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Abstract

In the scantling design of a passenger ship, minimum
production cost, minimum weight and maximum mo-
ment of inertia (stiffness) are conflicting objectives. For
that purpose, recent improvements were made to the
LBR-5 software (French acronym of “Stiffened Panels
Software”, version 5.0) to optimize the scantling of ship
sections by considering production cost, weight and
moment of inertia in the optimization objective func-
tion. Moreover, IACS requirements regarding bending,
shearing and buckling strength are currently available in
LBR-5. Until now, only raw scantling optimizations
were performed with LBR-5. Thanks to new develop-
ments using heuristics, it is now possible to realize dis-
crete optimization so that a standardized and “ready to
use” set of optimum scantlings can be obtained.

Keywords

Multicriterion optimization; scantling design; IACS
requirements; passenger vessel; LBR-5 software.

Introduction

Scantling design involves multiple conflicting criteria,
objectives or goals. It is, thus, a multicriterion optimiza-
tion problem. The traditional approach to solve this type
of problem is to use a weighted-sum of the multiple
criteria as the optimization objective function. The con-
ventional scalar numerical optimization methods can
then be used to solve the problem. In this paper, the
authors employed the LBR-5 software which uses the
optimization algorithm CONLIN, based on convex
linearization and a dual approach (Fleury, 1989; Rigo
and Fleury, 2001). The most common definition of the
multicriterion optimum is the Pareto front, which results
in a set of solutions. In a design situation, one specific
solution must be sought for implementation. Useful

specific compromise solutions can then be defined, e.g.
weighted sum, min-max and nearest to the utopian solu-
tions.

The longitudinal scantlings of the midship section of a
passenger ship were optimized with LBR-5. This sec-
tion is characterized by 14 decks, a 40 m breadth and a
45 m height. TACS common structural requirements
were imposed, while production cost and moment of
inertia were both considered in the objective function. A
maximum weight constraint was applied. The entire
Pareto front was calculated, and the scantlings of the
equal weights nearest to the utopian solution are shown
in this paper.

Overview of Multicriterion Optimization

The following overview is adapted directly from Par-
sons and Scott (2004).

Single Criterion Problem

The single criterion optimization problem is usually
formulated as:

m‘inx F(X) = Fl(x)v X= [le X2y aeey XN]T

subject to the equality and inequality constraints

h(x)=0,i=1,...,1
gj(x) 20,] = 1, ,J (1)

where there is a single optimization criterion or objec-
tive function Fi(x) that depends on the N unknown
design independent variables in the vector x. For a prac-
tical engineering solution, the problem is usually subject
to I equality constraints and J inequality constraints h;(x)
and gj(x), respectively, that also depend on the design
variables in the vector x. The minimization form is
general because a maximization problem can be solved
by minimizing the negative or the inverse of the cost
function.



Multicriterion Optimization

The multicriterion optimization problem involves K > 1
criteria and can be formulated as:

min , F(x) = [F(x),F2(x),...,Fk(x)],

T
X= [Xl’ X2y ooy XN]

subject to equality and inequality constraints

h(x)=0,i=1,...,1
gj(X)ZO,j=1,...,J (2)

where there are now K multiple optimization criteria
F|(x) through Fx(x) and each depends on the N un-
known design variables in the vector x. The overall
objective function F is now a vector. In general, this
problem has no single solution due to conflicts that exist
among the K criteria.

Pareto Optimum Front

When there are multiple conflicting criteria present, the
most common definition of an optimum is Pareto opti-
mality. This term was first articulated by the Italian-
French economist V. Pareto in 1906. Also referred to
today as Edgeworth-Pareto optimality: A solution is
Pareto optimal if it satisfies the constraints and is such
that no criterion can be further improved without caus-
ing at least one of the other criteria to decline. Note that
this emphasizes the conflicting or competitive interac-
tion among the criteria. These definitions typically re-
sult in a set of optimal solutions rather than a single
unique solution. A design team, of course, typically
seeks a single result that can be implemented in the
design. This result should be an effective compromise
or trade-off among the conflicting criteria. Often this
result can be reached by considering factors not able to
be included in the optimization model.

Global Criterion Optima

As noted, engineering design requires a specific result
for implementation, not a set of solutions as provided by
the Pareto optimal set. The more intuitive ways to
achieve an effective compromise among competing
criteria are, among others, the weighted sum, the min-
max and the nearest to the utopian solutions.

These solutions can be found through the global criteria:

K 0 1/p
P[Fk(x)]:{Z[wk‘(Fk(x)—Fl?)/Fl?H } ,

k=1

K
ZWk =1 (3)
k=1

where Fl? is the value of the criterion Fy obtained when

that criterion is the single criterion used in the optimiza-
tion - the best that can be achieved with that criterion
considered alone. The scalar preference function
P[F«(x)] replaces F(x) in Eq. 1 for numerical solution.

The weighted sum solution results from Eq. 3 when p =
1, whereas the nearest to the utopian solution results

when p = 2 and the min-max solution when p = co. The
numerical implementation for the min-max solution
uses the equivalent of Eq. 3 with p = oo,

P[F(x)] = maxk[wk‘(Fk x)-F))/F ﬂ (4)

Moreover, a solution could be obtained for a number of
values of p and then the design team could decide which
solution best represents the design intent.

Mapping the Entire Pareto Front

In dealing with multicriterion problems, it is highly
desirable to be able to study the entire Pareto front. This
action allows the design team to consider all options
that meet the Pareto optimality definition. The final
design decision can then be based on the considerations
modeled in the optimization formulation as well as the
many additional considerations, factors, and constraints
that are not included in the model. This is practical
when there are two criteria, but rapidly becomes im-
practical, for computational time and visualization rea-
sons when the number of criteria increases beyond two.

To map the entire Pareto front, the three following me-
thods can be used:

® Repeated weighted sum solutions. If the feasible ob-
ject function space is convex, weighted sum solutions
can be obtained for systematically varied weights.

® Repeated weighted min-max solutions. If the feasible
object function space does not have a slope that ex-
ceeds w,/w,, weighted min-max solutions can be ob-
tained for systematically varied weights.

® Multicriterion optimization methods. Multicriterion
implementations of Generic Algorithms (MOGA),
Evolutionary Algorithms, Particle Swarm Optimiza-
tion, etc. can obtain the entire Pareto front in one op-
timization run.

LBR-5 Software

The scantling design of ships is always defined during
the earliest phases of the project. That is, the prelimi-
nary design stage or the first draft that corresponds in
most cases to the offer. At this time, few parameters
(dimensions) have been definitively fixed, and standard
finite element modeling is often unusable, particularly
for design offices and modest-sized shipyards. An opti-
mization tool at this stage can, thus, provide precious
help to designers. This is precisely the way the LBR-5
optimization software for stiffened structures was con-
ceptualized (Rigo, 2001).

Scantling Design Variables

In LBR-5, a structure is modeled with stiffened plate
elements (Fig. 1). For each element, nine design va-
riables are available:

e Plate thickness.

¢ For longitudinal members (stiffeners, crossbars, lon-
gitudinals, girders, etc.),
o web height and thickness,



o flange width,
o spacing between two longitudinal members.

¢ For transverse members (frames, transverse stiffeners,
etc.),
o web height and thickness,
o flange width,
o spacing between two transverse members (frames).

X,u

Stiffener

Fig. 1: LBR-5 Stiffened Plate Element

Rule-Based Structural Constraints

Structural constraints from IACS requirements and
Bureau Veritas rules are now available in LBR-5. They
are listed below:

e Hull girder strength (IACS requirements)
o Bending/shear strength
" 05,<175/k
= 7,<110/k
with k = material factor
G, = hull girder bending stress (N/mm?)
T, = hull girder shear stress (N/mm?)
o Buckling strength
= Compressive buckling of plates
= Shear buckling of plates
= Compressive buckling of stiffeners
e Local strength (BV rules)
o Stiffener bending strength

Multicriterion Optimization

Production cost, weight and moment of inertia can be
used as objective function in LBR-5. They are consi-
dered simultaneously through Eq. 3 in a multicriterion
problem. The Pareto Front can be mapped in LBR-5 by
using the Repeated weighted sum solutions method
described above.

Discrete Optimization

The scantling design variables are discrete by nature.
The objective functions are nonlinear functions. As the
objective and the constraints are nonlinear functions the
scantling optimization of a ship belongs to the class of
mixed-integer non linear problems (MINLP).

A heuristic is used to solve this problem (Bay et al.,
2007). The method is a two-stage local search heuristic.
At a strategic level, a dive and fix method controls the

Solve nonlinear optimization problem
(NLP) ignoring discrete constraints

\

Are all discrete con-
straints satisfied?

Is the stopping
criterion met?

Select the group of design variables of
A_-» greatest importance among the free
design variables

v

Apply a fixing procedure to
the selected group

v

Solve NLP(k) with the raw
scantling optimization
module of LBR-5

Is the NLP(k) solution
feasible?

Relax some group of | v
fixed variables

A

Fig. 2: Heuristic Flowchart

definition of nonlinear sub-problems. The generation of
the explicit sub-problems and their optimization are
performed at a tactical level by using the raw scantling
optimization module of LBR-5 based on CONLIN algo-
rithm (Fig. 2).

An initial scantling is given by the designer. This solu-
tion may be feasible or not, discrete or not. Given an
initial scantling the heuristic starts computing an optim-
al solution of the NLP problem, i.e. the problem where
all discretization constraints have been removed and all
the variables are free (no variable has its value rounded
and fixed).

At each iteration k, the heuristic starts with the solution
of the previous iteration k-1. The group of design va-
riables (for instance, plate thickness of all stiffened
panel elements) of greatest importance among the free
design variables is selected and the values are fixed
according to a rounding procedure. This operation leads
to a NLP(k) sub-problem which is solved with the raw
scantling optimization module of LBR-5. If the NLP(k)
problem appears to have no feasible solution, a relax
procedure is applied to free the design variables that
have been fixed at the previous iteration and the algo-
rithm moves to the next iteration. If a feasible solution
for NLP(k) is obtained, the algorithm moves to the next
iteration (diving). This iterative scheme is repeated until
all discretization constraints are satisfied.

The round and the relax procedures are the core of the
dive and fix heuristic. They act jointly to define which
regions of the solution space will be explored. They




control the creation of the nonlinear sub-problems
NLP(k) at each iteration by defining how the values for
the design variables are rounded and fixed, taking into
account the results of the previous iterations.

Application

Geometry and Load Cases

The midship section of a passenger vessel was imported
into LBR-5 from Mars2000 (scantling verification soft-
ware based on Bureau Veritas rules). Indeed LBR-5
allows the direct importation of Mars2000 geometry and
loads. The Mars2000 model was initially prepared by
Aker Yards, France. The section is characterized by 14
decks, a 40 m breadth and a 45 m height. Fig. 3 shows
the imported midship section (transversal members and
pillars were added manually). A total of 118 LBR-5
stiffened plate elements were used to define the model
including 19 pillars. Based on structure symmetry, only
the half structure was modelled.
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Fig. 3: LBR-5 Model of the Midship Section

Ten load cases were considered in the calculation:

e Two “TACS load cases” (hogging and sagging): still
water bending plus wave bending with a probability
of exceedance = 10

e FEight “BV load cases” (hogging and sagging)

o Load case “a”: still water bending plus wave bend-
ing with a probability of exceedance = 107 plus
sea pressure (scantling draft and ballast draft)

o Load case “b”: still water bending plus wave bend-
ing with a probability of exceedance = 10™ plus

sea pressure (scantling draft and ballast draft) plus
inertial pressure

Design Variables

Five scantling design variables were activated in each
LBR-5 stiffened plate element:

e Plate thickness

¢ For longitudinal stiffeners,
o web height and thickness,
o flange width,
o spacing between two longitudinal stiffeners.

Discrete Optimization

The solution space for the discrete design variables was
defined with a step of 1 mm for the thicknesses and 10
mm for the web height and flange width. The spacing
remains a continuous design variable.

Objective function

Production cost and moment of inertia (stiffness) were
the two objectives considered in this application. The
production cost was calculated with an advanced cost
module that takes into account the detailed shipyard
database of Aker Yards, France. About 60 different
fabrication operations are considered, covering the dif-
ferent construction stages, such as girders and web-
frames prefabrication, plate panels assembling, blocks
pre-assembling and assembling, as well as 30 types of
welding and their unitary costs (Richir et al., 2007).

Constraints

In each LBR-5 stiffened plate element, structural con-
straints were applied according to IACS requirements
and BV rules (Table 1).

Table 1: Structural Constraints

Load case

“IACS” BV “an BV “b”

c.<175k| X

T, < 110/k

Compressive buckling
of plates

Shear buckling of plates

Compressive buckling

X
X
X
of stiffeners X

Local stiffener bending

strength X X

Equality constraints were also imposed between the
longitudinal stiffener spacing of any two LBR-5 stif-
fened plate elements that are vertically aligned.

Global constraints regarding the hull girder minimum
section modulus and moment of inertia were considered.
These constraints were taken from IACS requirements.
A maximum weight constraint was also applied. More-
over, the structural vertical center of gravity was not
permitted to rise during the optimization process to
avoid stability problems.

The problem can thus be summarized as follow:
e 118 LBR-5 stiffened plate elements,




e 10 load cases,

e 383 scantling design variables,
¢ 4 global constraints,

e 1418 structural constraints,

® 56 equality constraints.

Pareto Front

The entire Pareto front was obtained using a process
that randomly altered the weights in the weighted sum
solution and solved the optimization problem for each
of these problems. The resulting convex Pareto front is
shown in Fig. 4. More than 200 points were calculated.
To avoid large computing time only raw scantling opti-
mizations were performed. The Pareto front was gener-
ated in about 100 minutes with a Pentium 2.40 GHz and
512 Mo of RAM desktop. The equal weights min-max
and nearest to the utopian solutions are also shown in
Fig. 4.
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Fig. 4: Pareto Front
(F1 = Moment of Inertia and F2 = Production Cost)

Using Fig. 4, the design team is now able to choose a
compromise solution from the Pareto front, by consider-
ing additional factors and constraints that are not in-
cluded in the optimization problem.

Equal Weights Nearest to the Utopian Solution

The equal weights nearest to the utopian solution was
also calculated by performing a discrete optimization.
The cost and stiffness savings, obtained by comparison
with the initial scantling, are given in Table 2.

Table 2: Cost and Stiffness Savings

Saving (%)
Production cost 1.758
Moment of inertia (stiffness) 14.992

Note that the initial scantlings did not satisfy some
structural constraints, otherwise the cost savings would
have been higher. Moreover, the associated weight to
the cost objective could be increased to improve the cost
saving, if desired.

The scantlings of the equal weights nearest to the uto-
pian solution are shown in Figs. 5~6. For confidentiality
reasons, the scantlings are expressed in percent of
change from the initial design.
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Fig. 5: Change in Plate Thickness (%)
(plus = decrease; minus = increase)
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Fig. 6: Change in Stiffener Section Modulus (%)
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Conclusions

Thanks to the recent developments outlined here, the
LBR-5 software allows performing multicriterion opti-
mization by considering production cost, weight and
moment of inertia in the optimization objective func-
tions. The entire Pareto front can be mapped by using a
process that randomly alters the weights in the weighted
sum solution and solves the optimization problem for
each of these problems. Useful specific compromise
solutions from the Pareto front, e.g. the nearest to the
utopian and min-max solutions, can be easily calculated.

Moreover, it is now possible to perform discrete optimi-
zation with LBR-5 so that a standardized and “ready to
use” set of optimum scantlings can be obtained.

Finally, IACS requirements, regarding bending, shear-
ing and buckling strength are now available in LBR-5.
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