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Abstract 

In the scantling design of a passenger ship, minimum 

production cost, minimum weight and maximum mo-

ment of inertia (stiffness) are conflicting objectives. For 

that purpose, recent improvements were made to the 

LBR-5 software (French acronym of “Stiffened Panels 

Software”, version 5.0) to optimize the scantling of ship 

sections by considering production cost, weight and 

moment of inertia in the optimization objective func-

tion. Moreover, IACS requirements regarding bending, 

shearing and buckling strength are currently available in 

LBR-5. Until now, only raw scantling optimizations 

were performed with LBR-5. Thanks to new develop-

ments using heuristics, it is now possible to realize dis-

crete optimization so that a standardized and “ready to 

use” set of optimum scantlings can be obtained. 
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Introduction 

Scantling design involves multiple conflicting criteria, 

objectives or goals. It is, thus, a multicriterion optimiza-

tion problem. The traditional approach to solve this type 

of problem is to use a weighted-sum of the multiple 

criteria as the optimization objective function. The con-

ventional scalar numerical optimization methods can 

then be used to solve the problem. In this paper, the 

authors employed the LBR-5 software which uses the 

optimization algorithm CONLIN, based on convex 

linearization and a dual approach (Fleury, 1989; Rigo 

and Fleury, 2001). The most common definition of the 

multicriterion optimum is the Pareto front, which results 

in a set of solutions. In a design situation, one specific 

solution must be sought for implementation. Useful 

specific compromise solutions can then be defined, e.g. 

weighted sum, min-max and nearest to the utopian solu-

tions. 

The longitudinal scantlings of the midship section of a 

passenger ship were optimized with LBR-5. This sec-

tion is characterized by 14 decks, a 40 m breadth and a 

45 m height. IACS common structural requirements 

were imposed, while production cost and moment of 

inertia were both considered in the objective function. A 

maximum weight constraint was applied. The entire 

Pareto front was calculated, and the scantlings of the 

equal weights nearest to the utopian solution are shown 

in this paper.  

Overview of Multicriterion Optimization 

The following overview is adapted directly from Par-

sons and Scott (2004). 

Single Criterion Problem 

The single criterion optimization problem is usually 

formulated as: 

xmin F(x) = F1(x),        x = [x1, x2, …, xN]
T
 

subject to the equality and inequality constraints 

hi(x) = 0, i = 1, …, I 

gj(x) ≥ 0, j = 1, …, J (1) 

where there is a single optimization criterion or objec-

tive function F1(x) that depends on the N unknown 

design independent variables in the vector x. For a prac-

tical engineering solution, the problem is usually subject 

to I equality constraints and J inequality constraints hi(x) 

and gj(x), respectively, that also depend on the design 

variables in the vector x. The minimization form is 

general because a maximization problem can be solved 

by minimizing the negative or the inverse of the cost 

function.  



Multicriterion Optimization 

The multicriterion optimization problem involves K > 1 

criteria and can be formulated as: 

xmin F(x) = [F1(x),F2(x),…,FK(x)], 

x = [x1, x2, …, xN]
T
 

subject to equality and inequality constraints 

hi(x) = 0, i = 1, …, I 

gj(x) ≥ 0, j = 1, …, J (2) 

where there are now K multiple optimization criteria 

F1(x) through FK(x) and each depends on the N un-

known design variables in the vector x. The overall 

objective function F is now a vector. In general, this 

problem has no single solution due to conflicts that exist 

among the K criteria.  

Pareto Optimum Front 

When there are multiple conflicting criteria present, the 

most common definition of an optimum is Pareto opti-

mality. This term was first articulated by the Italian-

French economist V. Pareto in 1906. Also referred to 

today as Edgeworth-Pareto optimality: A solution is 

Pareto optimal if it satisfies the constraints and is such 

that no criterion can be further improved without caus-

ing at least one of the other criteria to decline. Note that 

this emphasizes the conflicting or competitive interac-

tion among the criteria. These definitions typically re-

sult in a set of optimal solutions rather than a single 

unique solution. A design team, of course, typically 

seeks a single result that can be implemented in the 

design. This result should be an effective compromise 

or trade-off among the conflicting criteria. Often this 

result can be reached by considering factors not able to 

be included in the optimization model.  

Global Criterion Optima 

As noted, engineering design requires a specific result 

for implementation, not a set of solutions as provided by 

the Pareto optimal set. The more intuitive ways to 

achieve an effective compromise among competing 

criteria are, among others, the weighted sum, the min-

max and the nearest to the utopian solutions.  

These solutions can be found through the global criteria: 
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where 0
k

F  is the value of the criterion Fk obtained when 

that criterion is the single criterion used in the optimiza-

tion - the best that can be achieved with that criterion 

considered alone. The scalar preference function 

P[Fk(x)] replaces F(x) in Eq. 1 for numerical solution. 

The weighted sum solution results from Eq. 3 when ρ = 

1, whereas the nearest to the utopian solution results 

when ρ = 2 and the min-max solution when ρ = ∞. The 

numerical implementation for the min-max solution 

uses the equivalent of Eq. 3 with ρ = ∞, 

P[Fk(x)] = ( )
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Moreover, a solution could be obtained for a number of 

values of ρ and then the design team could decide which 

solution best represents the design intent. 

Mapping the Entire Pareto Front 

In dealing with multicriterion problems, it is highly 

desirable to be able to study the entire Pareto front. This 

action allows the design team to consider all options 

that meet the Pareto optimality definition. The final 

design decision can then be based on the considerations 

modeled in the optimization formulation as well as the 

many additional considerations, factors, and constraints 

that are not included in the model. This is practical 

when there are two criteria, but rapidly becomes im-

practical, for computational time and visualization rea-

sons when the number of criteria increases beyond two.  

To map the entire Pareto front, the three following me-

thods can be used: 

• Repeated weighted sum solutions. If the feasible ob-

ject function space is convex, weighted sum solutions 

can be obtained for systematically varied weights. 

• Repeated weighted min-max solutions. If the feasible 

object function space does not have a slope that ex-

ceeds w1/w2, weighted min-max solutions can be ob-

tained for systematically varied weights. 

• Multicriterion optimization methods. Multicriterion 

implementations of Generic Algorithms (MOGA), 

Evolutionary Algorithms, Particle Swarm Optimiza-

tion, etc. can obtain the entire Pareto front in one op-

timization run. 

LBR-5 Software 

The scantling design of ships is always defined during 

the earliest phases of the project. That is, the prelimi-

nary design stage or the first draft that corresponds in 

most cases to the offer. At this time, few parameters 

(dimensions) have been definitively fixed, and standard 

finite element modeling is often unusable, particularly 

for design offices and modest-sized shipyards. An opti-

mization tool at this stage can, thus, provide precious 

help to designers. This is precisely the way the LBR-5 

optimization software for stiffened structures was con-

ceptualized (Rigo, 2001). 

Scantling Design Variables 

In LBR-5, a structure is modeled with stiffened plate 

elements (Fig. 1). For each element, nine design va-

riables are available: 

• Plate thickness. 

• For longitudinal members (stiffeners, crossbars, lon-

gitudinals, girders, etc.), 

o web height and thickness, 



o flange width, 

o spacing between two longitudinal members. 

• For transverse members (frames, transverse stiffeners, 

etc.), 

o web height and thickness, 

o flange width, 

o spacing between two transverse members (frames). 

 

Fig. 1: LBR-5 Stiffened Plate Element 

Rule-Based Structural Constraints 

Structural constraints from IACS requirements and 

Bureau Veritas rules are now available in LBR-5. They 

are listed below: 

• Hull girder strength (IACS requirements) 

o Bending/shear strength 

� σa ≤ 175/k 

� τa ≤ 110/k 

with k = material factor 

 σa = hull girder bending stress (N/mm²) 

 τa = hull girder shear stress (N/mm²) 

o Buckling strength 

� Compressive buckling of plates 

� Shear buckling of plates 

� Compressive buckling of stiffeners 

• Local strength (BV rules) 

o Stiffener bending strength 

Multicriterion Optimization 

Production cost, weight and moment of inertia can be 

used as objective function in LBR-5. They are consi-

dered simultaneously through Eq. 3 in a multicriterion 

problem. The Pareto Front can be mapped in LBR-5 by 

using the Repeated weighted sum solutions method 

described above. 

Discrete Optimization 

The scantling design variables are discrete by nature. 

The objective functions are nonlinear functions. As the 

objective and the constraints are nonlinear functions the 

scantling optimization of a ship belongs to the class of 

mixed-integer non linear problems (MINLP). 

A heuristic is used to solve this problem (Bay et al., 

2007). The method is a two-stage local search heuristic. 

At a strategic level, a dive and fix method controls the 

definition of nonlinear sub-problems. The generation of 

the explicit sub-problems and their optimization are 

performed at a tactical level by using the raw scantling 

optimization module of LBR-5 based on CONLIN algo-

rithm (Fig. 2). 

An initial scantling is given by the designer. This solu-

tion may be feasible or not, discrete or not. Given an 

initial scantling the heuristic starts computing an optim-

al solution of the NLP problem, i.e. the problem where 

all discretization constraints have been removed and all 

the variables are free (no variable has its value rounded 

and fixed). 

At each iteration k, the heuristic starts with the solution 

of the previous iteration k-1. The group of design va-

riables (for instance, plate thickness of all stiffened 

panel elements) of greatest importance among the free 

design variables is selected and the values are fixed 

according to a rounding procedure. This operation leads 

to a NLP(k) sub-problem which is solved with the raw 

scantling optimization module of LBR-5. If the NLP(k) 

problem appears to have no feasible solution, a relax 

procedure is applied to free the design variables that 

have been fixed at the previous iteration and the algo-

rithm moves to the next iteration. If a feasible solution 

for NLP(k) is obtained, the algorithm moves to the next 

iteration (diving). This iterative scheme is repeated until 

all discretization constraints are satisfied. 

The round and the relax procedures are the core of the 

dive and fix heuristic. They act jointly to define which 

regions of the solution space will be explored. They 
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Fig. 2: Heuristic Flowchart 
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control the creation of the nonlinear sub-problems 

NLP(k) at each iteration by defining how the values for 

the design variables are rounded and fixed, taking into 

account the results of the previous iterations.  

Application 

Geometry and Load Cases 

The midship section of a passenger vessel was imported 

into LBR-5 from Mars2000 (scantling verification soft-

ware based on Bureau Veritas rules). Indeed LBR-5 

allows the direct importation of Mars2000 geometry and 

loads. The Mars2000 model was initially prepared by 

Aker Yards, France. The section is characterized by 14 

decks, a 40 m breadth and a 45 m height. Fig. 3 shows 

the imported midship section (transversal members and 

pillars were added manually). A total of 118 LBR-5 

stiffened plate elements were used to define the model 

including 19 pillars. Based on structure symmetry, only 

the half structure was modelled. 

 

Fig. 3: LBR-5 Model of the Midship Section 

Ten load cases were considered in the calculation: 

• Two “IACS load cases” (hogging and sagging): still 

water bending plus wave bending with a probability 

of exceedance = 10
-8

 

• Eight “BV load cases” (hogging and sagging) 

o Load case “a”: still water bending plus wave bend-

ing with a probability of exceedance = 10
-5

 plus 

sea pressure (scantling draft and ballast draft) 

o Load case “b”: still water bending plus wave bend-

ing with a probability of exceedance = 10
-5

 plus 

sea pressure (scantling draft and ballast draft) plus 

inertial pressure 

Design Variables 

Five scantling design variables were activated in each 

LBR-5 stiffened plate element: 

• Plate thickness 

• For longitudinal stiffeners, 

o web height and thickness, 

o flange width, 

o spacing between two longitudinal stiffeners. 

Discrete Optimization 

The solution space for the discrete design variables was 

defined with a step of 1 mm for the thicknesses and 10 

mm for the web height and flange width. The spacing 

remains a continuous design variable. 

Objective function 

Production cost and moment of inertia (stiffness) were 

the two objectives considered in this application. The 

production cost was calculated with an advanced cost 

module that takes into account the detailed shipyard 

database of Aker Yards, France. About 60 different 

fabrication operations are considered, covering the dif-

ferent construction stages, such as girders and web-

frames prefabrication, plate panels assembling, blocks 

pre-assembling and assembling, as well as 30 types of 

welding and their unitary costs (Richir et al., 2007). 

Constraints 

In each LBR-5 stiffened plate element, structural con-

straints were applied according to IACS requirements 

and BV rules (Table 1). 

Table 1: Structural Constraints 

 Load case 

“IACS” BV “a” BV “b” 

σa ≤ 175/k X   

τa ≤ 110/k X   

Compressive buckling 

of plates 
X   

Shear buckling of plates X   

Compressive buckling 

of stiffeners 
X   

Local stiffener bending 

strength 
 X X 

Equality constraints were also imposed between the 

longitudinal stiffener spacing of any two LBR-5 stif-

fened plate elements that are vertically aligned. 

Global constraints regarding the hull girder minimum 

section modulus and moment of inertia were considered. 

These constraints were taken from IACS requirements. 

A maximum weight constraint was also applied. More-

over, the structural vertical center of gravity was not 

permitted to rise during the optimization process to 

avoid stability problems. 

The problem can thus be summarized as follow: 

• 118 LBR-5 stiffened plate elements, 



• 10 load cases, 

• 383 scantling design variables, 

• 4 global constraints, 

• 1418 structural constraints, 

• 56 equality constraints. 

Pareto Front 

The entire Pareto front was obtained using a process 

that randomly altered the weights in the weighted sum 

solution and solved the optimization problem for each 

of these problems. The resulting convex Pareto front is 

shown in Fig. 4. More than 200 points were calculated. 

To avoid large computing time only raw scantling opti-

mizations were performed. The Pareto front was gener-

ated in about 100 minutes with a Pentium 2.40 GHz and 

512 Mo of RAM desktop. The equal weights min-max 

and nearest to the utopian solutions are also shown in 

Fig. 4. 
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Fig. 4: Pareto Front 

(F1 = Moment of Inertia and F2 = Production Cost) 

Using Fig. 4, the design team is now able to choose a 

compromise solution from the Pareto front, by consider-

ing additional factors and constraints that are not in-

cluded in the optimization problem. 

Equal Weights Nearest to the Utopian Solution 

The equal weights nearest to the utopian solution was 

also calculated by performing a discrete optimization. 

The cost and stiffness savings, obtained by comparison 

with the initial scantling, are given in Table 2. 

Table 2: Cost and Stiffness Savings 

 Saving (%) 

Production cost 1.758 

Moment of inertia (stiffness) 14.992 

Note that the initial scantlings did not satisfy some 

structural constraints, otherwise the cost savings would 

have been higher. Moreover, the associated weight to 

the cost objective could be increased to improve the cost 

saving, if desired. 

The scantlings of the equal weights nearest to the uto-

pian solution are shown in Figs. 5~6. For confidentiality 

reasons, the scantlings are expressed in percent of 

change from the initial design. 

 

Fig. 5: Change in Plate Thickness (%) 

(plus = decrease; minus = increase) 

 

Fig. 6: Change in Stiffener Section Modulus (%) 

(plus = decrease; minus = increase) 

Nearest to the utopian solution 

Min-max solution 



Conclusions 

Thanks to the recent developments outlined here, the 

LBR-5 software allows performing multicriterion opti-

mization by considering production cost, weight and 

moment of inertia in the optimization objective func-

tions. The entire Pareto front can be mapped by using a 

process that randomly alters the weights in the weighted 

sum solution and solves the optimization problem for 

each of these problems. Useful specific compromise 

solutions from the Pareto front, e.g. the nearest to the 

utopian and min-max solutions, can be easily calculated. 

Moreover, it is now possible to perform discrete optimi-

zation with LBR-5 so that a standardized and “ready to 

use” set of optimum scantlings can be obtained.  

Finally, IACS requirements, regarding bending, shear-

ing and buckling strength are now available in LBR-5. 
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