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Effect of inhibitors of histone deacetylase on the induction
of cell differentiation in murine and human erythroleukemia
cell lines
Sybille Witticha, Hans Scherfb, Changping Xieb, Birgit Heltwega,
Franck Dequiedtc,d, Eric Verdind, Clarissa Gerhäuserb and Manfred Junga

Histone deacetylase (HDAC) inhibitors are a novel class of

promising anti-cancer agents. Little information is available

on the capacity of structurally different HDAC inhibitors to

induce terminal cell differentiation in different cell types in

relation to enzyme inhibition and subtype selectivity.

Consequently, the aim of this study was to provide

a comprehensive comparison of these effects. New

biarylalanine inhibitors of HDAC were synthesized and

compared to a series of standard inhibitors from different

laboratories. Chromatographically purified rat liver and

immunoprecipitated FLAG-tagged recombinant human

HDACs were used as sources of HDAC activity. Enzyme

inhibition was studied using a fluorescent substrate and its

conversion was monitored by high-performance liquid

chromatography. The ability to induce cell differentiation

was compared in murine (Friend DS-19) and human (K562)

erythroleukemic cell lines, and was quantified by benzidine

staining. Inhibition of cell proliferation was evaluated by

cell counting. All HDAC inhibitors were identified as potent

inhibitors of erythroleukemic cell proliferation. However, we

observed a complex pattern of differentiation induction:

structurally similar inhibitors resulted in disparate activity

profiles, whereas similar profiles were detected within

distinct structural classes. Among the newly synthesized

biarylalanine compounds, a 30-methoxy derivative was

identified as a very effective inducer of terminal cell

differentiation. We conclude that investigation of subtype

selectivity of selected HDAC inhibitors does not provide a

clear link between selectivity and the observed cellular

activity profile. The predictive value of in vitro HDAC

inhibition assays for identifying anti-proliferative

compounds has been emphasized. Anti-Cancer Drugs
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Introduction
Histone deacetylase (HDAC) inhibitors are a relatively

new class of potential drugs for the treatment of

hyperproliferative, as well as parasitemic diseases [1,2].

Inhibition of HDAC leads to hyperacetylation of chro-

matin which is usually associated with transcriptional

activation of a number of genes [3,4]. One of the

important downstream events of histone hyperacetylation

is increased expression of the cyclin-dependent kinase

(cdk) inhibitory protein p21/WAF1/CIP1 resulting in cell

cycle arrest [5]. The dysregulated recruitment of HDACs

by oncogenic fusion proteins was identified as a general

mechanism for the pathogenesis of leukemia [6,7].

Therefore, HDAC is viewed as an attractive target for

anti-cancer drug development [8,9]. There are 11

subtypes known for the ‘classical’ zinc-dependent

HDACs [10], but little is known about the subtype

selectivity of established inhibitors or the biological

consequences of such an inhibition.

We had previously proposed a general model for HDAC

inhibitors that was derived from the potent natural

product inhibitors trapoxin B (TPX) and trichostatin A

(TSA) [11], and had accordingly developed the first

simple potent inhibitors of HDAC [12]. Structure–

activity studies have led to the improved inhibitor BIP1

with a biphenylalanine instead of a phenylalanine moiety

[13]. Here, we present a set of substituted biphenylala-

nines BIP2–6 that were synthesized in order to elucidate

whether HDAC inhibitory activity is dependent on

electronic properties in the biaryl moiety. We report in
vitro inhibition of rat liver HDAC activity as well as anti-

proliferative and differentiation-inducing effects in mur-

ine Friend leukemic cells (MELC) and the human K562

cell line. We also present a comparison of a series of

structurally diverse standard HDAC inhibitors in these

two erythroleukemic cell lines. Finally, selected inhibitors

were tested for their subtype selectivity concerning

HDACs 1, 3 and 6.
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Materials and methods
Chemicals

For further modification of our biphenylalanine lead

compound we used the strategy that was used previously

for similar analogs [13]. As a new route for structural

variations within this strategy 4-bromophenylalanine

methyl ester was converted to a building block with a

trityl-protected hydroxamate function that was success-

fully subjected to palladium-mediated biaryl coupling.

This resulted in substituted biphenylalanines which were

deprotected with trifluoroacetic acid/triethylsilane in

order to obtain the desired hydroxamic acids BIP2–6

(see Fig. 1). We have used boronic acids as the

electrophilic coupling partners and Pd(OAc)2/P(o-tol)3
as the catalyst. The biaryls were isolated with yields

ranging from 43 to 80%. This catalytic system has

been used previously for the synthesis of biarylalanine-

containing di- and tripeptides [14]. Purity and identity

were assured using IR and NMR spectroscopy as well

as elemental analyses. TSA, Scriptaid, SAHA and

MS275 were purchased from EMD Biosciences

(San Diego, CA). MD85 [12,15], M344, M360 [16] and

BIP1 [13] were synthesized according to the literature.

M344 is also commercially available (Alexis, Lausen,

Switzerland or EMD Biosciences: histone deacetylase

inhibitor III).

In vitro enzyme inhibition

Rat liver HDAC was partially purified essentially as

described earlier [17,18]. An ammonium sulfate precipi-

tation step was included for further purification prior to

chromatography [19]. This preparation is commercially

available (EMD Biosciences or Alexis). For testing, stock

solutions of the inhibitors (1mg/ml in ethanol for TSA

and 12mM in DMSO for all other inhibitors) were

diluted with enzyme buffer (15mM Tris–HCl, pH 7.9,

0.25mM EDTA, 10mM NaCl, 10% (v/v) glycerol, 10mM

2–mercaptoethanol).

The assay was performed as described earlier [20].

Briefly, 12 ml of a solution of the substrate (4.682mg/ml

in ethanol) and 24 ml of a solution of the internal standard

7-hydroxycoumarin (3.66mg/ml DMSO) were combined

and brought to a total volume of 1ml with enzyme buffer.

An aliquot of 10 ml of this stock solution was added to a

mixture of 100 ml (approximately 90U/ml; 1U: 1 pmol/

min) of rat enzyme preparation (at 41C) and 10 ml of

inhibitor dilution. After 15min at 41C the mixture was

incubated for 90min at 371C. Then, the reaction was

stopped by addition of 72 ml of 1M HCl/0.4M sodium

acetate and 800 ml of ethyl acetate. After centrifugation
(10 000 g, 5min), 200 ml of the upper phase was dried

under a stream of nitrogen. The residue was dissolved in

600 ml of the chromatography eluent and 20 ml was

injected via an autosampler onto the high-performance

liquid chromatography (HPLC) system. In a modification

of the previously published assay [17,18,20], 10.5 mM

substrate was used here instead of 3.5 mM, resulting in

increased precision (data not shown). The amount of

remaining substrate was calculated relative to the

substrate control incubated without enzyme (each as

quotient of the peak area of the substrate divided by the

peak area of the internal standard). A Shimadzu RF 535 was

used as fluorescence detector for HPLC and a LiChrosorb

RP 18-5mm (125�3mm; Knauer, Berlin, Germany) column

was used for separation. The Biomol HDAC fluorescent

activity assay kit was used according to the manufacturer’s

instructions. FLAG-HDAC immunoprecipitation and assays

were performed as published previously [21]

Induction of terminal cell differentiation

MEL DS19 murine erythroleukemia cells (MELC) were

maintained in DMEM containing 100U/ml penicillin G

sodium and 100 mg/ml streptomycin sulfate supplemen-

ted with 10% fetal bovine serum (Greiner, Frickenhausen,

Germany) at 371C in a 5% CO2 atmosphere. K562 human

erythroleukemia cells (obtained from the Tumorbank,

German Cancer Research Center, Heidelberg, Germany)

were maintained in RPMI medium containing 100U/ml

penicillin G sodium and 100 mg/ml streptomycin sulfate

supplemented with 10% fetal bovine serum (Greiner) at

371C in a 5% CO2 atmosphere. To test compounds for

potential to induce cell differentiation, log-phase cells

were used. Serial dilutions of compounds were prepared

in 24-well plates (Falcon) using 1ml medium/well. If

compounds were dissolved in DMSO, control wells

contained the same amount of solvent (generally 2 ml/ml

medium, 0.1% final concentration). Subsequently, the

cell suspension was added to the wells (1ml/well, 2�104

cells/ml; final cell concentration 1�104 cells/well). After

72 (MELC) or 96 h (K562), respectively, the experiment

was evaluated. Cell numbers were counted using a Casy 1

TTC flow cytometer (Schärfe System, Reutlingen,

Germany). The proliferation of treated cells was ex-

pressed as percent proliferation in comparison with the

solvent control.

Differentiated K562 and Friend leukemic cells accumu-

late hemoglobin. Therefore, the induction of cell

differentiation was determined by benzidine staining

according to the literature [22]. To 50 ml of cells

suspension, an equal volume of benzidine solution

(2mg/ml in 0.5M acetic acid containing 2% H2O2) was

added. Within 5min the hemoglobin-containing cells

stain blue. Benzidine-positive and -negative cells were

counted under the microscope in a hemocytometer, and

the percentage of positive cells was calculated. All

compounds were first tested at 10 and 50 mM final

concentrations. According to the activity/toxicity profile,

a range of concentration was chosen for a dose–response

analysis. In selected cases, dose–response experiments

were repeated at the same concentrations and deviations

were below 5%.
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Histone hyperacetylation

K562 cells (1� 105 cells/ml in 20ml) were incubated in

RPMI for 24 h and then treated with BIP6 (1.56 mM) or

MS275 (0.625 mM), respectively, for 12 h. Control cells

obtained DMSO (0.1% final concentration). Isolation of

histones, quantification of protein and acid–urea–Triton

(AUT) PAGE analyses were performed as described

previously [23].

Results
HDAC inhibition

The series of biarylalanine compounds BIP1–5 was tested

for inhibition of a partially purified rat liver HDAC

employing the fluorogenic substrate developed in

our group [17,18] and enzyme inhibitory properties

were compared. The substituents of these novel de-

rivatives were selected in order to determine with a

limited number of compounds whether inhibitory activity

was dependent on electronic properties of the aromatic

ring [24].

As BIP1 was the most potent inhibitor (see Table 1),

an unfavorable steric repulsion in the 40-position of

the substituted compounds BIP2–5 was assumed.

For substituted derivatives, the activity increased

from BIP2 to BIP5, indicative for a beneficial effect

of electron-donating substituents. Consequently, the

30-methoxy analog BIP6 was synthesized, but this

compound again was less active than the most qpotent

parent compound BIP1 (see Table 1). For comparison,

we included several standard HDAC inhibitors from

our and other labs. We investigated TSA [25],

the trichostatin analogs MD85 [12,15], M344 and

M360 [16] that were synthesized previously in our

group, Scriptaid [26], the so-called hybrid polar drug

SAHA [27] which is in clinical trials, and the benzamide

MS275 [28,29] (see Fig. 1). All IC50 values summarized

in Table 1 (except for MS275) were determined

under identical assay conditions. In contrast to published

data, we could not detect inhibitory activity of

MS275 using our methodology [30] or the commercially

available Biomol kit. A similar lack of inhibition has been

reported recently [31] and it was speculated by that

group that in vitro inhibition by MS275 is dependent on

certain cofactors that are required in the enzyme

preparation.

Fig. 1
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Inhibition of proliferation and induction of terminal

differentiation

The novel HDAC inhibitors were further tested for the

anti-proliferative and differentiation-inducing potential

of murine Friend erythroleukemic cells and human K562

erythroleukemia cells. Friend cell differentiation has been

a standard model for the investigation of HDAC

inhibitors in many studies [16,32–34]. The aim of our

current studies was a comparison of effects in the murine

cell line with those in a human erythroleukemia cell line.

In addition, the above-mentioned reference inhibitors

were tested for comparative reasons. Cell differentiation

was detected by an accumulation of hemoglobin which is

easily visualized by benzidine staining. Figure 2 shows the

profiles of cellular activity, and Table 1 summarizes IC50

values for inhibition of HDAC and cellular proliferation.

All HDAC inhibitors demonstrated dose-dependent

inhibition of cell proliferation in both leukemic cell lines.

Overall, the K562 cell line was more sensitive to the

growth inhibitory potential of the test compounds than

the Friend cell line and all compounds except Scriptaid

were more toxic for the human cell line. We noticed that

IC50 values from the HDAC in vitro test were of the same

order of magnitude as the ones obtained in the anti-

proliferative tests. The biggest differences were seen

with Scriptaid, which was more than 100-fold less potent

in the cellular systems. TSA was identified as the most

potent compound in all three assays, but the unsubsti-

tuted biarylalanine BIP1 was equally effective in the

human K562 cell line.

For the induction of terminal cell differentiation, the

compounds can be arranged in three groups depending on

the maximum percentage of benzidine-positive cells. In

the Friend cell line, weak induction (less than 30%

benzidine-positive cells) was monitored with the first

group, the halogenated biaryls BIP2 and BIP3, the

trichostatin analogs MD85 and M360, Scriptaid, and

MS275. BIP2, MD85 and Scriptaid were weak inducers in

the K562 cell line as well. The second group, consisting of

the methyl biaryl BIP4, its methoxy analogs BIP5 and

BIP6, TSA, and SAHA, showed a moderate differentia-

tion induction potential in 30–50% of the surviving Friend

cells. The percentage of benzidine-positive cells for BIP4

was similar in K562 cells. BIP5 was less effective in the

human cell line, whereas SAHA, MS275 and the 30-
methoxy compound BIP6 were identified as potent

inducers of differentiation in K562 cells (above 50%).

The unsubstituted biarylalanine BIP1 and the amino-

heptanoate analog of TSA (M344) were found to most

potently induce terminal cell differentiation in Friend

cells (above 50%) which was reduced somewhat for BIP1

and strongly (below 30%) for M344 in the human cell

line.

Histone hyperacetylation

With compound BIP6 and the reference compound

MS275 we additionally investigated the potential to

induce hyperacetylation in K562 cells by AUT gel

electrophoresis as described in the literature [22,23]. As

outlined above, both compounds belong to the most

potent group to induce differentiation in K562 cells. Both

compounds led to accumulation of hyperacetylated

histone H4 when K562 cells were treated for 12 h

with 1.56 mM BIP6 or with 0.625 mM MS275, respectively

(Fig. 3).

HDAC subtype selectivity

We have previously shown that the aminoheptanoate

M344 (good inducer of MELC differentiation) is

selective for HDAC6 (3-fold) [30]. On the other hand,

the aminooctanoate M360 (little induction of differentia-

tion) was slightly selective for HDAC1 [30] (see

Table 2). In this report, we additionally investigated the

aminocaproate MD85, and the biaryls BIP2 (little

induction of differentiation) and BIP6 (good induction

of differentiation) for inhibition of immunoprecipitated

FLAG-tagged HDAC1 and HDAC6, using a radioactively

labeled histone peptide fragment as the substrate. Data

for inhibition of HDAC3 is additionally presented for all

compounds.

Discussion
Here, we report the synthesis of novel biarylalanine

HDAC inhibitors, which do not exceed the potency of

the unsubstituted lead compound in its in vitro HDAC-

inhibitory potency. As neither electron-donating nor

electron-withdrawing substituents lead to an increase,

we assume that additional substitutions of the biaryl

Table 1 In vitro rat liver HDAC inhibition in comparison with
inhibition of cell proliferation of Friend murine and K562 human
erythroleukemia cells by HDAC inhibitors

Compound HDAC inhibition
(IC50, mM±SDa)

MEL inhibition
(IC50, mM

b)
K562 inhibition
(IC50, mM

b)

BIP1 0.29±0.03c 0.64 0.04
BIP2 0.70±0.04 1.92 1.14
BIP3 0.53±0.03 0.46 0.31
BIP4 0.45±0.06 0.64 0.23
BIP5 0.41±0.03 0.58 0.20
BIP5 0.63±0.06 3.27 0.71
TSA 0.01±0.001d 0.04 0.05
MD85 0.22±0.02d 9.51 2.20
M344 0.12±0.01d 1.00 0.34
M360 0.20±0.02 3.97 1.80
Scriptaid 0.06±0.02d 9.30 11.8
SAHA 0.17±0.03d 0.89 0.61
MS275 NIe/4.8f/130±18g 1.24 0.31

Referenced inhibition data (except note f) was generated in our laboratory under
identical conditions.
aMean values of half-maximal inhibitory concentrations (IC50) ±SD were
computed from four experiments.
bIC50 values were generated from testing six to eight concentrations in duplicate.
cData taken from [13].
dData taken from [19].
eNo inhibition at 100 mM.
fData taken from [29].
gData using the Biomol assay.
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moiety in BIP1 are not favorable for inhibitory activity

due to steric hindrance. Possibly, the region of the

enzyme that the biphenyl group binds to is quite

restricted in the tolerance of inhibitors. As HDAC1, in

particular, is thought to be important for mediation of

cancer cell proliferation [35] and no structural data for

that subtype is available, BIP1 might be an interesting

candidate for docking experiments in homology models of

human HDACs [36] that can be derived from the

structure of the homologous bacterial histone-deacety-

lase-like-protein (HDLP) [37] or human HDAC8 [38].

All HDAC inhibitors that were investigated in this study

were identified as strong anti-proliferative drugs in

erythroleukemic cells, which emphasizes their potential

as anti-cancer drugs. Especially interesting is the activity

Fig. 2

BIP1 MELC

0 1 2 3 4 5 6
0

20

40

60

80

100

0

20

40

60

80

100

Concentration (µM)

%
 D

iff
er

en
tia

tio
n

%
 P

ro
lif

er
at

io
n 

0.0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

0

20

40

60

80

100

Concentration (µM)

%
 D

iff
er

en
tia

tio
n

%
 P

ro
lif

er
at

io
n 

0 1 2 3 4 5 6
0

20

40

60

80

100

0

20

40

60

80

100

Concentration (µM)

%
 D

iff
er

en
tia

tio
n

%
 P

ro
lif

er
at

io
n 

0 1 2 3 4 5 6
0

20

40

60

80

100

0

20

40

60

80

100

Concentration (µM)

%
 D

iff
er

en
tia

tio
n

%
 P

ro
lif

er
at

io
n 

0 1 2 3
0

20

40

60

80

100

0

20

40

60

80

100

Concentration (µM)

0.0 0.5 1.0 1.5
Concentration (µM)

%
 D

iff
er

en
tia

tio
n

%
 P

ro
lif

er
at

io
n 

0

20

40

60

80

100

0

20

40

60

80

100

%
 D

iff
er

en
tia

tio
n

%
 P

ro
lif

er
at

io
n 

0 1 2 3 4 5 6
0

20

40

60

80

100

0

20

40

60

80

100

Concentration (µM)

%
 D

iff
er

en
tia

tio
n

%
 P

ro
lif

er
at

io
n 

0.25 0.50 0.75
Concentration (µM)

0

20

40

60

80

100

0

20

40

60

80

100

%
 D

iff
er

en
tia

tio
n

%
 P

ro
lif

er
at

io
n 

BIP1 K562

BIP2 MELC BIP2 K562

BIP3 MELC BIP3 K562

BIP4 MELC BIP4 K562

(a)

Histone deacetylase inhibitors induce differentiation Wittich et al. 639

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



of the biphenylalanine BIP1 that is as potent as TSA in

the human erythroleukemic K562 cell line. For most

compounds the cellular activity was observed in the same

concentration range as for enzyme-inhibitory activity,

which supports the use of HDAC in vitro assays as

screening tools for drug discovery. Therefore, we and

others have also developed homogeneous assays for the

determination of HDAC activity [39,40]. The lack

of correlation with MS275 has been reported by

another group before [31]. As MS275 shows in vitro
enzyme inhibition in some papers in the low micromolar

range which we and others could not reproduce,

its activity might depend strongly on the enzyme

preparation.

Fig. 2 Continued
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The patterns of induction of differentiation are more

complex as the maximum levels of terminal cell

differentiation achieved in the surviving cell population

range from 0 to 68% among the various inhibitors. Not

only are there differences between structurally very

similar inhibitors in one cell type (e.g. M344 versus

M360 in Friend cells), but some of the inhibitors have

entirely different profiles of activity in the two erythro-

leukemic cell lines (e.g. M344 or MS275). The reasons

for these observations remain unclear. A HDAC subtype

selectivity of the various inhibitors is a possible explana-

tion, and docking experiments with MD85, M344

and M360 in a homology model of human HDAC1

[36] supported the possibility of such a selectivity.

Consequently, we have identified a difference in

selectivity regarding HDAC1 and HDAC6 for M344 and

M360 [30]. In this group of trichostatin analogs, stronger

inhibition of HDAC6 is associated with stronger anti-

Fig. 2 Continued
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proliferative activity and more potent induction of Friend

cell differentiation (see Fig. 2). Additionally, the HDAC6-

selective M344 is also a better inducer of g-globin
expression [41] and leads to a more pronounced radio-

sensitization of cancer cells [42]. On the other hand, in

the biaryl series, the weak inducer of differentiation

(BIP2) is selective towards HDAC6, whereas the potent

inducer (BIP6) is selective for HDAC3. TSA is unselec-

tive among the three subtypes, whereas TPX inhibits

mainly HDAC1. The weak inhibitor butyrate leads to

stronger inhibition of HDAC1 and HDAC3 (Table 2).

Larger numbers of inhibitors have to be tested on more

subtypes to further elucidate possible links between

subtype selectivity and a profile of biological activity.

A differential downstream response to the gene activation

induced by distinct inhibitors in the two cell lines may

explain the varying results between Friend and K562

cells. We have shown before that, for example, BIP1 [13]

or M344 [16] induce histone hyperacetylation at relevant

concentrations, but an interaction with additional targets

is also possible. As an example, BIP1 inhibits cell

proliferation in the K562 cell line at 7-fold lower

concentrations as compared to the inhibition in the

enzyme assay.

Conclusion
Structural variations of a biphenylalanine HDAC inhibitor

BIP1 have identified its 30-methoxy analog BIP6 as a very

good inducer of terminal cell differentiation in the K562

human erythroleukemic cell line. Compound BIP1 has an

anti-proliferative potency in K562 cells that reaches that

Fig. 2 Continued
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Induction of terminal cell differentiation (squares and solid lines) and inhibition of proliferation (circles and dotted lines) by HDAC inhibitors in Friend
(MELC) and K562 cells. The graphs for the MELC results for TSA, MD85, M344, M360 [16], BIP1 and SAHA [13] are taken from our previous work.
Reproduced with permission. �c 1999 and 2002 American Chemical Society.

Fig. 3

Ac0
Ac1
Ac2
Ac3
Ac4

Histone
H4

−      C     MS    B6    M 

Acetylation status of histone H4 in K562 cells treated with BIP6 (B6,
1.56 mM) or MS275 (MS, 0.625mM) for 12 h. A ‘–’ represents untreated
cells, C stands for the solvent control treated with 0.1% DMSO.
Ac0–4: number of acetylated lysines. M: marker (cytochrome c). See
Materials and methods for details.

Table 2 HDAC subtype selectivity

Inhibitor FLAG-HDAC1
(IC50, nM

a)
FLAG-HDAC3
(IC50, nM

a)
FLAG-HDAC6
(IC50, nM

a)

BIP2 400 310 100
BIP6 2540 790 2500
MD85 390 390 330
M344 250b 480 90b

M360 110b 410 170b

TSAc 2–6 2 9
TPXc 0.1–10 100 360
Butyratec 0.1mM 0.1mM 6mM

aMean values of half-maximal inhibitory concentrations (IC50) were generated
from testing four to six concentrations in duplicate.
bData taken from [30].
cData taken from [43,44].
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of the benchmark TSA. Based on these results, further

modifications of its structure besides 30- or 40-substitu-
tion are planned. The first comprehensive comparison of

standard HDAC inhibitors in two cellular differentiation

models further reveals striking differences among the

various inhibitors and in the action of some of the

inhibitors on different cell lines. This will stimulate

mechanistic studies aimed at the elucidation of the

molecular basis of action of these promising drug

candidates. So far there is no clear link between HDAC

subtype selectivity and good induction of differentiation.
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