A Full Discontinuous Galerkin Formulation Of Euler Bernoulli Beams In Linear Elasticity With Fractured Mechanic Applications

G. Becker & L. Noels

Computational & Multiscale Mechanics of Materials, ULg
Chemin des Chevreuils 1, B4000 Liège, Belgium
Gauthier.Becker@ulg.ac.be
L.Noels@ulg.ac.be

WCCM/APCOM – July 2010
Topics

• Dynamic Fracture by Cohesive Approach

• Key principles of DG methods

• C0/DG formulation of thin structures

• Fracture of thin structures
 – Full DG formulation of beams
 – DG/Extrinsic cohesive law combination
 – Numerical example

• Conclusions & Perspectives
Dynamic Fracture by Cohesive Approach

• Two methods
 – Intrinsic Law
 • Cohesive elements inserted from the beginning
 • Drawbacks:
 – Efficient if a priori knowledge of the crack path
 – Mesh dependency [Xu & Needleman, 1994]
 – Initial slope modifies the effective elastic modulus
 – This slope should tend to infinity [Klein et al. 2001]:
 » Alteration of a wave propagation
 » Critical time step is reduced
 – Extrinsic Law
 • Cohesive elements inserted on the fly when failure criterion is verified [Ortiz & Pandolfi 1999]
 • Drawback
 – Complex implementation in 3D (parallelization)
 • New DG/extrinsic method [Seagraves, Jerusalem, Radovitzky, Noels]
 – Interface elements inserted from the beginning
 – Consistent and scalable approach
Key principles of DG methods

• **Main idea**
 – Finite-element discretization
 – Same **discontinuous** polynomial approximations for the

• **Test** functions φ_h and
• **Trial** functions $\delta \varphi$

 – Definition of operators on the interface trace:
 • **Jump** operator: $[\bullet] = \bullet^+ - \bullet^-$
 • **Mean** operator: $\langle \bullet \rangle = \frac{\bullet^+ + \bullet^-}{2}$

 – Continuity is weakly enforced, such that the method
 • Is consistent
 • Is stable
 • Has the optimal convergence rate
Key principles of DG methods

- Application to non-linear mechanics
 - Formulation in terms of the first Piola stress tensor P
 \[
 \nabla_0 \cdot P^T = 0 \text{ in } \Omega \quad \& \quad \begin{cases}
 P \cdot N = \bar{T} \text{ on } \partial_N \Omega \\
 \varphi_h = \bar{\varphi}_h \text{ on } \partial_D B
 \end{cases}
 \]
 - New weak formulation obtained by integration by parts on each element Ω^e
 \[
 \sum_{e} \int_{\Omega^e_0} \nabla_0 \cdot P^T (\varphi_h) \cdot \delta \varphi \, dB = 0 \\
 \sum_{e} \int_{\Omega^e_0} -P (\varphi_h) : \nabla_0 \delta \varphi \, dB + \sum_{e} \int_{\partial \Omega^e_0} \delta \varphi \cdot P (\varphi_h) \cdot N \, d\partial B = 0 \\
 \int_{\partial B_0} P (\varphi_h) : \nabla_0 \delta \varphi \, dB + \int_{\partial B_0} [\delta \varphi \cdot P (\varphi_h)] \cdot N^- \, d\partial B = \int_{\partial_N B_0} \bar{T} \cdot \delta \varphi \, d\partial B
 \]
Key principles of DG methods

• Interface term rewritten as the sum of 3 terms

 Introduction of the numerical flux h

 $\int_{\partial_1 B_0} \left[\delta \varphi \cdot P(\varphi_h^+) \right] \cdot N^- \, \, d\partial B \rightarrow \int_{\partial_1 B_0} \left[\delta \varphi \right] \cdot h(P^+, P^-, N^-) \, \, d\partial B$

 • Has to be consistent:

 $h(P^+, P^-, N^-) = -h(P^-, P^+, N^+)$

 $h(P_{\text{exact}}, P_{\text{exact}}, N^-) = P_{\text{exact}} \cdot N^-$

 • One possible choice:

 $h(P^+, P^-, N^-) = \langle P \rangle \cdot N^-$

 • Weak enforcement of the compatibility

 $\int_{\partial_1 B_0} \left[\varphi_h^+ \right] \cdot \left\langle \frac{\partial P}{\partial F} : \nabla_0 \delta \varphi \right\rangle \cdot N^- \, \, d\partial B$

 • Stabilization controlled by parameter β, for all mesh sizes h^s

 $\int_{\partial_1 B_0} \left[\varphi_h^+ \right] \otimes N^- \cdot \left\langle \frac{\beta}{h^s} \frac{\partial P}{\partial F} \right\rangle : \left[\delta \varphi \right] \otimes N^- \, \, d\partial B$

 Noels & Radovitzky, IJNME 2006 & JAM 2006

• Those terms can also be explicitly derived from a variational formulation (Hu-Washizu-de Veubeke functional)
Key principles of DG methods

• Combination with extrinsic cohesive law
 – Scalable & Consistent
C0/DG formulation of thin structures

• Previous developments for thin bodies
 – Continuous field / discontinuous derivative
 • No new nodes
 • Weak enforcement of C^1 continuity
 • Displacement formulations of high-order differential equations
 • Usual shape functions in 3D (no new requirement)
 • Applications to
 – Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells & Dung, CMAME 2007]
 – Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 2009]
 – Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; Balachandran et al. 2008]
C0/DG formulation of thin structures

- **Deformation mapping**
 \[
 F = \nabla \Phi \circ \left[\nabla \Phi_0 \right]^{-1} \quad \text{with} \quad \nabla \Phi = g_i \otimes E_i \quad \& \quad g_i = \nabla \Phi E_i = \frac{\partial \Phi}{\partial \xi_i}
 \]

- **Resultant stress**
 - Tension
 \[
 n^\alpha = \frac{1}{\bar{j}} \int_{h_{\min}}^{h_{\max}} \sigma g^\alpha \det(\nabla \Phi) \, d\xi^3
 \]
 - Bending
 \[
 \tilde{m}^\alpha = \frac{1}{\bar{j}} \int_{h_{\min}}^{h_{\max}} \xi^3 \sigma g^\alpha \det(\nabla \Phi) \, d\xi^3
 \]

- **Shearing is neglected**
 - As \(t = \frac{\varphi_{,1} \wedge \varphi_{,2}}{||\varphi_{,1} \wedge \varphi_{,2}||} \) \(\Rightarrow \)
 \[
 \begin{align*}
 t^\alpha &= \chi^\mu_{,\alpha} \varphi_{,\mu} \\
 \bar{j} &= ||\varphi_{,1} \wedge \varphi_{,2}||
 \end{align*}
 \]

 - The formulation is displacement based only
 - Continuity on \(t \) is ensured weakly by DG method

\[\Phi_0 = \phi_0(\xi^1, \xi^2) + \xi^3 t_0(\xi^1, \xi^2)\]

\[\chi = \Phi_0 \Phi^{-1}\]
C0/DG formulation of thin structures

- Pinched open hemisphere
 - Properties:
 • 18-degree hole
 • Thickness 0.04 m; Radius 10 m
 • Young 68.25 MPa; Poisson 0.3
 • Quadratic, cubic & distorted el.
 - Comparison of the DG methods with literature

![Graph showing comparison of DG methods](image-url)
Fracture of Thin Structures

- Extension of DG/ECL combination to shells
 - We have to substitute the C0/DG formulation by a full DG
Fracture of Thin Structures

- Kinematics of linear beams
 - Beam’s equation are deduced from Kirchhoff-Love shell kinematics
 - So the DG formulations can be related to each other

- This time DG method is applied to
 - Shape functions
 - Derivative of shape functions
Fracture of Thin Structures

• Full DG/ECL combination for Euler-Bernoulli beams
 – When rupture criterion is satisfied at an interface element
 • Shift from
 – DG terms ($\alpha_s = 0$)
 – Cohesive terms ($\alpha_s = 1$)
 – $\gamma_s = 1$ until the end of fracture process $\gamma_s = 0$

\[
\begin{align*}
\sum_n \int_{l_e} \left[n^{11} \delta u_{1,1} + m^{11} \delta(-u_{3,11}) \right] dx \\
+ \sum_s \left\{ (1 - \alpha_s) \left(\langle n^{11} \rangle \[\delta u_1 \] + \langle Eh \delta u_{1,1} \rangle \[u_1 \] + \left[u_1 \right] \left(\frac{\beta_2 Eh}{h_s} \right) \[\delta u_1 \] \right) \\
+ \langle m^{11} \rangle \[\delta(-u_{3,11}) \] + \left(\frac{Eh^3}{12} \delta(-u_{3,11}) \right) \left[-u_{3,11} \right] + \left[-u_{3,11} \right] \left(\frac{\beta_1 Eh^3}{12 h_s} \right) \left[-\delta u_{3,11} \right] \right\} \\
+ \gamma_s \left[u_3 \right] \left(\frac{\beta_3 Eh}{2(1 + \nu) h_s} \right) \[\delta u_3 \] \\
+ \sum_s \alpha_s \left(N(\Delta_{true}^*) \delta \left[u_1 \right] + M(\Delta_{true}^*) \delta \left[-u_{3,11} \right] \right) = 0
\end{align*}
\]

– What remain to be defined are the cohesive terms
Fracture of Thin Structures

• New cohesive law for Euler-Bernoulli beams
 – Should take into account a through the thickness fracture
 • Problem: no element on the thickness
 • Very difficult to separate fractured and not fractured parts
 – Solution:
 • Application of cohesive law on
 – Resultant stress
 \(n^{11} \rightarrow N(\Delta^*) \)
 – Resultant bending stress
 \(\tilde{m}^{11} \rightarrow M(\Delta^*) \)
 • In terms of a resultant opening \(\Delta^* \)
Fracture of Thin Structures

- Resultant opening Δ^* and cohesive laws $N(\Delta^*)$ & $M(\Delta^*)$

 - Defined such that
 - At fracture initiation
 - $N_0 = N(0)$ and $M_0 = M(0)$
 - $\sigma(\pm h/2) = \pm \sigma_{\text{max}}$
 - After fracture
 - Energy dissipated = $h G_C$

 - Solution
 - $\Delta^* = (1 - \beta) \Delta_x + \beta \frac{h}{6} \Delta_r$
 - Δ_x = Opening is tension and Δ_r = Opening in rotation
 - Coupling parameter
 - $\beta = \frac{|6hM_0|}{N_0 + |6hM_0|}$
 - Null resistance for $\Delta^* = \Delta_c = 2G_C/\sigma_{\text{max}}$
Fracture of Thin Structures

• Numerical example
 – DCB with pre-strain

• When the maximum stress is reached Beam should shift from a DCB configuration to 2 SCB configurations
• During the rupture process (2 cases)
 1. The variation of internal energy is larger than hG_C
 » rupture is achieved in 1 increment of displacement
 2. The variation of internal energy is smaller than hG_C
 » Complete rupture is achieved only if flexion is still increased
 » Whatever the pre-strain, after rupture, the energy variation should correspond to hG_C
Fracture of Thin Structures

- Instable fracture
 - Geometry such that variation of internal energy > hG_C
Fracture of Thin Structures

- **Stable fracture**
 - Geometry such that variation of internal energy $< hG_C$
Fracture of Thin Structures

- Stable fracture
 - Effect of pre-strain
 - Dissipated energy always = hG_C
Conclusions & Perspectives

• Development of discontinuous Galerkin formulations
 – Formulation of high-order differential equations
 • Full DG formulation of beams
 – New degree of freedom
 – No rotation degree or freedom
 – As interface elements exist: cohesive law can be inserted

• Perspectives:
 – Extension to non-linear shells
 – Plasticity & ductile material