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Abstract. We study the structure of automata accepting the greedy representations of N in a

wide class of numeration systems. We describe the conditions under which such automata can
have more than one strongly connected component and the form of any such additional com-
ponents. Our characterization applies, in particular, to any automaton arising from a Bertrand
numeration system. Furthermore, we show that for any automaton A arising from a system
with a dominant root β > 1, there is a morphism mapping A onto the automaton arising from
the Bertrand system associated with the number β.

1. Introduction

In this paper, when i, j are integers satisfying i ≤ j, we use the notation [[i, j]] to designate the
interval of integers {i, i + 1, . . . , j − 1, j}. Moreover, when we write x = xn−1 · · ·x0 where x is a
word, we mean that xi is a letter for all i ∈ [[0, n − 1]].

An increasing sequence U = (Un)n≥0 of integers is a numeration system, or a numeration basis,

if U0 = 1 and CU := supn≥0⌈Un+1

Un

⌉ < +∞. We let AU be the alphabet [[0, CU − 1]]. A greedy
representation of a non-negative integer n is a word w = wℓ−1 · · ·w0 over AU satisfying

ℓ−1
∑

i=0

wiUi = n and ∀j ∈ [[1, ℓ]],

j−1
∑

i=0

wiUi < Uj .

We denote by repU (n) the greedy representation of n > 0 satisfying wℓ−1 6= 0. By convention,
repU (0) is the empty word ε. The language repU (N) is called the numeration language. A set
X of integers is U -recognizable if repU (X) is regular, i.e., accepted by a finite automaton. The

numerical value map valU : A∗
U → N maps any word dℓ−1 · · ·d0 over AU to

∑ℓ−1
i=0 diUi.

From the point of view of Chomsky hierarchy, a U -recognizable set X of integers can be consid-
ered as having a low computational complexity: the elements belonging to repU (X) have simple
syntactical properties recognized by some finite automaton. Since the seminal work of Alan Cob-
ham [9] showing that the recognizability of a set depends on the numeration system under con-
sideration, many properties of U -recognizable sets have been investigated, e.g., algebraic, logic or
automatic characterizations of U -recognizable sets for integer base numeration systems [6], exten-
sions of these characterizations to systems based on a Pisot number [5], study of the normalization
map [11], introduction of abstract numeration systems [16],. . .

If N is U -recognizable, then U is easily seen to be a linear numeration system, that is, U satisfies
a linear recurrence with integer coefficients. Conditions on a linear numeration system U for N to
be U -recognizable are considered in [13].

Among linear numeration systems, the class of systems whose characteristic polynomial is the
minimal polynomial of a Pisot number has been widely studied [5]. An example of such a system
is given by the famous Fibonacci numeration system (see Example 2). In particular, the automata
accepting these numeration languages are well-known. Another well-known class of numeration
languages, which has given rise to many successful applications concerning β-numerations, consists
of the languages arising from Bertrand systems associated with a Parry number (see Section 2)
[4, 12].

Currently little is known about the automata accepting other kind of numeration languages.
The aim of this paper is to study the structure of these automata for a wide class of numeration
systems. Our primary motivation was to understand the state complexity of languages of the
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form 0∗ repU (mN), that is, the language made up of the representations of the multiples of m in a
given numeration system (see [1, 15]), in connection with the following decidability problem. Let
U be a numeration system such that N is U -recognizable and let X ⊆ N be a U -recognizable set
of integers given by some deterministic finite automaton recognizing repU (X). For integer base
systems, Honkala has proved that one can decide whether or not X is ultimately periodic [14]. A
shorter proof of this result was given in [2]. The same decidability question was answered positively
in [8, 3] for a wide class of linear numeration systems containing the Fibonacci numeration system.
Furthermore, in [7], as an application, for the Fibonacci numeration system F , we show that the
number of states of the trim minimal automaton accepting 0∗ repF (mN) is 2m2.

In Section 2 we review the needed background concerning numeration systems. Then in Sec-
tion 3 we provide several examples in order to illustrate the different types of automata that can
arise from these numeration systems. In Section 4 we describe the conditions under which such
automata can have more than one strongly connected component and the form of any such addi-
tional strongly connected component. In the case where the numeration system has a dominant
root β > 1 (see the next section for the definition), we are able to provide a more specific descrip-
tion of the structure. For instance, we show that for any automaton A arising from a numeration
system with a dominant root β > 1, there is a morphism mapping A onto the automaton arising
from the Bertrand system associated with the number β.

2. Background on Numeration Systems

Let u, v be two finite words of the same length (resp. two infinite words) over an alphabet
A ⊂ N. We say that u is lexicographically less than v and we write u < v, if there exist p ∈ A∗,
a, b ∈ A with a < b and words u′, v′ over A such that u = pau′, v = pbv′.

If u and v are two finite words (not necessarily of the same length), then we say that u is
genealogically less than v if either |u| < |v|, or |u| = |v| and u < v (with respect to the lexicographic
order). We also write u < v to denote the genealogical order. Note that if U is a numeration
system, then for all m, n ∈ N, we have m < n if and only if repU (m) is genealogically less than
repU (n).

Observe that if uv is a greedy representation, then so is v. However, if u is a greedy represen-
tation, there is no reason for u0 to still be greedy. As an example, if U0 = 1, U1 = 3 and U2 = 5,
then 2 is a greedy representation but 20 is not.

Definition 1. A numeration system U = (Un)n≥0 is a Bertrand numeration system if, for all
w ∈ A+

U , w ∈ repU (N) ⇔ w0 ∈ repU (N).

Let us recall the theorems of Bertrand [4] (also see [18, Thm. 7.3.8]) and Parry [19] (also see
[18, Thm. 7.2.9]). Let β > 1 be a real number. The β-expansion of a real number x ∈ [0, 1] is the
sequence dβ(x) = (xi)i≥1 ∈ N

ω satisfying

x =

+∞
∑

i=1

xiβ
−i

and which is the maximal element in N
ω having this property with respect to the lexicographic

order over N. Note that the β-expansion is also obtained by using the greedy algorithm and
that it only contains letters in the canonical alphabet Aβ = [[0, ⌊β⌋]]. Also observe that, for all
x, y ∈ [0, 1], we have x < y ⇔ dβ(x) < dβ(y). The set Fact(Dβ) is the set of factors occurring in
the β-expansions of the real numbers in [0, 1). If dβ(1) = t1 · · · tm0ω, with t1, . . . , tm ∈ Aβ and
tm 6= 0, then we say that dβ(1) is finite and we set d∗β(1) = (t1 · · · tm−1(tm − 1))ω. Otherwise, we

set d∗β(1) = dβ(1). If d∗β(1) is ultimately periodic, then β is said to be a Parry number.

Lemma 1. Let x = xk−1 · · ·x0 be a word over N. We have

∀ℓ ∈ [[1, k]], xℓ−1 · · ·x00
ω

{

<
≤ dβ(1) ⇔ ∀ℓ ∈ [[1, k]],

ℓ−1
∑

i=0

xiβ
i−ℓ

{

<
≤ 1.
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Theorem 1 (Bertrand [4]). Let U = (Un)n≥0 be a numeration system. There exists a real number
β > 1 such that 0∗ repU (N) = Fact(Dβ) if and only if U is a Bertrand numeration system. In that
case, if d∗β(1) = (ti)i≥1, then

(1) Un = t1Un−1 + · · · + tnU0 + 1.

Note that if β is a Parry number, then (1) defines a linear recurrence sequence and β is a root
of its characteristic polynomial.

Theorem 2 (Parry [19]). A sequence s = (si)i≥1 over N is the β-expansion of a real number in
[0, 1) if and only if (sn+i)i≥1 is lexicographically less than d∗β(1) for all n ∈ N.

With any Parry number β is canonically associated a deterministic finite automaton Aβ =
(Qβ , qβ,0, Fβ , Aβ , δβ) accepting the language Fact(Dβ). Let d∗β(1) = t1 · · · ti(ti+1 · · · ti+p)

ω where
i ≥ 0 and p ≥ 1 are the minimal preperiod and period respectively. The set of states of Aβ

is Qβ = {qβ,0, . . . , qβ,i+p−1}. All states are final. For every j ∈ [[1, i + p]], we have tj edges
qβ,j−1 → qβ,0 labeled by 0, . . . , tj − 1 and, for j < i + p, one edge qβ,j−1 → qβ,j labeled by tj .
There is also an edge qβ,i+p−1 → qβ,i labeled by ti+p. See, for instance, [12, 17]. Note that in [18,
Thm. 7.2.13], Aβ is shown to be the trim minimal automaton of Fact(Dβ). A deterministic finite
automaton is trim if it is accessible and coaccessible, i.e., any state can be reached from the initial
state and from any state, a final state can be reached.

Example 1. Let β be the dominant root of the polynomial X3−2X2−1. We have dβ(1) = 2010ω

and d∗β(1) = (200)ω. The automaton Aβ is depicted in Figure 1.

1 2 3

0, 1

2 0

0

Figure 1. The automaton Aβ for dβ(1) = 2010ω.

Definition 2. Let U be a linear numeration system. If limn→+∞ Un+1/Un = β for some real
β > 1, then U is said to satisfy the dominant root condition and β is called the dominant root of
the recurrence.

Remark 1. If U is a linear numeration system satisfying the dominant root condition and if
repU (N) is regular, then the dominant root β is a Parry number [13].

Let AU = (QU , qU,0, FU , AU , δU ) be the trim minimal automaton of the language 0∗ repU (N)
having #AU states. In the case where U has a dominant root β > 1, some connections between
AU and Aβ have been previously explored by several authors [12, 17, 18]. Our aim in this paper
is to provide a more comprehensive analysis of the relationship between these two automata.

Recall that the states of the minimal automaton of an arbitrary language L over an alphabet
A are given by the equivalence classes of the Myhill-Nerode congruence ∼L, which is defined by

∀w, z ∈ A∗, w ∼L z ⇔ {x ∈ A∗ | wx ∈ L} = {x ∈ A∗ | zx ∈ L}.
Equivalently, the states of the minimal automaton of L correspond to the sets w−1L = {x ∈ A∗ |
wx ∈ L}. In this paper the symbol ∼ will be used to denote Myhill-Nerode congruences.

3. Examples of Automata AU

Example 2 presents the well-known Fibonacci numeration system. Note that in Examples 2
and 3, the automaton AU is exactly an automaton of the kind Aβ .

Example 2 (Fibonacci numeration system). With Un+2 = Un+1 + Un and U0 = 1, U1 = 2, we
get the usual Fibonacci numeration system associated with the Golden Ratio. The dominant root
is β = (1 +

√
5)/2. For this system, AU = {0, 1} and AU accepts all words over AU except those

containing the factor 11. Moreover, we have dβ(1) = 110ω and d∗β(1) = (10)ω.
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0

1

0

Figure 2. The automaton AU for the Fibonacci numeration system.

The second example is also classical. Compared to the previous example where the greedy
expansions of the real numbers in [0, 1) avoid a single factor, here the greedy expansions avoid
factors in an infinite regular language.

Example 3 (Square of the Golden Ratio). With Un+2 = 3Un+1 − Un, U0 = 1 and U1 = 3, we

get the Bertrand numeration system associated with β = (3 +
√

5)/2 (the square of the Golden
Ratio), which results in a sofic system (the set of forbidden factors is an infinite regular language).
We have AU = {0, 1, 2} and 21∗2 is the set of forbidden factors. Moreover dβ(1) = d∗β(1) = 21ω.

0, 1 1

2

0

Figure 3. The automaton AU for the Bertrand system associated with (3 +
√

5)/2.

The next example reveals some interesting properties and should be compared with the usual
Fibonacci system. Observe that we have the same strongly connected component as for the
Fibonacci system but the automaton in Figure 4 has one more state, from which only finitely
many words may be accepted.

Example 4 (Modified Fibonacci system). Consider the sequence U = (Un)n≥0 defined by the
recurrence Un+2 = Un+1 + Un of Example 2 but with the initial conditions U0 = 1, U1 = 3.
We get a numeration system (Un)n≥0 = 1, 3, 4, 7, 11, 18, 29, 47, . . . which is no longer Bertrand.
Indeed, 2 is a greedy representation but 20 is not because repU (valU (20)) = 102. For this system,
AU = {0, 1, 2} and AU is depicted in Figure 4.

1 2

3

0

1

2
0

Figure 4. The automaton AU for the modified Fibonacci system.

The following example illustrates the case where β is an integer.

Example 5. Consider the numeration system U = (Un)n≥0 defined by Un+1 = 3Un + 2 and
U0 = 1. We have AU = {0, 1, 2, 3, 4}. This system is linear and has the dominant root β = 3. We
have dβ(1) = 30ω and d∗β(1) = 2ω. The automaton AU is depicted in Figure 5.

0, 1, 2

3 1

0

4

Figure 5. The automaton AU for Un+1 = 3Un + 2 and U0 = 1.

As a prelude to Theorem 3, the next example shows that when the initial conditions are changed,
the automaton AU may have the same transition graph as the canonical automaton Aβ , but the
set of final states may change.
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Example 6. Consider the recurrence relation Un+3 = 2Un+2 + Un. If we choose (U0, U1, U2) =
(1, 3, 7), we get the Bertrand numeration system U such that AU is exactly the automaton Aβ

from Example 1 depicted in Figure 1. If (U0, U1, U2) = (1, 2, 4), we get the same graph but only
state 1 is final. If (U0, U1, U2) = (1, 2, 5), we get the same graph but only states 1 and 3 are final.
Finally, with (U0, U1, U2) = (1, 3, 6), states 1 and 2 are final.

4. Structure of the Automaton AU

In this section we give a precise description of the automaton AU when U is a linear numeration
system satisfying the dominant root condition and such that repU (N) is regular.

Definition 3. A directed graph is strongly connected if for all pairs of vertices (s, t), there is
a directed path from s to t. A strongly connected component of a directed graph is a maximal
strongly connected subgraph. Such a component is said to be non-trivial if it does not consist of
a single vertex with no loop.

For instance, state 3 in Figure 4 is not a strongly connected component.

Theorem 3. Let U be a linear numeration system such that repU (N) is regular.

(i) The automaton AU has a non-trivial strongly connected component CU containing the
initial state.

(ii) If p is a state in CU , then there exists N ∈ N such that δU (p, 0n) = qU,0 for all n ≥ N . In
particular, if q (resp. r) is a state in CU (resp. not in CU) and if δU (q, σ) = r, then σ 6= 0.

(iii) If CU is the only non-trivial strongly connected component of AU , then we have lim
n→+∞

Un+1−
Un = +∞.

(iv) If lim
n→+∞

Un+1 − Un = +∞, then the state δU (qU,0, 1) belongs to CU .

Example 7. This example illustrates property (iii) of Theorem 3. Let U be the Bertrand numer-
ation system associated with a Parry number β > 1. From Theorems 1 and 2, we see that N is
U -recognizable and AU has only one non-trivial strongly connected component.

Proof. (i) The initial state qU,0 has a loop with label 0 and therefore AU has a non-trivial strongly
connected component CU containing qU,0.

(ii) Let p be a state in CU . There exist u, v ∈ A∗
U such that δU (qU,0, u) = p and δU (p, v) = qU,0.

We have

∀x ∈ A∗
U , uvx ∈ 0∗ repU (N) ⇔ u0|v|x ∈ 0∗ repU (N).

Indeed, if uvx is a greedy representation, so is u0|v|x. Furthermore, if u0|v|x is a greedy rep-
resentation, so is x, which must be accepted from qU,0 = δU (qU,0, uv). Hence, uvx is a greedy

representation. In other words, uv ∼0∗ rep
U

(N) u0|v| and δU (p, 0|v|) = qU,0. Since qU,0 has a loop
labeled by 0, we obtain the desired result.

(iii) Assume that AU has only one non-trivial strongly connected component CU . Since 10n

is a greedy representation for all n, infinitely many words are accepted from δU (qU,0, 1), and so
δU (qU,0, 1) belongs to CU . From (ii), there exists a minimal t ∈ N such that δU (qU,0, 10t) = qU,0.
Observe that Un is the number of words of length n in 0∗ repU (N). For each word x (resp. y) in
0∗ repU (N) of length n (resp. n − t), the word 0x (resp. 10ty) has length n + 1 and belongs to
0∗ repU (N). Therefore, we obtain Un+1 ≥ Un + Un−t for all n.

(iv) Assume that lim
n→+∞

Un+1 − Un = +∞. It is enough to show that there exists ℓ such that

δU (qU,0, 10ℓ) = qU,0. That is, we have to show that

∃ℓ ∈ N, ∀x ∈ A∗
U , 10ℓx ∈ 0∗ repU (N) ⇔ x ∈ 0∗ repU (N).

Since we can always distinguish two states by a word of length at most g = (#AU )2, it is equivalent
to show that

∃ℓ ∈ N, ∀x ∈ A≤g
U , 10ℓx ∈ 0∗ repU (N) ⇔ x ∈ 0∗ repU (N),

where A≤g
U denotes the set of the words of length at most g over AU . Since Un+1 − Un tends to

+∞, there exists ℓ such that for all n ≥ ℓ, we have Un+1 − Un > Ug − 1, which shows that 10ℓx
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is a greedy representation for any greedy representation x of length less than or equal to g. The
other direction is immediate.

�

Theorem 4. Let U be a linear numeration system having a dominant root β > 1 such that repU (N)
is regular. Then we have the following.

(i) Let x be a word over AU such that infinitely many words are accepted from δU (qU,0, x).
Then y0ω ≤ dβ(1) for all suffixes y of x. Furthermore, the state δU (qU,0, x) belongs to CU

if and only if y0ω < dβ(1) for all suffixes y of x. In particular, in this case, the word x
only contains letters in [[0, ⌈β⌉ − 1]].

(ii) There exists a map Φ: CU → Qβ such that Φ(qU,0) = qβ,0, and for all states q and all
letters σ such that q and δU (q, σ) are states in CU , we have Φ(δU (q, σ)) = δβ(Φ(q), σ).
Furthermore, if q is a state in CU and σ is the maximal letter that can be read from Φ(q)
in Aβ, then for any letter α in AU , the state δU (q, α) is in CU if and only if α ≤ σ.

(iii) If there exists a non-trivial strongly connected component distinct from CU , then dβ(1) is
finite. In this case, if s denotes the longest prefix of dβ(1) which does not end with 0, then
δU (qU,0, u) ∈ CU for all proper prefixes u of s and δU (qU,0, s) /∈ CU . In addition, if x is
a word over AU such that δU (qU,0, x) is a state leading to such a component, then there
exists a word y over [[0, ⌈β⌉ − 1]] such that δU (qU,0, y) ∈ Φ−1(qβ,0) and x = ys0n for some
n. In particular, the number of non-trivial strongly connected components distinct from
CU is bounded by #Φ−1(qβ,|s|−1).

(iv) If Un+1/Un → β− as n tends to infinity, then the only non-trivial strongly connected
component is CU .

(v) If the following conditions hold:
(v.1) Un+1/Un → β+, as n tends to infinity,
(v.2) there exists infinitely many n such that Un+1/Un 6= β, and
(v.3) dβ(1) is finite,
then AU has more than one non-trivial strongly connected component. Note that, if β /∈ N,
then (v.2) holds true.

Example 8. This example illustrates property (ii) of Theorem 4. Consider the same recurrence
relation as in Example 6 but with (U0, U1, U2) = (1, 5, 6). In Example 6, the automaton Aβ with
dβ(1) = 2010ω and AU had the same transition graph. Here we get a more complex situation
described in Figure 6. The non-trivial strongly connected component CU consists of the states
QU \ {g}. The map Φ is the map that sends the states a,b, c onto 1; the states d, e onto 2; and
the states f onto 3; where {1,2,3} is the set of states of the automaton Aβ given in Figure 1.

a d f

b

c

e

g

0

2 0

0

1

3, 4

1

2

2

0

1

0

0

Figure 6. The automaton AU for (U0, U1, U2) = (1, 5, 6).

Example 9. We give an illustration of the fact that if AU contains more than one strongly
connected component, then all components other than CU consist of cycles labeled by 0. This
illustrates, in particular, properties (iii) and (v) of Theorem 4. Here we are able to build a cycle
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with label 0t for all t ∈ N. Consider the sequence defined by U0 = 1, Utn+1 = 2Utn + 1 and
Utn+r = 2Utn+r−1, for 1 < r ≤ t. This is a linear recurrence sequence and we get 0∗ repU (N) =
{0, 1}∗ ∪ {0, 1}∗2(0t)∗.

Remark 2. Let q be a state of AU distinct from qU,0. Since AU is minimal, there exists a word
wq that distinguishes qU,0 and q: that is, either wq is accepted from qU,0 and not from q, or wq is
accepted from q and not from qU,0. Let us show that in the setting of numeration languages the
second situation never occurs. Let x be such that δU (qU,0, x) = q. Assume that xwq is accepted
by AU . Then wq is a greedy representation which must be accepted from qU,0.

Proof. (i) Let x = xk−1 · · ·x0 be a word over AU such that infinitely many words are accepted
from δU (qU,0, x). Due to the greediness of the representations, there exist infinitely many n such
that x0n is a greedy representation. We obtain

∀ℓ ∈ [[1, k]],

ℓ−1
∑

i=0

xiUi+n < Uℓ+n

for infinitely many n. Dividing by Uℓ+n and letting n tend to infinity, we get

∀ℓ ∈ [[1, k]],

ℓ−1
∑

i=0

xiβ
i−ℓ ≤ 1.

Now assume that δU (qU,0, x) belongs to CU . From (ii) and (iv), there exist m, N ∈ N such that
for all n ≥ N , we have δU (qU,0, x0m10n) = qU,0, which is a final state. By the same reasoning as
before, we obtain that

∀ℓ ∈ [[1, k]],

ℓ−1
∑

i=0

xiβ
i−ℓ + β−ℓ−m−1 ≤ 1.

This implies that

∀ℓ ∈ [[1, k]],

ℓ−1
∑

i=0

xiβ
i−ℓ < 1.

To show the other direction, now assume that δU (qU,0, x) does not belong to CU . For all n ∈ N,
we have δU (qU,0, x0n) 6= qU,0. Therefore, by Remark 2, for all n ∈ N, there exists a greedy

representation w(n) of length at most (#AU )2 such that x0nw(n) is not a greedy representation.
Hence, by the pigeonhole principle, there exists a greedy representation w of length at most
(#AU )2 such that for infinitely many n, the word x0nw is not a greedy representation. Therefore

∃ℓ ∈ [[1, k]],

ℓ−1
∑

i=0

xiUi+n+|w| + valU (w) ≥ Uℓ+n+|w|

for infinitely many n. We conclude that

∃ℓ ∈ [[1, k]],

ℓ−1
∑

i=0

xiβ
i−ℓ ≥ 1.

Using Lemma 1, we obtain the desired result.
(ii) Consider the automaton whose transition diagram is the subgraph induced by CU and

where all states are assumed to be final. From (i) and Theorem 2, the language accepted by
this automaton is exactly the same as the one accepted by Aβ . Note that Aβ is a trim minimal
automaton [18, Theorem 7.2.13]. From a classical result in automata theory (see, for instance,
[10, Chap. 3, Thm. 5.2]), such a map Φ exists.

(iii) Assume that there exists a non-trivial strongly connected component distinct from CU .
Consider a state q not in CU leading to such a component and a word u over AU such that
δU (qU,0, u) = q. Take the longest prefix x of u such that δU (qU,0, x) ∈ CU . Hence x ∈ A∗

β and if

σ ∈ AU and v ∈ A∗
U are such that u = xσv, then δU (qU,0, xσ) /∈ CU . Using (i), there exists a suffix

z of x such that dβ(1) = zσ0ω, and so dβ(1) is finite. The longest prefix of dβ(1) which does not
end with 0 is s = zσ. Furthermore, by (i) again, we see that v belongs to 0∗.
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We still have to show that if x = yz, then δU (qU,0, y) belongs to Φ−1(qβ,0), or equivalently in
view of (ii), δU (qβ,0, y) = qβ,0. This is immediate by the definitions of Aβ and dβ(1).

(iv) Suppose that Un+1/Un → β− but AU has more than one non-trivial strongly connected
component. Let x = xk−1 · · ·x0 be a word such that δ(qU,0, x) is not in CU and such that there
exists an infinite sequence j1 < j2 < · · · such that for all n ≥ 1, the word x0jn is a greedy
representation. Thus for all ℓ ∈ [[1, k]],

(2) ∀n ≥ 1,

ℓ−1
∑

i=0

xi

Ui+jn

Uℓ+jn

< 1.

Since Un+1/Un → β− and by (i), we see that

ℓ−1
∑

i=0

xi

Ui+jn

Uℓ+jn

−→
(

ℓ−1
∑

i=0

xiβ
i−ℓ

)+

= 1+ as n → +∞,

which is not possible in view of (2).
(v) Let dβ(1) = s0ω, where s = sk−1 · · · s0 is a word over Aβ . In view of (iii), to show that

there is a second strongly connected component, it suffices to show that for infinitely many n the
words s0n are greedy representations. Equivalently, it suffices to show that for infinitely many n,
we have

(3) ∀ℓ ∈ [[1, k]],

ℓ−1
∑

i=0

si

Ui+n

Uℓ+n

< 1.

Let ℓ ∈ [[1, k]]. We have

βℓ−k

ℓ−1
∑

i=0

siβ
i−ℓ =

ℓ−1
∑

i=0

siβ
i−k =

k−1
∑

i=0

siβ
i−k −

k−1
∑

i=ℓ

siβ
i−k ≤ βℓ−k.

Applying the hypotheses (v.1) and (v.2), we obtain (3), as required. �

5. Perspectives and Conjectures

(1) We use the same notations as in Theorem 3. In the case where the numeration system U
has a dominant root β > 1, if dβ(1) is finite, then d∗β(1) = (t1 · · · tm−1(tm − 1))ω where

tm 6= 0 and then we clearly have #Φ−1(qβ,i) ≥ #Φ−1(qβ,i+1) for all i ∈ [[0, m − 2]]. We
conjecture that, in this case, #Φ−1(qβ,m−1) = 1. In other words, we conjecture that, in
this case, AU has at most two non-trivial strongly connected components.

(2) When the numeration system U does not satisfy the dominant root condition, we have not
provided a precise description of AU . In this case, new kinds of phenomena may appear.
For instance, in the following two examples, there exist more than one non-trivial strongly
connected components containing transitions not labeled by 0. Furthermore, thanks to
the first example, we see that AU may have more than two non-trivial strongly connected
components.

Example 10. Consider the numeration system (Un)n≥0 defined by Un+3 = 24Un and
(U0, U1, U2) = (1, 2, 6). The corresponding trim minimal automaton is depicted in Fig-
ure 7. States in the same strongly connected component have the same label: 1, 2 and 3,
respectively.

Example 11. Consider the numeration system (Un)n≥0 defined by Un+4 = 3Un+2 + Un

and (U0, U1, U2, U3) = (1, 2, 3, 7). The corresponding trim minimal automaton is depicted
in Figure 8. Again, states in the same strongly connected component have the same la-
bel: 1 and 2, respectively. Even if the sequence Un+1/Un does not converge, we have

limn→+∞ U2n+2/U2n = limn→+∞ U2n+3/U2n+1 = (3 +
√

13)/2. Note that the latter ob-
servation is consistent with Hollander’s conjecture [13].
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1

2 2 2

3 3 30, 1

2

0, 1 0, 1

3

0, 1, 2 0, 1

2, 3

3

0, 1, 2, 3

0, 1, 2

2

Figure 7. An automaton AU for a numeration system U = (Un)n≥0 not satis-
fying the dominant root condition.

1 1 2 2 2 2

0

1

0

1 0

1

0

0, 1

2

2

0

Figure 8. An automaton AU for a numeration system U = (Un)n≥0 not satis-
fying the dominant root condition.
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