance model. With the coupled channel analysis we show that diffractive
production of the D-wave spin-1 and spin-3 mesons of the ρ system, despite having comparable
cross sections, probe very different aspects of diffraction.

The paper is organized as follows. In Section 2 we discuss relation between the (generalized)
vector dominance models and the partonic description of diffraction. In Section 3 we argue that
the diffraction operator does not conserve the spin of the projectile nor the angular momentum
of the qq̄ state, which represents the projectile in the first approximation. Production of ρ3,
thus, can be viewed as a result of the off-diagonal transitions between different hadronic states
in diffraction. In Section 4 we note that such a correction to VDM might have already been
observed by the E687 experimentally. Possible nuclear effects and additional “photophobic”
states are discussed in Section 5. Finally, in Section 6 we draw our conclusions.

2 (Generalized) Vector Dominance and its limits

Let us first remind the standard assumptions behind VDM and discuss the presence of excited
mesons in the photon in this context.

In the original formulation, the physical photon is represented as a sum of a bare photon
and of a ”hadronic” part of the photon. Such decomposition is not Lorentz-invariant by itself,
because what appears as a hadronic part of the photon in one frame of reference turns into
a hadronic fluctuation of a target in another. One usually chooses the target rest frame, and
if the photon energy is large enough, this decomposition is well defined. It is the hadronic
part of the photon that participate in hadronic processes, while the bare photon contributes
negligibly.

The hadronic part of the physical photon is represented as an integral over all possible
asymptotic (in respect to strong interactions) hadronic states with photon’s quantum numbers
and with invariant mass M . At not too large masses, the dispersion integral over M is
saturated by the lowest resonances. Such contributions can then be defined as contributions
of vector mesons. Limiting ourselves to the flavor-isospin sector that corresponds to the ρ
mesons, one can rewrite the hadronic part of the (virtual) photon as

|γ∗(Q2)〉h =
∑

V

e

fV

m2
V

m2
V + Q2

|V 〉 . (1)

The simplest VDM consists in assumption that only the ground state meson dominates in (1),
which leads to

|γ∗〉h =
e

fρ

m2
ρ

m2
ρ + Q2

|ρ〉 .

This assumption is often accompanied with an additional requirement that subsequent scat-
tering process is diagonal in the space of states |V 〉 in (1), and it then leads to direct relations
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among various cross sections.
The presence of excited vector mesons in diffractive photoproduction calls to lifting the

above restrictions. In the Generalized Vector Dominance (GVD) model one accepts (1) as it
is, and assumes further that the subsequent interaction can lead to off-diagonal transitions
among vector mesons Vi → Vf .

2.1 GVD in the color dipole language

The origin of VDM/GVD success becomes transparent in the color dipole approach. It applies
to the frame where projectile momentum is large, so that the transverse motion of partons
is slowed down relativistically, and the fact that individual partons are not asymptotic states
becomes inessential. In a high-energy diffractive reaction, the scattering amplitude has form
A(A → B) = 〈B|σ̂|A〉, where diffractive states are represented as coherent combinations of
multipartonic Fock states:

|A〉 = ΨA
qq̄|qq̄〉+ ΨA

qq̄g|qq̄g〉+ . . . (2)

Here integration over all internal degrees of freedom assumed, and σ̂ is the diffraction operator
than describes the diagonal scattering of these multiparton states in the impact parameter
representation. Switching from the basis of multipartonic states to the basis of physical mesons
{|Vi〉} and assuming completeness, one can recover (1).

Due to the lowest Fock state domination, the diffraction operator is based on the color
dipole cross section σdip(~r) of a qq̄ pair with transverse separation ~r. The transition amplitude
is represented as

A(A → B) =
∫

dzd2~r ΨB∗
qq̄ (z, ~r)σdip(~r)Ψ

A
qq̄(z, ~r) , (3)

where z is the quark’s fraction of the lightcone momentum of particle A.
The origin of the VDM success in reactions where A is the hadronic part of the photon

lies in the fact that the typical wave functions of the ground state vector meson used in
phenomenology are very similar to the transverse photon lightcone wave function at small Q2.

As virtuality Q2 grows, the qq̄ wave function of the photon shrinks, while the color dipole
cross section behaves as σdip ∝ r2 at small r and reaches a plateau at large r. As a result, the
function under integral (3), where A ≡ γ∗ and B is a ground state vector meson, peaks at the
scanning radius rS ∼ 6/

√
Q2 + M2, see Ref. [7]. At small Q2 the typical scanning radius is

large, and the amplitude is roughly proportional to the integration measure

A(γ∗ → V ) ∝ r2
S ∝

1

Q2 + M2
,

which mimics the VDM behavior. At larger Q2 the scanning radius becomes small enough and
the diffraction cross section itself decreases. This phenomenon of color transparency produces
a more rapid decrease A(γ∗ → V ) ∝ 1/(Q2 + M2)2 up to logarithmic factors, [2, 7].

2.2 Presence of excited vector mesons in the photon

The behavior just described can be cast in the GVD language involving radial excitations [3].
At large Q2, the (small) photon must be represented as a coherent combination of a large
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number of (big) radially excited states. Representing the diffractive production amplitude of
a final meson V as

A(γ∗(Q2) → V ) =
∑

ci(Q
2)

M2
i

Q2 + M2
i

A(Vi → V ) ,

one sees that each term in this expansion decreases with Q2 growth as ∝ 1/(Q2 + M2
i ).

However, coefficients ci(Q
2) must behave in such a way that cancellations among the terms

makes the overall Q2-dependence of A(γ∗ → V ) is ∝ 1/(Q2 + M2
i )2, in accordance with color

dipole result.
Note that similar arguments must be at work for the large-M photoproduction, when

one studies the large-mass tail of broad resonances in a given (for example, multipion) final
state. Production of a multipion state with invariant mass Mnπ significantly larger than the
nominal mass of the vector meson must involve qq̄ pairs with larger invariant mass, and smaller
transverse separation, than for the vector meson at peak. In the color dipole approach this
effect can be roughly accounted for by an additional correction factor

F (Mnπ) =
σdip(rS(Mnπ))

σdip(rS(MV ))
(4)

in the amplitude. In the VDM language the same correction must be implemented as an
additional Mnπ-dependence of the σ(V p → V p).

Another correction to VDM is related to the spinorial structure of the hadron’s coupling to
the qq̄ state, implicitly present in (2) in the definition of ΨA

qq̄. According to QED, the photon
couples to the qq̄ pair as ūγµu, but the corresponding coupling of a vector meson depends on
qq̄ angular momentum inside the meson. For the pure S-wave and pure D-wave vector mesons
the structures ūΓµu are [8]:

Γµ
S = γµ +

2pµ

M + 2m
, Γµ

D = γµ − 4(M + m)pµ

M2 − 4m2
. (5)

Thus, the photon coupling represents a specific form of S-wave/D-wave mixing:

γµΨ(qq̄) = Γµ
SΨS(qq̄) + Γµ

DΨD(qq̄) , (6)

with appropriately normalized ΨS(qq̄) and ΨD(qq̄). Since the D-wave vector meson can be
approximated by the qq̄ pair in the L = 2 state, this proves that decomposition (1) must
include orbitally excited vector mesons as well. The partial width Γ(ρ′′ → e+e−) is known
very poorly, [9], which gives us only very rough estimate 1/fρ′′ ∼ 0.2(1/fρ), which gives a 20%
contribution of the D-wave meson in (1). This value, however, supports the argument that
the origin of D-wave state here is the quarks’ Fermi motion.

There are two competing mechanisms for diffractive production of the orbitally excited
vector mesons. First, the D-wave component of the photon in (6) can get “actuated” via
diagonal scattering off the target. The other mechanism involves off-diagonal transition of
the S-wave part of (6) into the D-wave vector meson under the action of diffraction operator.
The kt-factorization analysis of [10] did not specify which mechanism was the dominant. The
coupled channel analysis presented in the following Section will help find the answer.

The same off-diagonal transitions that break the qq̄ angular momentum conservation and
produce a D-wave vector meson can also produce its spin-orbital partner, the D-wave spin-3
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meson. Analysis of [6] in the case of ρ3(1690) showed that its production rate is expected to be
only 2÷3 times smaller than production rate of ρ′′(1700), which is believed to be predominantly
D-wave vector meson. The hadronic part of the photon does not include the spin-3 meson, so
it arises exclusively due to the off-diagonal properties of the diffraction operator.

3 Coupled channel analysis of the orbital excitations in

diffraction

To get the GVD-like interpretation of the ρ′′(1700) and ρ3(1690) production, we perform a
coupled channel analysis of the action of diffraction operator in the Fock subspace generated
by three states in the ρ system: the ground state meson ρ(770), which we identify with the
pure 1S state, the excited vector meson ρ′′(1700), which we identify with a purely orbital
excitation with L = 2, and the spin-3 meson ρ3(1690), which is also assumed to be in the
L = 2 state.

3.1 Details of the numerical calculations

For numerical calculation of the diffractive transitions among these states, we use the kt-
factorization representation of the production amplitude. A generic amplitude of diffractive
transition of an initial meson with polarization λi into the final meson with polarization λf is
written within the kt-factorization approach as

1

s
Im Aλf λi

=
cV

√
4παem

4π2

∫ dzd2~k

z2(1− z)2

∫ d2~κ

~κ4
αsF(x1, x2, ~κ, ~∆) · ∑

diagr.

Iλf ;λi
Ψ∗

f (p
2
2)Ψi(p

2
1) . (7)

Here z is the lightcone momentum fraction of the photon carried by the quark, ~k is the
relative transverse momentum of the qq̄ pair, while ~κ is the transverse momentum of the gluon.
Coefficient cV is the standard flavor-dependent average charge of the quark, the argument of
the strong coupling constant αs is max[z(1− z)(Q2 + M2

i ), ~κ2]. The sum here runs over four
standard diagrams with the two uppermost gluon legs attached to the qq̄ dipole in all possible
combinations.

Since to the leadling log-1/x approximation the color dipole approach and the kt-factorization
approach are related by the transverse Fourier transform, the color dipole cross section is en-
coded within the kt-factorization approach in the unintegrated gluon distribution. In our
calculations, we used the fits to the unintegrated gluon distribution that were obtained in [11]
by comparing the kt-factorization calculations to the HERA F2p data. In the present case,

however, we need skewed unintegrated gluon distribution F(x1, x2, ~κ, ~∆), where the fractions
of the proton’s momentum carried by the uppermost gluons are not equal, x1 6= x2. To con-
struct them, we use the simplified version of the well-known correcting factor [12] by simply
rescaling the gluon momentum fraction by a universal factor 0.41, see details in [13].

The wave functions of the initial and final mesons were separated into the radial and
angular parts, as described in [8]. The radial wave functions depend on

p2
i =

1

4
(M2

i − 4m2
q) =

1

4
M2

i (2z − 1)2 + ~k2
i = k2

iz + ~k2
i , i = 1, 2 , (8)
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where Mi is the invariant mass of the initial (i = 1) and final (i = 2) qq̄ pair. The integration

variable ~k is taken equal to the final transverse momentum, ~k = ~k2, while the initial rela-
tive qq̄ momentum ~k1 changes from one diagram to another. Note that since we deal with L
eigenstates, it is vital to our approach to separate the three-dimensional radial and the an-
gular parts. An approach where ~k and z dependence of the wave functions are parametrized
independently would be inadequate in our case.

The radial wave functions for the mesons were parametrized in the same way as in [10] and
[6]. We used three-dimensional Gaussian and Coulomb (suppressed by and additional 1/M
factor) radial wave functions. They roughly represent the two “extreme ends” of the whole
spectrum of possible choices: a typical compact and a typical broad wave functions. Each of
the parametrization was properly normalized and had one free parameter, the typical radius.
This free parameter was adjusted so that the calculation of the Γ(V → e+e−) decay width
reproduces the known data.

Since there is no data on the decay width of ρ3(1690) to e+e−, we used for the ρ3 the same
shape of the radial wave function as for the ρ′′(1700), only up to a different normalization
factor. Since these two mesons are essentially spin-orbital partners, we believe that this
approximation is reasonable.

Note that the radial wave functions of the three mesons considered do not have nodes.
Therefore transitions from these states to radially excited states (i.e. transitions away from
this subspace) are weak and can be neglected.

The angular properties of the wave functions of vector mesons were expressed via the
spinorial structures (5). The spinorial structures for spin-3 meson were derived in [6]. All of
them are already incorporated in the corresponding integrands Iλf ;λi

in (7). These integrands
represent, essentially, the trace over the quark loop with the specific spinorial structure inserted
for the initial and final mesons. They are listed in the Appendix.

3.2 Expected uncertainties of the numerical results

We have checked that several parametrization of the unintegrated gluon densities derived in
[11] lead to numerical results differing at the several per cent level. The uncertainties related
to the procedure of linking the skewed distributions to the diagonal ones have also been found
small. So, the gluon distributions do not represent a significant source of uncertainties in the
numerical calculations.

The major uncertainties come from the parametrizations of the radial wave functions.
This is not surprising as our calculations of the ground state vector meson production, [11],
as well as orbitally [10] and spin-excited [6] states were found to be sensitive to the wave
function Ansatz, especially in the small-Q2 limit of light mesons. The wave functions for the
D-wave vector meson and spin-3 meson receive further uncertainty due to very poorly known
experimental value of Γ(ρ′′(1700) → e+e−). In our calculations, we used values Γ(ρ′′(1700) →
e+e−) = 0.14÷ 0.7 keV.

We expect the uncertainty of the numerical results for the diagonal transitions V p → V p
to be no more than factor of 2, while the non-diagonal transitions might be more uncertain.
Note also that the photoproduction reaction, γp → V p, is expected to be more sensitive to
the details of the wave function parametrizations than the corresponding diagonal process
V p → V p.
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3.3 Results for the transition matrix

Here, we present cross sections σji ≡ 〈j|σ̂|i〉 of transitions of an initial state i with a given
transverse polarization into final state j with various polarization states.

We start with the forward scattering, dσji/dt at t = 0. In this case the strict s-channel he-
licity conservation (SCHC) takes place, and we are interested in transitions among transversely
polarized states of ρ, ρD and ρ3. The calculations give the following matrix

dσji

dt

∣∣∣∣
t=0

=




250 1.5 0.3
1.5 460 1.3
0.3 1.3 270


 mb·GeV−2 . (9)

The off-diagonal values are non-zero, but stay small, which means that both total spin J and
the qq̄ angular momentum L are conserved only approximately.

We checked that the numerical results do depend on the details of the wave function
parametrizations as anticipated. The off-diagonal elements in (9) show only the order of
magnitude of the effect; the error by a factor of 2–3 can be present. The accuracy for the
diagonal elements is somewhat higher, roughly within ∼ 50%.

To obtain the integrated cross sections, we calculate dσji/dt at non-zero t and integrate
it within the region |t| < 1 GeV2. On passing to the non-forward cross sections, we must
include the helicity amplitudes transition that violate SCHC. Such transitions give marginal
contributions to the L-conserving diagonal transitions, but they are expected to be more
important in the off-diagonal cases. In particular, results of [6] suggest that the ρ3 production
at small Q2 can be even dominated by the helicity violating transitions.

Strictly speaking, in the non-forward case the diffraction operator acts in the 3+3+7 = 13-
dimensional space of all helicity states of these three mesons. To keep the presentation clear,
we show below the sum of cross sections of transitions from a given transversely polarized
initial state to a final state with all possible helicities, which will make the transition matrix
non-symmetric. The result of numerical integration is:

σji =




19 1 0.2
1 27 0.3

1.3 0.4 19


 mb . (10)

Calculation showed that the diagonal elements are mostly due to helicity conserving transi-
tions, while the off-diagonal elements receive very large contributions from helicity violating
transitions, in agreement with expectations. Note very large difference between σ(ρS → ρ3)
and σ(ρ3 → ρS), which also confirms domination of helicity violating transitions in ρ3 produc-
tion.

3.4 Difference in diffractive ρD and ρ3 production

In order to understand the differences between photoproduction of ρD and ρ3, consider the
initial photon as a vector in the subspace we consider. According to the discussion in Sect. 2.2,
it can be represented roughly as |γ〉 ∼ |ρS〉 + 0.2|ρD〉. One sees that direct “materialization”
of the D-wave component of the photon followed by its diagonal scattering has much larger
amplitude than the L-changing transition from the S-wave component (0.2 · 27 vs. 1).
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On the other hand, the ρ3 must appear in diffraction via the off-diagonal L- and J-violating
elements of the diffraction operator (10). Thus, in contrast to the ρD, the ρ3 production probes
a novel aspect of diffraction.

4 Comparison between the 4π BaBar ISR and E687 data

In this section we discuss if the corrections to the GVD due to ρ3 might have been already
observed in experiment.

The dominant decay channel of ρ3 is 4π with branching ratio BR(ρ3 → 4π) = 73%. Thus
one can look for its presence in diffractive photoproduction by comparing the rescaled E687
data [14] with BaBar initial state radiation (ISR) data [15] in 2(π+π−) final state.

Using GVD accompanied with the assumption that the diffraction operator is diagonal,
one obtains the following relation between the 4π spectra in the e+e− annihilation and pho-
toproduction:

1

M2
4π

dσ(γp → 4πp)

dM4π

∝ σ(e+e− → 4π) . (11)

The presence of ρ3 in diffraction should manifest itself as a bump in the photoproduction
spectrum around M4π ∼ 1.7 GeV. If the above ideas of the dominance of SCHC violation in
ρ3 are correct, one will see a larger bump at higher values of |t|.

In Fig. 1 we present the 4π spectrum in e+e− annihilation obtained by BaBar and the
diffractive photoproduction cross section from E687 modified according to (11). The rela-
tive normalization of the two data sets is adjusted manually for a better comparison of the
resonance peaks.

There are three regions where deviations are seen. At M4π ≈ 1.5 GeV the BaBar data are
significantly higher and at M4π ∼ 1.7 ÷ 1.8 GeV are somewhat lower than the rescaled E687
data. At M4π > 2 GeV the BaBar data again take over. This region (zoomed in at the right
plot of Fig. 1) seems the most disturbing, not only because the ratio between the two data
sets here is large, but also because it increases with the M4π rise.
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Figure 1: Comparison between the BaBar data and the E687 data weighted with 1/M2
4π factor

in the resonance region, left, and in the high mass region, right.
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Figure 2: The same as in Fig. 1 but with the E687 data additionally corrected with the
formfactor (12).

We argue that this high-mass discrepancy is an artefact of the naive VDM used in com-
parison (11). As discussed above, diffractive production of high mass multipion states are
additionally suppressed in comparison with (11) by the factor (4). In a phenomenological
analysis, this bias can be compensated by dividing the photoproduction data by the square of
the correction factor (4). We used the well-known Golec-Biernat-Wüsthoff saturation model
[16] for the color dipole cross section σ(r) = σ0[1 − exp(−r2/R2(x))] and divided E687 data
by the additional compensation factor

F (M4π) =

(
1− exp

[
−10 GeV2

M2
4π

])2

, (12)

and then readjusted the overall normalization.
Figure 2 shows the results. The simple factor (12) makes the two data sets nearly identical

in the entire high-mass range shown, M4π = 2.0–3.9 GeV. In the resonance region, the balance
between the two experiments changes. One sees a more prominent domination of the E687
data over the BaBar data in the range of M4π ∼ 1.6 ÷ 1.9 GeV, while the difference around
M4π ≈ 1.5 GeV becomes less pronounced.

With these data sets only, one cannot draw a definitive conclusion about the origin of the
broad 1.6–1.9 GeV peak seen in the difference of the data sets. It can be due to enhanced
production of ρ′′(1700) or due to the presence of ρ3 in photoproduction. If one assumes that
its is entirely due to the presence of ρ3, one can roughly estimate its production rate,

σ(ρ3)/σ(ρ′ + ρ′′) ∼ 0.05÷ 0.1 . (13)

This number appears to be in agreement both with the old OMEGA result [17] and with
calculations of [6]. We do not plunge here into a detail systematic analysis of the difference of
the two data sets, but just state that it is worth studying further.

The easiest way to resolve the ambiguity in the origin of the enhancement would be to
measure the same photoproduction spectrum at larger values of |t| up to 1 GeV2. If ρ3

photoproduction is indeed dominated by the helicity-flip amplitudes, as argued in [6], its
contribution should rapidly grow with |t|.
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5 Discussion

5.1 Nuclear effects

A place where corrections to the naive VDM come to the foreground is diffractive production of
excited mesons off nuclei. In this case the diffractive system can experience multiple scattering
off separate nucleons, which amounts to multiple action of the diffraction operator on the initial
state. Such action enhances the rate of production of excited states that were initially (almost)
orthogonal to the photon. The fingerprints of this effect in experiment would be an observation
of an A-dependence of the relative production rate of excited states, the modifications of the
shape of these resonances and, possibly, novel interference patterns inside the nucleus.

Such in-medium modifications of the properties of the radially excited ρ states were ex-
plored in [3]. Even at moderate energies the shape of the ρ(2S) state was noticeably dis-
torted in heavy nuclei. The origin of this effect was traced back to non-trivial interplay
between two production mechanisms: direct production γ → ρ(2S) and sequential transition
γ → ρ(1S) → ρ(2S). The latter transition is precisely due to the off-diagonal matrix element
of the diffraction operator.

Similar effects are expected to take place in the orbitally excited sector of the diffractive
states. In order to observe better the ρ3, one must focus not at the forward production, but
at the entire region |t| ∼< 1 GeV2. As was discussed above, the ρ3 production is exclusively
due to the off-diagonal matrix elements of the diffraction operator. Besides, according to (10),
transitions from ρ3 back to the ρS are less probable than the ρS → ρ3 transitions. All this
produces a persistent ”flux” towards the ρ3 state, and its presence is enhanced upon each
successive rescattering.

Note in addition, that production of ρ3 in a given helicity state can proceed via many
different helicity sequences, such as ρS(λS) → ρ3(λ

′
3) → ρ3(λ3). All of them will interfere and

might produce nontrivial patterns.

5.2 Photophobic states in diffraction

The ρ3 is a state whose direct coupling to the photon is zero (“photophobic” state), yet
it appears among diffractive states due to the off-diagonal transition. Similarly, one might
expect that other hadrons not coupled directly to the photon might show up in diffraction.
One interesting example is a hybrid meson. Phenomenologically, one often treats the hybrid
(vector) meson as a state that does not couple directly to the photon, but it can reappear
in photon’s Fock state decomposition via hadronic loops and intermediate transitions to the
nonexotic mesons. An analysis of this type was performed in [4, 5]. There, such a cryptoexotic
state was assumed to couple to ρ′′(1700) but not to the photon. This simple model was
proposed to explain the narrow dip structure in the 6π final state around M6π = 1.9 GeV
observed both in diffractive photoproduction [18] and in e+e− annihilation [15].

The present coupled channel analysis seems to be a more adequate framework for the
analysis of possible interference effects of such photophobic states in diffraction. What one
needs in order to get concrete predictions is a (phenomenological) microscopic model for such
a state. Such an analysis would be complementary to that of [4, 5], since in these works
the diffraction operator was assumed to be diagonal, while we show that this assumption is
unwarranted. It would be interesting to see how non-diagonal transitions of the diffraction
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operator influence the results of [4, 5].

6 Conclusions

Since the vector dominance idea is still used these days to understand some features of new
experimental results, it is useful to discuss the results of microscopic QCD calculations in the
language of the generalized vector dominance models. In this paper, we argued that the vector
dominance model, when applied to the region M ∼ 1.5 − 2.0 GeV, must receive significant
corrections due to presence of the ρ3 among diffractive states.

We compared the paths that lead to diffractive production of ρ′′(1700), which is believed
to be a D-wave vector meson, and of ρ3(1690), its spin-orbital partner. Recent kt-factorization
results [6] show that their cross sections should be comparable. However, the coupled channel
analysis performed here gives strong evidence that these two processes probe very different as-
pects of the diffraction. The ρ′′(1700) production can be viewed primarily as “materialization”
of the D-wave component of the photon followed by diagonal diffractive scattering, while the
ρ3 production probes exclusively the off-diagonal elements of the diffraction operator. Thus,
with ρ3 one can study novel aspects of diffraction.

We also compared recent E687 and ISR BaBar data on 4π spectra obtained in diffraction
and e+e− annihilation, respectively, and observed an enhancement in the photoproduction
precisely where ρ3 resides. At present it is not known if this enhancement is due to excited
vector mesons or to the ρ3, but studies at non-zero momentum transfer t might provide the
answer.

Finally, we discussed the role of orbital excitations in photon-nuclear collisions, and argued
that the coupled channel analysis might help study other “photophobic” states.

Acknowledgements. The work was supported by FNRS and partly by grants RFBR
05-02-16211 and NSh-5362.2006.2.

A Transition amplitudes

The integrands Iλf λi
that appear in Eq. (7) are essentially the traces over the quark loop with

specific spinorial structures inserted for the given initial and final spin, angular momentum
and polarization states. They cna be calculated directly as traces or can be constructed more
efficiently via the light-cone spinor technique, which exploits the fact that the numerator of
all four quark propagators can be taken on-mass-shell, see [13, 19].

For the S-wave to S-wave transition the integrands have form:

ISS
00 =

1

4
M1M2


A1A2 +

4(~k1
~k2)(2z − 1)2

(M1 + 2mq)(M2 + 2mq)


 , (14)

ISS
++ = (~k1

~k2) + m2
q


B1B2 +

4(~k1
~k2)(2z − 1)2

(M1 + 2mq)(M2 + 2mq)


 ,

ISS
0+ =

1

2
(2z − 1)M2


k2+

2mq

M2 + 2mq

− k1+
2mq

M1 + 2mq

A2 + k1+
4(~k1

~k2)

(M1 + 2mq)(M2 + 2mq)


 ,
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ISS
+0 =

1

2
(2z − 1)M1


k∗1+

2mq

M1 + 2mq

− k∗2+

2mq

M2 + 2mq

A1 + k∗2+

4(~k1
~k2)

(M1 + 2mq)(M2 + 2mq)


 ,

ISS
−+ = k1+k2+

[
1− 4m2

q(2z − 1)2

(M1 + 2mq)(M2 + 2mq)

]
− (k1+)2 2mq

M1 + 2mq

B2 − (k2+)2 2mq

M2 + 2mq

B1 ,

and the remaining integrands can be obtained by appropriate change of + to − together with
factor (−1)λi+λf . Here ki± = −(kiµe

µ
±) = −k∗i∓, and

Ai = 4z(1− z) +
2mq

Mi + 2mq

(2z − 1)2 , Bi = 1 +
~k2

i

mq(Mi + 2mq)
.

Corresponding expressions for all other possible transitions among S-wave, D-wave and spin-
3 states can be obtained by the projection technique described in [8, 6]. For example, the
corresponding integrands for the spin-3 meson transition from polarization state λi to λf can
be described by 7× 7 matrix:

I33
λf λi

= T 3S
λf λ′I

SS
λ′λT

S3
λλi

, (15)

where “transition matrices” can be readily constructed from the Clebsch-Gordan coefficients
involved in description of the spin-3 meson, see Ref. [6]. For example,

T S3
λλi

=




k2
+

2√
3
kzk+

1√
15

(2k2
z − ~k2) 2√

10
kzk− 1√

15
k2
− 0 0

0 1√
3
k2

+
4√
15

kzk+
1√
10

(2k2
z − ~k2) 4√

15
kzk− 1√

3
k2
− 0

0 0 1√
15

k2
+

2√
10

kzk+
1√
15

(2k2
z − ~k2) 2√

3
kzk− k2

−


 , (16)

where subscript 1 is assumed for all the momenta, while matrix T 3S is just the hermitian
conjugate of T S3 with replacement k1 → k2. Similar expressions can be obtained also for the
D-wave vector mesons.
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