

Scientific Sessions 2003, November 9-12, 2003, Orlando, Florida

Left Ventricular Preload-Adjusted Maximal Power: Clinically Useful Marker of LV Contractility?

Patrick Segers, Ghent University, Gent, Belgium; Vincent Tchana-Sato, Hemodynamic Research Center, University of Liege, Belgium; H A Leather, Centre for Experimental Surgery and Anaesthesiology, Katholieke Universiteit Leuven, Belgium; Bernard Lambermont, Alexandre Ghysen, Jean-Michel Dogne, Patricia Benoit, Philippe Morimont, Hemodynamic Research Center, University of Liege, Belgium; Patrick F Wouters, Centre for Experimental Surgery and Anaesthesiology, Katholieke Universiteit Leuven, Belgium; Philippe Kolh, Hemodynamic Research Center, University of Liege, Belgium; Pascal R Verdonck; Ghent University, Gent, Belgium

Maximal left ventricular (LV) hydraulic power output (PWR_{max}), corrected for preload (V_{ed} : end-diastolic volume) as PWR_{max}/V_{ed}^β is an index of left ventricular (LV) contractility. While preload-adjusted maximal power (PAMP) is usually calculated with $\beta=2$, there is uncertainty about the optimal value of β ($\beta = 1$ for normal and 2 for dilated LV). The aim of this work is to study the determining factors of β . The data set consisted of 245 recordings (steady state and vena cava occlusion) in 10 animals in an ischemic heart pig model. The occlusion data yielded: (i) the slope (E_{es} ; 2.01 ± 0.77 mmHg/ml; $0.71\text{--}4.16$ mmHg/ml) and intercept (V_0 ; -11.9 ± 22.6 ml; -76 to 39 ml) of the end-systolic PV relation; (ii) the optimal β -factor (assessed by fitting an exponential curve through the V_{ed} - PWR_{max} relation) was 1.94 ± 0.88 (0.29 to 4.73). The relation of β with V_{ed} was weak ($\beta = 0.60 + 0.02 V_{ed}$; $r^2=0.20$). In contrast, we found an excellent exponential relation between V_0 and β ($\beta = 2.16e^{0.0189V_0}$; $r^2 = 0.70$). PAMP, calculated from the steady state data, was 0.64 ± 0.40 mWatt/ml² (range 0.14-2.83) with a poor correlation with E_{es} ($r=0.30$; $P<0.001$). An alternative formulation of PAMP as $PWR_{max}/(V_{ed}-V_0)^2$, incorporating V_0 , yielded 0.47 ± 0.26 mWatt/ml² (range 0.09-1.42) and was highly correlated with E_{es} ($r=0.89$; $P<0.001$). In conclusion, we have demonstrated that in our animal model, preload-adjusted maximal power poorly correlates with the slope of the end-systolic PV relation. Moreover, the β -factor, optimally used for preload correction, is not constant, but varies with the intercept of the end-systolic PV relation. This limits the clinical applicability of PAMP as an index of LV contractility.

Commercial Relationship: P. Segers, None; V. Tchana-Sato, None; H.A. Leather, None; B. Lambermont, None; A. Ghysen, None; J. Dogne, None; P. Benoit, None; P. Morimont, None; P.F. Wouters, None; P. Kolh, None; P.R. Verdonck, None.