Jonsmod'06 Jonsmod'06 - Plymouth Plymouth

Three dimensional sediment transport model of the Belgian coastal zone

Application of the CART theory

C. Mercier and E.J.M. Delhez

University of Liège, Liège, Belgium

Three dimensional sediment transport model of the Belgian coastal zone – p. 1

Study Area

Study Area

- •• Shallow and irregular bathymetry.
- •Hydrodynamic dominated by tides, winds and waves.
- •• Intense mixing of the water column during the entire year.
- •Exchanges with offshore waters limited.

Study Area

- •Sediment distribution influenced by the complex sand banks system.
- •Sediments consist of fine to medium sand with ^a fining trend to the east.
- •Large mud fields (concentration of $SPM > 400 mg/l$) occur between Oostende and the Westerschelde estuary.

Hydrodynamic model

- •3D, baroclinic (T,S), k turbulence closure.
- •• Horizontal resolution 500×500 *m*, 10 unequally spaced σ-levels.
- •Forcings: 21 tidal components and NCEP meteorological data.
- •Finite volume method, Arakawa C grid, mode-splitting method.
- •Semi-implicit vertical advection and turbulent diffusion.
- •• TVD advection scheme with superbee flux limiter used for advection of scalar quantities.
- •• Grid parallel to the coast.
- •Flooding and drying algorithm.
- • Coupled with ^a large scale model presenting the same characteristics and covering the whole North-Western European Continental Shelf.

•Only mud is considered (grain size $<$ 62.5 μ m)

- •Only mud is considered (grain size $<$ 62.5 μ m)
- \bullet • 4 classes of suspended sediments to take in account the variability of their dynamic properties.

- •Only mud is considered (grain size $<$ 62.5 μ m)
- •• 4 classes of suspended sediments to take in account the variability of their dynamic properties.
- •• Sediment processes:

Water body

Non-consolidated layer

Consolidated bed layer

Three dimensional sediment transport model of the Belgian coastal zone – p. 5

∂*Cⁱ*

Sedimentation

Consolidated bed layer

Non-consolidated layer

Average particle Settling velocities $\overline{\text{ sizes}}$ $\overline{\text{ }}\mu m$ $[mm/s]$ 2 0.005 6 0.05 10 0.1 351

 $\frac{\partial C}{\partial t} + \nabla \cdot [(\mathbf{v} + \mathbf{w}_s^i) C^i - \mathbf{K} \cdot \nabla C^i] = 0$

Deposition

 \bullet Deposition is controlled by turbulent processes near the seabed.

Deposition

- \bullet Deposition is controlled by turbulent processes near the seabed.
- \bullet • Krone (1962):

 $F_{dep}^{i} =$

 w_s^i *C*^{*i*}b C_b^i $\smash{\smash{\swarrow}}$

sedimentationthreshold

near bottomconcentration

Deposition

- •Deposition is controlled by turbulent processes near the seabed.
- •• Krone (1962):

- • \bullet τ_{crd} is the critical bottom shear stress for deposition = 0.5 *Pa*.
- • \bullet τ_b is the bottom shear stress calculated under the combined effects of wave and currents.

Erosion

 \bullet Ariathurai (1974):

$$
F_{ero}^i = \underbrace{P_{ero}^i}_{\text{erosion}} M^i f^i \quad \text{where} \quad f^i = \frac{C_s^i}{\sum_j C_s^j}
$$

$$
threshold
$$

Erosion

 \bullet Ariathurai (1974):

$$
F_{ero}^{i} = \underbrace{P_{ero}^{i}}_{\text{erosion}}
$$
\n
$$
W^{i} f^{i} \quad \text{where} \quad f^{i} = \frac{C_{s}^{i}}{\sum_{j} C_{s}^{j}}
$$
\n
$$
\text{threshold}
$$
\n
$$
P_{ero}^{i} = \begin{cases} \left(\frac{\tau_{b}}{\tau_{cre}^{i}} - 1\right) & \text{if} \quad \tau_{b} > \tau_{cre}^{i} \\ 0 & \text{if} \quad \tau_{b} \leq \tau_{cre}^{i} \end{cases}
$$

• τ*cre* is the critical bottom shear stress for erosion. It is set to 0.5 *Pa* for freshly deposed mud (in the non-consolidated layer) and to 2 *Pa* for erosion in the paren^t bed layer.

Three dimensional sediment transport model of the Belgian coastal zone – p. 7

Erosion

•Ariathurai (1974):

$$
F_{ero}^{i} = \underbrace{P_{ero}^{i}}_{\text{erosion}}
$$
\n
$$
M^{i} f^{i} \quad \text{where} \quad f^{i} = \frac{C_{s}^{i}}{\sum_{j} C_{s}^{j}}
$$
\n
$$
\text{threshold}
$$
\n
$$
P_{ero}^{i} = \begin{cases} \left(\frac{\tau_{b}}{\tau_{cre}^{i}} - 1\right) & \text{if} \quad \tau_{b} > \tau_{cre}^{i} \\ 0 & \text{if} \quad \tau_{b} \leq \tau_{cre}^{i} \end{cases}
$$

- • τ*cre* is the critical bottom shear stress for erosion. It is set to 0.5 *Pa* for freshly deposed mud (in the non-consolidated layer) and to 2 *Pa* for erosion in the paren^t bed layer.
- • Erosion of the paren^t bed only occurs when the upper non-consolidated layer is completely eroded.

0

10

20

30

Distance (km)

Distance (km)

40

50

60

Three dimensional sediment transport model of the Belgian coastal zone – p. 8

 \bullet • New state variables:

$$
\begin{cases}\n\alpha^i = C^i a^i \\
\alpha^i_s = C^i_s a^i_s\n\end{cases}
$$

 \bullet • New state variables:

$$
\begin{cases}\n\alpha^i = C^i a^i \\
\alpha^i_s = C^i_s a^i_s\n\end{cases}
$$

 \bullet • Differential equations:

$$
\begin{aligned} \frac{\partial \alpha^i}{\partial t} + \nabla \cdot [(\mathbf{v} + \mathbf{w}_s^i) \, \alpha^i] &= C^i + \nabla \cdot (\mathbf{K} \cdot \nabla \alpha^i) \\ \frac{\partial \alpha_s^i}{\partial t} &= C^i_s + F^i_{\alpha, sed} - F^i_{\alpha,ero} \end{aligned}
$$

- New state variables: $\left\{\begin{array}{c} \alpha^i=C^ia^i\ \alpha^i_s=C^i_s a^i_s \end{array}\right.$
- •• Differential equations:

$$
\begin{aligned} \frac{\partial \alpha^i}{\partial t} + \nabla \cdot [&\left(\mathbf{v} + \mathbf{w}_s^i \right) \alpha^i] = C^i + \nabla \cdot \left(\mathbf{K} \cdot \nabla \alpha^i \right) \\ \frac{\partial \alpha_s^i}{\partial t} = C^i_s + F^i_{\alpha, sed} - F^i_{\alpha,ero} \end{aligned}
$$

•Sediments are eroded and deposed *with their ages*:

$$
F_{\alpha,ero}^i = a_s^i F_{ero}^i \qquad \text{and} \qquad F_{\alpha,dep}^i = a^i F_{dep}^i
$$

- New state variables: $\left\{\begin{array}{c} \alpha^i=C^ia^i\ \alpha^i_s=C^i_s a^i_s \end{array}\right.$
- •• Differential equations:

$$
\begin{aligned} \frac{\partial \alpha^i}{\partial t} + \nabla \cdot [&\left(\mathbf{v} + \mathbf{w}_s^i \right) \alpha^i] = C^i + \nabla \cdot \left(\mathbf{K} \cdot \nabla \alpha^i \right) \\ \frac{\partial \alpha_s^i}{\partial t} = C^i_s + F^i_{\alpha, sed} - F^i_{\alpha,ero} \end{aligned}
$$

•Sediments are eroded and deposed *with their ages*:

$$
F_{\alpha,ero}^i = a_s^i F_{ero}^i
$$
 and $F_{\alpha,dep}^i = a^i F_{dep}^i$

•Equations coupled through the boundary condition:

$$
\left[\left(\mathbf{v}+\mathbf{w}_{s}^{i}\right)\boldsymbol{\alpha}^{i}-\mathbf{K}\nabla\boldsymbol{\alpha}^{i}\right]\cdot\mathbf{n}=F_{\boldsymbol{\alpha},dep}^{i}-F_{\boldsymbol{\alpha},ero}^{i}
$$

•Study of resuspension-deposition events

> ⇒age of a particle $=$ the time elapsed since the last time

> > that particle left the bottom layer

•Study of resuspension-deposition events

> ⇒age of a particle $=$ the time elapsed since the last time

> > that particle left the bottom layer

•Quantification of the transport rate of mud across the BCZ

- ⇒age of a particle $=$ the time elapsed since that particle passed through ^a source region *S*
- ⇒Advantages : circumvents the difficulties of diffusion
	- process and implementation of a Lagrangian approach

1.Mark the suspended sediments crossing the source region.

- 1.Mark the suspended sediments crossing the source region.
- 2. Compute simultaneously the dynamic of mud for both marked and non-marked sediment because of the non linearity of the erosion term:

- 1.Mark the suspended sediments crossing the source region.
- 2. Compute simultaneously the dynamic of mud for both marked and non-marked sediment because of the non linearity of the erosion term:
	- New variables \tilde{C}^i and \tilde{C}^i_s
	- •• Additional conditions: $\tilde{C}^i = C^i$ and $\tilde{C}^i_s = C^i_s$ in *S*
	- •At inflow open boundaries: $\tilde{C}^i = 0$ and $\tilde{C}^i_s = 0$

•
$$
\tilde{F}_{ero}^i = \frac{\tilde{C}_s^i}{C_s^i} F_{ero}^i
$$
 and $\tilde{F}_{dep}^i = \frac{\tilde{C}^i}{C^i} F_{dep}^i$

- 1.Mark the suspended sediments crossing the source region.
- 2. Compute simultaneously the dynamic of mud for both marked and non-marked sediment because of the non linearity of the erosion term:
	- New variables \tilde{C}^i and \tilde{C}^i_s
	- •• Additional conditions: $\tilde{C}^i = C^i$ and $\tilde{C}^i_s = C^i_s$ in *S*
	- •At inflow open boundaries: $\tilde{C}^i = 0$ and $\tilde{C}^i_s = 0$

•
$$
\tilde{F}_{ero}^i = \frac{\tilde{C}_s^i}{C_s^i} F_{ero}^i
$$
 and $\tilde{F}_{dep}^i = \frac{\tilde{C}^i}{C^i} F_{dep}^i$

3. Compute the age contents of marked sediments $\tilde{\alpha}_s^i$ and $\tilde{\alpha}^i$ where

$$
\tilde{F}_{\alpha,ero}^i = \frac{\tilde{\alpha}_{s}^i}{C_{s}^i} F_{ero}^i \quad \text{and} \quad \tilde{F}_{\alpha,dep}^i = \frac{\tilde{\alpha}^i}{C^i} F_{dep}^i
$$

- 1.Mark the suspended sediments crossing the source region.
- 2. Compute simultaneously the dynamic of mud for both marked and non-marked sediment because of the non linearity of the erosion term:
	- New variables \tilde{C}^i and \tilde{C}^i_s
	- •• Additional conditions: $\tilde{C}^i = C^i$ and $\tilde{C}^i_s = C^i_s$ in *S*
	- •At inflow open boundaries: $\tilde{C}^i = 0$ and $\tilde{C}^i_s = 0$

•
$$
\tilde{F}_{ero}^i = \frac{\tilde{C}_s^i}{C_s^i} F_{ero}^i
$$
 and $\tilde{F}_{dep}^i = \frac{\tilde{C}^i}{C^i} F_{dep}^i$

3. Compute the age contents of marked sediments $\tilde{\alpha}_s^i$ and $\tilde{\alpha}^i$ where

$$
\tilde{F}_{\alpha,ero}^i = \frac{\tilde{\alpha}_s^i}{C_s^i} F_{ero}^i \quad \text{and} \quad \tilde{F}_{\alpha,dep}^i = \frac{\tilde{\alpha}^i}{C^i} F_{dep}^i
$$

4.Compute the age using the relations $\tilde{\alpha}^i = \tilde{C}^i \tilde{a}^i$ and $\tilde{\alpha}^i_s = \tilde{C}^i_s \tilde{a}^i_s$

transport resuspension

Three dimensional sediment transport model of the Belgian coastal zone – p. 11

Conclusion

- •• The model was applied successfully to reproduce the mud behaviour in the Belgian coastal zone.
- •• The CART theory is a useful diagnostic tool to investigate the different behaviours of mud during deposition-resuspension events and transport.

Future developments:

- •• Pollutants and nutrients are transported preferentially in an absorbed state and tend to bind to the sediments
	- \Rightarrow Their transport outside the coastal zone highly dependent on the sediments' dynamic.
	- \Rightarrow Use this tool to quantify the transfer rate of contaminants through the behaviour of the suspended matter.

Contents

- \bullet [Study](#page-3-0) Area
- •[Hydrodynamic](#page-4-0) model
- •[Sediment](#page-7-0) transport model (1)
- •[Sediment](#page-11-0) transport model (2)
- •[Depositio](#page-14-0)n
- •[Erosio](#page-17-0)n
- •• [Validatio](#page-19-0)n
- •CART: [sediment](#page-23-0) (1)
- •CART: [sediment](#page-25-0) (2)
- •CART: [Computation](#page-30-0) procedure