



| Category of Product   | Product               | Typical organism            | Market value     |
|-----------------------|-----------------------|-----------------------------|------------------|
| Whole cells           | Baker's yeast         | Saccharomyces cerevisiae    |                  |
|                       | Lactic acid bacteria  | Lactic acid bacteria        |                  |
|                       | Single cell protein   | Methylotrophic bacteria     |                  |
| Primary metabolites   | Beer, wine            | Saccharomyces cerevisiae    |                  |
|                       |                       | Saccharomyces               |                  |
|                       | Ethanol               | carlsbergensis              | 12 billion US\$  |
|                       |                       | Saccharomyces cerevisiae    |                  |
|                       | Lactic acid           | Zymomonas mobilis           | 200 million US\$ |
|                       |                       | Lactic acid bacteria        |                  |
|                       | Citric acid           | Rhizopus oryzae             | 1.5 billion US\$ |
|                       | Glutamate             | Aspergillus niger           | 1 billion US\$   |
|                       | Lysine                | Corynebacterium glutamicum  | 500 million US\$ |
|                       | Phenylalanine         | Corynebacterium glutamicum  | 200 million US\$ |
|                       |                       | Escherichia coli            |                  |
| Secondary metabolites | Penicillins           | Penicillium chrysogenum     | 4 billion US\$   |
|                       | Cephalosporins        | Acremonium chrysogenum      | 11 billion US\$  |
|                       | -                     | Streptomyces clavuligerus   |                  |
|                       | Statins               | Aspergillus terreus         | 9 billion US\$   |
|                       | Taxol                 | Plant cells                 | 1 billion USS    |
| Recombinant proteins  | Insulin               | Saccharomyces cerevisiae    | 3 billion US\$   |
|                       |                       | Escherichia coli            |                  |
|                       | tPA                   | Chinese Hamster Ovary cells | 1 billion US\$   |
|                       | Erythropoietin        | Chinese Hamster Ovary cells | 3.6 billion US\$ |
|                       | Human growth hormone  | Escherichia coli            | 1 billion US\$   |
|                       | Interferons           | Escherichia coli            | 2 billion US\$   |
|                       | Vaccines              | Bacteria and yeast          |                  |
|                       | Monoclonal antibodies | Hybridoma cells             | 700 million US\$ |
| Enzymes               | Detergent enzymes     | Bacilli, Aspergilli         | 600 million US\$ |
|                       | Starch industry       | Bacilli, Aspergilli         | 200 million US\$ |
|                       | Chymosin              | Aspergilli                  |                  |
| Polymers              | Xanthan gum           | Xanthomonas campestris      | 400 million US\$ |
|                       | Polyhydroxyalkanoates | Alcaligenes erytrophus      |                  |
| DNA                   | Vaccines              | Escherichia coli            |                  |









































Different modelling alternatives for microbial growth :

-The simplest way to express microbial growth : Monod type equation (saturation)

- Structured modelling : take into account the internal dynamics of the system to be studied

- Segregated modelling : take into account the heterogeneity of the microbial population























|           |                        | · · · · · · · · · · · · · · · · · · · |
|-----------|------------------------|---------------------------------------|
| Durée (h) | r <sub>x</sub> (g/l,h) | r <sub>s</sub> (g/l.h)                |
| 0         | -                      | -                                     |
| 0,5       | 0,003                  | 0                                     |
| 1         | 0,008                  | 0,02                                  |
| 1,5       | 0,011                  | 0,04                                  |
| 2         | 0,019                  | 0,04                                  |
| 2,5       | 0,044                  | 0,09                                  |
| 3         | 0,083                  | 0,20                                  |
| 3,5       | 0,142                  | 0,27                                  |
| 4         | 0,242                  | 0,54                                  |
| 4,5       | 0,412                  | 0,96                                  |
| 5         | 0,698                  | 1,43                                  |
| 5,5       | 1,158                  | 2,34                                  |
| 6         | 1,940                  | 4,44                                  |
| 6,5       | 3,089                  | 7,41                                  |
| 7         | 5,00                   | 11,10                                 |
| 7,5       | 3,811                  | 8,89                                  |
| 8         | 0,87                   | 0,087                                 |
| 8,5       | 0,27                   | 0,012                                 |
| 8,5       | 0,27                   | 0,012                                 |



| D (1.01)  | 1/6 (~/1) | u (b-1) | 1/µ (h)  |
|-----------|-----------|---------|----------|
| Duree (n) | 1/3 (g/1) | μ (11-) | 1,4 (11) |
| 0         | 0,05      |         |          |
| 0,5       | 0,05      | 0,15    | 6,67     |
| 1         | 0,05      | 0,35    | 2,86     |
| 1,5       | 0,05      | 0,39    | 2,56     |
| 2         | 0,05      | 0,56    | 1,79     |
| 2,5       | 0,05      | 0,94    | 1,06     |
| 3         | 0,05      | 1,06    | 0,94     |
| 3,5       | 0,051     | 1,09    | 0,91     |
| 4         | 0,051     | 1,09    | 0,91     |
| 4.5       | 0,052     | 1,11    | 0,90     |
| 5         | 0,054     | 1,10    | 0,91     |
| 5,5       | 0,056     | 1,08    | 0,93     |
| 6         | 0,061     | 1,08    | 0,93     |
| 6,5       | 0,075     | 1,03    | 0,97     |
| 7         | 0,112     | 1,02    | 0,98     |
| 7,5       | 10,90     | 0,48    | 2,08     |
| 8         | 71,20     | 0,10    | 10       |
| 8,5       | 249,0     | 0,03    | 33,33    |
| 9         | 626.5     | -       |          |















$$\rightarrow \text{ SUBSTRATE}: \quad \frac{dS}{dt} = -r_{c} - \frac{dV \cdot S}{dt} + Q \frac{S_{a}}{V}$$
Hypothesis : added substrate is immediately consumed (S = 0)
$$\frac{dS}{dt} = -r_{c} + Q \frac{S_{a}}{V} = 0$$

$$r_{s} = Q \cdot \frac{S_{a}}{V} = m_{s} \cdot X + \frac{r_{p}}{Y_{p/s}}$$

$$\rightarrow \text{ METABOLITE}: \qquad \frac{dP}{dt} = -r_{p} - \frac{dV \cdot P}{dt \cdot V}$$

$$r_{p} = \chi \cdot X$$

$$\rightarrow \text{ VOLUME}: \qquad \frac{dV}{dt} = Q$$







| Durées | X     | S     | Q.R. | Q     | V (litre) | Sa.(V-V <sub>0</sub> ) |
|--------|-------|-------|------|-------|-----------|------------------------|
| (h)    | (g/l) | (g/l) |      | (l/h) |           | (g)*                   |
| 0      | 0,28  | 0,15  | -    | 0,02  | 10,00     | 1,6                    |
| 0,83   | 0,3   | 0,21  | 1,22 | 0,016 | 10,013    | 2,6                    |
| 1,83   | 0,39  | 0,19  | 1,3  | 0,009 | 10,022    | 4,4                    |
| 2,83   | 0,42  | 0,18  | 1,76 | 0,003 | 10,025    | 5                      |
| 3,5    | 0,47  | 0,11  | 1,12 | 0,003 | 10,027    | 5,4                    |
| 4,33   | 0,58  | 0,12  | 1,02 | 0,016 | 10,040    | 8                      |
| 4,83   | 0,66  | 0,11  | 1,13 | 0,016 | 10,048    | 9,6                    |
| 5,33   | 0,97  | 0,14  | 0,97 | 0,072 | 10,084    | 16,8                   |
| 6,33   | 1,52  | 0,14  | 1,04 | 0,063 | 10,147    | 29,4                   |
| 7,33   | 2,42  | 0,13  | 0,97 | 0,104 | 10,251    | 50,2                   |
| 8,33   | 3,12  | 0,06  | 1,02 | 0,129 | 10,38     | 76                     |
| 9,08   | 4,68  | 0,04  | 0,98 | 0,181 | 10,516    | 103,2                  |
| 10,08  | 5,66  | 0,14  | 1,15 | 0,128 | 10,644    | 128,8                  |
| 23,83  | 16,17 | 0,27  | 1,03 | 0,11  | 12,164    | 432,8                  |
| 25,83  | 18,33 | 0,24  | 0,97 | 0,18  | 12,527    | 505,4                  |
| 26,83  | 19,11 | 0,25  | 1,2  | 0,139 | 12,666    | 533,2                  |
| 28,83  | 20,28 | 0,28  | 0,9  | 0,107 | 12,88 .   | 576,0                  |

















### Chemostat : modelling

X and S mass balance equations with Monod kinetics. At steady state,  $\mu$  = D :

$$S_{eq} = K_s \cdot \frac{D}{\mu_{max} - D}$$

 $X_{eq} = \frac{Y_{x/s} \cdot D}{D + m_s \cdot Y_{x/s}} \cdot (S_a - S_{eq})$ 

If we focus our attention on generation time and productivity :

$$g = \frac{\ln 2}{\mu_{eq}} = \frac{\ln 2}{D}$$

 $productivit\acute{e}=X_{eq}\cdot D=Y_{x/s}\cdot(S_a-S_{eq})D$ 

$$D=D_m=\mu_m\left[1-\sqrt{\frac{K_s}{K_s+S_a}}\right]$$







### System biology

















Réseau métabolique à l'état stationnaire (turnover des intermédiaires) sous forme matricielle :

S.v = 0 On a K métabolites et J réactions

La matrice steechiométrique S a donc les dimensions (K,J) et le vecteur de flux s a la dimension (J,1)

Le modèle reviens a un système d'équations linéaires dont le nombre de degré de liberté  $\mathsf{F}=\mathsf{J}\text{-}\mathsf{K}$ 





















































New development in sensor technology for bioprocess control : optical systems

Principle : collision between oxygen and dye molecules inducing luminescence quenching























| Freelance                    | AUTO                    | DA                                       | 104              | QR_C02_C       | mv        | QR_02_Conv   | tic0     | 24_conv          | V.AQ           20         Klaxon |
|------------------------------|-------------------------|------------------------------------------|------------------|----------------|-----------|--------------|----------|------------------|----------------------------------|
| SB20_6_2<br>Choix Page datam | EFT                     | cel <u>S</u> électionner (<br>SB 20 litr | Options (mprimer |                |           | Général      |          | 'F               | red'                             |
|                              | CV                      | SP1                                      | SP2              | Délais         | OP        | Mode         | Output   |                  |                                  |
| Agitation                    | 0.0                     | 150.0                                    | 0.0              | 00:00          | 150.0     | Manuel       |          | Agit OFF         | HL 500.0<br>LL 150.0             |
| Température                  | 21.5                    | 30.0                                     | 0.0              | 00:00          | 0.0       | Manuel       | Sans     | Circ. OFF        | 00:00:00                         |
|                              | 8.51                    | 3.00                                     | 0.00             | 00:00          | 3.00      | Manuel       | Sans     |                  | DEE 0.0<br>Factour X             |
| Oxy. Dissous                 | 4.9                     | 50.0                                     | 0.0              | 00:00          | 50.00     | Manuel       | 0.0      | Sans action      | 3.5                              |
| Aeration                     | 0.00                    | Cat KLo                                  | CO2 Gazeux       | O2 Gazeux      | O2 Cons.  | Tot. O2 Cons | CO2 Prod | Tot. CO2 Proc    |                                  |
|                              | 0.00                    | 7.60                                     | -0.02            | 0.00           | 0.0 0/1   |              | 0.0 9/0  |                  |                                  |
| Fed Batch                    | Volume Initial<br>250.0 | Volume Final<br>510 315                  |                  | Délai Fed      | 'SANS FED | OR           | 0.0      | Pompe OFF        | Temps fed<br>1607, 138           |
|                              | 0.000                   | 0.000                                    |                  |                |           |              |          | Appel            | 300 litres                       |
| Agitation                    | Tempér.                 | рН                                       | Dis. 02          |                |           |              |          |                  | C3                               |
|                              |                         |                                          |                  |                |           |              | -<br>-   | 0 10             | 22/04/02 11:25:015               |
|                              |                         | PC.2_géné                                | à                |                | Syno.     | Courbes      | Groupe   | SEC              |                                  |
| <u>⊻</u> .veille             | Alarmes.                | lm. Sys.                                 | Incr.            | <u>&lt;</u> >> | JEXP      | JEV          | JPER     | G. <u>R</u> amp. | Conduire                         |



### **Advanced bioprocess control**

- Fed-batch control :

   - Exponential feed Q = Q<sub>0</sub>.exp(μ.t)

   - RQ (respiratory quotient)

   - Feedback loop (biomass, ethanol or glucose probe)

- pH-stat - DO-stat























# Application: Main and the second provided and the second



















| We consider two<br>propeller (d = 0. | o kinds of impelle<br>.5 m). The equation                                                    | er : a TD6 and a profiled<br>ons for the loading curve                                             |
|--------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| are the following                    | :                                                                                            |                                                                                                    |
| Prop                                 | TD6 : Na = 30 . (d.<br>beller : Na = 6000 .                                                  | /D) <sup>3,5</sup> . Fr<br>(d/D) <sup>1,55</sup> . Fr <sup>2.7</sup>                               |
|                                      |                                                                                              |                                                                                                    |
| Considering the determine the ga     | e constraints p<br>Is-liquid flow regin                                                      | resented in the table<br>ne for each impeller                                                      |
| Considering the determine the ga     | e constraints p<br>Is-liquid flow regin<br>N maximum for<br>shear (s <sup>-1</sup> )         | resented in the table<br>ne for each impeller<br>G minimum for<br>Oxygen transfer<br>(vvm)         |
| Considering the determine the ga     | e constraints p<br>as-liquid flow regin<br>N maximum for<br>shear (s <sup>-1</sup> )<br>0,51 | resented in the table<br>ne for each impeller<br>G minimum for<br>Oxygen transfer<br>(vvm)<br>0,13 |





| Substrate Con | centration in liquid | Critical concentration | Consumption rate     |
|---------------|----------------------|------------------------|----------------------|
|               | phase (ppm)          | (ppm)                  | (mmoles/g biomass.h) |
| Glucose       | 10.000               | 100                    | 2.6                  |
| Oxygen        | 7                    | 0.8                    | 7.7                  |

































































































### Microbial kinetics :

20L strirred bioreactor (RTD6 ; working volume 10L + glass bulb for SDRs)

Regulation : pH 5.5 ; T° 30  $\ensuremath{^\circ}$  ; pO  $_2$  30% ; air flow rate (no regulation for the nonmixed part of the SDR)

Exponential feed of glucose (start after 5 hours) : F = F<sub>0</sub> exp( $\mu$ t) (F0 = 0.086 ml/min;  $\mu$  = 0.005 min<sup>-1</sup>)



| Reactor                                | Biomass<br>yield Y <sub>xs</sub> |
|----------------------------------------|----------------------------------|
| Classical bioreactor                   | 0.48                             |
| SDR recirculation flow rate Q = 18 l/h | 0.36                             |
| SDR recirculation flow rate Q = 39 l/h | 0.45                             |





# 6. Perspective : modelling the microbial response to bioreactor environmental fluctuations

We have described the physical parameters BUT What about the biologicals implications

What is the microbial response in front of these environmental fluctuations ? TO MAKE THE LINK

What about the environmental sensing capabilities of microorganisms ?

### In the case of S. cerevisiae :

- Cells react very rapidly in front of glucose fluctuations

- Glucose sensing mechanisms are well documented bฟะดูการนับอยู่ FEBS journal data available

Özcan et al. [1999] Microbiology and molecular biology reviews

- The cell don't sense all the environmental fluctuandris (୧୫ନାରେ) କୁମ୍ମର୍ବାରେ କେନ୍ଦ୍ର some specific metabolic pathways act as intraceମାସଙ୍କ Korrନିର୍ଦ୍ଦିଶିକ୍ଷାଙ୍କରା society trans. devices) c

Wolf et al. [2005] Journal of theoretical biology

Rao et al. [2002] Nature

Important in order to make the link between the physical and the biological parameters



Case study 2 : Whole cell biosensors for the detection of mixing imperfections























### Results Screening among an E. coli GFP clones library

Binary mode of gene expression  $\rightarrow$  sources : -Short mRNA and protein half-lives

-High sensitivity for the detection of the reporter protein

Generally not observed for GFP reporter system considering the high protein stability of this system compared with  $\beta$ -galactosidase and luciferase reporters

This mechanism of gene induction give rise to differentially expressed phenotypes at the protein level. Can potentially be used to gain more sensitivity about the impact of extracellular fluctuations





### Results

Behaviour of prpoS::gfp strain i Basic observations :

in fed-

- Binary mode for GFP expression at the end of the batch phase and during the transition from batch to fed-batch phase
- After the induction of the major part of the population (all the cells are in the GFP+ state), graded mode of GFP expression is observed
- Successive glucose excess tends to slow down the binary expression phase























## Perspectives and conclusion

prpoS::GFP strains seems to react to the degree of homogeneity inside the bioreactor :

> Homogenous reactor : GFP+ Inhomogenous reactor : GFP-

### **Perspectives and conclusion**

- Two questions have to be raised : - Flow cytometry combined with  $\mathsf{P}_{\mathsf{stress}}{:}\mathsf{GFP}$  expression  $\rightarrow$  impact of extrinsic fluctuations What about the intrinsic fluctuations ?
- Characteristic times of hydrodynamic mechanisms compared with those of the biological processes behind GFP synthesis







