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Abstract—This paper presents an approach for assessing, in
operation planning studies, the security of a large-scale power
system by decomposing it into elementary subproblems, each
one corresponding to a structural weak-point of the system. We
suppose that the structural weak-points are known a priori by
the system operators, and are each one described by a set of
constraints that are localized in some relatively small area of
the system. The security analysis with respect to a given weak-
point thus reduces to the identification of the combinations of
power system configurations and disturbances that could lead to
the violation of some of its constraints. We propose an iterative
rare-event simulation approach for identifying such combinations
among the very large set of possible ones. The procedure is
illustrated on a simplified version of this problem applied to
the Belgian transmission system.

Index Terms—large-scale system, operation planning, decom-
position, security analysis

I. INTRODUCTION

Power system security assessment1 aims at identifying so-
called contingencies that could lead to unacceptable operating
conditions if no preventive action was taken.

In real-time operation, when the operating point and topol-
ogy are known and the objective is to assess the security
over a relatively short time horizon (e.g. over the next 30
minutes), this problem may be approximated by screening a
finite set of contingencies whose size grows in a linear fashion
with the size of the power system itself (e.g. the classical
N − 1 criterion) and by verifying for each of them that the
corresponding corrective control problem is feasible.

In operation planning, a few hours or days ahead of time,
the problem becomes however much more complex, mainly
because of increasing uncertainties about the future power
injection patterns and system topologies. In this context, con-
tingencies become combinations of power injection variations,
topology changes and disturbances, which are so numerous
that their screening is not feasible anymore. As a matter of
fact, the “size” of the uncertainty set modeled by contingencies
essentially grows exponentially with the length of the time-
horizon over which one wants to analyze power system
security.

1In this paper, for the sake of simplicity but without loss of generality, we
will formulate our ideas in the context of so-called static security assessment.
Also, in the main part of the paper we restrict our discussion to the analysis
aspect of the problem, leaving the discussion of the corresponding preventive
control problem to the concluding sections.

When the contingency-wise decomposition of security as-
sessment is not tractable (as in the context of operation plan-
ning of large-scale power systems), one has to seek for other
ways to decompose the problem into a reasonable number of
independent and manageable subproblems.

In large-scale power systems, it turns out that security of
operation is generally constrained by the operational limits of
only some specific “weak” subparts of the system in relatively
small number compared to the overall system size, as for
instance long transmission corridors, or cross-border lines, or
older system elements that were not dimensioned for today’s
requirements. The operation limits induced by such weak-
points may generically be described by a number of constraints
related to elements that are located in the corresponding weak
area. In practice these weak areas are geographically localized
and hence the set of constraints that must be satisfied for
each one of them is typically a very small subset of all the
operational constraints of the whole system.

The violation of some of the constraints related to a specific
weak-point may initiate cascades that might quickly propagate
to the rest of the system and could be extremely difficult to
control. The weak-points can thus be considered as critical
for the system security and it is rational, and as a matter
of fact common engineering practice, to decompose power
system security analysis into elementary subproblems each one
focusing on a single weak-point at the time. From the analysis
point of view, these subproblems may indeed be studied
independently of each other and in parallel, and since their
number is typically much smaller than the overall system size,
it is sufficient to provide a general method for studying a single
such subproblem to ensure that the overall security assessment
problem has also a scalable solution. This decomposition is
also appealing in the context of a large-scale interconnection
operated by multiple Transmission System Operators (TSOs),
because it supports in a natural way the fact that the security
analysis effort is shared by the different operators, each one
focusing on the weak-points involving constraints in his area
of responsibility.

Focusing on the security analysis problem of large-scale
power systems in this paper, we will work under the above
discussed assumptions. Specifically, we assume that the weak-
points are known beforehand, which should be the case in
reality because they correspond to the structural properties
of the considered power system, that the overall number of
weak-points is typically much smaller than the total number
of system elements, since otherwise the system would not
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at all be viable, and that each weak-point is geographically
circumscribed, because of the laws of physics.

With these considerations in mind, we have focused our
work on the subproblem corresponding to the analysis of
system security for a given weak-point of a large-scale power
system. Our contribution is to provide a generic algorithmic
approach for the weak-point specific identification of the most
dangerous contingencies within a very large set of candidate
contingencies. Our approach is based on the conjecture that
when focusing on a single weak-point of relevance, the subset
of really dangerous contingencies is very small (and can
therefore be seen as a rare event), but relatively “regular” (i.e.
rather “simple” to describe once it has been identified). We call
the approach proposed in this paper “Rare Event Simulation
Approach” (RESA). This work is a follow up of the work of
[1].

The rest of this paper is organized as follows. Section II
describes explicitly the considered elementary subproblems
and justifies the use of RESA to solve them. Section III
describes the methodological background for identifying rare
events in combinatorial search spaces with iterative sampling
methods and presents a detailed algorithmic approach of
RESA applied to the identification of dangerous contingencies
for a given weak-point. This approach is then illustrated on a
simplified version of the problem on the Belgian transmission
system in Section IV, in which some simulation results are
reported. Section V discusses our algorithm with respect to
existing work. Conclusions and directions for further work are
given in Section VI.

II. SUBPROBLEM SOLUTION STRATEGY

In this section we consider the basic problem that needs to
be solved according to the proposed decomposition strategy.
We focus on a weak area whose viability can be described
by a small number of constraints on currents or voltages (in
the static setting) in a small number of transmission system
elements that are close to each other.

In this paper a contingency is defined as a combination of a
configuration of the network (which includes the generation
and load patterns, the topology and control structure) and
of a hazardous event (corresponding to the tripping of one
or several devices as lines or generators). In the sequel,
a contingency is denoted by {C, E}, where C stands for
“initial Configuration” and E for “hazardous Event”. Such a
combination implicitly defines the steady-state configuration
that will be reached by the system starting from the initial
configuration and after the occurrence of the considered haz-
ardous event. The term “final configuration” is used to qualify
this configuration. Notice that for cascading contingencies, the
final configuration of the system is the result of a sequence
of several steady-state configurations reached by the system
starting from the occurrence of the triggering event.

Deciding whether a contingency is dangerous or not requires
to evaluate the final configuration that follows its occurrence.
As mentioned earlier, a contingency is considered as being
dangerous if (at least) one of the constraints defining the
considered weak-point of the system is violated in this final

configuration. Hence, the acceptability of a final configuration
is determined by defining thresholds on some state variables
of the considered critical equipments (such as the ampacity of
a transmission line, i.e. a threshold on the value of its current),
above which the equipment is no longer safe and is likely to
trip or to fail in some other way.

The security analysis procedure that we propose aims at
setting up a list of the most dangerous contingencies in
terms of such constraint violations associated to the final
configuration and restricted to a specific weak-point. Let us
explain how this approach differs from the usual procedure
for performing power system static security analyses.

Usually, TSOs assess system security by performing what
they commonly call “N− k” security analyses. Such a study
consists in screening all the hazardous events corresponding to
the loss of k transmission equipments for one specific initial
configuration of the system or a set of a few different configu-
rations, and in analyzing the consequences of each one of these
contingencies in terms of all possible constraint violations in
a system wide perspective. The standard operational rule is
k = 1, however, when the likelihood of an incident with k > 1
is large enough, some k = 2 or k = 3 contingencies may also
be considered. For each considered contingency, the output of
such a study is composed of a global diagnosis on the stability
of the system, in the form of a list of system elements that
would trip, or be overloaded.

Instead, in this work we focus on a small subset of system
elements that were a priori identified as critical for the consid-
ered weak-point. Our problem is therefore not a full screening
of all the possible contingencies but a dedicated search for
those that would have specific consequences, namely which
would lead to the violation of at least one of the a priori
identified constraints defining the weak-point. For each weak-
point, the output of our procedure is a list of contingencies
that would lead to its constraint violations. This is why we
name our approach “consequence driven”.

In the next subsections we describe from a technical point
of view and validate our proposal of a rare-event simulation
approach to identify the subset of contingencies dangerous for
a given weak-point of a large-scale power system.

III. RARE-EVENT SIMULATION APPROACH (RESA) FOR
SECURITY ASSESSMENT WITH RESPECT TO A WEAK-POINT

When considering the structure of the security analysis
problem in the context of a specific weak-point of a large-
scale power system, the dangerous {C, E} combinations for a
given weak-point are typically very rare with respect to the
non-dangerous ones. Moreover, the subset of combinations
that would appear as dangerous for a specific weak-point of
the system will in most cases only involve a small set of
features (i.e. a small set of dimensions used to describe the
complete set of possible contingencies), e.g. those related to an
area constrained by geographical or electrical distances around
the considered weak-point. This suggests to develop specific
methods for identifying rapidly among the set of possible
contingencies those that are dangerous for a given weak-
point, rather than to try to screen exhaustively the potentially



very large set of possible {C, E} combinations in a system
wide perspective. In addition, it will be useful to identify the
subset of features that are sufficient to characterize the set of
dangerous contingencies for a given weak-point.

In this section we provide a methodological framework
which aims at these objectives. It is based on a combination
of ideas from Monte-Carlo simulation and automatic learning.

A. RESA in combinatorial search spaces

In the literature many iterative sampling methods have been
proposed for searching solutions to combinatorial or non-
convex optimization problems, such as genetic algorithms,
distribution estimation methods, Markov-Chain Monte Carlo
methods, and also the so-called cross-entropy method (see [2],
[3], [4] and [5]).

A common feature of these methods, from an algorithmic
point of view, is to combine random sampling with an iterative
process allowing one to “learn” the best sampling scheme for
the problem under consideration. Generically, these algorithms
work in the following way:
• define some initial sampling distribution over the consid-

ered search space and an objective function allowing to
compare (or to rank) elements of the search space;

• at each iteration:
– generate a subset of potential solutions over the

search space by using the current sampling distri-
bution;

– evaluate the objective function for each configuration
in the current sample;

– use the pairs (configuration, objective function) in the
current sample so as to determine a new sampling
distribution better targeting the interesting solutions
of the problem;

• halt the iterative process when the computational re-
sources have been exhausted, or when the current sample
is sufficiently pure in terms of objective function distri-
bution, or when the variation of some sample statistics
has not changed significantly since a certain number of
iterations.

In this paper, we want to exploit such iterative sampling
based methods for rare combinatorial event simulations, i.e.
in order to identify elements of a very small subset of
“interesting” contingencies among a very large number of
candidate ones located in an originally unstructured mixed
continuous/discrete search space.

To do so, we first define an objective function over the
original search space which is maximal only for the sought
interesting solutions. Then we embed the original search space
in a compact metric space where the objective function varies
in a progressive way and on which we may apply naturally lin-
ear operators such as averaging and interpolation, and we use
the iterative sampling based optimization approach together
with averaging/interpolation operators over the embedding
space so as to generate a sequence of sampling distributions
defined over this space which progressively target subsets
corresponding to dangerous contingencies with respect to the
original problem.

One main ingredient of this approach, needed to allow the
computation of the objective function over the embedding
space, consists of a reverse mapping (pre-image computa-
tion) of the embedding so as to associate to each point
of the embedding space an element of the original mixed
discrete/continuous space over which the objective function
is intrinsically defined.

B. The cross-entropy method (in general)

In our simulations reported below, we use as iterative
sampling method the cross-entropy method [5]. This method
proceeds as follows:
• define a hypothesis space of candidate sampling densities

pλ defined over Rn and indexed by a parameter vector λ .
This space of distributions may be chosen in a problem
specific way, for example by taking into account prop-
erties such as linearity, gaussianity or the possibility of
multiple modes;

• set λ to its initial value λ0 (typically λ0 will be chosen
so as to let the distribution pλ0 cover the complete space
Rn);

• at each iteration i, draw a sample Si of size s of config-
urations according to the current distribution defined by
the current value λi (s is a parameter of the algorithm)
and evaluate the value of the objective function O(·) for
each one of these configurations;

• keep the subset S′i of Si corresponding to the m < s best
solutions (m is another parameter of the algorithm);

• use the sample S′i to determine a new value λi+1. In the
cross-entropy method, one typically uses at this step the
maximum likelihood principle, i.e. one chooses the value
λi+1 such that the likelihood of the sample S′i+1 is max-
imal with respect to the selected space of distributions.

In the following sections, we describe the precise setting
that we have used in order to apply this approach to the
identification of dangerous contingencies for a given weak-
point of a power system, in the form of a critical line
constrained by its current flow.

Our settings comprise the choice of an objective function
measuring the weak-point specific severity of a contingency,
the embedding of the contingency set in suitable metric space
and its pre-image computations, as well as the choices asso-
ciated to the application of the cross-entropy method per se
(space of sampling distributions, and choice of the parameters
s and m).

In our validation section, we will focus on simple contin-
gencies described by the loss of a single transmission system
element.

C. The objective function

From now on, we denote a contingency by x∈X , where X
is the contingency space, i.e. the space gathering all possible
{C, E} combinations. The objective function O(·) is a real-
valued function defined over X which takes its maximum
values when x is a dangerous contingency for the considered
weak-point.



The function O(·) is used at every iteration of the RESA
algorithm for selecting among the several contingencies drawn
from the current sampling density, those which correspond to
the largest values of O(x).

Subsequently, these latter are used to define, based on
the maximum likelihood principle, the parameters defining
the sampling density at the next iteration within the set of
sampling densities used by the algorithm. As the iterations go
on, the algorithm should generate sampling densities which
give more weight to the dangerous contingencies.

In the classical cross-entropy framework, the function O(·)
is given a priori. In our problem, one has the flexibility to
choose among the set of real-valued functions defined on
X , one which leads to good performances. Pragmatically,
we propose so as to define this function to associate to a
contingency x a value that reflects its consequences on the
operating conditions of the considered weak-point. When sev-
eral weak equipments are considered, one can either consider
an objective function related to one single weak equipment
and repeat the procedure independently for all the weak
equipments, or aggregate indices related to each of these
equipments in order to have a unique value for the objective
function O(·).

In our validations we chose to treat the case where the
focus is on a single weak transmission line and we hence
used for O(x) the loading rate induced by the contingency x
on the considered line. A contingency will thus be considered
as dangerous if this value exceeds a threshold defined by
the operator. This limit can for instance correspond to the
ampacity of the considered line, as we did in our simulations.

In general, this choice of function O(·) should ensure that it
takes its maximum value on the most dangerous contingencies
with respect to the targeted weak-point. As O(x) reflects the
severity of the contingency x, the function O(·) will also be
referred to as the severity function in the following.

D. Metrization of the contingency space

As explained in III-A, for iterative sampling methods to
work well in our context, it is necessary to embed the contin-
gency set in a metric space in such a way that the objective
function will vary progressively over this metric space. This
means that we need to define a projection operator on the
discrete set of contingencies, calculating for each contingency
a point in a metric space such that contingencies which are
projected on nearby points have similar values of the security
related objective function.

In the approach, probability densities will be learned that
are defined over the metric space embedding contingencies; for
each sample drawn in this space it will be necessary to com-
pute a value of the severity function O(·), by associating to it
an element of the original set of contingencies. The metrization
process thus consists in choosing an adapted continuous space
and defining a pre-image function that associates to each point
of this space an element of the original contingency set.

We propose the following approach: we first represent the
contingencies as points of a metric space by using physical
quantities related to them that may be associated to coordinates

(features) in a multidimensional setting, and then we associate
to each point of this metric space the contingency from which
it stands the closest according to the chosen metric.

Representing the contingencies as points of a multi-
dimensional space requires to define coordinates for each
contingency along with distances between the contingencies. A
contingency can be seen as a large state vector, containing all
the data on the configuration of the system and also informa-
tion about the available and non-available equipments and the
disturbances. Using the Euclidean distance or a kernel-based
distance metric, it is possible to compute distances between
each pair of contingencies. From this set of inter-contingency
distances, dedicated methods such as multi-dimensional scal-
ing algorithms (see [6]), that were already used in the context
of power systems in [7], allow to compute coordinates for each
contingency in the chosen number of dimensions.

To illustrate this metrization process, we give hereafter a
detailed procedure for the specific case where the contingency
set is limited to only one initial configuration C, while the
event E varies among all possibilities for the loss of one or
several transmission lines. The set of {C, E} combinations
considered here thus corresponds to the set of potential N−k
contingencies in the same base case. This procedure is the one
used in the simulations reported subsequently.

In order to explain the strategy we have chosen to embed
this specific contingency space in a metric space, we will first
reason as if only N−1 contingencies corresponding to branch
outages were considered. In such a case, one approach for
metrization and pre-image computation could be to use the
plane (R2) as metric space, to plot the geographical map of the
power system on this plane and to associate to every point of
the plane the branch which stands the closest to it (pre-image
computation). In this case, the contingencies are represented
according to their geographical distance and coordinates. The
distance between a point in the plane and a branch could for
example be defined as the distance between this point and the
middle of the branch, which leads to a very easily interpretable
representation.

The above embedding procedure may be extended in differ-
ent ways in order to deal with N−k contingencies with k > 1,
still corresponding to branch outages only. For example, we
may consider R2k as metric embedding space rather than R2,
as it was the case with N− 1 contingencies. A contingency
is represented here by the k-tuple (l1, l2, . . . , lk) where every
li refers to a transmission line. The computation of the pre-
image (l1, l2, . . . , lk) of a point in the metric space R2k might
be done as follows. To identify the component l1, we could
take the first two components of the 2k-dimensional vector in
the metric space and exploit these two coordinates to identify
a power system element as if we were dealing with an N−1
contingency. By taking the second two components of the
2k-dimensional vector, we could identify l2 using the same
procedure, and then similarly (l3, . . . , lk). The rationale behind
this approach lies on the assumption that if two contingencies
(l1, l2, . . . , lk) and (l′1, l

′
2, . . . , l

′
k) are such that if for any i, li is

close to l′i , then these contingencies will have similar effects
on the steady-state properties of the post-fault system.

However, nothing guarantees that the obtained k-tuple is



made of distinct branches or that the k-tuple does not corre-
spond to a contingency which splits the network into several
areas. To address this problem, we have slightly modified
the pre-image computation procedure as follows. First, we
consider that the elements of a k-tuple are identified sequen-
tially. At every step j, we check after having identified l j
whether there exists in X a k-tuple whose first j elements
are (l1, l2, . . ., l j). If it is not the case, we choose as l j the
second closest branch to the considered point of the metric
space. There is again a similar checking on this new l j and
the procedure repeats if necessary.

In the following, we denote by PreImage : R2×k→X the
function that computes the pre-image of an element of the
metric embedding space.

E. A fully specified algorithm

Figure 1 gives the tabular version of an iterative sampling
based algorithm for identifying rare dangerous contingencies.
This algorithm uses n-dimensional Gaussian laws as sampling
distributions (referred to by GaussRn(·,λi) in the algorithm)
and is a particular instance of the cross-entropy based approach
for identifying rare events described in Section III-A.

The algorithm takes as input a pre-image function, an
objective function O(·) and a threshold γ ∈ R defining the
dangerous contingencies (a contingency x is dangerous if
O(x) > γ). It outputs a set of contingencies which maximize
this function and whose severity is greater than γ .

The parameters λ0 = [µ0,σ0]
n of the initial sampling distri-

bution (µ and σ refer to the mean and the standard deviation of
the distribution, respectively) are usually chosen such that the
initial sampling distribution covers well the entire contingency
space. In our simulations, these will be chosen such that (i)
µ0 corresponds to the geometrical center of the subspace of
the metric embedding space in which all the buses and lines
of the electric system are located (ii) the ith component of
σ0 is equal to half the size of this subspace alongside its ith
dimension.

At each iteration i, a sample of s elements is drawn accord-
ing to GaussRn(·,λi). Usually, in cross-entropy algorithms, the
value of s is chosen an order of magnitude larger than the
number of elements parametrizing the sampling distributions.
In our simulations, n is equal to 4 and s is chosen equal to 50.
The pre-image function is first applied to every element of the
sample to identify to which contingencies they correspond.
Afterwards, the different values that the objective function
takes over these contingencies are computed. The contingen-
cies which lead to the m best values of the objective function
are then used to compute the next sampling distribution. The
parameter m is usually chosen 10 to 20 times smaller than s.
In our simulations, m is equal to 5.

Different stopping conditions can be thought of for this
algorithm (see Section III-A). In our simulations, we will
mostly for illustrative purposes stop the algorithm when a
specific number of iterations has been reached.

IV. ILLUSTRATION ON THE BELGIAN TRANSMISSION
SYSTEM

This section presents the performances of the proposed
approach. We consider here the Belgian transmission system,
and more specifically its equipments operated at a voltage level
of 150 kV and above (including about 600 buses and 635
transmission lines).

The specific problem illustrated here is the following. For
simplicity reasons, we chose (as done in Section III-D) to
limit the size of the contingency space and to keep the same
initial configuration C during the whole study. As events E,
we consider the tripping of one single transmission line at a
time. The so-defined contingency space is embedded in R2,
as explained in Section III-D, by associating to each point of
the two-dimensional map of the Belgian transmission system
the contingency corresponding to the tripping of the closest
transmission line.

For the same simplicity reasons, we decided to target in
this analysis one single equipment, a non-border 380 kV
transmission line (between Bruegel and Courcelles). We define
the objective function on the metric embedding space as being
the loading rate of this target transmission line when the
contingency {C, E} occurs. Figure 2 presents the profile of
this objective function on the chosen embedding space and
locates the considered target transmission line. The color scale
goes from dark blue for the less dangerous contingencies to
dark red for the most dangerous ones. As explained in Section
III-D, the plane is divided into surfaces corresponding to the
tripping of the different transmission lines. This profile has
been built by simulating all the N−1 contingencies implying
a transmission line and by evaluating their influence on the
target line in terms of overload. Note that the profile of the
objective function is reported here for information but is not
an input of the problem.

Fig. 2. Profile of the severity function over the metric embedding space.

A typical run of the developed iterative sampling algorithm
applied to the considered problem leads to the results presented
on Figure 3. The black points on these maps represent the set



Problem definition: A pre-image function PreImage : Rn→X , an objective function O : X →R and a threshold γ ∈R.
Algorithm parameters: The parameters λ0 = [µ0,σ0]

n of the initial n-dimensional Gaussian sampling distribution, the size
s of the sample drawn at each iteration, the number m of best solutions chosen at each iteration.
Output: A set Xdang of elements of X such that O(x)> γ .
Algorithm:

Step 1. Set i equal to 0.
Step 2. Set Si, Ti, S′i and Xdang to empty sets.
Step 3. Draw independently s elements according to the pdf GaussRn(·,λi) and store them in Si.
Step 4. For every element y ∈ Si, compute x = PreImage(y), compute o = O(x), add the triplet (y,x,o) to Ti.

Step 5. Identify in Ti the m triplets with the highest values of o and set their y values in S′i.

Step 6. Identify in Ti the triplets for which o > γ and set their x values in Xdang.

Step 7. Set µi+1[ j] =
∑y∈S′i

y[ j]

m and σi+1[ j] =

√
∑y∈S′i

(y[ j]−µi+1[ j])2

m for j = 1, . . . ,n and set λi+1 = [µi+1,σi+1] .

Step 8. If stopping conditions are reached, output Xdang and stop. Otherwise, i← i+1 and go to Step 2.

Fig. 1. An algorithm for identifying the elements such that a function O : X →R exceeds a threshold γ by iterative sampling when Rn is chosen as metric
space.

of points drawn from the search space during, respectively,
iterations 1, 2, 3 and 4 (50 points are drawn at each iteration).

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Fig. 3. Illustration of the successive samples of 50 points drawn from the
contingency space over the iterations of by the iterative sampling algorithm.

These results show that the successive sampling distribu-
tions built at each iteration of the algorithm rapidly concentrate
to an area corresponding to the most dangerous N−1 contin-
gency with respect to the loading of the critical transmission
line. Moreover, some other dangerous contingencies have been
identified during the execution of the algorithm.

The dangerous contingencies in this problem are presented
on Table I, in which they are sorted by decreasing severity.
Note that we chose to define a contingency as dangerous if,
after the occurrence of this contingency, the loading rate of
target line becomes greater than twice its value in the base

case (which is equal to 11.2%). Concretely, a contingency is
considered as dangerous if the subsequent loading rate of the
target transmission line is greater than 22.4%. This criterion
defines six dangerous contingencies, numbered from 1 to 6 in
Table I for easier referral.

Table II presents the probabilities of identification of the
six dangerous contingencies. These probabilities have been
computed over 100 runs of the iterative sampling algorithm
by counting in how many runs each of these contingencies
were identified. The performances of the proposed procedure
are compared in this table to those of a classical Monte Carlo
sampling of the contingency space. For this latter method, we
took 100 random sets of 124 N−1 contingencies (which was
the average number of different contingencies analyzed during
one run of the iterative sampling algorithm) from the 634
potential ones, and counted how many times each of the six
dangerous contingencies appeared in these sets. The results
collected in Table II correspond to the conversion of these
numbers into probabilities.

To complement these results, Table III shows the probabil-
ities that the two, three, four, five and six most dangerous
contingencies are identified during one run of the iterative
sampling algorithm and the Monte Carlo method. These prob-
abilities are still computed over 100 runs for each method.

We observe that our iterative sampling framework allows
to identify the most dangerous N−1 contingency with a very
satisfying probability (0.91), two others of the six dangerous
contingencies with a probability greater than 0.7, and the three
last ones with a probability of 0.36 to 0.51. Even these last
figures are still higher than the performances of the Monte
Carlo method, with which all the contingencies are identified
with a probability 0.20 in expectation. These results are all
the more interesting as they have been obtained by studying
on average (over the 100 runs executed) 124 contingencies,
whereas an exhaustive screening of the contingency space



TABLE I
LIST OF THE DANGEROUS CONTINGENCIES WRT TRANSMISSION LINE
BRUEG1_COURC1_34, SORTED BY DECREASING SEVERITY, WHERE

THE SEVERITY OF A CONTINGENCY IS THE LOADING RATE IT INDUCES ON
THE TARGET TRANSMISSION LINE.

Contingency Disconnected Severity
number transmission line (loading rate of line

BRUEG1_COURC1_34)
1 GRAMM1_STAM+1_31 32.2%
2 STAM+1_TERGN1_31 26.1%
3 CHAMP1_GRAMM1_32 25.9%
4 COURC1_MEKI+1_33 25.4%
5 COURC1_GOUY 1_58 25.1%
6 CHAMP1_COURC1_56 22.6%

TABLE II
PROBABILITIES OF IDENTIFICATION OF THE SIX DANGEROUS

CONTINGENCIES (WRT TRANSMISSION LINE BRUEG1_COURC1_34)
DURING ONE RUN.

Probability of identification
Contingency number

Iterative sampling Monte Carlo
1 0.91 0.22
2 0.41 0.14
3 0.74 0.21
4 0.36 0.22
5 0.51 0.29
6 0.83 0.26

would have required to analyze 634 contingencies by running
a security analysis for each one of them (but would have
identified all the dangerous contingencies with a probability
1). Note that, even if 200 points are drawn from the metric
embedding space during one run of the iterative sampling
algorithm, several points correspond to a same contingency,
and therefore less than 200 different contingencies need to be
analyzed in one run of the algorithm. As for the probabilities or
identifying several dangerous contingencies during one single
run of the importance sampling algorithm, they are rather
low (below 0.40), and significantly decrease when considering
more dangerous contingencies, whereas these joint probability
are almost equal to zero, even for only two different contin-
gencies, with the Monte Carlo method. We can add to these
results that the average number of dangerous contingencies
identified during one run of the iterative sampling method is
equal to 3.4, which shows a large improvement versus 1.1 for
the Monte Carlo method.

The obtained results highlight the efficiency of our im-
portance sampling approach, which is able to identify the
contingencies that are dangerous for a target transmission line
with a rather high probability and efficiently, by screening
only a small part of the contingency space. The significant
improvement brought by the iterative sampling method with
respect to the classical Monte Carlo method is due to the
fact that our approach exploits, at each iteration i > 1, the
information contained in the previously drawn sample. As
explained in Section III-A, the new sampling distribution thus
computed gives more weight to the points leading to high
values of the severity function.

TABLE III
JOINT PROBABILITIES OF IDENTIFICATION OF THE TWO, THREE, FOR, FIVE

AND SIX MOST DANGEROUS CONTINGENCIES (WRT TRANSMISSION LINE
BRUEG1_COURC1_34) DURING ONE RUN.

Probability of identification
Contingencies

Iterative sampling Monte Carlo
1 and 2 0.39 0.03
1, 2 and 3 0.34 0.01
1, 2, 3 and 4 0.16 0
1, 2, 3, 4 and 5 0.11 0
1, 2, 3, 4, 5 and 6 0.10 0

V. RELATED WORK

The rare-event simulation approach proposed in this paper
for efficiently identifying rare dangerous contingencies was
first used within the context of power system security analysis
in [8]. In this latter paper, the space of contingencies was
made of load patterns and the cross-entropy algorithm was
applied without any metrization of the contingency space. This
approach was then applied to N−k security analyses in large-
scale power systems in [7].

As regards the identification of dangerous contingencies,
it has long been recognized by power system engineers
that crude Monte Carlo simulations may be computationally
inefficient. Numerous techniques were proposed to address
this problem. For example, References [9], [10] propose
to combine, in the context of distribution systems, Monte
Carlo simulations with some analytical approaches. Reference
[11] proposes to exploit artificial neural networks based on
the learning vector quantization algorithm to make Monte
Carlo techniques more computationally efficient for loss of
load probability calculations. Importance sampling as well as
other variance reduction techniques have also been recurrently
proposed in the power system literature as an enhancement of
Monte Carlo methods (see, e.g., [10], [12], [13], [14]).

In order to identify probability distributions targeting dan-
gerous contingencies, the method proposed in this paper only
requires to run a security analysis for a relatively small set
of contingencies. Viewed in this light, it can be parented to
the significant body of work related to contingency filtering
and contingency screening in power systems (see, e.g., [15],
[16], [17]). Most of the approaches for contingency filter-
ing however rely on deterministic algorithms while the one
proposed in this paper is a stochastic one. The importance
sampling distributions computed over the course of the cross-
entropy algorithm could possibly also be used as classifiers
for dangerous and non-dangerous contingencies: indeed, they
should ideally associate a low probability to non-dangerous
contingencies and a high probability to dangerous ones. To
this extent, the proposed approach has some similarities with
the many works where classifiers for assessing the degree of
severity of power system scenarios are built (see, e.g., [17],
[18], [19]).

VI. CONCLUSION

We have proposed in this paper to decompose large-scale
power system security analysis along a set of priorly known



weak-points of the considered system.
By exploiting the fact that the contingencies leading these

weak-points to unacceptable operating conditions are rare,
we developed an iterative sampling framework to efficiently
identify the dangerous contingencies in this context. Even if
still preliminary, the efficiency of the proposed importance
sampling approach, illustrated by our simulations on the
Belgian network, suggests that this method could identify in
a computationally efficient way the dangerous contingencies
with respect to a weak-point in very large contingency spaces.

While our proposed framework is very general, the particu-
lar instance of this framework for which we proposed a fully
specified algorithm only applies to contingency spaces related
to one single initial configuration of the system and to the
loss of transmission elements. We believe that working on the
development of the underlying algorithms to make it possible
to handle more general contingency spaces is a promising
research direction. In particular, it could be very interesting to
extend the contingency space to the wide variety of potential
generation patterns that it is now possible to observe, due to the
increasing penetration of renewable energies. In this prospect,
our approach could be used to identify among these patterns
those that could be potentially dangerous for the weak-points
of the system.

Also, in our specific case study we did not explicitly
take into account the effect of post-contingency controls. In
practice, however, power system engineers want to detect
situations (contingencies) in which corrective controls are not
able to manage the viability of the system. This viewpoint
can be integrated into our framework by simply adapting in
a suitable way the module assessing the effects of a specific
contingency on the system so that it also models corrective
control efforts.
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