

Risk assessment of soil compaction in Walloon Region (Belgium)

C. Rosière*; S. Delvoie**; R. Charlier**; X. Legrain*; P. Demarcin*; M.-F. Destain*; J.-C. Verbrugge*

*Gembloux Agro-Bio Tech (ULg), Passage des Déportés, 2 B-5030 Gembloux (Belgium) ** Département ArGEnCo (ULg), Sart Tilman B52, 4000 Liège, Belgique

Objective

To identify zones sensitive to compaction in the Walloon Region (RW) (Belgium) and to map them.

Context

Soil compaction depends on interaction between soil characteristics (permanent and variable) and agricultural or sylvicultural practices. In RW, beetharvest could generate high compaction because it happens during a wet season and machines (loader or self propelled complete machines) have axle load that may exceed 10 tons.

Fig.1. Self propelled complete machine

Method

Two stages of mapping

I. Map of soil compaction sensitivity

- Precompression stresses (Pc) are calculated at two pF values (1.8 and 2.5) and two depths by Pedotransfer Functions (PTFs) of Lebert & Horn (1991).
- These PTFs require soil characteristics (texture, organic carbon content, bulk density, ...)
- These parameters are available in Aardewerk database (granulometry, organic matter content) and in literature: saturated hydraulic conductivity (Mualem-Van Genuchten, 1992), bulk density (Manrique & Jones, 1991), cohesion and angle of internal friction (Van den Akker, 2004),

Table 1. Classification of the precompression stress

Pc (kPa)	Soil sensitivity	Colour on map	
High (up to 400)	very low		
	low		
+	medium		
•	high		
Low (until to 10)	very high		

Map of soil compaction sensitivity

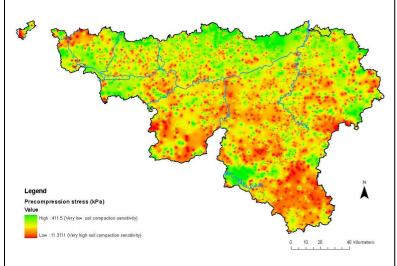


Fig.2.

II. Potentially compacted soils

Calculation of vertical stress (σ_z) distribution induced by the passage of a machine is performed by the software Soilflex (Keller, 2005). **Hypotheses**

- A 'superellipse' shape (Keller, 2005) is used to represent vertical constraints distribution of tire-soil contact
- In-depth distribution of σ_z and contact area depend on a stress concentration factor (ξ) which characterizes their spatial distribution.
- The self propelled Holmer TerraDos is considered as an example (Table 1).

Table 2.

Net weight (kg)	Hopper capacity (t)	Axles number	Front wheels		Back wheels	
			Inflation	Naming	Inflation	Naming
			pressure		pressure	
23580	18	2	2.2	800/65	2.2	72/44.
				R32		00 R32

Comparison of Pc and σ_7 If $Pc > \sigma_z \rightarrow Elastic behaviour of soil$ If $Pc < \sigma_{\tau} \rightarrow Plastic behaviour of soil$

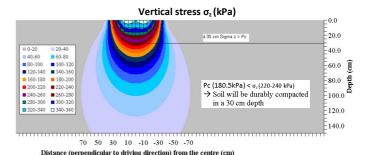


Fig.3. Vertical stress distribution. Passage of a beetharvester Holmer TerraDos on a loamy soil (Hannut, Belgium).

III. Experimental measurement of Pc on sites

To analyse the machine influence, oedometric tests are performed before and after machine passages on agricultural and forest sites in RW.

Fig.4. Soil sampling for oedometric test.

Fig.5. Automatic oedometer.