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A B S T R A C T

Unusually high CO2 concentrations were frequently observed during stable nights in late summer 2006

at the CarboEurope-Integrated Project (CEIP) forest site in Norunda, Sweden. Mean CO2 concentrations in

the layer below the height of the eddy-covariance measurement system at 30 m reached up to

500 mmol mol�1 and large vertical and horizontal gradients occurred, leading to very large advective

fluxes with a high variability in size and direction. CO2 accumulation was found to build up in the second

part of the night, when the stratification in the canopy sub-layer turned from stable to neutral. Largest

vertical gradients of temperature and CO2 were shifted from close to the ground early in the night to the

crown space of the forest late at night, decoupling the canopy sub-layer from the surface roughness layer.

At the top of the canopy at 25 m CO2 concentrations up to 480 mmol mol�1 were observed at all four

tower locations of the 3D cube setup and concentrations were still high (>400 mmol mol�1) at the 100 m

level of the Central tower. The vertical profiles of horizontal advective fluxes during the nights under

investigation were similar and showed largest negative horizontal advection (equivalent to an additional

CO2-sink) to occur in the crown space of the forest, and not, as usually expected, close to the ground. The

magnitude of these fluxes was sometimes larger than �50 mmol m�2 s�1 and they were caused by the

large horizontal CO2 concentration gradients with maximum values of up to 1 mmol mol�1 m�1. As a

result of these high within canopy CO2 concentrations, the vertical advection also became large with

frequent changes of direction according to the sign of the mean vertical wind component, which showed

very small values scattering around zero. Inaccuracy of the sonic anemometer at such low wind

velocities is the reason for uncertainty in vertical advection, whereas for horizontal advection,

instrument errors were small compared to the fluxes. The advective fluxes during these nights were

unusually high and it is not clear what they represent in relation to the biotic fluxes. Advection is most

likely a scale overlapping process. With a control volume of about 100 m � 100 m � 30 m and the

applied spatial resolution of the sensors, we obviously miss relevant information from processes in the

mesoscale as well as in the turbulent scale.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The Eddy Correlation (EC) technique is one of the most
established techniques to measure the fluxes of water, energy
and CO2 between the biosphere and the atmosphere. In the frame
of FLUXNET, a global flux tower network including hundreds of
sites covering different climate conditions and land cover, the EC-
approach is used to measure net ecosystem CO2 exchange (NEE)
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and water balance of forests from daily to annual time scales
(Baldocchi et al., 2001; http://www.fluxnet.ornl.gov/fluxnet/
index.cfm; Baldocchi, 2008). Though widely used, the EC-method
is subject to some substantial shortcomings when applied in
complex (non-flat) topography and over heterogeneous vegeta-
tion. Numerous studies address these problems (e.g. Goulden et al.,
1996; Aubinet et al., 2000; Massman and Lee, 2002; Loescher et al.,
2006). In particular, CO2-fluxes measured by the EC-method
during calm and stable nights with low turbulence and limited air
mixing are in disagreement with total ecosystem respiration
measured by alternative methods such as soil chambers and leaf
cuvettes. Since this nighttime flux anomaly only occurs when the
ecosystem is a net source of CO2, it is thought to lead to an
overestimation of the total carbon sequestration (Moncrieff et al.,

http://www.fluxnet.ornl.gov/fluxnet/index.cfm
http://www.fluxnet.ornl.gov/fluxnet/index.cfm
mailto:feigenwinter@metinform.ch
http://www.sciencedirect.com/science/journal/01681923
http://dx.doi.org/10.1016/j.agrformet.2009.08.005
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1996). In practice the problem is by-passed for the estimation of
annual carbon balances by the application of the friction velocity
(u*)-filtering approach. With this method, data corresponding to
periods with insufficient mixing, determined by a site specific
threshold for friction velocity, are replaced by fluxes derived from
turbulent nights according to their response to the climate (Falge
et al., 2001; Papale and Valentini, 2003; Gu et al., 2005; Reichstein
et al., 2005). Though widely used and currently considered as the
best method to overcome the problem, the u*-filter approach itself
is subject to considerable concerns and must be applied with
caution (Papale et al., 2006).

Several studies (e.g. Lee, 1998; Finnigan, 1999; Baldocchi
et al., 2000; Paw et al., 2000) suggest that advection of CO2 may
be one of the main reasons for the ‘‘missing’’ CO2 at night. As a
consequence, an increasing number of groups tried to explicitly
measure the advective fluxes in field experiments during the last
decade (Aubinet et al., 2003, 2005; Staebler and Fitzjarrald,
2004; Feigenwinter et al., 2004; Marcolla et al., 2005; Wang
et al., 2005; Sun et al., 2007; Heinesch et al., 2008; Leuning et al.,
2008; Tóta et al., 2008; Yi et al., 2008). However, the
experimental setup and the methodology of these experiments
vary largely, which makes a comparison of the results very
difficult.

The ADVEX campaigns, a series of three identical field
experiments in mid European forests with the aim to explicitly
measure the non-turbulent advective fluxes (Feigenwinter et al.,
2008, referred to as FE08 in the following), were the first to
provide data collected at three different sites with the same
experimental setup and processed with the same methodology.
The forest site Norunda was actually chosen to be the ‘‘non-
advective reference site’’ for the ADVEX experiments because of
its presumed ideal location in a homogeneous forest with good
fetch conditions in a flat topography. In addition, Norunda is one of
the very few forest sites which are reported to be a source of CO2

(Lindroth et al., 1998; Valentini et al., 2000; Lagergren et al., 2008).
However it turned out from the ADVEX site comparison in FE08,
that Norunda showed (i) the largest variability in all CO2-fluxes
(turbulent flux FC, storage change FS, advective fluxes FVA (vertical)
and FHA (horizontal)), and (ii) the largest magnitudes of FS, FVA and
FHA. Another characteristic of the results was the negative sign of
FHA. According to these results the Norunda site would act as a CO2

sink even during nighttime, which does not make sense at all.
However, this fact reflects many of the problems and limitations
confronted with when trying to measure advective fluxes in a field
experiment.

In this paper we analyse a particular series of nights with
extremely large CO2 concentrations and large advective fluxes FVA

and FHA, which are representative (about 30% of the investigated
period of 73 days) for several similar periods with a duration of 2–5
days. The analysis will demonstrate the facts that lead to these
large fluxes. We will show that FHA derived from horizontal CO2

concentration gradients and horizontal wind velocities are real and
not due to measurement errors. The vertical profiles and horizontal
distribution of CO2 and the wind field are analyzed with respect to
their contributions to FHA and FVA. In the last section we discuss the
meaning of measured advective fluxes and how they are related to
the biotic fluxes.

2. Site and measurements

We analyse data from the ADVEX campaign carried out from 7
July to 18 September (DOY 188-261) in 2006 in Norunda, Uppland,
Sweden. For an overview on the ADVEX campaigns and the general
experimental setup see FE08. More detailed information about the
site may be found in Lindroth et al. (1998), Lundin et al. (1999),
Mölder et al. (1999), Widén (2002) and Lagergren et al. (2005)
amongst others. In the following we recall the most relevant
information for this particular study.

The Norunda flux tower is situated in central Sweden (60850N,
178290E, 45 m a.s.l.) in a coniferous forest dominated by Scots pine
(65%, Pinus sylvestris L.) and Norway spruce (33%, Picea abies (L.)
Karst.) with a small fraction of deciduous tree and heights of 24–
28 m. The topography is flat with the forest spreading at least 1 km
in each direction. Leaf area index (LAI) varies between 4 and 5 with
the higher values for stands dominated by spruce. The stands in the
control volume are about 100 years old but differ in soil properties
and species composition in both the tree and forest floor
vegetation. The soil is a sandy glacial till with moderate to high
occurrence of large boulders and is covered with mosses and
stands of dwarf shrubs. A detailed description of the vegetation and
soil properties can be found in Lagergren et al. (2005). Generally,
compared to other FLUXNET forest sites, conditions at the Norunda
site are fairly good for EC-measurements.

The analyzed dataset is a combination of permanent standard
measurements and measurements taken during the ADVEX
campaign. Standard measurements at the main tower include
an EC-system at 33.5 m with an open-path infrared gas analyzer
(LI-7500, LI-COR Inc., Nebraska, U.S.) and an ultrasonic anem-
ometer (USA-1, METEK GmbH, Germany) operated at 10 Hz, a CO2/
H2O vertical profile (LI-6262 multi-valve system (see Mölder et al.,
2000)) with measurement points at 8.5, 13.5, 19, 24.5, 28, 31.7,
36.9, 43.8, 58.5, 73, 87.5 and 100.6 m height (sampling time is 12 s
per line at a flow rate of 3 l min�1). A temperature profile was
measured at the same heights using radiation-shielded and
ventilated thermocouples. The 3D wind vector was measured also
at 100 m with another ultrasonic anemometer of type USA-1. For
the period under consideration, the main tower was additionally
equipped with wind vector measurements (Model 81000V
ultrasonic anemometer, R.M. Young, Michigan, U.S.) at 1.5 and
6 m height.

The ADVEX setup consisted of four 30 m tall towers located at
about 60 m distance from the main tower enclosing a cube of about
100 m � 100 m � 30 m as shown in Fig. 1. Each tower was
equipped for measurements of CO2/H2O (sampling time 20 s per
line, LI-6262 multi valve system) and wind vector (sampling rate
10 Hz, Model 81000V ultrasonic anemometer) at heights 1.5, 6, 12
and 30 m. Towers B and C were additionally equipped with open
path EC-systems (LI-7500; Gill R3 ultrasonic anemometer, Gill
Instruments Ltd., U.K.) at 33.5 m height. At tower B, an
independent 12-level vertical profile of CO2/H2O (LI-7000 multi-
valve system) was measured at heights 0.4, 0.9, 1.5, 3.0, 6.0, 9.0,
12.0, 15.5, 19.0, 22.5, 26.5 and 30.5 m. This high-resolution profile
(from hereon referred to as ‘‘the LUND profile’’) provided an
excellent opportunity to evaluate the differences with the 4-level
ADVEX profiles.

Recalling the ADVEX results for Norunda, we showed that
occasionally extremely large negative horizontal advection was
observed when winds were blowing from SSW and, less frequently,
from WNW (Fig. 8 in FE08). Since the magnitude of these fluxes
bears no relation to the biotic fluxes, we will take a closer look to
the facts that lead to these results.

3. Methods and observations

In general, most advection studies use the following equation as
a base for the calculation of net ecosystem exchange (NEE)
including the vertical and horizontal advection terms. It is given by

NEE ¼ FS þ FC þ FVA þ FHA; (1)

where FS is the storage change, FC is the vertical turbulent flux, FVA

and FHA denote the vertical and horizontal advection, respectively.



Fig. 1. Location of ADVEX towers A, B, C, D, the Central tower and transect

measurement points (AT1, AT2, . . ..).

C. Feigenwinter et al. / Agricultural and Forest Meteorology 150 (2010) 692–701694
The single terms in Eq. (1) are defined as follows:
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where Vm is the molar volume of dry air (mol m�3), L is half the
lateral extend of the control volume, c is the CO2 molar fraction
(mmol mol�1), t is the time, u, v, w are the wind velocity
components in the x, y and z directions, respectively. Overbars
refer to the Reynolds averaging operator and primes to departures
of the instantaneous values from the mean. FS is usually estimated
from vertical profile measurements. FC may be expressed by the
measured EC flux at the reference height zr. The usual sign
convention is adopted here according to Lee (1998): a negative flux
value indicates CO2 removal by the forest, and vice versa, a positive
value indicates CO2 release by the forest.

The practical application of these equations differs enormously
in the available advection studies, depending on the experimental
setup and the available data for the calculation of FVA and FHA. The
simpler the setup, the more assumptions must be made for the
calculations. The ADVEX experimental setup was designed to
measure the advection terms in Eq. (1) with the best possible
accuracy to avoid any uncertainties that arise from insufficient
resolution of the vertical profiles of CO2 and wind speed. Other
advection studies tried to overcome missing information, e.g. by
introducing a ‘‘scaling height’’ (Aubinet et al., 2003) or a ‘‘scale
factor’’ (Staebler and Fitzjarrald, 2004; Tóta et al., 2008), assuming
similarity of vertical concentration profiles. As shown later in
Section 3.2, similarity of profile shape was far from being attained
at the Norunda site.
3.1. Meteorological conditions

Fig. 2 gives an overview of the meteorological conditions during
the analyzed period. The strong, consistently negative net
radiation at night implies clear nights. Temperatures in the sub-
canopy were always colder than above the canopy indicating
stable conditions in the canopy during the whole period. Wind
velocities at the top of the 100 m high Central tower reached up to
8 m s�1 and showed generally higher wind speeds at night than
during the day. Close above the top of the canopy, wind velocities
scattered around 2 m s�1 with higher values during daytime and
lower values during nighttime. In the canopy at 1.5 m height wind
speed was generally below 0.5 m s�1. Wind directions above and
below the canopy at 1.5 m did not differ significantly during
nighttime, except for a short period in the early morning of DOY
244.

3.2. CO2 profiles

In particular, CO2 concentrations (henceforward referred to as
[CO2]) at the same height at all four ADVEX towers were measured
with the same IRGA to avoid offset corrections due to different
instruments. As a compromise, the vertical profiles at the towers
were composed from measurements of two different multi-valve
systems and their corresponding IRGAs (heights 30 and 6 m and
heights 12 and 1.5 m, respectively). The transect measurements
were made by a third IRGA. To correct for the unavoidable offset in
absolute concentration between the different IRGAs, all three
instruments measured [CO2] at the same location (common point)
at the beginning of each half hour. The difference of this
measurement was used to adjust the measurements. We
arbitrarily chose one multi-valve system (heights 30 and 6 m) as
our reference system and therefore all absolute [CO2] refer to this
system. Note that the choice of the reference system has no impact
on the results because all calculations are based on concentration
differences rather than absolute values.

The two independent profiles measured at tower B turned out
to match nearly perfectly at the same heights after correcting for
instrument offset. The comparison shows that the 4-level profile
misses some information in the crown space, which could be of
relevance during certain periods for the calculation of FS, FVA and
FHA. In between the towers additional CO2/H2O measurements
were taken, indicated by the cross symbols in Fig. 1. The excellent
match of the ADVEX profile when compared with the independent
high-resolution LUND profile at tower B provides a high degree of
confidence in this method and in our [CO2] measurements.

The shape of the CO2 profiles in Norunda was occasionally very
different when compared to profiles published in other studies and
to profiles at the ADVEX sites in Renon and Wetzstein in particular,
where it was possible to fit a log-square (Feigenwinter et al., 2004)
or exponential (Leuning et al., 2008) function to the measure-
ments. We frequently observed profiles in the form as shown in
Fig. 3a. Sometimes the maximum [CO2] was even observed at the
12 m level or above. We therefore chose to use a simple
interpolation scheme for the vertical profiles as described in
FE08. Fig. 3a and b clearly show the deficits of the ADVEX standard
profile with 4 levels when compared to the 12-level high-
resolution LUND profile at tower B and the permanent profile at
the Central tower. During certain situations the mismatch in the
layer between the 12 and the 30 m level is large and may probably
affect all towers. The mismatch results in over- or underestimation
of the [CO2] in certain layers. In Fig. 3a, [CO2] at tower B is
underestimated by the ADVEX profile in the layer between 6 and
12 m, and overestimated in the layer between 12 and 30 m by the
linear interpolation scheme when compared to the LUND profile.
On the other hand, [CO2] is significantly underestimated by the



Fig. 2. Meteorological conditions during the period of investigation. From top to bottom: net radiation, average temperature in and above the canopy, average wind speed and

average wind direction in and above the canopy. Dashed lines refer to 100 m level at the Central tower, solid lines to 30 m level and dotted lines to the 1.5 m level, respectively.

Averages refer to the average of the four ADVEX towers (30 and 1.5 m level).
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ADVEX profile at tower B in the crown space in Fig. 3b. The
consequences of this imprecision is not clear, since we do not know
the exact shape of the profile in this layer at towers A, C and D. The
profiles generally coincide close above the canopy top at the 30 m
level. Fig. 3a and b additionally shows some typical features which
will help to understand the analysis of the advective fluxes in
Sections 3.3 and 3.4.

The largest horizontal concentration differences are frequently
observed at the 12 m level and not close to the forest floor as
observed at the ADVEX sites in Wetzstein and Renon and as
reported in other advection studies. As a consequence, this layer
contributes most of all to FHA.
Fig. 3. Profiles of [CO2] showing the mismatch between the high-resolution profiles at to

standard 4 level ADVEX profiles (towers A, B, C and D, dashed lines). (a) Relative [CO2] ove

the crown space (12–25 m) by linear interpolation at tower B. (b) Relative underestimatio

height (25 m).
The horizontal [CO2] gradients in the crown space may reach
values of up to 1 mmol mol�1 m�1 or about 40 mmol m�4 if
expressed in molar density (e.g. the difference at the 12 m level
between towers B and A in Fig. 3a). Even assuming a very weak
horizontal wind component of 0.1 m s�1 along this gradient results
in a horizontal advective flux of 4 mmol mol�1 m�2 s�1 for a layer
of 1 m thickness according to the definition of FHA in Eq. (2d). Such
large fluxes bear no relation to the biotic fluxes (typical value for
soil efflux is around 10 mmol m�2 s�1 (Widén, 2002; Lagergren
et al., 2008)).

Crossing profiles between two measurement heights in Fig. 3a
let one conclude that the horizontal gradient changes its direction
wer B (black circles, dotted line) and at the Central tower (stars, dotted line) and the

restimation of the ADVEX profile compared to the 12-level high-resolution profile in

n of [CO2] in the crown space. The dotted horizontal line indicates the mean canopy



Fig. 4. The evolution of [CO2] with time and height from DOY 241.5 to 245.5. From top to bottom: Central tower section 30–100 m, ADVEX towers A, B, C and D. Thick solid

white and black lines refer to friction velocity u* at the respective tower in 30 and 1.5 m height, respectively. The scale for u* is on the right side of the plot. The dashed lines

refer to the mean canopy height; the dotted lines refer to heights of the CO2 measurements. Vertical dotted lines refer to the beginning of the respective DOY (i.e. midnight) on

the x-axis.
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with height. Depending on the wind direction this may result in a
change of the magnitude and in some cases even in a change of the
sign of FHA with height.

Fig. 3b is representative for a very typical late nighttime
situation at the Norunda site. Profiles are practically uniform until
high up in the canopy and then quickly collapse close above the
canopy. Note that horizontal gradients are still remarkably large at
the 12 m level. It seems that lakes of CO2 are building up during a
certain period of time and then they are partly dissipated leading to
profile-shapes as shown in Fig. 3a.

CO2 concentrations above the canopy are still notably high
compared to other forests. We frequently observed
[CO2] > 400 mmol mol�1 in 100 m height at the Central tower as
shown in Fig. 4. Such high concentrations are only rarely reported
in literature at these heights (e.g. Bakwin et al., 1998; Yi et al.,
2001; Hurwitz et al., 2004).

Fig. 4 shows the evolution of CO2 concentrations during the
period under investigation at the four ADVEX towers and the upper
part of the Central tower. Note that these nights were not totally
calm, though there were some calm periods as shown in Fig. 2. u* at
the 30 m level was higher than 0.2 m s�1 for most of the time.

Although [CO2] differences between towers can be large for a
short period of time (e.g. the period 4–6 h on DOY 243), all four
nights show a consistent general pattern in the evolution of the
[CO2] distribution: CO2 starts to accumulate early in the evening,
when net radiation is most negative, in a strongly stable layer close
to the forest floor. With ongoing night the stratification in the trunk
space becomes less stable or even neutral and allows CO2 to
accumulate in this layer with a nearly uniform vertical distribution
up to the 12 m level and higher. In the second part of the night the
largest vertical gradients of [CO2] and temperature are observed in
the crown space (Figs. 5 and 6). With the onset of turbulence at
sunrise, the profiles collapse quickly first in the crown space and
then in the trunk space. A stable layer holds permanently close to
the forest floor also during the day. Comparing Fig. 5a,c with b,d
shows again the failure of the ADVEX setup in properly resolving
the crown space layer between 12 and 30 m. Note that we did not
observe such behaviour during the previous ADVEX campaigns in
Wetzstein and Renon (FE08). Fig. 4 also suggests that the storage
change term FS is occasionally large and may frequently change its
sign during such nights.

3.3. Vertical advection

Lee’s (1998) method was used for the calculation of FVA applying
the sectorwise (18 sectors) planar-fit tilt-correction algorithm
according to Wilczak et al. (2001) for the calculation of the mean
vertical wind component. See FE08 for more details.

The mean vertical wind component w̄ is the crucial variable for
vertical advection when computed according to Eq. (2c). Its sign
defines the direction of FVA because the mean vertical [CO2]
gradient between the forest floor and the reference height above
the canopy is always negative during nighttime. However, w̄ is
small and close to the measurement accuracy of sonic anem-
ometers (0.05 m s�1). Additionally, the application of different tilt
correction algorithms may even result in different signs of w̄ for the
same situation (Vickers and Mahrt, 2006), especially when vertical
motions are weak (e.g. during calm nights). Together with the large
vertical [CO2] gradients observed at the Norunda site, this results in
large fluxes of FVA in either direction, frequently changing sign from
1 h to the other during the night. Fig. 7 shows FVA and its
components for the four ADVEX towers for the period under



Fig. 5. Mean diurnal distribution of vertical [CO2] gradients for the period from DOY

241.5 to 245.5. (a) [CO2] gradient at Central tower and (b) mean [CO2] gradient at

ADVEX towers (average of all four ADVEX towers. Dashed lines refer to mean

canopy height, dotted horizontal lines refer to measurement heights, cross hatched

regions refer to positive gradients according to gray scales.

Fig. 6. As Fig. 5 but for potential temperature gradients. (a) Temperature gradient at

Central tower and (b) temperature gradient at ADVEX towers (average of all four

ADVEX towers). Dashed lines refer to mean canopy height, dotted horizontal lines

refer to measurement heights, cross hatched regions refer to positive gradients

according to gray scales.

C. Feigenwinter et al. / Agricultural and Forest Meteorology 150 (2010) 692–701 697
investigation. w̄ is very low and no persistent diurnal pattern and
no clear correlation between the different towers is recognizable.
This is in contrary to the Wetzstein and the Renon site, where all
towers show similar patterns of w̄ and thus also for FVA (FE08). It
rather seems that w̄ scatters more or less arbitrarily around the
zero line and so does the respective flux in Fig. 7c. At times, single
tower FVA reaches values exceeding �50 mmol m�2 s�1. In contrast,
the evolution of the vertical gradient in Fig. 7b, expressed by the
difference between [CO2] at the reference level and the mean
concentration in the volume below according to Lee (1998), shows a
consistent pattern of increasing CO2 storage in the trunk space during
each night. Although Fig. 7b represents mainly the vertical [CO2]
gradient at the different towers, it also provides relevant information
about the mean horizontal concentration distribution. In the extreme
case (the night from DOY 242 to 243) differences in mean [CO2] may
be as large as 50 mmol mol�1 between towers. Not surprisingly FHA is
unusually high, as discussed in the next section.

The large absolute values of FVA clearly have its origin in the
large vertical [CO2] gradients, while its large scatter and its
uncertainty has two reasons: (a) measurement accuracy of the
mean vertical wind component and (b) tilt correction algorithm.
The combination of both decides if the flux is positive or negative.
Since the terrain in Norunda is totally flat, the choice of a certain tilt
correction algorithm is not that crucial as in complex terrain,
because it mainly corrects for the tilt of the instrument and only to
a lesser part for influences of topography and/or vegetation
heterogeneities. We therefore conclude that it is the error in the
measurement of the vertical wind component that is the main
reason for the uncertainty of FVA. Theoretically, the approach using
the continuity condition to estimate the mean vertical wind
component is certainly the best one, as proposed by Vickers and
Mahrt (2006) and Heinesch et al. (2007). However, in practice, its
success will also depend on the experimental setup and especially
the spatial resolution and the accuracy of the measurements. In
fact, an experimental approach to estimate the true meteorological
vertical wind component based on the continuity condition
probably requires even higher instrument accuracy than any tilt
correction algorithm.

3.4. Horizontal advection

In contrary to FVA, insufficient instrument accuracy can be
excluded as a main source of error in evaluating FHA at the
Norunda site. Though horizontal wind velocities were small in
the sub-canopy layer during the investigated nights, they are at
least 2–4 times larger than sonic instrument specifications. The
estimation of the horizontal [CO2] gradient could be another
crucial point for the calculation of FHA as addressed by Heinesch
et al. (2007). This may be true for small horizontal [CO2]
differences in the control volume together with high wind
speeds, which could result in high FHA. Such conditions were
observed, e.g. during the ADVEX campaign in Renon during
synoptically dominated strong wind conditions (Feigenwinter
et al., 2010; Aubinet et al., 2010; Canepa et al., 2010). However, in
Norunda, the situation is different: Horizontal [CO2] differences
are much larger than the specification of the Li-6262, which is
around �1 mmol mol�1. In addition, the precision of the measure-
ments was further increased by using the same analyzer for the
measurements at the same height and tubes of the same length. The
precision was also confirmed by comparison with the independent
LUND profile at tower B. Though we are aware that the accuracy of
[CO2] not only depends on instrument specification, but also on the
analyser’s stability (e.g. during a 30 min period), the air transporting
and valve switching system and the number of measurements (11 in
our case) during one half hour, we exclude instrument accuracy as a
relevant source of error for FHA, because in this case, horizontal
[CO2] differences are in the order of tens of mmol mol�1.

As addressed in the discussion of the [CO2] profiles in Section
3.2, the missing information in the crown space between 12 and
30 m results in an underestimation or overestimation of [CO2]
and we do not know about the behaviour of the horizontal
gradient in this obviously very ‘‘active’’ layer. Nevertheless the
measurements at the 1.5, 6, and 12 m levels already show the
characteristics of the wind field and the CO2 distribution which



Fig. 7. FVA and its components (a) mean vertical velocity component and (b) [CO2] differences between the reference height above the canopy and the mean concentration in

the volume below. Thin lines refer to ADVEX towers A, B, C and D. The thick black line represents the average of the four ADVEX towers.
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determine the size and the direction of FHA during these nights.
Fig. 8 shows the particular situation from Fig. 3a in the spatial
context. It demonstrates the facts that lead to confusing values
of FHA.
Fig. 8. Wind field and [CO2] differences on DOY 243 0:00 h at levels 1–4 (left to right). Thi

linear interpolation between towers. Gray scales refer to [CO2] differences relative to t
Largest horizontal [CO2] gradients do not necessarily occur
close to the forest floor. Indeed we observe the largest gradients at
the 12 m level in Fig. 8c.

Horizontal [CO2] gradients may change direction with height. In
the example from DOY 243 at midnight in Fig. 8, highest [CO2] are
ck arrow heads refer to measurements at towers, thin arrow heads are derived by bi-

he point with the lowest [CO2].



Fig. 9. Vertical distribution (bottom) and total (top) FHA for the period from DOY 242.5 to 245.5. Hatched regions refer to negative values of FHA according to gray scales.
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observed near tower B at all levels, but the location of lowest [CO2]
moves from somewhere between towers C, D and Central tower at
level 1.5 m in Fig. 8a to tower C at level 6 m in Fig. 8b and to tower A
at level 12 m in Fig. 8c.

Horizontal wind vectors, though in general similar, show
differences in magnitude and direction with height which are
relevant for the computation of FHA.

Due to (ii) and (iii), FHA may be positive and negative at the same
time at different locations (grid points) in the control volume.
Assuming constant wind velocity and a constant [CO2] gradient,
absolute values of FHA are largest when the wind is blowing parallel
to the gradient (in either direction) and zero when blowing
perpendicular to the gradient. As shown in Fig. 8 this can result in a
quite heterogeneous distribution of FHA in the same horizontal
layer, though in general the wind blows from regions of higher
[CO2] to regions with lower [CO2] and thus results in negative total
FHA.

The horizontal [CO2] gradient completely disappears above the
canopy at the 30 m level in Fig. 8d and so does FHA.

The vertical distribution of FHA during the analyzed nights in
Fig. 9 shows that maximum horizontal advective fluxes concen-
trate in the crown space and in the second part of the night, i.e.
after midnight. If positive values occur during nighttime, they are
small and often observed in the trunk space. Vertical integration
then results in very high negative fluxes, as shown in the upper
panel of Fig. 9. Knowing that these fluxes are not a result of
erroneous measurements, but are nearly one order of magnitude
larger than the biotic fluxes during nighttime (i.e. total ecosystem
respiration), the question arises, what do they represent?

4. Discussion and conclusions

Maximum horizontal and vertical [CO2] gradients in Norunda
were frequently observed in the crown space during nighttime.
Similar vertical [CO2] profiles as presented in Fig. 3b were observed
in tropical forests by Goulden et al. (2006), de Araújo et al. (2008)
and Tóta et al. (2008), showing a nearly uniform vertical CO2 profile
throughout the lower and middle canopy and a sharp gradient in
the upper part of the canopy. But, to our knowledge, none of the
previous advection studies reported such large horizontal gradi-
ents (and coinciding horizontal advection) in the upper part of the
canopy as we observed in Norunda. Similar phenomenon is likely
to occur also at other flux tower sites. However, standard flux
tower equipment is not able to detect horizontal gradients and the
resolution of the vertical [CO2] profiles is often densest close to the
ground and may therefore miss the special features of the
presented vertical profiles.

In fact, when reviewing advection studies published until to
date, the way of calculating the advective fluxes, and FHA in
particular, is far from being standardized and often quite
visionary. The fact that horizontal gradients may change direction
with height, which will have an impact on the size and sign of FHA,
is often ignored by the introduction of generalized profile shapes
for [CO2] and wind velocities. All studies mention the large scatter
and the large uncertainty, however, extreme values and their
origin are seldom quantified nor presented. Though being aware
that small errors in wind velocities, wind directions and
horizontal [CO2] gradients can produce large errors in FHA, we
showed that such errors are not the reason for the large fluxes
presented in this study. While uncertainty in FVA is clearly related
to the problem of measurement accuracy of the vertical wind
component and incomplete tilt correction algorithms in connec-
tion with large vertical [CO2] gradients, we can exclude
measurement errors as a source for the large FHA, even if they
would be in the range of several mmol m�2 s�1. One may also
question how bi-linear interpolation maps the real conditions in
the control volume between towers. However, more detailed
spatial information about canopy structure, source strength, flow
properties and [CO2] distribution in the control volume would be
necessary to develop a more sophisticated methodology. Needless
to mention that even then, we will probably end up with the same
problems.
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The good correlation between vertical temperature gradients
and CO2 gradients in the second part of the night at crown space
height, as shown in Figs. 5 and 6, suggests a strong decoupling of
the canopy sub-layer from the surface roughness layer above. Yi
(2008) hypothesized about a ‘‘super stable layer’’ developing
during the night in sloping terrain at the Niwot Ridge AmeriFlux
site and confirmed their findings by a SF6 tracer experiment.
According to this assumption, the main environmental character-
istics leading to the formation of the ‘‘super stable layer’’ are: slow
mean air-flow, minimum vertical exchange, maximum density of
drag elements, maximum [CO2] gradient (or other scalar). They
concluded that horizontal advection occurs only below this layer,
where no mean vertical movement of air exists (longitudinal
exchange zone). Above this layer, on the other hand, only the mean
(and turbulent) vertical exchange is important (vertical exchange
zone). Though not directly comparable, similar conditions
characterize the stratification in the second part of the investigated
Norunda nights and it remains to be tested, if the supposition of a
‘‘super stable layer’’ is applicable. The impact of a separation into a
‘‘longitudinal’’ and ‘‘vertical’’ exchange layer and calculating the
advective fluxes according to this hypothesis would significantly
reduce the absolute values of these fluxes.

In this study we presented some extreme nights, but FE08
showed, that FHA was consistently negative at night in Norunda
during the complete measurement campaign. Moreover, it turned
out that FHA of CO2 and sensible heat are negatively correlated at all
three ADVEX sites (not shown). For Norunda this means that
positive horizontal advection of sensible heat was observed. The
role of the massive Central tower acting as a thermal conductor
should be further investigated in this context.

It remains to be clarified what the measured advective fluxes
are representing.

Though there are still a lot of open questions, the present
analysis provides new insights into the mechanisms at work in
forest (sub-)canopies during stable and calm nights. On the other
hand it also shows the limitations of our experimental approach.
The spatial (horizontal and vertical) resolution of the measure-
ment points (as dense as possible) and the size of the control
volume (big enough!) are two crucial points which limit each
other when designing the experimental setup. Advection is most
likely a scale-overlapping process from the microscale (up to
100 m) to the mesoscale (up to 10 km). With the probed volume of
about 100 m � 100 m � 30 m we were not able to adequately
sample mesoscale motions, which may play an important role at
the Norunda site. Additional complications are that wind
velocities (horizontal and vertical) in the canopy during nearly
calm and stable nights are very low and the wind directions are
changing frequently within one half hour. Half hourly averages of
wind components may therefore not correctly represent these
features and the analysis has also to be extended to the turbulence
scale.
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