Is Cystatin C Useful for the Detection and the Estimation of Low Glomerular Filtration Rate in Heart Transplant Patients?

Pierre Delanaye,1,6 Eric Nellessen,2 Etienne Cavalier,3 Gisèle Depas,4 Stéphanie Grosch,1 Jean-Olivier Defraigne,5 Jean-Paul Chapelle,3 Jean-Marie Krzesinski,1 and Patrizio Lancellotti2

Although previously studied in patients with chronic kidney disease, there is less data for the use of cystatin C and cystatin C–based formulas in heart transplant recipients. The ability of creatinine and cystatin C to detect renal failure (glomerular filtration rate [GFR] below 60 mL/min/1.73 m²) in heart transplant patients has been compared. The accuracy and precision of a creatinine-based formula (Modification of Diet in Renal Disease [MDRD]) versus a cystatin C-based formula (Rule’s formula) to estimate GFR have also been studied. GFR was measured using the 51Cr-ethylenediamine tetraacetic acid tracer in 27 patients. There was no significant difference between GFR and the reciprocal of creatinine or cystatin C. Receiver operating characteristic curves for cystatin C and creatinine were similar. Both formulas were well correlated with the GFR. The bias of the cystatin C-based was significantly better than one of the MDRD formula, but the standard deviation appeared better for the MDRD formula (bias of +3.9 mL/min/1.73 m² versus +12 mL/min/1.73 m² and SD of 8.5 versus 11.6, respectively). Plasma cystatin C has no clear advantage over serum creatinine to detect renal failure in heart transplanted patients.

Keywords: Glomerular filtration rate, Cystatin C, Creatinine, Modification of Diet in Renal Disease.

Transplantation 2007;83: 641–644

C hronic renal failure is a common complication in heart transplant patients (1–3). Serum creatinine is the classical marker used to detect renal failure. However, this marker has clear limitations because of serum concentration variations according to muscle mass and tubular secretion (3–5). Plasma cystatin C is presented as a new marker of glomerular filtration rate (GFR) (6, 7). Notably, its plasma concentration has been shown to be independent of the muscular mass (8). Even if it remains controversial, several authors have described the superiority of plasma cystatin C over serum creatinine to detect renal failure (9–11). The goal of this study was to compare the interest of creatinine and cystatin C to detect renal failure in a population of heart transplant patients. Moreover, we have recently shown in the same cohort of patients that the Modification of Diet in Renal Disease (MDRD) formula was the best of the creatinine-based formulae to estimate GFR (12). Here, the MDRD formula was compared with a new cystatin C-based formula for the estimation of GFR (13).

The study population consisted of 27 white patients. The exclusion criteria were age <15 years and a body mass index >35 kg/m². The reference method for GFR measurement was based on plasma clearance of 51Cr-ethylenediamine tetraacetic acid (EDTA) (14). Results were corrected by body surface area (15). Serum creatinine was measured with the kinetic rate-blanked compensated creatinine Jaffé method on Modular (Roche Diagnostics; reference values: <1.21 mg/dL for the men and <1.02 mg/dL for the women) (16). Plasma cystatin C was measured by a particle-enhanced nephelometric immunoassay (Dade Behring) (17). A value of cystatin C <1 mg/L may be considered as normal in the general population (18).

The abbreviated MDRD formula used was:

\[
GFR_{MDRD} = 186 \times \text{serum creatinine}^{-1.154} \times \text{age}^{-0.203} \times \frac{1}{0.742} \text{ (if female)}
\]

Rule et al. have recently elaborated a specific cystatin C-based formula for transplanted patients. Two hundred and six transplanted patients have been observed in this study, including 30 heart transplant patients (13).

\[
GFR_{CC} = 76.6 \times \text{cystatin}^{-1.16}
\]

The plasma markers used to detect renal failure were

1 Department of Nephrology, University of Liège, CHU, Sart Tilman, Liège, Belgium.
2 Department of Cardiology, University of Liège, CHU, Sart Tilman, Liège, Belgium.
3 Department of Clinical Chemistry, University of Liège, CHU, Sart Tilman, Liège, Belgium.
4 Department of Nuclear Medicine, University of Liège, CHU, Sart Tilman, Liège, Belgium.
5 Department of Cardiovascular Surgery, University of Liège, CHU, Sart Tilman, Liège, Belgium.
6 Address correspondence to: Pierre Delanaye, M.D., Service de Dialyse, CHU Sart Tilman, 4000 Liège, Belgium.
E-mail: pierre_delanaye@yahoo.fr
Received 8 August 2006. Revision requested 31 October 2006. Accepted 9 November 2006.
Copyright © 2007 by Lippincott Williams & Wilkins
ISSN 0041-1337/07/8305-641
DOI: 10.1097/01.tp.0000253746.30273.cd
compared by correlation analysis and the receiver operating characteristic curves methods. The area under the curves was calculated to detect a GFR below 60 mL/min/1.73 m². A coefficient of correlation between the estimated GFR (by creatinine or cystatin-based formula) and the measured GFR was calculated. A Bland and Altman analysis was performed. The bias was defined as the mean of the differences between the predicted and measured GFR. The standard deviations of the mean differences between measured and estimated GFR reflect the precision of the estimation. Formulae accuracy was determined by the percentage of the estimated GFR within 30% of the measured GFR. Statistical analyses were performed using MedCalc (MedCalc Software, Mariakerke, Belgium).

GFR measurement was performed in 27 white heart transplant patients (five women, 22 men). The clinical characteristics of the population were described previously (12). All patients had normal thyroid function. Among these 27 patients, 24 (89%) had a GFR lower than 60 mL/min/1.73 m².

After this first determination, the GFR was measured again at least 10 months later in 22 patients. The mean GFR 10 months later remained stable for those 22 patients. All isotopic GFR measurements (49) were pooled and their mean value was 39±15 mL/min/1.73 m². A significant correlation between the GFR and the reciprocal of creatinine and cystatin C (r = 0.75, P<0.0001 and r = 0.66, P<0.0001, respectively) was found. There was no difference between these correlations (Fig. 1).

To detect a GFR less than 60 mL/min/1.73 m², the area under the curve was 0.86 for the creatinine and 0.83 for the cystatin C. The difference was not significant (Fig. 2). The creatinine value that gave the best sensitivity-specificity was 1.32 mg/dL (sensitivity of 72.7%, specificity of 100%). For the cystatin C, the value was 1.51 mg/L (sensitivity of 81.1%, specificity of 83.3%).

Both MDRD and Rule formulae were moderately correlated with GFR (r = 0.83 and r = 0.66, respectively, no statistical difference). The coefficients of determinations (r²) were also relatively low (0.69 and 0.44, respectively). The Bland and Altman analyses are given in Figure 3. The precision of the MDRD formula is linked to the SD of the mean difference. The precision of the MDRD formula was statistically better than the Rule formula (SD 8.5 versus 11.6, P = 0.033). Nevertheless, the bias of the Rule cystatin-based formula was smaller than in the MDRD formula (+3.9 mL/min versus +12 mL/min, respectively, P = 0.0002). The GFR estimated with the MDRD formula was found within 30% measured GFR in 43% cases, whereas the percentages were 67% for the GFR estimated by the cystatin-based formula (P = 0.029).

Given the high prevalence of C-reactive protein, the detection of reduced GFR is of great importance in the heart transplant population (2, 3). In this study, plasma cystatin C had no clear advantage over serum creatinine to detect renal failure. Nevertheless, for the estimation of GFR, the cystatin C-based equation could have some advantages over the MDRD equation.

Serum creatinine has a poor sensitivity to detect renal failure in the general population (5, 19). This marker may be even less accurate in heart transplant recipients because this population has a reduced muscular mass, notably because of chronic therapy by corticosteroids (4, 20, 21). Regarding transplant populations, Tomlanovich et al. have also shown some degree of creatinine tubular hypersecretion, dependent on cyclosporine therapy (4). If the reference values of creatinine with our Jaffe method are considered, 63.6% of our patients with normal creatinine values had a GFR less than 60

FIGURE 1. Correlations between measured GFR (by \(^{51}\)Cr-EDTA plasmatic clearance) and the reciprocal of creatinine (A) and the reciprocal of cystatin C (B). (A) r = 0.75, P < 0.0001. (B) r = 0.66, P < 0.0001.

FIGURE 2. Receiver operating characteristic curves for cystatin C and creatinine (cutoff value for GFR=60 mL/min/1.73 m²).
60 mL/min/1.73 m², although cystatin C is thought to be more useful in detecting renal failure in a representative population of heart transplant patients. Nevertheless, if the serum creatinine of a heart transplant patient was abnormally high, one can conclude that this patient had a GFR less than 60 mL/min/1.73 m². In fact, with our creatinine assay, a value more than 1.32 mg/dL had a specificity of 100% to detect renal failure (and a sensitivity of 72.7%). With our cystatin C assay, a value more than 1.01 mg/L had a sensitivity of 100% but a very low specificity. In other words, if the plasma cystatin C was in the normal range, then the patient had a GFR of at least 60 mL/min/1.73 m². The bias and the accuracy (but not the precision) of the cystatin C-based formula were better than those of the MDRD formula. These preliminary data have to be confirmed on a larger sample. If a precise GFR is needed in clinical practice or studies with heart transplant patients, we do recommend the use of a reference method measurement.

ACKNOWLEDGMENTS

We want to thank Mrs. Rosalie Bonnariage for her help in the redaction of the manuscript. This work is dedicated to the memory of Dr. Jean-Claude Demoulin, who devoted a large part of his medical career to caring for heart transplant patients.

REFERENCES

2. Lindelow B, Bergh CH, Herlitz H, Waagstein F. Predictors and evolu-
29. Delanaye P, Cavalier E, Krzesinski JM, Chapelle JP. Why the MDRD equation should not be used in patients with normal renal function (and normal creatinine values)? Clin Nephrol 2006; 66: 147.