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Abstract 
 
Civil and environmental engineers frequently rely on mathematical models to design hydraulic structures 
and examine a natural flow. In this respect, single-phase models fail to accurately describe the dispersed 
phase and to take into account its interaction with the water flow. Consequently, authors propose in this 
paper to develop multiphase models in order to address shortcomings of single-phase models, improve 
their accuracy and unify the mathematical description of transport phenomena. The paper covers the 
theoretical derivation of a two-phase model suitable for hydraulic structures and natural flows. In this 
respect, the drift-flux theory is proven to constitute an adequate alternative to single-phase models in 
order to derive mid- and large-scale free-surface multiphase models. In particular, an original one-
dimensional drift-flux model for free-surface flows is derived to address the specific problems arising in 
civil and environmental engineering. Theoretically, it is shown that this approach succeeds in enhancing 
the mathematical accuracy of models for sediment, air and pollutant transport. By using the new set of 
equations, hydraulic software’s may increase in accuracy and investigators may gain new insight into 
experimental data.  
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1. Introduction 
 
As a literature review easily shows, civil and 
environmental engineers make frequent use of 
mathematical models to handle environmental 
flow related problems as the simulation of river 
and channel flow, flood prediction, the 
assessment of sediment and pollutant transport, 
the evaluation of air-water interactions… In this 
respect, the need of consistent models has never 
been more pressing. In first approximation, such 
situations can be dealt with analyzing the flow as 
a pure water flowing in an immutable external 
environment [1-3]. However, mechanisms of 
interaction that could alter the flow behavior are 
multiple: flow interaction with natural bed [4], 
fluid-structure interactions [5], transport of 
pollutant and air-water interactions [6, 7]. Many 
models have been developed to date to deal with 
such dispersed phases. In the field of civil and 
environmental engineering, they usually consist 
of the Navier-Stokes equations coupled with a 

transport equation specific to the dispersed 
phase. Since 3D models remains expensive from 
a computational point of view, 2D shallow-water-
like models [8] and 1D Saint-Venant-like models 
[1] are also constructed by coupling a pure water 
flow model with case specific transport equations 
[4]. None of these methods offers a unified 
framework of description. In parallel, a few 
attempts to use a two-phase description for 
sediment-transport problems has been published 
[9] but focus only on peculiar issues as vertical 
profiles or turbulence models.  
The objective of this research is thus to 
rigorously develop a unified two-phase 
mathematical model to simulate a wide range of 
free-surface flows with transport mechanisms. 
Four conditions are sought in the development of 
the model. First, transport of most dispersed 
phase must be described by a unified 
mathematical model. Second, model must be 
derived through a multi-phase methodology. 
Third, the set of equations must handle correctly 
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the scale heterogeneities in time and space of 
practical applications and mechanisms 
encountered in free-surface hydraulics. Finally, 
computational effort to solve the model must be 
reduced by deriving a 1D model as well as a 2D 
model whose applicability is partially extended to 
3D flows by enriching the vertical profile of the 
flow parameters (concentration, velocities and 
pressure). 
In this paper, authors argue that the so-called 
drift-flux model, originally developed for chemical 
and mechanical engineering, achieve this 
objective in many respects. In section 2, 3D, 2D 
and 1D equations for the Drift-flux model are 
given and commented. In section 3, generality of 
the 1D model is exemplified by particularization 
to single-phase hydrodynamics, aerated flow 
dynamics and sedimentation engineering over 
mobile bed. 
 
2. The Drift-flux theory 
 
In principle, a rigorous two-phase flow solver 
should solve at the same time the local instant 
variables describing the behavior of each phase 
by means of the Local Navier-Stokes equations 
(holding for each phases separately) as well as 
jump conditions (expressing the law of 
conservations across interfaces) [10]: 
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for the kth phase (k=1,2), ρk is the density, vk is 
the velocity, pk is the pressure, τk is the viscous 
stress and g is the acceleration of gravity. vi is 
the velocity of the interface between the water 
and the dispersed phase and nk is the normal 
vector to the interface. The whole 

term ( )
'

Aαβ
α β

σt accounts for the surface flux 
contribution due to the surface tension [10, 11]. 
 
Obtaining a solution this way is however beyond 
the present computational capability for many 
engineering applications. This is why many 
simplified models are often derived. We aim here 
at proving that one of them, the drift-flux theory 
(summarized in Figure 1) is particularly suited to 
describe environmental flows with transport of 
dispersed phases [12, 13]. 
 
2.1 Three-dimensional Drift-flux Model 
 
The 3D drift-flux model is obtained by Eulerian 
time-averaging the local instant formulation of 
Navier-Stokes equations (1) and by assuming 
that the multiphase flow may be described as a 
single-phase flow of mixture variables which refer 
to the motion of the centre of mass of the system. 
The motion of the dispersed phase is then 
treated in terms of diffusion through the mixture. 
The momentum equation for the dispersed phase 
is neglected in favor of a constitutive equation for 
the relative velocity between the centre of mass 
and each phase. The rigorous demonstration, 
presented in [10, 12], gives the following set of 
field equations: 
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where αd is the concentration (or void fraction) of 
the dispersed phase, ρm is the mixture density 
and vm is the velocity of the centre of mass of the 
system, which is different from both the water 
velocity and the dispersed phase velocity. The 
diffusion velocity Vdm, defined as the relative 
velocity with respect to the mass center of the 
mixture, is given by a case-specific constitutive 

2D Drift-Flux Model

Depth-averaged Drift-Flux Equations

Multi-layer Drift-Flux Equations

Local Instant Formulation
Eulerian Time Averaging

3D Drift-Flux Model

1D Drift-Flux Model

Eulerian Space Averaging 
over the flow depth

Eulerian Space Averaging 
over the flow width Depth-averaged Drift-Flux Equations

Multi-layer Drift-Flux Equations

Moment equations for Drift-Flux Model

Figure 1: Drift-flux model - Description of the methodology and the results 
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equation [14, 15]. The mass source term Γd 
accounts for the exchange of mass between the 
water and the active dispersed phase and is 
usually given by a case-specific correlation. The 
mixture pressure pm is a primitive unknown. The 
mixture momentum equation includes three kinds 
of stresses: the classical Newtonian viscous 
stresses τm, turbulent stresses τT and diffusion 
stresses τD due to the relative velocity between 
phases. All of them are given by constitutive 
equations and closure models [16, 17]. Finally, 
the mixture momentum source term Mm 
represents the effect of the surface tension on 
the mixture momentum. In conclusion, one can 
say that 3D drift-flux model for multiphase flows 
is analogous to the Navier-Stokes equation for 
pure water flows. 
 
2.2 Two-dimensional Drift-flux Model 
 
Computation of the three-dimensional Drift-flux 
Model requires a prohibitive computational effort 
in many cases, mainly because 3D meshes are 
complex to generate and include millions of cells. 
Furthermore, tracking the free-surface requires 
specific algorithm such as the Level Set method 
[18], the Volume of Fluid method [19], etc. In 
many practical applications in civil engineering, 
2D models can be used as the vertical scale of 
the computational model is way smaller than the 
horizontal one. In this case, the 3D Drift-flux 
model (2) is integrated over the flow depth and 
the vertical momentum equation is cancelled 
thanks to a dimensional analysis [20]. Such a 2D 
shallow-water-like model offers a valuable 
alternative to the 3D model since various 
methods have been developed to accommodate 
depth-averaged models with vertical distribution 
of the parameters; namely the addition of 
Boussinesq/covariance coefficients [10], of 
moment equations [21] as well as multi-layer 
integration [22]. 
 
2D shallow-water-like drift-flux model is 
thoroughly presented and commented in the 

following book [12] to which we refer the 
interested reader. We prefer in this paper 
focusing on the 1D model which is the original 
contribution of this paper. 
 
2.3 One-dimensional Drift-Flux Model 
 
In particular applications, we can assume that 
the computational domain is essentially one-
dimensional [1, 23]. It means both the flow depth 
and width are way smaller than the flow length 
(river, channel, pipe,…). In such cases, 
equations of momentum along two of the three 
axes may be simplified and the remaining 
equations of the 3D Drift-flux model are area-
integrated over the flow cross-section (Figure 2). 
Again, definition of a multi-layer domain of 
integration and introduction of 
Boussinesq/covariance coefficients enable to 
enrich the vertical description of the flow 
parameters. The integration gives the following 
set of 3 partial differential equations for each 
layer: 
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where the subscript l indicates the layer 
considered (Figure 2). m l

ρ  designates the mean 
density of the mixture in the lth layer, lΩ  is the 
area of the lth layer, m,lu  is the mean mixture 
velocity (i.e. the mixture density weighted area-
average of the mixture velocity), m,L,lq  is the 
mixture mass lateral discharge, d l

α is the mean 
concentration in dispersed phase, wρ  and dρ are 
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Figure 2: Integration domain for the multi-layer approach - 1D depth-averaged drift-flux model 
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the density of, respectively, the water phase and 
the dispersed phase. The area-averaged drift 
velocity dj,lU accounts for the relative velocity 
between both phases and is defined by a case 
specific constitutive equation [24]. d d ll

Γ ρ Ω  is the 
dispersed phase volume exchange term and 

,L ,lqα is the dispersed phase volumetric lateral 
discharge. x ,xβ is the Boussinesq coefficient which 
accounts for the non-uniformity of the mixture 
velocity over the lth layer. gPΩ  is the hydrostatic 
pressure term. li  is the topographic slope of the 
interface between the lth and (l-1)th layer and lJ is 
the friction slope computed thanks to a friction 
correlation (Manning-Strickler, Colebrook, 
Martinelli-Lockhart,…). Finally, s,lp is the pressure 
exerted at the interface between lth and (l+1)th 
layer. 
 
3 PARTICULARIZATIONS 
 
The 1D drift-flux model (3) constitutes a general 
framework for the simulation of transport 
phenomena. In this section, both its validity and 
its generality are exemplified by particularizing it 
to conventional models in free-surface 
hydraulics. 
 
3.1 Single-Phase hydrodynamic 
 
Equations (3) can be used to simulate pure water 
flows in rivers and pipes. If the number of layer is 
one and the concentration of the dispersed 
phase is set to zero, equations (3) reduces to the 
classical Saint-Venant equations [1]:  
 

( )

L

x ,x

u
q

t x
uu gPu

g i J
t x

Ω

∂Ω ∂ Ω⎧ + =⎪⎪ ∂ ∂
⎨ ∂β Ω+∂ Ω⎪ + = −
⎪ ∂ ∂⎩

   (4)  

 
because the diffusion equation becomes trivial, 
the drift-velocity cancels and mixture variables 
coincide with water phase variables. 
 
3.2 Sediment Transport 
 
Model (3) may also be used in sedimentation 
engineering to simulate the transport of a bed 
load and a wash load along the water flow 
(Figure 3). For this purpose, let’s set the number 
of layers to two and define the upper layer as the 
mixture layer (water+wash load) and the lower 
layer as the bed load layer. The dispersed phase 
is in this case a granular flow of concentration C.  
 

By denoting relative density s= ρs/ρw (which 
varies typically between 2 and 3), the net erosion 
rate eb (which accounts for the sediment mass 
exchange between layers) and the bed porosity 
p, equations for the mixture (upper) layer are 
given by: 
 

( )( ) ( )( )

( )

( )( ) ( )( )

( )( ) ( )

m

b

m

b

m m m

b

1 s 1 C 1 s 1 C u

t x
e

                                        1 s 1 p       
1 p

C Cu
e       

t x

1 s 1 C u 1 s 1 C u u gP

t x
z

                                       1 s 1 C g J
x

Ω

∂ + − Ω ∂ + − Ω
+

∂ ∂

= ⎡ + Δ − ⎤⎣ ⎦ −

∂ Ω ∂ Ω
+ =

∂ ∂
∂ + − Ω ∂ + − Ω+

+
∂ ∂

⎛ ∂ −
= + − −⎜

∂⎝
 

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪ ⎞⎪ ⎟
⎪ ⎠⎩

 (5)  

 
where zb is the mobile bed elevation (or the 
interface between the two layers).  
 
For the bed load layer, we make the further 
assumptions that the sediment phase in the 
lower layer is described by a constant sediment 
concentration C=1-p. Consequently, either the 
continuity equation and the diffusion equation 
becomes trivial. What is more, bed load 
dynamics is specified by a constitutive equation, 
called transport capacity law, rather than by a 
momentum equation. Such empirical law states 
the bed load flux Qdx [25]. On account of these 
assumptions, equations (3) for the upper layer 
reduce to a single diffusion equation for the bed 
load section Ωd.  
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which is the one-dimensional form of the Exner 
equation [4]. The mobile bed elevation zb is thus 
computed thanks to bed load section Ωd via the 
section geometry. 
 

 
Figure 3: Main sediment transport and sketch of 
the conceptual model for sediment transport 
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3.3 Aerated Flow 
 
In many engineering projects a strong interaction is 
likely to develop between the water flowing on/trough 
the structure and the air which is adjacent [6]. 
Accurate prediction of air-water interaction (also 
called white water) is thus an industrial necessity. the 
drift-flux equations (3) can be particularized to 
aerated flows by assuming that a single layer appears 
and that the air density is negligible in comparison 
with the water density:  
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where C is the air concentration. In (3), the 
friction slope J aggregates internal and external 
friction as well as mixture momentum source. It 
must be computed by means of a two-phase 
friction correlation [26, 27].  
 
5. Conclusion 
 
In this paper, the drift-flux theory is briefly 
introduced and proves itself to be a convenient 
model to naturally unify the mathematical 
description of most of the transport phenomena 
encountered in civil and environmental 
engineering. In particular, the original 1D multi-
layer drift-flux model is particularized to single-
phase hydrodynamics, sediment transport and 
air entrainment. To authors’ opinion, this offers a 
convenient way to create a computational code 
based on a unique set of equations to describe a 
wide range of environmental flows and its 
interaction with both the external environment 
and one or more dispersed phase. Such an 
algorithm is currently under development within 
the HACH unit by means of a finite volume 
scheme. 
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