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9 Axion-like particles and

circular polarisation of active galactic nuclei
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The measurements of the linear polarisation of visible light from quasars give strong evi-
dence for large-scale coherent orientations of their polarisation vectors in some regions of
the sky. We show that these observations can be explained by the mixing of the photons
with very light pseudoscalar (axion-like) particles in extragalactic magnetic fields during
their propagation. We present a new treatment in terms of wave packets and discuss the
circular polarisation.

1 Introduction

In this work [1], we are interested in the effect that axion-photon mixing can have on the
polarisation of light coming from distant astronomical sources. In particular, the observations
of redshift-dependent large-scale coherent orientations of AGN polarisation vectors can, at least
qualitatively, even in very simple models, be reproduced as a result of such a mixing of incoming
photons with extremely light axion-like particles in external magnetic fields. These observations,
presented in the second edition of this conference, were based on good quality measurements of
the linear polarisation for a sample of 355 measured quasars in visible light [2].

This has been discussed in terms of axion-photon mixing by several authors, in the case
of plane waves [3] and a prediction from this mixing is an observable circular polarisation
comparable to the linear one. Here, we present the case in which light is described by wave
packets and show that the circular polarisation can be suppressed with respect to the plane
wave case.

2 Axion-photon mixing using Gaussian wave packets

2.1 The idea behind this

The mixing of axion-like particles with photons is usually discussed mathematically in terms
of infinite plane waves. Using that description, the Stokes parameters can be computed and
predictions of the polarisation of light from the interaction can be given; the main properties
of such a mixing being dichroism and birefringence (see [4] for a review of this case). While
dichroism would be an interesting way to produce linear polarisation and, in particular, to
explain the observations concerning quasars, birefringence —which is linked to the creation of
circular polarisation— would give a very clear signature of the mixing. Indeed, in this formalism
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of plane waves, except in extremely specific cases, the circular polarisation predicted can be as

large as the linear polarisation1 .

The idea discussed here is to send wave packets into a region of uniform magnetic field and
to compute the Stokes parameters. Before the magnetic field, the wave packets have the form:

E(x, t) =

∫ ∞

ωp

dω

N
e−

a
2

4
(ω−ω0)2ei

√
ω2−ω2

p
(x−x0)e−iω(t−t0), (1)

where ωp is the plasma frequency of the medium and a controls the initial width of the packet
(in the limit a → +∞, this reduces to the plane wave case).

The main motivation for considering this formalism comes from the measurements of circular
polarisation of some of the quasars considered in [2]. While axion-photon mixing would be an
attractive explanation of the observations for linear polarisation, preliminary results show that
circular polarisation of light from these AGN seems to be, in general, much smaller than the
linear polarisation [5]. This means that if the creation of circular polarisation was really a
smoking gun of ALP-photon mixing, no matter how refined the description, these observations
would rule out the mixing mechanism and could only be used to constrain the existence of
axion-like particles.

For these reasons, it can be interesting to work with wave packets, as new effects will be
taken into account, including dispersion, separation of packets and coherence; effects that might
be of importance for the Stokes parameters. Note that calculating the propagation of packets
of the form (1) is numerically2 tricky, as the computation of the Stokes parameters requires a
spatial resolution of the order of the width of the wave packets after a propagation over huge
distances in the magnetic field (we will usually consider one magnetic field zone of 10 Mpc [6]
and initial wave packets of width . 1µm).

2.2 Results with wave packets

In the plane transverse to the direction of propagation, we choose a basis of two orthogonal
linear polarisations, the same as the one used in the plane wave case, so that we will talk
about polarisation parallel or perpendicular to the transverse external magnetic field ~B. This
being done, we next choose the electric fields E‖(x, t) and E⊥(x, t) both initially described by
a function of the form (1). Then, we propagate these using the equations of motion for the
electromagnetic field which take into account the interaction with pseudoscalar particles and
find the expressions of the electric fields after a propagation, when axion-photon mixing is at
work, inside a step-like magnetic field region.

We can then use the expressions of the Stokes parameters —which are observables built on
intensities— that can, for example, be plotted as functions of x, the distance travelled inside the
magnetic field, for a given propagation time, T . This is what is represented in Figure 1 which
shows what the two packets look like (respectively I‖(x, t = T ) and I⊥(x, t = T )) but also the
total intensity (which is just the sum of the two) and the unnormalised circular polarisation,
V(x, t = T ). This is for a beam with a central wavelength λ0 = 500 nm, initially 100%
linearly polarised, with its polarisation plane making a 45◦ angle initially with the magnetic

1This is what one obtains if one does not assume very specific distributions of magnetic field orientations
along the line of sight.

2We use Multiple-Precision Floating-point library with correct Rounding: www.mpfr.org.
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V(x, t = T )
Itot(x, t = T )
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dx = x − T

T = 10 Mpc/(c)
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Figure 1: Wave packets: illustration after a propagation time T in an external magnetic field,
in a strong mixing case —here, the axion mass is m = 4.7 10−14 eV, ωp = 3.7 10−14 eV and
gB = 5.5 10−29 eV. The initial width of the wave packet has been chosen ≃ λ0.

field direction (i.e. u(0) = U(0)
I(0) = 1; q(0) = v(0) = 0)3; this angle being, in fact, the most

favourable one for the creation of circular polarisation, due to birefringence. Note also that
the abscissa is dx, the shift in position with respect to a frame moving a the speed of light c

(namely, a maximum at dx = 0 corresponds to |~v| = c).

From the observational point of view, there is a macroscopic exposure time over which one
should integrate these functions to obtain, finally, the value of the observable Stokes parameters,
e.g.:

I(x) =

∫
exposure time

dt I(x, t).

From these integrals, we obtain that the wave packet formalism leads to a circular polar-
isation, v = V

I
, lowered with respect to plane wave case. Figure 2 illustrates the plane wave

(a → ∞) result: it shows the amount of circular polarisation gained due to axion-photon mix-
ing with different values of the coupling gB (g being the axion-photon coupling constant). In
that simpler case, it is known that v = V

I
oscillates between −|u(0)| and |u(0)|, whereas in the

wave packet case it is shown that there is a damping of these oscillations. It follows from this
observation that v is no longer expected to be as large as the linear polarisation in general.

3
u and q are the two Stokes parameters required to describe fully the linear polarisation of a light beam,

while v accounts for the circular polarisation.
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Figure 2: Circular polarisation for different values of the coupling in the case of initially partially
linearly polarised light with u(0) = 0.01. λ0, ωp —and a, for the wave packet— are the same
as in Figure 1, other parameters are: T = 10 Mpc, m = 4.3 10−14 eV.

3 Conclusion

We have briefly presented axion-photon mixing with the use of wave packets. The main con-
sequence of this treatment is the net decrease of circular polarisation with respect to what is
predicted using plane waves. Hence, the lack of circular polarisation in the light from AGN
does not rule out the ALP-photon mixing.
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