
Counting and Enumerating Aggregate
Classifiers

Jan Adem∗, Yves Crama†, Willy Gochet‡, Frits C.R. Spieksma‡

Abstract: We propose a generic model for the “weighted voting” aggrega-
tion step performed by several methods in supervised classification. Further,
we construct an algorithm to enumerate the number of distinct aggregate
classifiers that arise in this model. When there are only two classes in the
classification problem, we show that a class of functions that arises from
aggregate classifiers coincides with the class of self-dual positive threshold
Boolean functions.

Keywords: supervised classification; weighted voting; Boolean functions; in-
teger sequence

1 Introduction

The supervised classification problem can be described as follows. Given
is a domain D ⊆ RP and a design data set {(x1, c1), ..., (xN , cN)}, where
xn ∈ D is a P -dimensional row vector of measurements describing obser-
vation n, and cn ∈ {1, ..., C} denotes the class containing observation n,
n ∈ {1, ..., N}. The supervised classification problem consists in specifying
a function g : D → {1, ..., C} : x 7→ g(x) that classifies any point in the
domain D into one of the C classes. The function g is called a classifier .
For an observation (xn, cn) in the data set, if g(xn) = cn, then point n is
correctly classified by the classifier g, otherwise it is misclassified. As cn is

∗Corresponding author, ING, e-mail: jan.adem@ing.be.
†HEC Management School, University of Liège, Boulevard du Rectorat 7 (B31), 4000

Liège, Belgium.
‡Operations Research Group, FETEW, Katholieke Universiteit Leuven, Naamsestraat

69, B-3000, Leuven, Belgium.

1

given for all n ∈ {1, ..., N}, the problem is called supervised classification
problem, in contrast with the unsupervised classification problem where the
class membership of the observations in the design data set is not known
beforehand [17].

In practice, there exist many methods to design classifiers [17, 29]. This vari-
ety of methods, and the corresponding abundance of classifiers, gives rise to
a natural question: is it possible to aggregate classifiers in such a way that
the resulting aggregate classifier has more desirable characteristics than any
of the original classifiers separately? In this paper, we concentrate on the
following aggregation framework.

Given are a finite number of classifiers g1, ..., gL, L ∈ {2, 3, ...}; these L
classifiers will be referred to as the component classifiers. For every point
x ∈ D, the functional value gl(x) can be determined for l ∈ {1, ..., L}.
Now, let us assume that a nonnegative real weight αl is associated to each
component classifier gl, l ∈ {1, ..., L}. (We assume that at least one of the
weights αl is strictly positive.) Then, the corresponding aggregate classifier
g assigns each point x ∈ D to the class c∗ defined by the rule:

g(x) = c∗ if and only if
L∑

l=1

{αl | gl(x) = c∗} >
L∑

l=1

{αl | gl(x) = c} for all c ∈ {1, ..., C} \ c∗. (1)

Informally, the weight αl can be seen as the voting weight associated with
component classifier gl, and the aggregation operation is a weighted majority
vote based on these L values. (We will make sure below that the class c∗ is
uniquely defined by (1).)

Example 1. Assume that L = 5, C = 4, and that (g1(x),
g2(x), g3(x), g4(x), g5(x)) = (1,2,1,3,3). If (α1, α2, α3, α4, α5)
= (1,1,2,0,0.4), then c∗ = arg maxc{3, 1, 0.4, 0} and the aggregate
classifier assigns point x to class 1. �

Weighted majority voting has been used for a long time in fields such as game
theory and distributed computing systems [14]. In supervised classification,
aggregation procedures based on weighted majority voting have become a
popular research issue in the last decade, and they now constitute an active,

2

fast-growing field of investigation [10, 15, 16, 28]. This interest is largely
due to the promising empirical results delivered by two powerful aggregation
techniques: bagging [11] and boosting [26].

Bagging relies on simple majority voting to aggregate the component classi-
fiers, i.e., each component is given the same weight αl = 1

L
for l ∈ {1, ..., L}.

A drawback of bagging is that the weights are fixed independently of the
design data set, so that a bad component classifier is given the same weight
as a good one.

Boosting takes the design data set indirectly into account by letting the
weight αl depend on el, where el is the fraction of design data set observa-
tions that are misclassified by component classifier gl. In Ada-Boosting [15],
the weight of the l-th component classifier is chosen as αl = log((1− el)/el).
(Notice that in this method, the weights αl can be negative and it is not
required that at least one αl > 0, l ∈ {1, ..., L}.)

Similarly, in Logical Analysis of Data (LAD, see e.g. [9]), the construction
of the so-called discriminant classifier is based on weighted aggregation of
elementary classifiers. The paper [9] proposes several ways to choose the
aggregation weights: uniformly as in bagging, as a function of the accuracy
of the classifier on the data set, etc.

An alternative to the above approaches is to use mathematical programming
techniques to determine the weights αl according to some criterion function
defined directly on the available design data set [2]. For instance, a natural
objective function would be to minimize the number of misclassifications on
the design data set. It can be shown that this optimization problem is NP-
hard (see [1] and the references contained therein).

In this paper, we concentrate on a question motivated by such weighted
majority aggregation methods, namely on the following counting problem:

Given L component classifiers g1, ..., gL taking their values in
{1, ..., C}, how many different classifiers can be defined by the
aggregation rule (1)?

Notice that, when the answer to this question is not too large, and when
assuming the availability of not only the number of different aggregate clas-

3

sifiers, but also corresponding different solutions, an “optimal” aggregate
classifier can be found by complete enumeration over all possible distinct
aggregate classifiers for a broad class of criteria. One obvious choice, as
mentioned earlier, would be to select the aggregate classifier that yields the
minimum number of misclassifications. Observe that this number may be
strictly less than the number of misclassifications produced by each compo-
nent classifier. Alternatively, we may also want to identify the aggregate
classifier that minimizes the number of observations wrongly placed in some
specific category (for instance, in a medical application, the number of pa-
tients mistakenly classified as “healthy”). We also note that other optimality
criteria have been used in closely related contexts, e.g., in the determination
of voting weights realizing mutual exclusion in distributed computing sys-
tems (see e.g. [4, 6]).

Since the answer to the counting problem defined above may depend on the
choice of the component classifiers g1, ..., gL, we shall actually restrict our
attention to a more general version of the problem, denoted #AP, which
only depends on L and C but not explicitly on g1, ..., gL.

The paper is organized as follows. In Section 2, the aggregation problem,
called AP, is stated, and a framework is proposed to count the number of
solutions of AP. Section 3 proposes an enumeration algorithm and reports
on the number of non equivalent solutions of AP for small values of L and
C. In Section 4, we show that the class of L-bit boolean functions arising
from aggregate classifiers when C = 2 coincides with the class of self-dual
positive threshold L-bit boolean functions. The last section presents some
conclusions and directions for future work.

2 Solution space of the aggregation problem

In order to describe more formally the aggregation problem, let us first in-
troduce some definitions.

Definition 1. For L in {2, 3, ...} and C in {2, 3, ...}, an L-tuple (α1, ..., αL) ∈
RL is a solution of the aggregation problem AP if and only if

(i) αl ≥ 0 for l ∈ {1, ..., L} and

4

(ii) for every possible partition of the set {1, ..., L} into at least 2 and at
most C nonempty subsets, there exists a subset G∗ in the partition such
that

∑
l∈G∗ αl >

∑
l∈G αl for all other subsets G in the partition.

The aggregating function associated with the solution (α1, ..., αL) ∈ RL
+ is the

function f : {1, . . . , C}L → {1, ..., C} such that, for all y1, ..., yL ∈ {1, . . . , C},

f(y1, ..., yL) = c∗ if and only if
L∑

l=1

{αl | yl = c∗} >
L∑

l=1

{αl | yl = c} for all c ∈ {1, ..., C} \ c∗. (2)

Functions defined on {1, . . . , C}L and with values in {1, . . . , C} are some-
times called discrete functions, and have been investigated in e.g. Bioch [5].

Condition (i) expresses that every component classifier is taken “positively”
into account in the aggregation process. This is a rather natural assumption.
Together with condition (ii), it also implies that at least one component clas-
sifier must receive a strictly positive weight.

Condition (ii) ensures that the aggregate classifer given by (1), and equiva-
lently the aggregating function given by (2), are well-defined functions. To
see this, for a given point x ∈ D, define the C sets Gc(x) = {l | gl(x) = c},
c ∈ {1, ..., C}. The sets Gc(x) induce a partition of the set {1, ..., L} into at
most C nonempty subsets. Conversely, every partition of the set {1, ..., L}
into at most C nonempty subsets represents a way in which the classifications
of the component classifiers can potentially differ; that is, every such parti-
tion might arise from the collection {G1(x), ...,GC(x)} for some observation x.

Thus, condition (ii) imposes that there is always a unique aggregate classi-
fication for all possible classifications assigned by the individual component
classifiers. Notice that in the statement of the condition, it is not relevant
which value from {1, ..., C} is associated to which nonempty subset in the
partition. What matters in the analysis of the solution space is the mecha-
nism of aggregation, not its outcome.

The counting problem associated with the aggregation problem AP can now
be more formally stated:

5

[#AP] For all L in {2, 3, ...} and for all C in {2, 3, ...}, compute
the number of aggregating functions of the form (2).

In order to structure the solution space of AP further, let T be the set of
all the possible partitions of the set {1, ..., L} into at least 2, and at most
C nonempty subsets. Now, order the elements of T in any order and label
them from 1 to |T |. Denote by Pt the t-th partition in T , t ∈ {1, ..., |T |}.

Let (α1,...,αL) be a solution of AP and denote by G∗t the (unique) subset in
Pt such that

∑
l∈G∗t

αl >
∑

l∈G αl for all other subsets G ∈ Pt, t ∈ {1, ..., |T |}.
Condition (ii) in Definition 1 implies that G∗t is well-defined. Therefore, ex-
actly one |T |-dimensional vector [G∗1 ... G∗|T |] can be associated with every

solution (α1,...,αL). This |T |-dimensional vector will be called the decision
vector of the solution. It is easy to see that it completely characterizes the
aggregating function f associated to (α1,...,αL) by the voting rule (2).

Definition 2. Let (α1,...,αL) and (β1,...,βL) be solutions of AP. We say
that (α1,...,αL) and (β1,...,βL) are equivalent solutions if and only if their de-
cision vectors are identical, i.e., if they define the same aggregating function.

The above definitions put some useful structure on the solution space of
AP. Let Ssol = { (α1, ..., αL) | (α1, ..., αL) is a solution of AP}. For all val-
ues of L and C, the set Ssol contains infinitely many elements. However, the
equivalence relation introduced in Definition 2 partitions the set Ssol into Q
equivalence classes Sq

sol with q ∈ {1, ..., Q}. Therefore, counting the number
of distinct aggregate classifiers really amounts to computing the number Q
of non equivalent solutions of AP. Formally, we define:

Definition 3. For all L in {2, 3, ...} and for all C in {2, 3, ...}, Q(L, C) is
the number of non equivalent solutions of AP, i.e., the number of distinct
aggregating functions with L component classifiers and C classes.

It is obvious that, for all possible values of L and C, Q(L, C) is finite. This
framework leads to a discrete, rather than continuous, representation of the
solution space of AP. As already mentioned in the Introduction, this suggests
that for certain objective functions, an “optimal” aggregate classifier could
be found by complete enumeration of all (Q(L, C)) non equivalent solutions
of AP. In view of this, we now turn to two related questions.

6

Question 1, the counting problem: Compute Q(L, C).

Question 2, the enumeration problem: Generate Q(L, C)
non equivalent solutions of AP.

In the next section, these questions will be partially answered. Since we are
not able to come up with an analytic or recursive expression for Q(L, C)
as a function of L and C (not even when C = 2; see our discussion in
Sections 4 and 5), an algorithm to compute Q(L, C) will be presented as a
best alternative. This enumeration algorithm will also provide an answer to
Question 2.

3 An algorithm to compute Q(L, C)

In Section 2, we have introduced T , the set of all partitions of the set {1, ..., L}
into at least 2 and at most C nonempty subsets, and we have denoted by Pt

the t-th element in T . The cardinality of T is

|T | =
min{L,C}∑

k=2

S(L, k)

where S(L, k) is the Stirling number of the second kind, representing the
number of ways to partition a set of L elements into exactly k nonempty
subsets [12, 30].

Any |T |-dimensional vector for which the t-th entry, t ∈ {1, ..., |T |}, is an
element of Pt is called a candidate decision vector. The number of different
partition decision vectors is

|T |∏
t=1

|Pt|, which can be rewritten as:

min{L,C}∏
k=2

kS(L,k)

since |Pt| ∈ {1, ..., min{L, C}} for t ∈ {1, ..., |T |}.

The number of candidate decision vectors for a given value of L and C gives
a (weak) upper bound for Q(L, C). Observe that the parameter C only in-
fluences the upper bound through the number min{L, C}. If L ≤ C, the

7

parameter C does not determine the upper bound.

By Definitions 1 and 2, in order to generate all solutions of AP, it “suffices”
to generate all candidate decision vectors and check if there exists a solution
that corresponds to each candidate. If so, the candidate decision vector is a
decision vector. The test comes down to the following question:

[FP] Is the system of strict linear inequalities∑
l∈G∗t

αl −
∑
l∈G

αl > 0 (G ∈ Pt \ {G∗t }, t ∈ {1, ..., |T |})

αl ≥ 0 (l ∈ {1, ..., L})
feasible?

As solutions to AP can be multiplied by a real number r > 0 without chang-
ing the corresponding aggregate classifier, FP is equivalent to the problem
FP-ε hereunder:

[FP-ε] Let ε ∈ R, ε > 0. Is the system of linear inequalities∑
l∈G∗t

αl −
∑
l∈G

αl ≥ ε (G ∈ Pt \ {G∗t }, t ∈ {1, ..., |T |})

αl ≥ 0 (l ∈ {1, ..., L})
feasible?

Note that FP-ε can be solved by linear programming techniques. These
techniques also yield a feasible solution if there exists one. Hence, in this
way, they can be used to answer Question 1 and 2 at the same time and at
the same computational cost.

The approach that we have underlined is computationally expensive, how-
ever, since FP-ε needs to be solved for all candidate decision vectors. In
order to speed it up, we observe now that every decision vector must obey
the following consistency rule.

Consistency Rule. Consider an arbitrary decision vector (G∗1 , ...,G∗|T |),

and let t ∈ {1, ..., |T |}. For every partition Ps, s ∈ {1, ..., |T |},
s 6= t, if

8

(i) there exists an element Gs ∈ Ps such that G∗t ⊆ Gs and,

(ii) every element G of Ps, G 6= Gs, is a subset of some element
G ′ of Pt, G ′ 6= G∗t ,

then it must hold that Gs is the s-th entry in the decision vector,
i.e., Gs = G∗s .

The consistency rule is obviously valid: indeed, the total weight of Gs is at
least as large as the weight of G∗t , while the weight of any other set G in Ps

is at most the weight of G ′, which is smaller than the weight of G∗t .
As a consequence, rather than enumerating all the possible candidate decision
vectors, only those will be enumerated that do not violate the consistency
rule. This strongly reduces the number of feasibility problems FP-ε that need
to be solved. For example, if L = 4 and C = 3 only 116 feasibility checks are
required while the number of candidate decision vectors is 2736 = 93312.
Below, an informal description is given of an algorithm that enumerates and
determines the number of non equivalent solutions of AP, i.e., Q(L, C), for
a given value of L and C.

ENUMERATION ALGORITHM

Input: A number L ∈ {2, 3, ...}, a number C ∈ {2, 3, ...}.

1. Generate all Pt and label them in any order from 1 to |T |.
Set q = 0.

2. Take the first entry in a to-be-built candidate decision vector,

t = 1.

3. Choose a subset Gt in Pt and put subset Gt at entry t of the

to-be-built candidate decision vector, G∗t = Gt.

4. If possible, fill in unfilled entries of the to-be-built candidate

decision vector by application of the consistency rule.

5. If all the entries of the to-be-built candidate decision vector

are filled in, a candidate decision vector has been built and

proceed to step 6; else update t to the next unfilled entry

in the to-be-built candidate decision vector and go to step

3.

9

6. Use FP-ε to check if there exists a solution that would give

the candidate decision vector. If so, the candidate decision

vector is a decision vector, q ← q + 1 and the solution is

saved.

7. Empty the entries of the to-be-built candidate decision vector

filled up in the last step 3 and 4.

8. If there exists a subset Gt in Pt which has not yet been chosen,

go to step 3; else if possible, set t to its previous value

and go to step 8; else go to step 9.

9. Set Q = q.

Output: A number Q, a set of Q solutions.

In Table 1, the values for Q(L, C) for small values of L and C are given. A
question mark indicates that it was not possible to calculate Q(L, C) within
24 hours of computation time on a PENTIUM III 550 Mhz computer.

Table 1: Q(L, C) for small dimensions

C=2 C=3 C=4 C=5 C=6
L=2 2 2 2 2 2
L=3 4 6 6 6 6
L=4 12 76 84 84 84
L=5 81 7625 13805 14025 14025
L=6 1684 ? ? ? ?
L=7 122921 ? ? ? ?
L=8 ? ? ? ? ?

Given our computational resources, this table is currently the best answer
that we can provide to Question 1. For all the cases where Q(L, C) can be
found, also Question 2 is answered as the enumeration algorithm provides a
set of Q(L, C) solutions, each of which is associated to a distinct aggregate
classifier. This set then suffices to determine, for example, a set of weights
which minimize the number of misclassified observations for any instance of
the aggregation problem with L ≤ 5 component classifiers and any number

10

C of classes (remember that, when C ≥ L, Q(L, C) depends on L only).
These exact solutions provide easy-to-obtain lower bounds for larger aggre-
gation problems and, in this sense, might prove useful in the development of
algorithms to solve larger aggregation problems. Note that, in contrast to
the mathematical programming approach in [2], the influence on the compu-
tational performance of the number of observations N in the design data set
is negligible.

From Table 1, it is clear that the numbers Q(L, C) grow extremely fast with
increasing L and, due to limited computational resources, the counting algo-
rithm will not be able to find Q(L, C) when L gets large. Interestingly, none
of the sequences in the table (e.g. 2, 6, 84, 14025, ... or 2, 4, 12, 81, 1684, 122921, ...)
can be directly found in the on-line encyclopedia of integer sequences pro-
vided by Sloane [27]. We will come back to this issue in the next Section.

4 Aggregate classifiers and Boolean functions

In this section we explore the connection between the aggregation problem
AP with C = 2 and the enumeration of n-bit self-dual, positive, threshold
Boolean functions. Section 4.1 recalls the necessary definitions from Boolean
function theory, and in Section 4.2 we prove the equivalence between aggre-
gating Boolean functions and Boolean functions that are self-dual, monotone,
and threshold.

4.1 Boolean functions

Fundamental facts and definitions about Boolean functions can be found in
[3, 7, 8, 14, 23]. Let n ∈ {1, 2, ...}.

Definition 4. An n-bit Boolean function is a function

f : {0, 1}n → {0, 1} : (b1, ..., bn) 7→ f(b1, ..., bn).

When b is an element of {0, 1}, we let b̄ = 1− b.

Definition 5. An n-bit Boolean function f is self-dual if for all (b1, ..., bn) ∈
{0, 1}n, f(b1, ..., bn) = f̄(b̄1, ..., b̄n).

11

For any (b1, ..., bn), (b′1, ..., b
′
n) ∈ {0, 1}n, we write (b1, ..., bn) ≤ (b′1, ..., b

′
n) if

bj ≤ b′j for j ∈ {1, ..., n}.

Definition 6. An n-bit Boolean function f is positive (sometimes called
monotone) if f(b1, ..., bn) ≤ f(b′1, ..., b

′
n) whenever (b1, ..., bn) ≤ (b′1, ..., b

′
n).

Definition 7. An n-bit Boolean function f is threshold if there exist (n+1)
real numbers α1, ..., αn, θ such that, for all (b1, ..., bn) ∈ {0, 1}n,

f(b1, ..., bn) = 1 iff
n∑

j=1

αjbj > θ. (3)

We denote the set of n-bit (respectively, self-dual, positive, threshold) Boolean
functions by B (respectively, Bsd, Bp, Bt). Counting the number of Boolean
functions with various properties has been the subject of numerous mathe-
matical studies. It is easy to check that the total number of n-bit Boolean
functions is 22n

, and that the number of self-dual n-bit Boolean functions is
22n−1

. Determining the number of positive n-bit Boolean functions is known
as Dedekind’s problem. Many mathematicians contributed to this problem
but despite their efforts, the exact number of positive n-bit Boolean functions
is known for small values of n only [22]. Kleitman [19] proved that log2 |Bp| is
asymptotic to the middle binomial coefficient

(
n

[n/2]

)
(see also [20, 21]). Bioch

and Ibaraki [6] enumerate all self-dual, positive functions for n ≤ 7.

Counting and tabulating threshold functions has been a main topic of inves-
tigation in electrical engineering [23]. Here again, the exact value of |Bt| is
known for small values of n only (see e.g. [6, 23, 24]). Asymptotically, it has
been proved that (log2 |Bt|)/n2 approaches 1 as n grows large [3, 31], meaning
in particular that the class of threshold functions is quite small with respect
to the classes of self-dual or positive functions.

4.2 The link between classifiers with C = 2 and Boolean
functions

For classification problems with C = 2 classes, in a slight departure from our
usual notations, let us encode the two classes by 0 and 1, respectively. Thus,
in this case, aggregating functions are L-bit Boolean functions (by Defini-
tion 1), and we are going to show that they correspond exactly to self-dual,

12

positive, threshold Boolean functions.

Proposition. A Boolean function is an aggregating function if and only if
it is self-dual, positive and threshold.
Proof. For C = 2, consider the aggregating function f associated to a
solution (α1, ..., αL) ∈ RL

+ of AP as in Definition 1. Condition (2) translates
to: for all b1, ..., bL ∈ {0, 1},

f(b1, ..., bL) = 1 iff
L∑

l=1

αlbl >
L∑

l=1

αl(1− bl), (4)

or equivalently

f(b1, ..., bL) = 1 iff
L∑

l=1

αlbl >
1

2

L∑
l=1

αl. (5)

The Boolean function f is positive (since αj ≥ 0 for all j), threshold (by
(5)), and self-dual: indeed, in view of (4),

f(1− b1, ..., 1− bL) = 1 iff
L∑

l=1

αl(1− bl) >
L∑

l=1

αlbl iff f(b1, ..., bL) = 0, (6)

meaning that f(b1, ..., bL) = f̄(b̄1, ..., b̄L) as required for self-duality.

Conversely, let f be a self-dual, positive, threshold L-bit Boolean function.
In view of Definition 7, f is associated to a set of weights α1, ..., αL, and to
a threshold value θ satisfying (3). It is well-known, and easy to check, that
the weights α1, ..., αL can be chosen to be non negative when f is positive
(see [14, 23]). Then, we claim that these weights define a solution of AP.
Indeed, as in condition (ii) of Definition 1, consider an arbitrary partition
of the set {1, ..., L} into {G0,G1} (where G1 may be empty). For all l ∈
{1, ..., L}, write bl = 0 if l ∈ G0 and bl = 1 if l ∈ G1. By self-duality,
f(b1, ..., bL) = f̄(b̄1, ..., b̄L), and we can assume without loss of generality that
f(b1, ..., bL) = 0, f(b̄1, ..., b̄L) = 1 (the other case being symmetrical). Thus,
by Definition 7,

L∑
l=1

αl(1− bl) > θ ≥
L∑

l=1

αlbl,

13

hence ∑
l∈G0

αl >
∑
l∈G1

αl.

This shows that the weights α1, ..., αL satisfy condition (ii) in Definition 1,
i.e. (α1, ..., αL) is a solution of AP and f is an aggregating function. �

In view of this result, computing Q(L, 2) is tantamount to computing the
number of self-dual, positive, threshold L-bit Boolean functions. The value
of Q(L, 2) is found in the first column of Table 1 for L ≤ 7.

Interestingly, enumeration algorithms for the number of self-dual, positive,
threshold L-bit Boolean functions have been previously considered in the
Boolean literature. (To the best of our knowledge, all such algorithms ac-
tually rely on the solution of the corresponding complete enumeration prob-
lem.) For L ≤ 7, Muroga [23] and Bioch and Ibaraki [6] tabulate the results
as shown in Table 2. (This same sequence is also erroneously listed in the
On-Line Encyclopedia of Integer Sequences [27] for the number of self-dual
threshold functions.)

Table 2: Table from [23, 6]

L Number of functions
L=2 0
L=3 1
L=4 4
L=5 46
L=6 1322
L=7 112519

The difference between the two sequences in Table 1 and Table 2 can be
explained by the fact that [23, 6] count the number of self-dual positive
threshold Boolean functions that effectively depend on all their L variables ,
while we actually count self-dual positive threshold functions of at most L
variables , including those that may effectively depend on a subset of their L
variables only (since some of the weights αl may be zero in (4)). For instance,
the function f(b1, b2) = b1 is self-dual, positive and threshold, but it does not

14

effectively depend on its second variable.

Let S(L) be the L-th element of the sequence considered in [23, 6]. Then, it
is easy to see that Q(L, 2) =

∑L
n=1(

L
n)S(n) must hold for all L ∈ {2, 3, ...},

and to check this relation for Tables 1 and 2.

Finally, let us observe that the results presented in previous sections usually
have simple Boolean interpretations when C = 2. For instance, the system
of inequalities FP in Section 3 has been classically used for the recognition
of threshold Boolean functions, and the ‘Consistency Rule” simply amounts
to ensuring that the function is positive and concentrating on “minimal true
points” or “maximal false points” of the function (see e.g. [13, 14, 23, 25]
for details). Also (as pointed out by one of the referees), it is known that
every self-dual Boolean function is a nested composition of the basic majority
function of three variables, i.e., the threshold function m(b1, b2, b3) defined
by α1 = α2 = α3 = θ = 1; see e.g. [7, 8, 18]. So, when C = 2, every ag-
gregating function can be viewed as a composition of simple majority voting
aggregators.

5 Conclusions and open questions

This paper considers a generic model for the “weighted voting” aggregation
step performed by several classification methods. After having observed that
the number of distinct aggregate classifiers is finite for every set of compo-
nent classifiers g1, g2, ..., gL, we have presented an algorithm that is able to
count and to generate all non equivalent solutions of the aggregation prob-
lem. Interestingly, the resulting sequence of numbers Q(L, C) appears to be
new.

This complete enumeration approach allows to find exact solutions for cer-
tain optimization versions of the aggregation problem (e.g., for minimizing
the number of misclassified observations). Evidently, this approach can only
be successful for instances of the aggregation problem where L and C are
small.

For C = 2, we have also established the link between the aggregation problem
and previous results concerning L-bit self-dual, positive, threshold Boolean

15

functions. This connection shows that the class of aggregating functions ap-
pears to be an intriguing new class of discrete functions, and that our model
for the aggregation problem has far-reaching ramifications. This opens up
new opportunities for theoretical investigations of the aggregation problem.

In particular, it may prove interesting to investigate more thoroughly the
complexity of the computational problems raised in this paper. When C =
2, as pointed out by one of the referees, the question: “does the vector
(α1, ..., αL) define a feasible solution of the aggregation problem” is coNP-
complete; indeed, checking condition (ii) in Definition 1 (i.e., checking self-
duality of the corresponding aggregating function) is tantamount to solving
the well-known Partition problem. On the other hand, analyzing the com-
plexity of the counting problem [#AP] is a more challenging question, even
when C = 2. The function Q(L, C) only depends on two argument L, C, and
it seems unlikely that the value of Q(L, C) can be computed in time polyno-
mial in the input size (log L+log C), nor perhaps even in time polynomial in
L + C. In particular, no closed form expression or recursive formula appears
to be known in the literature for the number Q(L, 2) of positive, self-dual
threshold functions on L variables, or for the number of threshold functions,
in spite of the fact that this number is asymptotically known ([3, 31]). Also,
the complexity of generating all aggregating functions, for given values of
L and C, is currently unknown. In particular, the algorithm in Section 3
is not efficient, as it examines many candidate decision vectors which must
eventually be rejected. In principle, it may be possible to generate efficiently
all aggregating functions in an incremental fashion, for successive increasing
values of L and C. At this time, however, we do not even know how to solve
the problem when C = 2, that is, how to generate efficiently all self-dual,
positive, threshold functions of L variables. (Note that efficient algorithms
exist for the generation of all self-dual positive Boolean functions; see [6].)

Acknowledgements: We thank Peter Goos and the anonymous referees for
their insightful comments.

References

[1] J. Adem. Mathematical Programming Approaches for the Supervised
Classification Problem, PhD Thesis, Katholieke Universiteit Leuven,

16

2004.

[2] J. Adem and W. Gochet. Aggregating classifiers with mathematical pro-
gramming, Computational Statistics and Data Analysis 47 (2004) 791-
807.

[3] M. Anthony. Discrete Mathematics of Neural Networks: Selected Topics,
SIAM Monographs on Discrete Mathematics and Applications, SIAM,
Philadelphia, 2001.

[4] D. Barbara and H. Garcia-Molina. The reliability of voting mechanisms,
IEEE Transactions on Computers C-36 (1987) 1197-1208.

[5] J.C. Bioch. Dualization, decision lists and identification of monotone
discrete functions, Annals of Mathematics and Artificial Intelligence 24
(1998) 69-91.

[6] J. Bioch and T. Ibaraki. Generating and approximating nondominated
coteries, IEEE Transactions on Parallel and Distributed Systems 6
(1995) 905-914.

[7] J. Bioch and T. Ibaraki. Decompositions of positive self-dual Boolean
functions, Discrete Mathematics 140 (1995) 23-46.

[8] J. Bioch, T. Ibaraki, and K. Makino. Minimum self-dual decompositions
of positive dual-minor Boolean functions, Discrete Applied Mathematics
97 (1999) 307-326.

[9] E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz and I. Much-
nik. An implementation of logical analysis of data, IEEE Transactions
on Knowledge and Data Engineering 12 (2000) 292-306.

[10] P. Bühlmann and B. Yu. Analyzing bagging, The Annals of Statistics
30 (1996) 927-961.

[11] L. Breiman. Bagging predictors, Machine Learning 24 (1996) 123-140.

[12] J. Conway and R. Guy. The Book of Numbers, Springer-Verlag New
York, 1996.

[13] Y. Crama. Dualization of regular Boolean functions, Discrete Applied
Mathematics 16 (1987) 79-85.

17

[14] Y. Crama and P.L. Hammer. Boolean Functions – Theory, Algo-
rithms, and Applications, Cambridge University Press, to appear
(http://www.rogp.hec.ulg.ac.be/crama/).

[15] Y. Freund and R. Schapire. Experiments with a new boosting algorithm,
In: Proceedings of the Thirteenth International Conference on Machine
Learning, Bari, Italy, 1996, pp. 148-156.

[16] J. Friedman, T. Hastie and R. Tibshirani. Additive logistic regression: A
statistical view of boosting, The Annals of Statistics 28 (2000) 337-374.

[17] T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical
Learning, Springer, 2001.

[18] T. Ibaraki and T. Kameda. A theory of coteries: Mutual exclusion in
distributed systems, IEEE Transactions on Parallel and Distributed Sys-
tems 4 (1993) 779-794.

[19] D. Kleitman. On Dedekind’s problem: The number of monotone Boolean
functions, In: Proceedings of the American Mathematical Society 21
(1969) 677-682.

[20] D. Kleitman and G. Markowsky. On Dedekind’s problem: The number
of isotone Boolean functions. II, Transactions of the American Mathe-
matical Society 213 (1975) 373-390.

[21] A.D. Korshunov. Families of subsets of a finite set and closed classes
of Boolean functions, in: P. Frankl et al. (eds.), Extremal Problems
for Finite Sets, János Bolyai Mathematical Society, Budapest, Hungary,
1994, pp. 375-396.

[22] Mathpages. Dedekind’s Problem, published electronically at
http://www.mathpages.com/home/kmath030.htm, 2003.

[23] S. Muroga. Threshold Logic and its Applications, Wiley-Interscience,
New York, 1971.

[24] S. Muroga, T. Tsuboi and C. Baugh. Enumeration of threshold functions
of eight variables, IEEE Transactions on Computers 19 (1970) 818-825.

18

[25] U.N. Peled and B. Simeone. Polynomial-time algorithms for regular
set-covering and threshold synthesis, Discrete Applied Mathematics 12
(1985) 57-69.

[26] R. Schapire. The strength of weak earnability, Machine Learning 5
(1990) 197-227.

[27] N. Sloane. The On-Line Encyclopedia of Integer Sequences, pub-
lished electronically at http://www.research.att.com/∼njas/
sequences/, 2003.

[28] A. Tsybakov. Optimal aggregation of classifiers in statistical learning,
The Annals of Statistics 32 (2004) 135-166.

[29] A. Webb. Statistical Pattern Recognition, Arnold London, 1999.

[30] E. Weisstein. Stirling Number of the Second Kind, from Math-
World - A Wolfram Web Resource published electronically at
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.

html, 2004.

[31] Yu.A. Zuev. Asymptotics of the logarithm of the number of threshold
functions of the algebra of logic, Soviet Mathematics Doklady 39 (1989)
512-513.

19

