1. Introduction

- Context:
 - Within the context of climate change, agricultural soils have been less investigated so far, despite their considerable importance through the world.
 - Despite the numerous Soil Organic Matter (SOM) decomposition models that work at different spatial and temporal scales, there is still a lack of understanding of the mechanisms which control SOM decomposition.

- Objectives:
 - To model soil respiration in agricultural soils:
 - at an annual timescale with a daily time resolution
 - at the ecosystem scale (field)
 - The present results focus on heterotrophic respiration.

2. Model description

- Soil heterotrophic respiration model:
 - Derived from CENTURY (Parton et al., 1987).
 - 3 layers containing 3 to 5 carbon pools each (Fig.1).

3. Site description

4. Parameterization

- Site parameters: based on site data.
- Biochemical parameters: based on a literature survey:

5. Calibration

- Aim: To fix the two parameters of the temperature response.
 - Procedure: Model run on a 30-cycle loop with a local mean climatic year.
 - Minimization of difference between computed and measured SOC

6. Initialization

- Aim: Distribute SOC between pools.
 - Procedure: Model run on a 30-cycle loop with a local mean climatic year.
 - SOC initial distribution: 3% active, 40% slow and 57% passive (Parton et al., 1987).

7. Preliminary results: comparison with experimental data

- All soil respiration flux measurements were performed in 2007 using the dynamic closed chamber method.

8. Conclusions and perspectives

- Comments on Fig. 2, 3 and 4:
 - At each site, soil temperature is the soil respiration main driver.
 - Differences between sites may be driven by SOC.
 - Overall good agreement between modelled and measured fluxes in Lonzée, except for the extreme values.
 - Large model overestimation in Auradé and Lamasquère.
 - Impact of soil moisture?
 - In Lamasquère, overestimation of total SOC?

- The present results focus on heterotrophic respiration.

- To go further:
 - The results at LON suggest that the model may potentially be a good soil respiration predictive tool.
 - The discrepancies at AUR and LAM indicate that some adjustments have to be made, probably regarding the SOC content, its distribution between pools, and the temperature and humidity responses.
 - To validate the model with other site-year soil respiration data.
 - To investigate the possible link between SOC content and soil respiration fluxes through a field experiment.

Acknowledgements: This research is funded by the FRS-FNRS, Belgium

CONTACT PERSON: Pauline Buysse – FRS-FNRS Research fellow
University of Liège – Gembloux Agro-Bio Tech – Unit of Biosystem Physics, Belgium
Pauline.Buysse@ulg.ac.be