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ABSTRACT. We study the structure of automata accepting the greedy representations of N in a
wide class of numeration systems. We describe the conditions under which such automata can
have more than one strongly connected component and the form of any such additional com-
ponents. Our characterization applies, in particular, to any automaton arising from a Bertrand
numeration system. Furthermore, we show that for any automaton A arising from a system
with a dominant root 8 > 1, there is a morphism mapping A onto the automaton arising from
the Bertrand system associated with the number 3.

1. INTRODUCTION

In this paper, when i, j are integers satisfying ¢ < j, we use the notation [i, j] to designate the
interval of integers {i,i +1,...,7 — 1,j}. Moreover, when we write x = x,,_1 - - - &g where z is a
word, we mean that z; is a letter for all ¢ € [0,n — 1].

An increasing sequence U = (Uy,)n>0 of integers is a numeration system, or a numeration basis,

if Uy =1 and Cy := suanOfU{}il] < +o0o. We let Ay be the alphabet [0,Cy — 1]. A greedy

representation of a non-negative integer n is a word w = wy_1 - - - wo over Ay satisfying

-1 Jj—1
ZwiUi:nand VjE[[l,f]], ZwiUi<Uj'
i=0 1=0

We denote by repy(n) the greedy representation of n > 0 satisfying we—1 # 0. By convention,
repy;(0) is the empty word e. The language rep;; (N) is called the numeration language. A set
X of integers is U-recognizable if repy (X) is regular, i.e., accepted by a finite automaton. The
numerical value map valy : Aj; — N maps any word dy—1 - - - dp over Ay to Zf;é d;U;.

From the point of view of Chomsky hierarchy, a U-recognizable set X of integers can be consid-
ered as having a low computational complexity: the elements belonging to rep; (X) have simple
syntactical properties recognized by some finite automaton. Since the seminal work of Alan Cob-
ham [9] showing that the recognizability of a set depends on the numeration system under con-
sideration, many properties of U-recognizable sets have been investigated, e.g., algebraic, logic or
automatic characterizations of U-recognizable sets for integer base numeration systems [6], exten-
sions of these characterizations to systems based on a Pisot number [5], study of the normalization
map [11], introduction of abstract numeration systems [16],. ..

If N is U-recognizable, then U is easily seen to be a linear numeration system, that is, U satisfies
a linear recurrence with integer coefficients. Conditions on a linear numeration system U for N to
be U-recognizable are considered in [13].

Among linear numeration systems, the class of systems whose characteristic polynomial is the
minimal polynomial of a Pisot number has been widely studied [5]. An example of such a system
is given by the famous Fibonacci numeration system (see Example 2). In particular, the automata
accepting these numeration languages are well-known. Another well-known class of numeration
languages, which has given rise to many successful applications concerning S-numerations, consists
of the languages arising from Bertrand systems associated with a Parry number (see Section 2)
[4, 12].

Currently little is known about the automata accepting other kind of numeration languages.
The aim of this paper is to study the structure of these automata for a wide class of numeration
systems. Our primary motivation was to understand the state complexity of languages of the
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form 0* rep;;(mN), that is, the language made up of the representations of the multiples of m in a
given numeration system (see [1, 15]), in connection with the following decidability problem. Let
U be a numeration system such that N is U-recognizable and let X C N be a U-recognizable set
of integers given by some deterministic finite automaton recognizing rep;;(X). For integer base
systems, Honkala has proved that one can decide whether or not X is ultimately periodic [14]. A
shorter proof of this result was given in [2]. The same decidability question was answered positively
in [8, 3] for a wide class of linear numeration systems containing the Fibonacci numeration system.
Furthermore, in [7], as an application, for the Fibonacci numeration system F', we show that the
number of states of the trim minimal automaton accepting 0* rep(mN) is 2m?.

In Section 2 we review the needed background concerning numeration systems. Then in Sec-
tion 3 we provide several examples in order to illustrate the different types of automata that can
arise from these numeration systems. In Section 4 we describe the conditions under which such
automata can have more than one strongly connected component and the form of any such addi-
tional strongly connected component. In the case where the numeration system has a dominant
root B > 1 (see the next section for the definition), we are able to provide a more specific descrip-
tion of the structure. For instance, we show that for any automaton .4 arising from a numeration
system with a dominant root 8 > 1, there is a morphism mapping A onto the automaton arising
from the Bertrand system associated with the number .

2. BACKGROUND ON NUMERATION SYSTEMS

Let w,v be two finite words of the same length (resp. two infinite words) over an alphabet
A C N. We say that u is lexicographically less than v and we write u < v, if there exist p € A*,
a,b € A with a < b and words v, v" over A such that u = pav’, v = pbv'.

If uw and v are two finite words (not necessarily of the same length), then we say that u is
genealogically less than v if either |u| < |v|, or |u| = |v| and w < v (with respect to the lexicographic
order). We also write u < v to denote the genealogical order. Note that if U is a numeration
system, then for all m,n € N, we have m < n if and only if rep;;(m) is genealogically less than
repy (n).

Observe that if uv is a greedy representation, then so is v. However, if u is a greedy represen-
tation, there is no reason for u0 to still be greedy. As an example, if Uy =1, Uy = 3 and Uy = 5,
then 2 is a greedy representation but 20 is not.

Definition 1. A numeration system U = (Uy)n>0 is a Bertrand numeration system if, for all
w € Af;, w € repy (N) < w0 € repy (N).

Let us recall the theorems of Bertrand [4] (also see [18, Thm. 7.3.8]) and Parry [19] (also see
[18, Thm. 7.2.9]). Let 8 > 1 be a real number. The 3-ezpansion of a real number = € [0, 1] is the
sequence dg(z) = (z;)i>1 € N” satisfying

—+oo
r= Y
i=1

and which is the maximal element in N having this property with respect to the lexicographic
order over N. Note that the [-expansion is also obtained by using the greedy algorithm and
that it only contains letters in the canonical alphabet Az = [0, |3]]. Also observe that, for all
x,y € [0,1], we have z < y < dg(x) < dg(y). The set Fact(Dg) is the set of factors occurring in
the [-expansions of the real numbers in [0,1). If dg(1) = ¢1---t,0¥, with ¢1,...,¢, € Ag and
tm # 0, then we say that dg(1) is finite and we set dj3(1) = (t1 -+ ty—1(tm — 1)), Otherwise, we
set djz(1) = dg(1). If dj(1) is ultimately periodic, then 8 is said to be a Parry number.

Lemma 1. Let x = xp_1--- 2o be a word over N. We have

-1
w < i—

Ve € [1,K], wo—1-- 200 {S ds(l) < Vle[l,k], E z; 3 f{

1=0

IN A
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Theorem 1 (Bertrand [4]). Let U = (Uy,)n>0 be a numeration system. There exists a real number
B > 1 such that 0* repy; (N) = Fact(Dg) if and only if U is a Bertrand numeration system. In that
case, if dj(1) = (t;)i>1, then

(1) Up,=t1Upn-1+ -+ t,Up+ 1.

Note that if 8 is a Parry number, then (1) defines a linear recurrence sequence and 3 is a root
of its characteristic polynomial.

Theorem 2 (Parry [19]). A sequence s = (s;)i>1 over N is the 3-expansion of a real number in
[0,1) if and only if (sp+i)i>1 is lexicographically less than dj(1) for all n € N.

With any Parry number (§ is canonically associated a deterministic finite automaton Ag =
(Qp,4p,0, F3, A, 65) accepting the language Fact(Dg). Let dj(1) = t1---#;(tis1 - tiyp)” where
i > 0 and p > 1 are the minimal preperiod and period respectively. The set of states of Ag
is Qs = {¢s,0,-.-,48,i+p—1}- All states are final. For every j € [1,i + p], we have ¢; edges
48,j—1 — qg,0 labeled by 0,...,t; — 1 and, for j < ¢ + p, one edge ¢g,j—1 — ¢s,; labeled by t;.
There is also an edge ¢ +p—1 — ¢3,; labeled by ¢;1,. See, for instance, [12, 17]. Note that in [18,
Thm. 7.2.13], Ag is shown to be the trim minimal automaton of Fact(Dg). A deterministic finite
automaton is trim if it is accessible and coaccessible, i.e., any state can be reached from the initial
state and from any state, a final state can be reached.

Example 1. Let 3 be the dominant root of the polynomial X3 —2X?2—1. We have dg(1) = 2010
and dj(1) = (200)“. The automaton Ag is depicted in Figure 1.

0,1

FIGURE 1. The automaton Ag for dg(1) = 2010~.

Definition 2. Let U be a linear numeration system. If lim,, o Upt1/U, = B for some real
B > 1, then U is said to satisfy the dominant root condition and 3 is called the dominant root of
the recurrence.

Remark 1. If U is a linear numeration system satisfying the dominant root condition and if
repy (N) is regular, then the dominant root 3 is a Parry number [13].

Let Ay = (Qu,qu,0, Fu, Au,0u) be the trim minimal automaton of the language 0* repy; (N)
having # Ay states. In the case where U has a dominant root 8 > 1, some connections between
Ay and Ag have been previously explored by several authors [12, 17, 18]. Our aim in this paper
is to provide a more comprehensive analysis of the relationship between these two automata.

Recall that the states of the minimal automaton of an arbitrary language L over an alphabet
A are given by the equivalence classes of the Myhill-Nerode congruence ~,, which is defined by

Vw,z€ A", w~p z e {ze A" |wr e L} ={x € A" | zz € L}.
Equivalently, the states of the minimal automaton of L correspond to the sets w™!L = {z € A* |

wz € L}. In this paper the symbol ~ will be used to denote Myhill-Nerode congruences.

3. EXAMPLES OF AUTOMATA Ay

Example 2 presents the well-known Fibonacci numeration system. Note that in Examples 2
and 3, the automaton Ay is exactly an automaton of the kind Ag.

Example 2 (Fibonacci numeration system). With U, 42 = U,y1 + U, and Uy = 1, Uy = 2, we
get the usual Fibonacci numeration system associated with the Golden Ratio. The dominant root
is 8 = (14 v/5)/2. For this system, Ay = {0,1} and Ay accepts all words over Ay except those
containing the factor 11. Moreover, we have dg(1) = 110“ and dj(1) = (10)~.
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0

0
FIGURE 2. The automaton Ay for the Fibonacci numeration system.

The second example is also classical. Compared to the previous example where the greedy
expansions of the real numbers in [0,1) avoid a single factor, here the greedy expansions avoid
factors in an infinite regular language.

Example 3 (Square of the Golden Ratio). With U,19 = 3Up41 — Uy, Up = 1 and Uy = 3, we
get the Bertrand numeration system associated with 8 = (3 4+ v/5)/2 (the square of the Golden
Ratio), which results in a sofic system (the set of forbidden factors is an infinite regular language).
We have Ay = {0, 1,2} and 21*2 is the set of forbidden factors. Moreover dg(1) = dj(1) = 21“.

0,1 1

0
FIGURE 3. The automaton Ay for the Bertrand system associated with (3 + v/5)/2.

The next example reveals some interesting properties and should be compared with the usual
Fibonacci system. Observe that we have the same strongly connected component as for the
Fibonacci system but the automaton in Figure 4 has one more state, from which only finitely
many words may be accepted.

Example 4 (Modified Fibonacci system). Consider the sequence U = (U, ),>0 defined by the
recurrence Up1o = Upyyq + U, of Example 2 but with the initial conditions Uy = 1, U; = 3.
We get a numeration system (Up)n>0 = 1,3,4,7,11,18,29,47, ... which is no longer Bertrand.
Indeed, 2 is a greedy representation but 20 is not because repy; (valy (20)) = 102. For this system,
Ay ={0,1,2} and Ay is depicted in Figure 4.

0

FIGURE 4. The automaton Ay for the modified Fibonacci system.
The following example illustrates the case where [ is an integer.

Example 5. Consider the numeration system U = (U,)n>0 defined by U,41 = 3U, + 2 and
Up = 1. We have Ay = {0,1,2,3,4}. This system is linear and has the dominant root § = 3. We
have dg(1) = 30 and dj(1) = 2*. The automaton Ay is depicted in Figure 5.

0,1,2 0
s W

FI1GURE 5. The automaton Ay for U,4+1 = 3U,, +2 and Uy = 1.

As a prelude to Theorem 3, the next example shows that when the initial conditions are changed,
the automaton Ay may have the same transition graph as the canonical automaton Ag, but the
set of final states may change.
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Example 6. Consider the recurrence relation U,,+35 = 2U, 42 + Uy,. If we choose (Uy, Uy, Us) =
(1,3,7), we get the Bertrand numeration system U such that Ay is exactly the automaton Ag
from Example 1 depicted in Figure 1. If (Uy, Uy,Usz) = (1,2,4), we get the same graph but only
state 1 is final. If (Uy, Uy, Us) = (1,2,5), we get the same graph but only states 1 and 3 are final.
Finally, with (Uy, U1, Us) = (1, 3,6), states 1 and 2 are final.

4. STRUCTURE OF THE AUTOMATON Ay

In this section we give a precise description of the automaton Ay when U is a linear numeration
system satisfying the dominant root condition and such that rep; (N) is regular.

Definition 3. A directed graph is strongly connected if for all pairs of vertices (s,t), there is
a directed path from s to t. A strongly connected component of a directed graph is a maximal
strongly connected subgraph. Such a component is said to be non-trivial if it does not consist of
a single vertex with no loop.

For instance, state 3 in Figure 4 is not a strongly connected component.

Theorem 3. Let U be a linear numeration system such that repy(N) is regular.

(i) The automaton Ay has a non-trivial strongly connected component Cy containing the
initial state.
(ii) Ifp is a state in Cy, then there exists N € N such that éy(p,0™) = qu,o for alln > N. In
particular, if q (resp. r) is a state in Cy (resp. not in Cy) and if dy(q,0) = r, then o # 0.
(iii) IfCy is the only non-trivial strongly connected component of Ay, then we have hIJIrloo Upy1—

U, = +oo.
(iv) If lirf Unt1 — Up = 400, then the state duy(qu.o,1) belongs to Cy .

Example 7. This example illustrates property (iii) of Theorem 3. Let U be the Bertrand numer-
ation system associated with a Parry number § > 1. From Theorems 1 and 2, we see that N is
U-recognizable and Ay has only one non-trivial strongly connected component.

Proof. (i) The initial state qy,o has a loop with label 0 and therefore Ay has a non-trivial strongly
connected component Cyy containing qyo.

(ii) Let p be a state in Cyy. There exist u, v € Ajf; such that 0y (qu,0,u) = p and 6y (p,v) = qu,o-
We have

Vo € Aj;, uwvz € 0 repy (N) < w0z € 0% repy (N).
Indeed, if wvz is a greedy representation, so is u0/lz. Furthermore, if u0/"lz is a greedy rep-
resentation, so is x, which must be accepted from quo = dv(qu,,uv). Hence, uvz is a greedy
representation. In other words, uv ~g« rep,, () u0!*l and 6y (p,0/"l) = quo. Since quo has a loop
labeled by 0, we obtain the desired result.

(iii) Assume that Ay has only one non-trivial strongly connected component Cyy. Since 10™
is a greedy representation for all n, infinitely many words are accepted from dy(qu,0,1), and so
dv(qu,0,1) belongs to Cy. From (ii), there exists a minimal ¢ € N such that dy(qu.0,10") = qu.o-
Observe that U, is the number of words of length n in 0* rep;(N). For each word z (resp. y) in
0*repy (N) of length n (resp. n —t), the word Oz (resp. 10%y) has length n + 1 and belongs to
0* repy (N). Therefore, we obtain Uy11 > Uy, + U,,—; for all n.

(iv) Assume that ngrilw Up+1 — U, = +00. It is enough to show that there exists ¢ such that

5 (qu.0,10%) = quo. That is, we have to show that
N, Vo € Ay, 10°z € 0% repy (N) & € 0% repy (N).

Since we can always distinguish two states by a word of length at most g = (#.A4y)?, it is equivalent
to show that
I eN, Vo € Agg, 10°z € 0* repy (N) & 2 € 0" repy (N),

where A[%g denotes the set of the words of length at most g over Ay. Since U, 1 — U,, tends to
~+00, there exists £ such that for all n > ¢, we have U, — U, > Uy — 1, which shows that 10fx
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is a greedy representation for any greedy representation x of length less than or equal to g. The
other direction is immediate.

O

Theorem 4. Let U be a linear numeration system having a dominant root 3 > 1 such that repy; (N)
is reqular. Then we have the following.

(i)

(i)

(iii)

(iv)
(v)

Let x be a word over Ay such that infinitely many words are accepted from du(qu,o, ).
Then y0* < dg(1) for all suffizes y of x. Furthermore, the state oy (qu,o, ) belongs to Cy
if and only if y0* < dg(1) for all suffizes y of x. In particular, in this case, the word x
only contains letters in [0, [5] — 1].

There exists a map ®: Cy — Qp such that ®(quo) = gp,0, and for all states g and all
letters o such that q and 6y(q,o0) are states in Cy, we have ®(0y(q,0)) = 03(2(q),0).
Furthermore, if q is a state in Cy and o is the mazimal letter that can be read from ®(q)
in Ag, then for any letter o in Ay, the state oy (q, @) is in Cy if and only if o < o.

If there exists a non-trivial strongly connected component distinct from Cy, then dg(1) is
finite. In this case, if s denotes the longest prefiz of dg(1) which does not end with 0, then
0u(qu,o,u) € Cu for all proper prefives u of s and duy(quo,s) ¢ Cu. In addition, if x is
a word over Ay such that 0y (qu,o,x) is a state leading to such a component, then there
exists a word y over [0, [B] — 1] such that v (qu.0,y) € 2~ (gp.0) and x = ysO™ for some
n. In particular, the number of non-trivial strongly connected components distinct from
Cy is bounded by #@71(%)‘“_1).

If Uyt1/U, — B~ as n tends to infinity, then the only non-trivial strongly connected
component is Cy .

If the following conditions hold:
(v.1) Ups1/Upn — BT, as n tends to infinity,
(v.2) there exists infinitely many n such that U,11/U, # B, and
(v.3) dg(1) is finite,

then Ay has more than one non-trivial strongly connected component. Note that, if 5 ¢ N,
then (v.2) holds true.

Example 8. This example illustrates property (i) of Theorem 4. Consider the same recurrence
relation as in Example 6 but with (Up, U1,Uz2) = (1,5,6). In Example 6, the automaton Ag with
dg(1l) = 2010¥ and Ay had the same transition graph. Here we get a more complex situation
described in Figure 6. The non-trivial strongly connected component Cy consists of the states
Qu \ {g}- The map & is the map that sends the states a, b, c onto 1; the states d, e onto 2; and
the states f onto 3; where {1, 2,3} is the sg:%)f states of the automaton Ag given in Figure 1.

FIGURE 6. The automaton Ay for (Up, Uy, Us) = (1,5, 6).

Example 9. We give an illustration of the fact that if Ay contains more than one strongly
connected component, then all components other than Cy consist of cycles labeled by 0. This
illustrates, in particular, properties (iii) and (v) of Theorem 4. Here we are able to build a cycle
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with label 0¢ for all ¢ € N. Consider the sequence defined by Uy = 1, Uye1 = 2Uy, + 1 and
Utntr = 2Up4r—1, for 1 < r < ¢. This is a linear recurrence sequence and we get 0* repy; (N) =
{0,1}* U {0, 1}*2(0%)*.

Remark 2. Let ¢ be a state of Ay distinct from qpo. Since Ay is minimal, there exists a word
wy that distinguishes qu,o and ¢: that is, either w, is accepted from gyo and not from g, or wy is
accepted from ¢ and not from gy . Let us show that in the setting of numeration languages the
second situation never occurs. Let x be such that dy(qu,0, ) = g. Assume that zw, is accepted
by Ay. Then wy is a greedy representation which must be accepted from g o.

Proof. (i) Let = xp_1 ---xo be a word over Ay such that infinitely many words are accepted
from dy(qu,0, ). Due to the greediness of the representations, there exist infinitely many n such
that z0" is a greedy representation. We obtain
-1
Ve e [[l,k]], szUlJrn < UZJrn
i=0
for infinitely many n. Dividing by Uy, and letting n tend to infinity, we get

Ve e [1, K], szgl t<,

Now assume that oy (gu,0, ) belongs to Cy. From (ii) and (iv), there exist m, N € N such that
for all n > N, we have dy (qu,0, 20™10™) = qu o, which is a final state. By the same reasoning as
before, we obtain that

Ve e [1, k], foﬂf + Bt <,
=0
This implies that

Ve e [1,k], leﬁl f<

To show the other direction, now assume that 5U(qU7o, x) does not belong to Cyy. For all m € N,
we have dy(qu,o,20™) # quo. Therefore, by Remark 2, for all n € N, there exists a greedy
representation w(™ of length at most (#.Ay)? such that £0"w™ is not a greedy representation.
Hence, by the pigeonhole principle, there exists a greedy representation w of length at most
(#Ay)? such that for infinitely many n, the word z0"w is not a greedy representation. Therefore

-1
3 e [[1, k]], inUi+n+|w| + ValU(w) > Ué—i—n—i—\w\
i=0
for infinitely many n. We conclude that
-1
e LK), Y =p =1
i=0
Using Lemma 1, we obtain the desired result.

(ii) Consider the automaton whose transition diagram is the subgraph induced by Cy and
where all states are assumed to be final. From (i) and Theorem 2, the language accepted by
this automaton is exactly the same as the one accepted by Ag. Note that Ag is a trim minimal
automaton [18, Theorem 7.2.13]. From a classical result in automata theory (see, for instance,
[10, Chap. 3, Thm. 5.2]), such a map ® exists.

(iii) Assume that there exists a non-trivial strongly connected component distinct from Cy.
Consider a state ¢ not in Cy leading to such a component and a word w over Ay such that
dvu(qu,o,u) = q. Take the longest prefix x of u such that dy(quo,x) € Cy. Hence z € A% and if
o € Ay and v € Af; are such that u = xov, then dy(qu,0,z0o) ¢ Cy. Using (i), there exists a suffix
z of = such that dg(1) = z00%, and so dg(1) is finite. The longest prefix of dg(1) which does not
end with 0 is s = zo. Furthermore, by (i) again, we see that v belongs to 0*.



EMILIE CHARLIER, NARAD RAMPERSAD, MICHEL RIGO, AND LAURENT WAXWEILER

We still have to show that if © = yz, then dy(qu,0,y) belongs to ®~!(gg,0), or equivalently in

view of

(ii), du(gp,0,y) = gp,0- This is immediate by the definitions of Ag and dg(1).

(iv) Suppose that U,1/U, — B~ but Ay has more than one non-trivial strongly connected

compon

ent. Let x = x,_1---xo be a word such that d(qu,0,) is not in Cy and such that there

exists an infinite sequence j; < jo < --- such that for all n > 1, the word 20’ is a greedy
representation. Thus for all £ € [1, k],

(2)

G
Vn > 1, le i <1,
= Urtjn

Since Uy41/U, — B~ and by (i), we see that

1o -1 +
g P ia v RN g z; 3t =17 asn — +oo,
= Ui P

which is not possible in view of (2).
(v) Let dg(1) = s0“, where s = si_1---5o is a word over Ag. In view of (iii), to show that

there is

a second strongly connected component, it suffices to show that for infinitely many n the

words s0™ are greedy representations. Equivalently, it suffices to show that for infinitely many n,

we have
S

3 Ve e 1,k],) s =22 < 1.
@ D tE
Let ¢ € [1,k]. We have

-1 -1 k=1 k=1

6271{2 Z Siﬁzie _ Z Siﬂsz — Z Siﬂsz _ Z Siﬁlfk < 6271{2'

i=0 i=0 i=0 =0

Applying the hypotheses (v.1) and (v.2), we obtain (3), as required. O

(1)

(2)

5. PERSPECTIVES AND CONJECTURES

We use the same notations as in Theorem 3. In the case where the numeration system U
has a dominant root 8 > 1, if dg(1) is finite, then dj(1) = (t1--tm—1(tm — 1))* where
tm # 0 and then we clearly have #®!(qg,) > #P '(gp,i+1) for all i € [0,m — 2]. We
conjecture that, in this case, #®'(¢sm—1) = 1. In other words, we conjecture that, in
this case, Ay has at most two non-trivial strongly connected components.

When the numeration system U does not satisfy the dominant root condition, we have not
provided a precise description of Ay. In this case, new kinds of phenomena may appear.
For instance, in the following two examples, there exist more than one non-trivial strongly
connected components containing transitions not labeled by 0. Furthermore, thanks to
the first example, we see that Ay may have more than two non-trivial strongly connected
components.

Example 10. Consider the numeration system (U, )n>o defined by U,13 = 24U, and
(Uo, U1, Us) = (1,2,6). The corresponding trim minimal automaton is depicted in Fig-
ure 7. States in the same strongly connected component have the same label: 1, 2 and 3,
respectively.

Example 11. Consider the numeration system (Up,)n>0 defined by Upt4 = 3Up42 + Uy,
and (Uy, U, Uz, Us) = (1,2,3,7). The corresponding trim minimal automaton is depicted
in Figure 8. Again, states in the same strongly connected component have the same la-
bel: 1 and 2, respectively. Even if the sequence U, 41/U, does not converge, we have
limy, 4 oo Uznt2/Usn = limy, oo Uapy3/Uspns1 = (3 4+ v/13)/2. Note that the latter ob-
servation is consistent with Hollander’s conjecture [13].
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0,1,2
FIGURE 7. An automaton Ay for a numeration system U = (Uy)n>0 not satis-
fying the dominant root condition.

2

FIGURE 8. An automaton Ay for a numeration system U = (U, )n>0 DOt satis-
fying the dominant root condition.
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