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~ We have theoretically studied the electronic autoionization between 17 and 18.3 eV of the Ryd-
berg series converging to the B >3+ state of CO+ (R s series). We have obtained the partial and vi-
brationally resolved differential and total photoionization cross sections by combining ab initio elec-
_tronic quantities with a variant of the two-step multichannel quantum-defect theory (MQDT). The
formalism of the Feshbach projection operators is used to separate the electronic quantities needed
in the first and second steps of the MQDT. We have introduced the vibrational motion within the
Condon approximation. Our results lead to new unambiguous assignments of the Ry series. The vi-
brationally resolved cross sections, the associated branching Tatios,.and the background and resonant
features are discussed in detail and compared with the available experimental data. There is an
overall agreement between theory and experiment except for the angular distribution of photoelec-

trons.

I. INTRODUCTION

For forty years, the CO absorption spectrum below 20
eV has been the subject of extensive experimental
work.!~6 In this paper we shall restrict ourselves to the
part of this spectral region between the CO+ A 2[T and
the CO* B23* thresholds. In. 1942, Tanaka! identified
two Rydberg series in the 17—19.68-eV (730—630-A) re-
gion which he called “sharp” and “diffuse” owing to their
respective widths. Two new series called P, and P have
been identified by Huffmann er al.? in 1964. A reinvesti-
gation of the spectrum led Ogawa and Ogawa® to classify
the observed bands in four series converging to the B 23+
ionic state and called hereafter sharp, diffuse, II, and IV,

An atomiclike notation (e.g., 3po, 3p7, etc) is widely
used by experimentalists for the assignment of autoioniz-
ing Rydberg series. However, in molecules the potential is
nonspherical and it mixes different atomic irreducible rep-
resentations (IR). -Therefore, the atomic IR singled out in
the above notation corresponds, at best, to the atomic
wave function giving the greatest contribution to the
molecular channel. The other atomic IR contribute to the
molecular channel to a lesser extent. To reflect this
molecular situation we use the same notation as above but
put the atomi¢ IR between quotes (e.g., 3“p”c, 3“p"m,
etc.). If ambiguity appears concerning the ionic core to
which the Rydberg state converges we add it to the above
notation (for example B3“p”o, B “p"'m, etc.).

A first assignment of these series was suggested by Lin-
dholm’ in 1969 (see Table I, column 2) on the basis of
their quantum defects. Ogawa and Ogawa,’ in a detailed
study of the CO valence-shell absorption spectrum, ob-
served a Q branch, in the second- and third-order spectra,
for the sharp n =3 state: this led them to a 3*“p"w assign-
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ment (Table I, column 3) in disagreement with Lindholm.?
Fock et al.® in their comparative study of the isoelectron-
ic sequence BF, CO, and N, have reproduced Lindholm’s
assignments.’

- Experimental photoionization results are also- avail-
able.¥=!* Partial photoionization cross sections leading to
the CO* X 23+ and 4 % states have been measured by
Plummer et al.'® using synchrotron radiation. Ederer
et al.'! have measured the asymmetry parameter for the
X?2% channels in the vicinity of the sharp n =3 reso-
nance. Ito et al.'? have measured the total photoioniza-
tion spectrum and reported measurements of the 4-X and
B-X fluorescence cross sections.. Recently, Leyh et al.l3
have studied the decay of these Rydberg states in the vi-
brational channels corresponding to the X ionic state
(v=0-3). .

A theoretical calculation of the Rydberg-state (R p) en-
ergies has been performed by Betts and McKoy using a
model molecular potential calibrated to atomic data. This
method did not allow them to distinguish between the dif-
ferent ionic cores and, moreover, the calculated quantum
defects of the 3“p”7 and 3“p”o states (0.73 and 0.74) are
too close to give any definite assignment. Their interpre-
tation of the CO spectrum is summarized in Table I,
column 4. ,

The examination of Table I leads to two conclusions.

(i) There is a disagreement between the different au-
thors®%%14 about the *p"g-“p"rr assignments of the sharp
and diffuse series.

(ii) The interpretation of the III and IV series seems to
cause fewer problems. However it is well known'® that
the assignment of the “s”o and “d”¢ series is not at all
obvious since the quasidegenerate states (n +1) so and
ndo generally interact strongly.
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TABLE I. Assignments of the Rydberg series converging to CO* B3+,

Assignments*
Series Ref. 7 Ref. 5 Ref, 14 Ref. 6 This work
Sharp po pT pT po “pw
Diffuse P po po P “P"U
11 so’ so so sa s —=d)'o/d'r
Iv do do/dw d#° . do “(s +d)’o

*The notation /A means that the [ wave has the largest weight in the one-center expansion of the con-

sidered Rydberg orbital.
*Betts and McKoy neglect the do state.

Furthermore, the detailed interpretation of the vibrational
selectivity observed by Leyh er al.'® needs a theoretical
calculation including the vibrational motion.

To clarify this situation and to allow a detailed compar-
ison with all the available experimental data, we per-
formed ab initio calculations of the vibrationally resolved
partial cross sections and of the asymmetry parameter in
this region. We used a variant of the two-step multichan-
nel quantum-defect theory (MQDT) (see Sec. II) of
Giusti-Suzor and Lefebvre-Brion'® (see also a recent re-
view of Guisti-Suzor and Jungen!’). The vibrational
motion is introduced within the Condon approximation:
this allows us to compare our results with the vibrational-
ly resolved ones of Leyh et al.} ' .

Up to now, no ab initio calculation of the electronic au-
toionization introducing the vibrational motion had been
performed by this method. Morin et al.’® have studied
the vibrationally resolved O, photoionization spectrum re-
stricting the number of electronic channels to two and fit-
ting some of the electronic quantities to match the experi-
mental spectrum. Raoult et al.!” have performed a pure
electronic ab initio study by the standard two-step MQDT
on the Hopfield series in N,. .

We should also mention ab initio calculations of elec-
tronic autoionization by other methods especially for H,
- by Rageev” and for NO by Collins and Schneider.?' The
former calculation? uses the variational method based on
the logarithmic derivative of the wave function.? This
method is in principle applicable in the present case but at
the present stage of its development it requires a calcula-
tion for each member of a Rydberg series as a discrete
state. The method of Collins and Schneider®® presently
introduces only the open-channel part of the wave func-
tion; the autoionization processes are taken into account
through an optical potential.

This paper is organized as follows: in Sec. II, we

present a summary of the theoretical methods; Sec. III is
concerned with the electronic ab initio calculations; in Sec.
IV, we discuss these ab initio results as well as the MQDT
differential and total cross sections; Sec. V is a conclusion.

II. REVIEW OF THE THEORETICAL APPROACH

In this section we first describe in some detail the
method which we used to obtain the electronic quantities
-in a form suitable for the two-step MQDT. We construct,
- using the projection operators introduced below, a diabatic
representation of the wave function. The diabatic func-
tions are defined so as to diagonalize the nuclear kinetic

energy term of the total Hamiltonian and they serve as a
new basis for the representation of the MQDT wave func-
tions. This basis-function transformation as well as the
calculated electronic quantities are linked to the first step
of the MQDT. The interaction between these diabatic
states appears when taking into account the remaining
short-range bielectronic interaction corresponding to dif-
ferent ionic cores and it is responsible for the electronic
autoionization. The calculation of this interaction and the
solution of the resulting MQDT system of equations is
known as the second step MQDT. In Sec. IIB the vibra-
tional motion is taken into account within the Condon ap-
proximation (see also Morin et al.'®). This vibrational
motion allows us to calculate the vibrationally. resolved
photoionization cross section. To perform such a calcula-
tion a great number of channels must be included in the
calculation owing to the heteronuclear symmetry of the
molecular potential and to the different vibrational
thresholds. In Sec. IIC we develop a variant of the two-
step MQDT which reduces the number of channels with

- results very close to the calculations taking into actount

_.asymptotic region when the ion and the electron are well

all the channels.

The study of a photoionization spectrum of a compli-
cated system, particularly a molecule, requires the intro-
duction of the notion of a channel. A channel is a possi-
ble path of fragmentation of the molecule giving rise to an
ion and to a continuum electron. It is labeled in part by
the electronic state i and vibrational quantum number v
of the ion. The label is completed by the kinetic energy
3k?, angular momentum /, and projection of the angular
momentum onto the internuclear axis A, of the continuum
electron. We thus use the symbol |ilAv) to identify a
fragmentation channel which is well characterized in the

separated. The notion of channel can also be associated
with the diabatic representation of the wave function and
in this case is defined by |iBv) where B represents the
wave functions of the excited electron which diagonalize
the short-range diabatic potential. The eigenchannels cor-
responding to the diagonalization of the total short-range

and asymptotic Hamiltonians are called |a) and |p). -

Experiments can only *‘see” asymptotic channels | ilAv)
and therefore we express the cross section in terms of
these channels. The interaction takes’ place when all of
the particles are close together. It can be expressed in a
simple form in terms of the short-range eigenchannels
|iBv) or |a) and it is for this reason that the different
eigenchannels are introduced. The atomiclike notation in-
troduced in the introduction is close to the asymptotic
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channel notation |ilAv). Strictly speaking this notation
corresponds to the |a) channel defined here. The |a)
channel notation will be used in this section, the atomic-
like notation in the remaining sections of this paper.

A supplementary.concept particular to the MQDT is
the following. Short-range channels |iBv) or |a) corre-
sponding to the autoionizing state or to the adjacent con-
tinuum are all initially treated as open. Asymptotic chan-
nels correspond only the open channels; the effect of the
closed channels is included by the MQDT elimination
procedure.

A. Ab initio method for the calculation
of the electronic quantities

In Sec. ITA we ignore the vibrational motion and there-
fore we use channels |i/A) and |iB) or [iBA) or
| iB(E)) (this latter notation stresses the fact that 8 is de-
fined for any positive or negative energy). The |a) chan-
nels will consequently correspond here to the diagonaliza-

tion of only the electronic part of the total Hamiltonian.

However, in the rest of the paper |a) will correspond to
the diagonalization of the total Hamiltonjan including vi-
bration. o
The fundamental idea underlying the methods used in
the calculation of the electronic quantities of a photoioni-
zation process is the partitioning of the electronic coordi-
nate space into two regions: the internal region (or reac-
tion zone) usually taken as a sphere of radius ry centered
at the center of mass of the system, and the external re-
gion. In the photoionization process described here only
one electron is allowed to escape into the external region.
We partition the total Hamiltonian A into two terms,

Hyand H', The long-range Hamiltonian H, of the exter- .

nal region contains the ionic-core Hamiltonian, the kinetic
energy operator of the outer electron, and the Coulomb-
interaction term between the outer electron and the jonic
core. The H' Hamiltonian is a short-range interaction
term which can be split into two parts, H" and H?),
The two steps of the MQDT correspond to successively
introducing Hy+H'" and then H'?). Both H'" and '3
contain part of the bielectronic repulsion term and this
partition can therefore only be expressed with the help of
the projection-operator formalism introduced belgw, The
Hamiltonian Ho+H™ can be viewed as an effective dia-
batic Hamiltonian chosen in such a way that the interac-
tion between channels corresponding to different ionic
States { is zero. H' is a short-range interacting potential
between states associated with different jonic cores,

To introduce projection operators we now divide the
state space corresponding to |iB(E)) into several sub-
spaces P;, each corresponding to a ‘given ionic core i,

Following Feshbach?®~2* and Domcke,2® we introduce the

projection operators P, spanning each subspace P,

P= 3 [dE|iBE)BE)) . (1

lip)ep,

It must be mentioned that no distinction is made between
the projectors associated with the bound and the continu-
um subspaces ‘as in the usual Feshbach formulation,23~2¢
Rather, in the usual spirit of the MQDT, the bound and

continuum channels are treated on even footing. The
discrete states are therefore energy normalized in the
internal region. The projection operators satisfy the usual
requirements

PPp=P8;and 3 Pi=1.
. H

The partition of the Hamiltonian can now be written in
the following way: .

H=Hy+H'=Hy+H" 4+ H? (2a)

HVY=Spmrp, vi ' (2b)
i

H¥=3 S PH'P, Vii'. (2¢)
i i {z0)

The partition of the Hamiltonian introduced above al-
lows us to use.the two-potential collision formulation of
Rodberg and Thaler® as a framework of our model. This
formulation supposes that a first potential and its corre-
sponding wave function are known exactly. In our case
this is the situation for Ho+H"" and the |iB) channels.
The corresponding wave equation reads

(Ho+HW_E)|i)=0,

3)

liB)EP[, Vi .-
For given ionic core i all of the solutions of Eq. (3) are en-
ergy degenerate. The two-potential collision formulation
also supposes that the residual potential H'? is weak and
localized in the internal region. The Schrédinger equation

- corresponding to the total electronic Hamiltonian includ-

ing H'® is not known exactly. We can write it formally
in terms of |a) channels

(Ho+H'—E) | op ) =0, . @)

What we want now is to obtain an expression of Y,z in
terms of known |iB) channels. Following Rodberg and

‘Thaler®® we multiply (3) by ¥, (4) by |iB), integrate,

and perform a féw standard algebraic manipulations to
obtain an integral form of the wave function, -

Yaelr)= 3

lipyep,

[iB){iB|a)coslmp,)
—w=1{TIB) [ (i8I H P etriiar
— |iB) f'w (iﬁlﬂtz’gb,g(r')dr;] .

(5)

In (5) |iB) are the irregular functions associated with the
regular |iB) functions and W is the Wronskian of these
functions. The factors {(i8|a) and cos(wu,) are obtained’
from the diagonalization of the K'® matrix introduced
below [Eq. (6)). In (5) we have made no approximations.
In particular y,(r) is valid for any value of 7 and at an
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energy E there are as many ¢ wave functions as the di-
mension of the total space.
- To obtain a tractable approximate wave function in the

" external region we remember the characteristics of the

H? potential, name]y, its weakness and its localization in
the internal region. Therefore, for r not too small, we can
neglect the second integral in (5) (strictly speaking this is
true for r>rg). We then introduce expression (1) for the

J

Vs> 33
T>T0'|ig)eP, |IB)E P,
(i'#1)

(1iB)8ig g —

We define the X® matrix by the expression
Kigrg=(iB|K P [i'B)~(iB|H'|i'B) . (7

- The integral over r in Eq. (7) is restricted to the internal
region r <ry. The last equality is the first-order approxi-
mation to the K'¥ matrix which will be used in this pa-
per. The X'® matrix has a particular structure, in that its
diagonal submatrices, each of the same dimension as the
corresponding subspace P ;, are zero. This is due to the
particular form of the H'® operator and Eq. (3) which to-
gether eliminate the interaction in a particular P; sub-
space. '

Equation (3) corrsponds to the first step of the MQDT
whereas the second term in (6) or the matrix K'® corre-
sponds to the second step of the MQDT.

We briefly describe now the method we used to obtain
the above-mentioned |iB) states. Each state is represent-
ed by a one-configuration wave function” which is an
eigenfunction of given spin and symmetry and which is
called a configuration state function (CSF),

1iBA) =t [0 (p)fvir)] . @

In (8), o« is the antisymmetrizatlon operator, P; +(p) is
the wave function of the ionic core i, and p are the coordi-
nate of the N —1 electrons. The function f}(v;,r) is the
wave function of the excited or continuum electron. In
(8), |iB) is represented for simplicity as a single Slater
determinant. In fact |iB*) can also, in some cases, take
the form of a sum of Slater determinants. For a diatomic
molecule we have A=A*4A where A*, A, and A
represent, respectively, the projection on the internuclear
axis. of the electronic angular momentum of the ion, of
the continuum electron, and of the total N-particle sys-
tem. v; is the effective principal quantum number related
to the photoelectron energy by the relation €; = —1/2v}.
Before solving (3) let us rewrite it in a modified form.
Using the orthogonality properties of the projection
* operators, we obtain

(iB'|H—-E|iB)=0. (3"

We now solve (3') with the use of (8) which corresponds to
the calculation of the first-step MQDT electronic quanti-
ties. We calculate f5 g in the frozen-core stanc-exchange
(FCSE) approximation. This allows us to determine f3 5

projection operators into the expresswn (2c) for H'* and
the resulting expression of H'? in the remaining integral
in Eq. (5).. Finally, Eq. (5) for Y, is iteratively inserted
into the integral on the right-hand side of this equation,
giving rise to an infinite perturbation expansion. We con-
dense this expansion in the K ‘¥ operator.: The wave
function ¥,g(r) valid exactly in the external region now
reads

w1 |{B)<fﬁ|1“<‘2’|i'ﬁ))<f'ﬁla)cos(wpa) . )

when the ion state wave function is known and assumed
unchanged by the interaction with f ,’§ The function f }3
can correspond to either a continuum state (open channel)
or to a discrete state (closed channel).

If |iB) is an open channel, we expand the eigenchannel
form f4 of the continuum electron wave function in
spherical harmonics?%°

= 3 3 va@fkin
P (Al 1=A]

X(I'Alﬁ)cos( 7pg) . (9)

In (9), the radial wave functions f}, are solutions of a
close-coupling system of equations and (IA|B) and pg

_ are the mixing coefficients and the eigenphases resulting

from the diagonalization of the X} matrix corresponding
to the Hamiltonian Ho+H'". The close-coupling system
is obtained by expanding, in Eq. (5), the Hamiltonian
Ho+HMin sphencal harmonic together with the bound .

orbitals 7; of the ¢} (p) ion wave function (8) and the
continuum functions (9).2~3% The main problem in this
approach is related to the cutoff of the different multlpo-
lar expans:ons of the continuum wave function f 5, (the
maximum value is /5, ), of the bound orbitals 7; (1t
and of the potential corresponding to Hamiltonian
Ho+H'™, especially of the inverse of the interelectronic
distance appearing in the static (y5,,) and the exchange
(y5.) interactions. These cutoffs are essential to keep the
close-coupling system of equations tractable. They are
particular to each examp]e treated and the one retained in
the CO case are discussed in Sec. III. )

In the case when the channel | iB) is closed it is associ-
ated with a Rydberg series converging to a given wmc
state i. The corrmpondmg molecular wave function f5 gof =
the excited electron is expanded in terms of a set of

known bound atomic orbitals X,(r) (Ref. 31) and C,g ex-
pansion coefficients
SHv0=Ng 3%, (1G5 ' )
: P

The normalization constant NE‘ is obtained as follows.
The energy of a Rydberg state can be fitted to the Ryd-
berg formula E;=—1/2v}. The effective quantum num-
ber v; is given by v;=n —pug where n is the principal
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quantum number and pp the quantum defect associated
with f3(v,r). The normalization constant Ng is equal to
the inverse of (dE /dv;)!'7?, i.e., to vi"2 .

We now specify the form of X af in the present frame-
work. The first-order approximation used in (7) is valid
in the case of weak electrostatic interactions (e.g., for the
autoionization of Rydberg states as in our case). In the
“one-configuration approximation (8), the Kig g matrix
element reduces to a sum of two two-electron integrals.

The transition dipole amplitude for a transition from an
initial state having the one-configuration wave function
92" to a final state | i8) has the following form:

DA = (i | |y . (11)

Note that in Eq. (11) the angular momentum A of the fi-
nal state has been changed to A’ to be consistent with the
spectroscopic notation. The transition amplitude (11) is

calculated exactly in the framework of one-configuration _

representation, ignores autoionization, and corresponds to
the first step of the MQDT. The transition amplitude
from the initial state y*” to the final state | @) written in
the form of Eq. (6) will include autoionization. Presently,
however, we are unable to perform the integral corre-

sponding to the second term of (6). Therefore we neglect

it and, to preserve normalization, we also take

cos(mtg)=1. These approximations are justified in the -

case of weak H'® interaction. The resulting expression
below will still introduce autoionization through the coef-
ficients (iB|a) which mixes resonant and continuum
channels. The transition amplitude to a final channel
| @) then reads A

DI [n1¥¥)= 3 (BladDfA . ar)
. 1iB) :
Finally, an approximation is also used in the calculation
of D&"A » namely, the same molecular orbitals are used
for the ionic core g2 and the initial state " wave func-
tions, thus allowing us to write the transition moment as

DEN =(fhulé®),

where ¢™ is the initial orbital from which the electron is

ejected. Note the we have added to I ;‘; an index { to speci-
fy to which ionic core it corresponds.

B. Inclusion of the vibrational motion within
the Condon approximation

In Sec. II B, we introduce the vibrational motion within
the Condon approximation, i.e., we assume that the elec-
" tronic quantities vary slowly with the internuclear dis-
tance. As stated in the beginning of Sec. II, we use in the
following | ilAv), |iBv), and |a) channels. Particularly
the |@) channels, will now include a vibrational function

Vae=3% 3

1 lipo)eP,

where

corresponding to a linear combination of pure vibrational
wave functions |iv). ‘

We can construct the analog of the X2 electronic ma-
trix [Egs. (7)] as follows:

Kiprgo=(iBv | K®|i'gv’)
=(iv|i')(iB|K?|i'B")
=(iv|iv')(iB|H'|i'B') . (12)

Note that, for a given ionic core, {iB|H'?|if')=0 and
that the associated vibrational overlaps are (iv |iv’') =5,
Therefore the XK' matrix of Eq. (12) has the same block-
diagonal structure as the electronic K‘¥ matrix of Sec.
ITA.

The electronic-transition amplitude [Eq. (11)] must also
be multiplied by the overlaps between the initial | iyug)
and the final | iv) state vibrational functions

D=3 (iBv|a)Di" (iv |iguo) . (13)
iByv

A consequence of introducing the vibrational motion is
the increase of the number of asymptotic channels.
Namely, each electronic channel is replaced by n, vibron-
ic channels, n, being the number of vibrational levels
which have been considered for this electronic ionic state.
The electronic thresholds are shifted by the vibrational en-
ergies of the different vibrational levels. )

It is worthwhile to note that in the Condon approxima-
tion we cannot take into account the vibrational autojoni-
zation, i.e., the direct interaction between different vibra- _
tional channels corresponding to the same ionic core.
However, these channels interact indirectly through their
respective coupling with the channels associated with a
different ionic core.

C. Summary of the two-step MQDT

As stated in the Introduction, the two-step MQDT has
been exclusively discussed in récent papers (see Raoult
et al,”® Giusti-Suzor and Jungen,'” Giusti-Suzor and
Fano,”” and Greene and Jungen®?). It is an external-
region theory which takes advantage of internal-region
calculations. In the following we give a variant of the
two-step MQDT which is more efficient in the case of
many electronic and vibrational channels,

The connection between the present section and the
preceding ones is made through the asymptotic forms of
the wave functions. Namely, we start from Eq. (6) and re-
place |if*) by a product (antisymmetry is not needed
asymptotically) of jonic core and excited electron wave
functions [see Eq. (8)]. We then include vibrational
motion and also replace each wave function by its asymp-
totic form to obtain

)

¢}‘+(p)X;,,(R)[f};(vﬁ,,r)(ti | a)cos(ﬂp,)—g},(v,,,r)(iﬁt}'] a)sin(mp,)] for r>rg (14)
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fé(vimr)-‘—'_' >, YW v, PIIA | B)cos(ﬂpg)—gll(v;v,r)(lk | B)sin(mg)] ,
’ -

gvir)= S Y@ i P IR | B)sinmeg)+8ialvin, P IA | B)cos(mpg)] . (15)
: )

Note that f é and g’,§ are regular and irregular wave func-
tions of the excited electron. The other quantities appear-
ing in Eq. (15) have previously been defined. In Eq. (14)
the first-step interaction corresponding to ug is hidden.
Giusti-Suzor and Lefebvre-Brion' introduce (15) into (14)
and write the resulting equations in terms of |ilAv)
channels. We also introduce (15) into (14) but instead
write the resulting equations in terms of | iBv) channels,

Phe= %; M Wi (R F A0 (v, D) By
LBy :

—32(0)(‘%:")‘5’1{\517,::] ’ (16)

where

S50 )= 3 Y @) v, P NIA | BY

_ ]

gé(o,,(vivsr)'—" 2 Yu®gn(v,r KIL [ BY
1

and -
C fv.a=iBv | @)cos[mlpp+1a)] 5
S tma=(iBv | @)sin[7(pg+pa)] .

“ " In Eq. (16), the angular term corresponding to the r vec-
tor usually included in ¢{‘+, is now included in f é(m and

g§‘°’. We can write the asymptotic forms of the wave
function in terms of the |iBv) open and closed channels;
these forms are similar to the corresponding expressions
in terms of the |ilAv) channels (see, e.g., Fano®® and

" Jungen and Dill**),

The MQDT performs linear combinations of these
internal region solutions P2 of the Schrédinger equation
which take into account the asymptotic convergence con-
dition for the closed channels and the incoming wave nor-
malization for the open channels. .We then obtain the

_MQDT system of equations®*3* by identifying these linear

combinations of the ¥2¢ solutions [Eq. (16)] and the
asymptotic expressions. This system is written in a slight-
ly different form from that of Greene and Jungen:* the
eigenvalues are expressed as cot(#7,) instead of tan(77,),

2 [ (gf\ﬁv,a
aEP8Q
—cot(77,)S 1hs,alAap=0, iBLEP  (17a)

S [sinm,)€ e -
aEPe Q"

+cos(7vy,) S el =0, IBVE Q (17b)

where 7, are the eigenphases of the effective open-channel
matrices K or S and A,, are the projections of the |p)
asymptotic channels into the a internal-region eigenchan-
nels. P contains all the open vibronic channels. Q

represents the subspace of the closed channels. Following
Greene and Jungen,*? we write (17) as a generalized eigen-
value equation,

Ad=84b, (s)

where: A, o= € fho.a.and 05, o= Tc When ifvE P
and Ay q=sin(7v,)€ Pov,a+cos(mvy )S Mva  and
8:pv.a=0 when iBv € Q . Note that b, =5y, cot(mr,).

In Eq. (18) we simultaneously obtain all of the eigen-
values b, and eigenvectors 4,. This was not the case
with the previous algorithms which obtained each eigen-
value separately. The new procedure is particularly useful
in the case of degenerate or nearly degenerate eigenvalues.
In Eq. (18) the eigenvectors A4 do not correspond to the
eigenvectors of the effective K or S matrix. The orthogo-
nal eigenvectors {iAv | p) of the effective S matrix are ob-
tained from the following equation [similar to Eq. (15b) of
Jungen and Dill**}:

(ilw]p)= 3 (ilr}iB)
13'5)6?
X 3 [€hadapsin(nr,)
aEP®Q
+5 fs,aA apcos(mT,)] .

(19)

It can be demonstrated (see Greene and Jungen®?) that the
(ilAv |p) eigenvectors obtained from Eq. (19) are orthog-
onal, leading to symmetric X and S matrices. If some
eigenvalues of (18) are strictly degenerate, the correspond-
ing eigenvectors obtained from (19) are not necessarily
orthogonal. In this case, we have the freedom to orthogo-
nalize them. ‘

Finally, the complex transition moment which is used
in the calculation of the cross sections and angular distri-
butions (see, €.g., Starace,?® Fano and Dill,* Dill and Deh-
mer,* Raoult et al.'®) is

Di)= 3 (ilhv|p)e™™
PEP

\ X S A4,D20. (20)
aEPRQ ’ o
Let us now comment on our variant of the two-step

MQDT. In (14) the first-step interaction corresponding to
itg is hidden and therefore we can not use this formulation
directly. On the contrary, in Eq. (16) the quantum defects
pp and p, are explicitly present in the ‘6’33” and Y{‘ﬁ,,
coefficients which are used in (18) to obtain the asymptot-
ic quantum defects 7, corresponding to the effective S
matrix. The eigenchannels 7, then condense asymptotical-
ly the entire electronic interaction corresponding to
Ho+H'" and to H'®. It follows, therefore, that the
present formulation gives the same results as the standard
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two-step MQDT formulation.

So far we have shown that the two formulations are
identical. The advantage of the present variant is that we
can work with a number of |iBv) channels which is
smaller than the number of |i/Av) channels. This is pos-
sible if some of the quantum defects pg and transition
moments D,-’}"" are very small. Then reducing the
|iBv) space corresponds to setting these quantum defects
and transition moments equal to zero. Solving (18) in the
reduced space is more efficient than solving the standard
MQDT system in terms of the complete |ilAv) space.
The effect of this reduction on the cross sections and an-
gular distributions of the photoelectrons will be negligible.

HII. FRAMEWORK OF THE ab initio
CALCULATIONS

In this section we show how we calculated the ab initio
quantities used in the two-step MQDT. This is performed

following the general discussion of Sec. II. We distin- B

guish two steps. The first step is the calculation involving
each subspace P, individually, the second step is the cal-
culation of the interactions between these subspaces, giv-
ing rise to the electronic autoionization.

A. Calculations for individual P, subspaces

The present calculations are performed in the frame-
work of the one configuration FCSE approximation. As
mentioned in Sec. II, the calculation uses different
methods depending on whether the energy of the excited
electron is positive (continuum case [Eq. (9)]) or negative
(bound case [Eq. (10)]). =~ ‘

In the case of a continuum electron, we have used the
one-center method developed by v et al?*° The
static potentials of the outer electron in the field of each
ionic core have been built on the CO X I3+ ground-state
orbitals (at the equilibijum internuclear distance,
R=2.132 a.u.). Two different basis sets have been used.
The first one*® consists of eight o and four 7 Slater orbi-
tals, including 3do and 3d#, on each nucleus. The
second one is the basis set optimized by McLean and

Yoshimine?? which provides near-Hartree-Fock results. -

Electronic quantities obtained with these two basis sets
are compared in Table II.

The main problem arising in the computation of the
continuum wave functions is the cutoff of the different
one-center expansions appearing in the coupled differen-
tial equations derived from the Schrddinger equation.2%3
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For the convergence of the static potential a previous
study®® on the e~-N, collision suggested that a good
compromise between accuracy and reasonable computer
costs could be obtained with the following parameters: 20
terms in the expansion of the bound orbitals, 14 terms for
the electron-electron potential, and 26 terms for the
electron-nuclei potentials. The estimated accuracy is of
about 2%.%

We have studied the convergence of the multipolar ex-
pansion of the continuum orbital [see Eq. (9) and the dis-

- cussion following it in Sec. II] when we only take into ac-
"count the static potential. A previous work? on the N,

photoionization showed that at least ten terms are neces-
sary to obtain accurate results. Calculations were per-
formed with I7,,=10 and 12 (see Table III). The
discrepancies between the two types of calculations is at
most 0.01 for the quantum defects and we have conse-
quently performed all our calculations with I5,,, =10.

For the exchange interaction only we have further re-
duced the number of terms in the continuum and bound
orbital expansions. The cutoff of these expansions togeth-
er with the cutoff ¥}, of the exchange interactions, (see
Sec. II) has been studied carefully at the following kinetic
energies: " .

X 3*eo: €,=0.005, 0.40, and 0.51 a.u. ,
B23teg: £,=0.005 a.u. , .
B3 *tem: £,=0.005 a.u. ,

leading to the results summarized in Table IV. Reason-
able results can be obtained with y&X, =4, 153 =5 ¢,
Calculations including the exchange potential have also
been performed with I7,,, =12 without modifying the pre-
vious conclusions.

The results obtained with the two different basis sets do
not show any significant discrepancy. In the following,
we shall only refer to results obtained with the McLean-
Yoshimine® basis set. ' _

It is well known that strong oscillator strengths aséoci-
ated with the transitions to the antibonding #* orbital
(particularly the #—7* transition) perturb the cross sec-
tions corresponding to the er channels.*! Different
methods to overcome these spurious effects have been re:
ported.*! It seemed to us that the most convenient
method in the one-configuration approximation is to
orthogonalize all of the en orbitals with respect to the 7*
orbital (which is obtained as an eigenfunction of the sing-
let neutral Hartree-Fock potential). The influence of this

TABLE II. Energies, dipole moments, and quadrupole moments of CO and CO* at Rgp=2.132 a.u.
All dipole and quadrupole moments are given in atomic units (a.u.), at the center of mass of the nuclei.

The positive axis is C—0,

. Energy (a.n.) of CO X3+
. Dipole moment of CO X '3+
Quadrupole moment of CO X !>+
Dipole moment of CO* X3+
Quadrupole moment of CO* X323+

80/4w McLean-Yoshimine
basis set (Ref. 38) . basis set (Ref. 39)
—112.7793450 —112.7891398
—0.1665 —0.1123
—1.3854 —~1.6377
—1.8830 —1.8061
2.2933 2.1490
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TABLE II1. Convergence of the one-center expénsions without taking into account the exchange po-

tentials,
. Quantum defects Electronic

e “s" “p” “d" “r cross section (Mb)
(a) X’z"‘ £o; €,=0.005 a.u.

10 —0.1355 0.1900 ~0.1770 0.0066 0.7058
12 i —0.1291 0.1911 —-0.1764 0.0179 . 0.7195

(b) B3+ eo; £, =0.005 a.u.

10 - —0.3835 0.4210 —0.1503 0.0205 1.1915

12 —0.3821 0.4261 -0.1479 0.0205 1.2163

orthogonalization is dramatic for the 4 *IT ew channel as
already reported by Lucchese et al.*! for the isoelectronic
N, case. There the corresponding cross section is reduced
by a factor of 10. Our results show that the cross sections
of X2+ ez and B2S™ e are also modified but in a less
dramatic manner: at the threshold, the ratio of the partial

" cross sections, calculated with and without orthogonaliza- -

tion to #*, are 0.4 and 1.4, respectively. The conse-
quences for the asymmetry parameter are discussed in

- . Sec. IV,

In the case of a Rydberg electron we have used a
method developed by Lefebvre- Brion®! which consists of a
bound-type calculation followed by an energy normaliza-
tion [see Eq. (10)]. The Rydberg orbital is the nth natural
orbital arising from a configuration-interaction (CI) calcu-
lation including all of the monoexcited configurations

. which leave the ionic core frozen. By this method, the

Rydberg orbital is calculated at the same level of approxi-
mation (FSCE) as the continuum one.
To represent the Rydberg states, 18 atomic diffuse

Slater orbitals centered on: the center of mass have been
introduced in the valence basis set of McLean and
Yoshimine.® The exponents of these orbitals are calculat-
ed using the formula

1
b=
where p is one of the quantum defects given in Table V.,
These quantum defects are obtained either by extrapola-
tion from the continuum or from Rydberg formula with
the energy taken from the experimental spectrum. The
actual quantum defect will be a modified one obtained by
the calculation.

B. Interactions between different P, subspaces

The P;-P; interactions providing the second step
K,‘g’,'ﬁ. matnx of Eq. (7) are first calculated as bound-
continuum interactions®? and then energy renormalized

using the N, coefficient of Eq. (10). The bound states we

TABLE IV. Convergence of the multipolar expansions of the exchange potential.

Quantum defects

Ymu 1'5;: I:': “S" up» ] d" ufv
(a) X232+ +4e0; £,=0.005 an., 15, =

2 4 4 . =0.1718 —0.4427 —0.0302 0.0452

2 6 6 —0.1745 —0.4438 —0.0315 0.0086

4 6 6 -0.1717 —0.4409 - —0.0322 0.0075
) X2=+4eo; £, =0.40 a.u., 15,=10

4 6 6 —0.3869 0.2968 —0.0124 0.2048

6 6 . 6 —0.3855 0.2973 ~-0.0121 0.2006
(€©) X2Z*+e0; =051 au, I5,,=10

4 6 6 —-0.4194 0.2414 0.0104 0.3001

6 6 6 -0.4179 0.2407 0.0107 0.2972
(d) B2X*+4e0; £,=0.005 a.u, I5,,=10

2 6 6 0.1184 0.4452 —0.1456 0.0204

4 6 6 0.1262 0.4509 —0.1420 -0.0207

6 6 .6 0.1270 0.4515 -0.1411 0.0208
&) B3+ 4em; ,=0.005 a.u., I5,,=10

2 6 . 6 —0.3838 —0.1496 0.0197

4 6 6 ~0.3613 -0.1304 0.0199

6 6 6 —0.3566 —0.1256 0.0199
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TABLE V. Quantum defects used in the calculation of the Rydberg orbitals.

Orbital so
73 0.940

po
0.580

do
0.200

dw
0.130

dd
0.040

pw
0.680

have considered are the first member of each Rydberg
series except for the *s™ series where 3*s”g has not been
considered. ' All of the interactions are calculated at the

energy of the corresponding Rydberg state; we have .

neglected the energy dependence of these quantities as the
spectral region studied is small. i

C. Vibrational motion

Within the Condon approximation, the electronic quan-
tities discussed above are assumed to be independent of
the internuclear distance R. All of the R dependence is
then contained in the iv |i"s') overlap integrals. The nu-
clear potentials have been approximated by Morse poten-
. Hals with the values of w,,w,x,, and R, taken from-
Huber and Herzberg.** The overlap integrals are calculat-
ed with a program written by Felenbok.

IV. RESULTS

The present section is divided into Secs. IV A—IV D.
In the first of these we discuss our assignments of the
Rydberg series converging to CO+ B2+, These assign-
ments are compared with the previous ones.S~" Sec.
IV B is concerned with the MQDT partial photoionization
cross sections, i.e., cross sections which are not vibration-
ally resolved. The vibrationally resolved cross sections for
the X2+ state are presented in Sec. IVC. These cross
sections were calculated neglecting the vibrational struc-
ture at the 4 [T ionic state. Section IVD deals with the

angular-distribution results.

The quantum defects, transition moments, and mixing
coefficients corresponding to the 31 electronic eigenchan-
nels retained in the calculations were obtained at an ener-
gy of 17.3 eV for the 3 channels and 17.1 eV for the IT
channels. These calculations were done using the method

" described in Sec. II following the procedures presented in

Sec. IIIl. The quantum defects and the transition mo-
ments corresponding to the B2t ¢o and er channels
were derived from the Rydberg-state calculations whereas
the corresponding mixing coefficients were calculated at a
slightly positive electron energy (0.1 eV).

A. Assignments of the Rydberg series converging
to CO* B33+

In Table VI, we display the energy positions and quan-

_tum defects of the Rydberg series converging to the

B23* jonic state (Rp series). The quantum defects are
either obtained from the discrete-state calculations (Ryd-
berg formula) or by linear extrapolation of the continuum
phase shifts into the discrete energy range. These quan-
tum defects and transition moments agree within a pre-
cision of about 10% with those linearly extrapolated from
the corresponding continuum quantities. These results are
compared with the experimental ones of Ogawa and
Ogawa.’ The decay widths, calculated in the framework
of the Fermi golden rule are given in Table VI for some of
these Rydberg states.

The good agreement between our results and the exper- .

TABLE VL. Energies and widths of the Rydberg states converging to CO+ B2z,

- Quantum defects

Theoretical Expt.©
. Energies (eV) Direct® Linear ' Theor.
Series Assignments® Theor.b Expt.© Calc. extrapolation widths (eV)
o “3so 16.198 16.309 " 1.021 1.094 0.0682
Sharp Ipw 17.150 17.089 0.677 0.739 0.705 0.0409
Diffuse 3po 17.384 17.302 0.561 0.521 . 0.604 0.0492
Iv (4s + 3d)o 18.036 17.943 1.116 1.113 1.195 0.0125
3d7r 18.268 —0.113 —0.116 0.0155
93¢ 18.202 —0.042
{4s-3d)o 18.268 —0.113 —0.095 0.0262
Sharp dpw 18.463 18.438 0.645 0.697 0.679 0.0171
Diffuse dpo 18.561 18.482 0.500 0.487 0.619 0.0313
v . (5s+4d)o 18.749 18.729 1.161 1.120 1.202
4dw 18.853 —0.076 —0.119
m 18.844 —0.054
(55-4d)o 18.854 —0.078 —0.113

“Only the major components of the linear combination of atomic orbitals expansions are given. The quote notation is not used.

*Calculated by the method of Lefebvre-Brion (Ref. 31).

‘From Ogawa and Ogawa (Ref. 5) (v =0 states).

From Fock et al. (Ref, 6).

‘Derived from the theoretical energies using the Rydberg formula.

‘Extrapolation of the continuum pbase shifts (divided by 7).
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mental data—the energies differ by at most 0.09 eV—led
us to suggest the assignments which were given in the last
column of Table I. The calculated widths of the “p"w
states are smaller than those of the “p”c states in agree-
ment with the historical assignments of these two series.
However, the absolute values of these widths are twice as
large as the experimental® ones. ‘

The series III and IV has strong s-d mixing which
varies very slowly with energy. We have therefore labeled
them “[(n+1)stnd]"o. This mixing, which is quite
common in molecules such as NO and N,, was discussed
for the first time by Jungen.'® In our case the s-d mixing
for the “s +d” states is 62% (s), 31% (d), and 9% (p).
This p character results from the heteronuclear com-
ponent of the molecular field. In the “s-4” states, the p
contribution represents approximately 20%. Such s-d
mixing does not of course, occur for the lowest R B state,
3“s"0. Its calculated position (16.2 eV of 765.3 A),
agrees with the experimental value given by Fock et al.®
(16.30 eV or 760.5 A). Our calculations suggest, however,
that this state would be difficult to identify unambiguous-
ly owing to its weak oscillator strength (eight times small-
er than that of Ry 3“p”x) and its large width (about 70
meVor 3.2 A).

B. Partial photoionization cross sections
. of the X 2+ and 4 [ states
A decper insight into the photoionization mechanisms
is gained by the study of the decay channels of the Ryd-
berg resonances, i.e., by considering the partial and vibra-
tionally resolved cross sections. These cross sections pro-

‘vide useful information on the coupling between the

motion of the escaping electron and the motion of the nu-
clei in the ion.

Our MQDT cross sections are obtained using the previ-
ously mentioned electronic quantities and vibrational
overlap integrals. These integrals are introduced in the
MQDT system of equations [see Eq. (18)]. The solutions
of these equations are used in. the calculations of the
open-channel transition amplitudes [Eq. (20)] which are
subsequently used in the standard expressions for the total

~ and differential cross section (see, e.g., Starace?® and

Raoult ez al."?),

Figure 1 reproduces the partial X 23+ and A 2T cross
sections and the total (X 4 4) cross section. The energy
range lies between 16.9 and 18.4 eV (730—670 A). This

- purely electronic result giving resonance structures near -

the positions. of the assignments listed in Table VI is gen-
erally in good agreement with the experiment.*S However,
part of this agreement results from a compensation of er-
rors, the theoretical off-resonance cross section being too

.- weak for the X 23+ state and too large for the A I state

(Fig. 1). Such.a situation appeared also in the work of
Raoult er al.'” on the isoelectronic N, system. Inspection

- of Fig. 1 shows that we also have a second peak at 17.3

and a peak at 17.59 shifted by the vibrational interval of
~0.22 eV which converges to the Bv=1 instead of
By =0 ionic state. .

The results displayed in Fig. 1 show that the most in-
tense structures are associated with the R g'p” (o or 7)
States: such transitions are forbidden in the N, homonu-
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FIG. 1. Partial and total photoionization cross sections of
CO in the region of the Rydberg states converging to CO+
B23*, The theoretical results are compared with the experi-
mental data of Berkowitz (Ref. 44) (total cross section) and of
Leyh et al. (Ref. 13) (X 2=+ partial cross section). In order to
facilitate the comparison between theory and experiment, the
theoretical curves have been shifted by —0.06 eV. The calculat-
ed X?X* spectrum has furthermore been broadened 1o a resolu-
tion of 0.05 eV (2 &) to correspond to the experimental mea-
surements.

clear case. This emphasizes the strong heteronuclear
character of the CO* ion. :

An accidental near degeneracy occurs between the Rp
3“p"w v=1and 3“p”0 v =0 states (17.3 eV or 716.7 A).
Such a situation does not occur for the n >4 states. In
the X 2=+ cross section the autoionization of the K
v =1 state was found to be dominant whereas for the 4
cross section the decay rates of the two near-degeneracy
states are of the same order of magnitude.

The theoretical partial cross sections also show that the
first members of the Rp series decay with roughly the
same -probability into the two open (X23+ and A 2II)
channels, in good agreement with the photoelectron elec-
tron energy (PES) data®'%'® but in complete disagreement
with the fluorescence electron spectroscopy (FES) results
of Ito et al'? As an example, the calculated 4 and X
branching ratios at 17.09 eV (725.5 A) (3“p”7 v =0 reso-
nance) are 0.55 (X) and 0.45 (A4). The PES values
are®!%1% 0.50 (X) and 0.50 (4) whereas the FES results'2
are 0.05 (X) and 0.95 (A4). No clear explanation has been
found at the present time for this discrepancy. Note also
that if we consider only the A4 2IT partial cross section, we
calculate an intensity ratio of 1.10 for the two peaks
3“p"m v=0and (3“p"7 v=1) + (3“p”c v =0), in agree-
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ment with the experimental results of Plummer et al.’®
(1.0): the FES corresponding value'? is, however, very dif-
ferent (1.8).

A more detailed analysis of our results shows that the
Rp “p"w states decay mainly in the continua correspond-
ing to the d and f partial waves. For the “p”o states we
found no such selectivity.

The Ry “4s +-3d"o resonance appears as an emission
profile in the A IT cross section. This disagrees with the
experimental PES results of Plummer et al.'® who observe
an absorption peak in each decay channel. This
discrepancy probably results from an underestimation of
the corresponding interchannel interactions; this would
also explain the too-weak intensity of this resonance in the
X channel.. .

A window resonance appears in both the 4 and X cross
-sections at 18.25 eV (679.4 A). In the X channel this
structure is the emission part of the Fano profile corre-
sponding to the Ry “45-3d”0 state whereas, in the A
cross section, it is the pure emission profile of the 3“d"x
resonance. The origin of this latter profile is the strong
bielectronic interaction between B 23+ 3“d"7 which car-
ries a very low oscillator strength and the very intense
A M £“d”8 channel. This behavior is exactly the same as
that of the Hopfield emission series (B 25 n“d”m,) in
N which interacts strongly with the 4 IT, £“d"§, chan-
nel. The emission structure at 18.87 eV (657.0 A) (Ref.
13) in the photoionization spectrum of CO can be as-

signed to the next members (“5s5-4d”0,4“d"7) of the

above-mentioned series.

C. Vibrationally resolved cross sections of CO+ X 23+

Another important consequence of the autoionization
processes concerns the vibrational selectivity with which
the photoions are produced. Strong variations in the vi-
brational branching ratios are generally observed in the re-
gion of the autoionization resonances. As explained in
Sec. II, the vibrational motion has been taken into account
within the Condon approximation, i.e., neglecting the
variation with R of the electronic quantities (see Sec. II B
for a discussion ef the consequénces of this approxima-
tion). In the limit condition of an isolated Lorentzian res-
onance, this approximation leads to the following resuit*
the part of a vibrationally resolved partial cross section
which is due to a Lorentzian resonance is proportional to
the product of Franck-Condon factors,

I (xolxv.kyd) Izl (Xv.ion Lxu,Ryd) |2 y -

where Xg, X, ryar and Xp,ion are the vibrational wave func-
tions which correspond to the ground and excited neutral
states and to the ionic state. The vibrational branching
ratios for the decay of a given vibrational level of a Ryd-
berg member is then given by the second factor of the
above expression, i.e., | {Xyion | Xy,rya) | %

The vibrationally resolved partial cross sections corre-
sponding to CO* X 23 +y=0-3 are displayed in Fig. 2 in
the energy range 16.9—18.4 eV (700—670 A). We have
not introduced any vibrational structure for the A n
state, but only considered one open electronic A4 channel,
These theoretical results are compared with the experi-
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FIG. 2. Vibrationally resolved partial photoionization cross
sections for the production of CO* X 23+ v =0--3. The experi-
mental results are those of Ref. 13. The theoretical spectra have
been broadened to a resolution of 0.05 eV and shifted by —0.06
eV, . . .

mental data of Leyh et al.!? .

Let us first consider the vibrational branching ratios at
the energy of the 3"“p”7 v =0 resonance (17.1 eV). The
MQDT values are 0.55 (v =0), 0.33 (v=1), 0.10 (v =2),

.and 0.03 (v=3). The |{Xyion|X,=0rya) |2 correspond-

ing values are 0.53, 0.34, 0.10, and 0.02 whereas the exper-
imental ratios' are 0.72, 0.13, 0.03, and 0.07.

At 17.30 eV (716.6 A) the 3“p"7 v =1 and 3“p”c v =0
resonances overlap. As these resonances correspond to
different symmetries, their decay channels will also have
different symmetries. We can then analyze theoretically
the -individual branching ratios of these two resonances.
For the 3“p"7 v =1 resonance, the MQDT branching ra-
tios are 0.36 (v =0), 0.03 (v =1), 0.39 (v =2), and 0.22
(v=3), whereas the |{X,;on [Xpe1,Rya) |? factors are

respectively 0.31, 0.06, 0.32 and 0.22. For the 3“p"c

v =0 state, the MQDT branching ratios, 0.6, 0.18, 0.09
and 0.05, ' respectively, differ from the

| {Xs,ion | X5 =0,rya) |  factors owing to the non-negligible .

contribution of the background. If we do not separate the
decay channels of £ and IT symmetries, we obtain the fol-
lowing MQDT global branching ratios: 0.48 (v =0), 0.07
(v=1),0.28 (v=2), and 0.16 (v =3). The corresponding
experimental data are 0.74, 0.06, 0.05, and 0.09. The
agreement between the theoretical and experimental re-
sults is then only qualitative,

The vibrational branching ratios depend mainly on the
following quantities: the electronic transition moment for
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the direct jonization (i.e., the background contribution),
the electronic transition moments to the Rydberg states,
the interchannel interactions, and the vibrational overlaps
between the different states involved (ground states, Ryd-
berg states, and ionic states).

Three reasons can then explain the discrepancies be-
tween the theoretical and experimental branching ratios.
First of all, in the X partial cross sections, the contribu-
tion of the background is underestimated by a factor of
approximately 2: this has severe consequences on the
branching ratios, particularly at the energies of weak reso-
nances. The second reason is, of course, the validity of
the Condon factorization. Finally, if two nearly degen-
erate resonances differ in the nature of their Rydberg or-
bitals and in the vibrational states of their ionic cores,
then the vibrational branching ratios will also depend
strongly on the relative magnitude of the electronic transi-
tion moment associated with each resonance. This could
partly explain the discrepancy between theory and experi-
ment at the energy of the 3“p”7 v=1 and 3“p”c v =0
resonances. _ o

With increasing vibrational number, the resonances
have a tendency to assume a Lorentzian shape. This
behavior is quite general when the direct transition mo-
ment to the continuum decreases as v;,, increases, becom-
ing weaker and weaker with respect to the transition mo-
ment of the Rydberg state. The structure centered at
18.20 &V (681.2 A) provides a striking example of this
bebavior. This structure, assigned to a superposition of
the “4s-3d”c v =0, 3“d"7 v=0 and “4s + 3d"¢ v=1
states, looks like a Fano profile in the X 23+ v =0 cross
section. The direct transition moment to the X continu-
um decreases rapidly with the vibrational quantum num-
ber. As a consequence, no more emission part appears in
the X23* v > 1 cross sections. As can be seen in Fig. 2,
this behavior is correctly reproduced in our theoretical
spectra. The corresponding structure, at 18.87 eV (657 A)
displays the same vibrational pattern.!?

D. Angular distribution of the photoelectrons

. The differential cross section of the ejected electrons in
~ gas phase (with respect to ejection angle) can be expressed
in terms of a simple formula in terms of total cross sec-
tion, an asymmetry parameter B, and P, Legendre poly-
nomial (see, e.g., Thiel*’ or Tully et al.*®). Of course, the
_asymmetry parameter should not be confused with the
channel |iB) defined in the proceeding sections. In this
section B is the asymmetry parameter only. When we
look at the differential cross section at different ejection
angles we speak about the angular distribution of pho-
+ toelectrons. This distribution can be discussed in terms of
the off- and on-resonance values of the associated B pa-
rameter. The theoretical off-resonance B value associated
with the X 2Z+ state at an energy of 17 eV is 1.43 when
no orthogonalization to the #* orbital is performed. This
value compares rather well with the previous theoretical
values of Wallace et al.** (B=1.48) and Lucchese and
McKoy* (B=1.42). The orthogonalization lowers B to
0.95 in reasonable agreement with the experimental value
of 0.87.5! For the A I state we obtain B=—0.19 at 17
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eV, also in good agreement with Wallace et al*®
(B=—0.15). As in the isoelectronic N+ A4 [1, case, the
rapid increases of B with energy at the threshold ‘is
governed by the cosine of the difference of the Coulomb
phase shifts of the d§ and so dominant waves.*’ In the
following we use the electronic parameters corresponding
to e orbitals which have been orthogonalized to the #*
antibonding orbital, as was explained in Sec, III.

When the interactions between the continua associated
with different jonic cores are included, sharp variations in

" the cross section take place due to the presence of the

Rydberg states converging to the B2+ jonic state (see
Fig. 3). Note that a peak in the cross section corresponds
to a2 minimum in the B curve.

To understand this behavior we have used the partition-
ing scheme of Thiel.*” In this formulation, which is based
on the method of Tully et al.,*’ the asymmetry parameter
is written as

Bi=33Bw=23 3 B,
rr L' aa’
where i is the jonic core, I is the asymptotic channel
quantum number, and a is the absolute value of the pro-
jection of the electronic angular momentum on the molec-
ular axis,

This partitioning clearly defines the contribution to 3
of a given asymptotic channel I It allows us to identify
the contribution arising from each molecular symmetry,
in spite of the molecule-to-laboratory-frame transforma-
tion used which mixes the molecular channels. :

In Fig. 3 we also display the main diagonal and off-
diagonal contributions to the B parameter for the X 3+
and A4 211 ionic cores. In the X 23+ case we see that all
diagonal and crossed terms involving the s, p, d, and f
waves contribute to some extent to the variation of the 8
parameter. This interplay is particularly complicated at
the positions of the Rp resonances. In the A 2IT case, the
situation is clearer: only the B¢, and B,,; contributions
are important. The profiles induced by the R resonances
are generally different in each By curve: it is therefore
very hard to analyze the effects of each resonance
separately. As an example, in Table VII, we give contri-
butions of different molecular channels to 8 at the max-
imum of the 3“p”7 v =0 resonance. We see that there is
no dominant Bjjff contribution to the X channel while in
the A channel the 853, and B%5, contributions predom-
inate.

Figure 4 displays the variation with energy of the asym-
metry parameter for each vibrational level of the X ionic
core. B significantly varies between, e.g., v =0, 1, and 2
but shows poor agreement with the experimental data of
Ederer ef al.,'' which only cover the region of the 3“p”
v =0 resonance. Also, as can be seen in Fig. 4, we calcu-
late a depletion in the B curves corresponding to CO¥
X2+ (sum over all v, contributions) and to CO*
X 3% v, =0, in contrast with the experimental enhance-
ment in both curves.

Despite this disagreement in the region of 3“p"7 v=0
resonance, our theoretical results are stable with the dif-
ferent calculations we have performed. Namely, in the
framework of our one-configuration FCSE model, the
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TABLE VII. Decomposition of the 8 parameter into its B5F

N

components at the maximum of the Rz 3“p"7 v =0 resonance .

(hv=17.147 eV).

) X 22+ jonic core, B=0.6725

aa’ oo o T Br
w
11 0.0276 + 0.0403 0.0721 0.1400
02 0.0167 —0.0905 —0.0738
22 . 0.0140 —0.0752 0.3378 0.2766
31 —0.0200 —0.0722 1 0.1727 0.0805
33 0.0031 0.0167 0.2153 0.2351

A ionic core, B=—0.3915

”’aa' oo om T o =5 88 - . Bir
02. —0.1436 0.0734 —0.6046 —0.6748
22 —0.0402 0.0223 0.0071 0.3301 —0.0712 0.1208 0.3689
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electronic quantities vary smoothly as one modifies the
atomic basis set or the number of terms of the multipolar
expansions (see Sec. III). The same discrepancy is ob-
served when no vibrational motion is introduced. The
electronic B curves show a behavior close to the one ob-
served in the vibrationally resolved ones. Unfortunately,
the lack of detailed experimental data does not allow us to
compare our calculations in a more extended region.

Y. CONCLUSIONS

In this paper we have theoretically analyzed the pho-
toionization spectrum of the CO molecule. In spite of the
simple theory that we have used, the overall agreement
with the experimental results is good. Particularly satis-
factory agreement was found in the position and qualita-
tive description of the resonances. These calculations
have allowed us to give unambiguous assi%nments of the
four Rydberg series converging to CO* B?X+ (see Table
I). The calculated decay probabilities into the two open
electronic channels X 22* and A ?IT are of the same order
of magnitude, in agreement with all the PES results®1%13
but in disagreement with the FES results of Ito et al.)?
The satisfactory agreement between the theoretical and
the experimental'® vibrationally resolved cross sections of
the X 2=+ state shows that the Condon factorization of
the electronic quantities—transition moments and inter-
channel interactions—provides a satisfactory framework
for the interpretation of the vibrational selectivity of the
electronic autoionization processes.

A comparison between the isoelectronic CO and N,
(Ref. 19) systems in this spectral region shows that the N,
“absorption” series corresponds to series IV in CO
(“s +d”0) whereas the “emission” series and the nearby
shoulders correspond to the complex series III (“s-
d”g/"“d"w). The intensities and quantum defects are of
the same order of magnitude in the two cases. The major
difference concerns the transitions to the “p”c and “p"7
series which are dipole forbidden in the N, case, owing to
the g-u, selection rule, but give rise to the most intense
structures in the CO photoionization spectrum. This
strong departure from the homonuclear situation results
from the large dipole moment of CO* B23+ (4=0.82
a.u: at the center of mass) which couples the partial waves
of different parities even in the asymptotic region. We
must note that in the NO case (which is not isoelectronic
with N, or CO) this latter coupling is negligible owing to
the weakness of the dipole moment NO*.'

We have tried to analyze our theoretical results in terms
of the leading components in the partial wave expansions.
No simple picture emerges from this analysis as a strong /
mixing between at Jeast the first four partial waves
(s,p,d,f) governs both the on- and off-resonance cross
sections, especially for the X 2%+ channels.

The disagreement in the angular distributions requires
further work. Two weak points can be singled out in the
theoretical treatment: first, the fact that the electronic
quantities have been calculated at the one-configuration
level; second, the use of the Condon approximation which
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neglects the variation of these quantities with the internu-
clear distance. An easy improvement of our model would
consist of the inclusion of the vibrational levels of the 4
ionic state. This will be discussed further below.

A few experimental structures are not reproduced in
our theoretical spectra. The less-intense structures are
most probably due to the Ry v =2 states which have not
been included in oyr calculations. The structure located
at 17.17 eV (722 A) cannot, however, be mterpreted in
such a way. Ogawa and Ogawa® suggested that it is due
to the presence of high-n Rydberg states converging to
CO* A’Il v=4. These R, states would be perturbed by
the B2+ 3“p”7 and 3“p”0 states which could then be
considered as mter]opers. Such structures, called “com-
plex resonances” have already been observed in the N,
case by Dehmer et al’? and analyzed in detail by
Guister-Suzor and Lefebvre-Brion.** In order to check
the assignment of Ogawa and Ogawa,® we have performed
detailed calculations in the 17—17.4-eV reg:on by exphcxt-
ly introducing the vibrational channels in the 4 2IT core
with their respective thresholds. These results will be
presented in a forthcoming paper. -
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