

Annual-scale adaptation of a soil heterotrophic respiration model to three agricultural sites in Belgium and South-Western France.

P. Buysse¹, V. Le Dantec², P. Mordelet², A. Debacq¹, M. Aubinet¹ ¹University of Liège – Gembloux Agro-Bio Tech, Unit of Biosystem Physics, Gembloux, Belgium. ²Centre d'Etudes Spatiales de la Biosphère (CESBIO), Toulouse, France.

1. Introduction

→ Context :

- Within the context of climate change, agricultural soils have been less investigated so far, despite their considerable importance through the world.
- Despite the numerous Soil Organic Matter (SOM) decomposition models that work at different spatial and temporal scales, there is still a lack of understanding of the mechanisms which control SOM decomposition.

→Objectives:

- To model soil respiration in agricultural soils:
 - at an annual timescale with a daily time resolution
 - at the ecosystem scale (field)
- The present results focus on heterotrophic respiration.

4. Parameterization

- Site parameters: based on site data.
- Biochemical parameters: based on a literature survey:

Parameter	Value [%DM]	Parameter	Value [%DM]
Wheat leaves and stems		Wheat roots	
Nitrogen	0.5	Nitrogen	0.45
Lignin	9.2	Lignin	17.15
Cellulose	42.1	Cellulose	35.8
Hemicellulose	31.4	Hemicellulose	36.8

5. Calibration

Aim: To fix the two parameters of the temperature response. Procedure:

- Model run on a 30-cycle loop with a local mean climatic year.
- Minimization of difference between computed and measured SOC

6. Initialization

Aim: Distribute SOC between pools.

Procedure:

- Model run on a 30-cycle loop with a local mean climatic year. SOC initial distribution: 3% active, 40% slow and 57% passive
- (Parton et al., 1987).

Docult .				
Result :	C Pool content (% SOC)	Auradé	Lamasquère	Lonzée
	Active	2.2	2.6	2.6
	Slow	38.5	35	36
	Passive	52.6	57	55
	Crop residues	6.7	5.4	5.4

→ The most clayey site (LAM) has the highest proportion of C in the passive pool

2. Model description

Fia.1 - Carbon flows in a model laver.

biochemical characteristics of residues and soil clay content

Carbon (C) flows in and out of each pool (x):

computed as:

- Soil heterotrophic respiration model: residues - Derived from CENTURY (Parton et al., 1987).
 - 3 layers containing 3 to 5 carbon pools each (Fig.1).
 - Daily meteorological inputs (soil temperature and soil moisture content).
 - Outputs: daily carbon flows between pools (Fig. 1) and respiration fluxes (thick arrows in Fig. 1).

3. Site description

7. Preliminary results: comparison with experimental data

→ All soil respiration flux measurements were performed in 2007 using the dynamic closed chamber method.

Fig.2.: Temporal evolution of the modelled and measured fluxes (manual system) at the Auradé site in 2007.

Fig.3.: Temporal evolution of the modelled and measured fluxes (manual system) at the Lamasquère site in 2007.

Lonzée

Fig.4.: Temporal evolution of the modelled and measured fluxes (manual system) at the Lonzée site in 2007

Comments on Fig.2, 3 and 4:

- At each site, soil temperature is the soil respiration main driver.
- Differences between sites may be driven by SOC.
- Overall good agreement between modelled and measured fluxes in Lonzée, except for the extreme values.
- Large model overestimation in Auradé and Lamasquère.
- →Impact of soil moisture?
- →In Lamasquère, overestimation of total SOC?

8. Conclusions and perspectives

- The results at LON suggest that the model may potentially be a good soil respiration predictive tool.
- The discrepancies at AUR and LAM indicate that some adjustments have to be made, probably regarding the SOC content, its distribution between pools, and the temperature and humidity responses.
- → To go further:
 - ❖To validate the model with other site-year soil respiration data.
 - To investigate the possible link between SOC content and soil respiration fluxes through a field experiment.

CONTACT PERSON: Pauline Buysse - FRS-FNRS Research fellow University of Liège – Gembloux Agro-Bio Tech – Unit of Biosystem Physics, Belgium

Pauline.Buysse@ulg.ac.be

