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Purpose of review

The diagnosis of dementia rests on an improved knowledge and

a better detection of early impairments, to which functional

imaging can certainly contribute.

Recent findings

Progress has been observed at different levels. First, the

understanding of different dementias has benefited from

explorations of the neural substrate of dementia symptoms and

from research into new markers. Second, diverse variables

(clinical, anatomical, biochemical) have been related to impaired

cerebral activity in Alzheimer's disease and other dementias,

and progress in image analysis and in multimodal data

acquisition has allowed a better understanding of the

significance of brain activity disturbances. Third, functional

imaging has been applied in well-designed clinical studies, and

has provided important arguments for the diagnosis of

characteristic clinical syndromes in the dementias.

Summary

The functioning of neural networks responsible for clinical

symptoms in dementia remains an important research topic for

functional imaging. The development of new tracers and new

techniques for image processing should also improve the

usefulness of brain imaging as a diagnostic tool.
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Abbreviations

AchE acetylcholine esterase
AD Alzheimer's disease
CBF cerebral blood flow
DLB dementia with Lewy bodies
FDG 2-[(18)F]fluoro-2-deoxy-D-glucose
FTD frontotemporal dementia
MCI mild cognitive impairment without dementia
MRI magnetic resonance imaging
MTR magnetization transfer ratio
PET positron emission tomography
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Introduction
Functional imaging is an essential tool to study the
neural substrate and the physiopathology of clinical
syndromes in different dementias. That research will
constitute the main purpose of this article. When
functional disturbances are suf®ciently characteristic,
functional imaging may be used for the differential
diagnosis of dementias. Assessing the relative sensitiv-
ity and speci®city, and eventually the advantage of
different techniques for reaching a speci®c diagnosis
remains dif®cult because neuropathological con®rma-
tion is rare and a between-study comparison of
percentages is not fair, whereas a within-study
comparison of different functional imaging techniques
is infrequent. In practice, there is a trade-off in
functional imaging between, for example, ongoing
re®nements in image analysis, the availability of the
techniques and the feasibility of studies in clinical
versus research settings.

Diagnostic value of functional imaging in
Alzheimer's disease
Different variables need to be considered when
evaluating the diagnostic value of functional imaging,
such as the size of the population, the probability of
the diagnoses, the technique and the method for
image analysis (for example, the pattern considered
to be characteristic of Alzheimer's disease; AD).
When compared with a clinical diagnosis, the visual
analysis of single-photon emission computed tomo-
graphy images has been shown to increase the
likelihood of a neuropathological diagnosis of AD
[1.]. In a large population of 138 cases with different
neuropathologically con®rmed diagnoses, the visual
analysis of positron emission tomography (PET)
images identi®ed patients with AD and patients with
any neurodegenerative disease, with a sensitivity of
94% and speci®cities of 73% and 78%, respectively
[2.]. Those results were con®rmed for questionable
or mild AD. In that study, a `non-characteristic' PET
image predicted that subsequent progression to
de®nite dementia occurred in only 30% of the cases.
Other methods for image analysis will be reviewed in
the following paragraphs. They might improve both
the sensitivity and speci®city of functional imaging
for the diagnosis of dementia, but implementation in
the clinical environment would require more re-
sources.
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The meaning of the regional brain
distribution of functional activity in
Alzheimer's disease
AD has been characterized for a long time by a metabolic
decrease predominant in the posterior associative cor-
tices. Before concentrating on AD, it is important to
underline that the distribution of cerebral activity
observed with functional imaging is not unique to AD
pathology, as demonstrated by values of speci®city in
diagnostic studies and by data on non-Alzheimer
dementias discussed in subsequent paragraphs. For
example, a reversible `AD compatible' decrease of
perfusion in the posterior associative cortices was
observed in hyperthyroid dementia, emphasizing the
essential relationship between the clinical syndrome and
functional imaging [3].

Evolution of cerebral functional activity in Alzheimer's

disease

In the early stages of AD, some authors have suggested
that hypoperfusion would start in the medial temporal
regions, where lowered cerebral blood ¯ow (CBF)
might subsequently reach a plateau [4]. Activity in the
lateral temporoparietal (and medial posterior) associative
cortices would progressively decrease with the severity
of dementia, and would become more important than
impaired activity in the hippocampal areas, producing
the typical pattern reported in most studies, whereas
functional impairment would occur later in the pre-
frontal regions [5]. However, the magnitude and the
sequence of longitudinal CBF changes may vary
between different AD populations or according to
different analysis procedures [6]. In keeping with the
heterogeneity of AD, the selective impairment of
episodic and semantic memory in a subgroup of patients
was associated with hypoperfusion in the bilateral
mesial temporal regions of interest, whereas the poster-
ior associative cortices were predominantly involved in
AD patients with more widespread cognitive impair-
ment [7.].

In a study of carriers of the PS-1 mutation [8.], regional
cerebral perfusion abnormalities were detected in the
hippocampal complex and in the posterior associative
cortices before the development of the clinical symp-
toms of AD. A metabolic pattern similar to that observed
in AD was previously reported in cognitively normal
carriers of the apolipoprotein E epsilon4 allele with a
familial history of AD [9]. Those patients were followed
over an interval of approximately 2 years, and they
suffered a signi®cant decline in glucose metabolism in
the vicinity of the parahippocampal gyrus, temporal,
posterior cingulate and the prefrontal cortices, basal
forebrain and thalamus [10 .]. The authors emphasized
the availability of PET to test the ef®cacy of treatments
for attenuating this functional decline.

Changes in brain activation in Alzheimer's disease

An impaired odour discrimination is reported in AD,
and a decrease in right piriform and anterior ventral
temporal activation was observed during olfactory
stimulation when patients were compared with elderly
controls [11]. Brain activation was studied for forced
choice face recognition, and the authors demonstrated
that different functional networks are activated for
similar tasks in AD and in elderly controls [12.]. AD
patients presented increases or decreases of activation
compared with control subjects. Cerebral activation in
AD remains to be explained in terms of performance
and strategy during cognitive tasks. Moreover, the
relationship between brain activation and atrophy is a
complex one, for increased activation has been related
to the loss of cortical gray matter, suggesting a possible
compensation in some (but not all) brain regions in AD
[13].

Relationships between brain activity and clinical

variables

The degree of hypoperfusion in the temporoparietal
areas of demented patients at the ®rst visit has been
shown to predict the achievement of endpoints such as
loss of activity in daily living, incontinence and death as
a result of end-stage AD [14 .]. This was in keeping with
a previous study [15], which showed that temporal
metabolism in questionable AD predicted the evolution
to a probable diagnosis of this dementia. Several
questions are not yet settled, such as the in¯uence of
demographic variables (premorbid intelligence, for ex-
ample) on the level of metabolism observed at a given
stage of dementia [16].

AD, with its clinical heterogeneity, remains a parti-
cularly interesting condition to study clinical and
metabolic relationships. Retrieval in verbal episodic
memory has been related to left entorhinal activity in
AD [17], whereas verbal semantic memory tests in
AD patients have been correlated to glucose metabo-
lism in the left inferior temporal gyrus [18]. AD
patients with apathy were shown to have anterior
cingulate hypoperfusion compared with patients with-
out apathy [19 .]. Clinical±metabolic correlations have
essentially been studied in transversal studies, using
either a-priori hypothesized regions of interest or
(more convincingly) voxel-based statistical analysis,
which takes the entire brain volume of activity into
account. However, reports on the sensitivity of
functional imaging show that few demented patients
may have normal activity distribution, whereas abnor-
mal metabolism was observed in asymptomatic at-risk
subjects. More sensitive methods for image analyses
and longitudinal studies are required to explore
further the multifactorial clinical±metabolic relation-
ships.
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Relationship between functional and anatomical data in

Alzheimer's disease

The characteristic functional involvement of the tem-
poroparietal and posterior cingulate cortices in presym-
ptomatic and clinically demented AD patients has been
reproduced by both longitudinal and cross-sectional
voxel-based morphometry studies using magnetic reso-
nance imaging (MRI), which have also demonstrated
medial temporal atrophy [20,21 .]. Possible artefacts
introduced by stereotactic anatomical standardization of
atrophied brains have been discussed when voxel-based
statistical mapping methods are used to analyse brain
imaging in patients [22], but automated techniques are
capable of facilitating the serial measurement of medial
temporal volumetric changes in AD [23 .]. New compu-
tational approaches distinguishing variations in gray
matter distribution from variations in gyral patterns have
shown that the greatest de®cits in gray matter loss were
mapped in the temporoparietal cortices [24.]. Degenera-
tion within the prefrontal cortex appeared to be most
prominent in the inferior gyrus in patients with AD [25].

Studies that combined functional and anatomical ima-
ging have shown that between-group comparisons of
regional metabolic values are diagnostically superior to
volume measurements [26.], and that atrophy is not
suf®cient to explain the reduction of brain activity in AD
[27,28]. However, con¯icting results exist for the medial
temporal region, which might depend on differential
pathophysiology, sensitivity or susceptibility to artefacts
of functional and volumetric measurements [29]. Regio-
nal perfusion and brain metabolism are correlated in AD,
but there remain many anatomical variables that might
account for reduced cerebral activity in the disease. A
decrease in metabolic activity was suggested to be
related to reduced synaptic activity more than to
neuronal loss [30]. A decrement of cytochrome oxidase
histochemistry, used as an intracellular measure of
oxidative energy metabolic capacity, has been shown in
the posterior cingulate cortex of AD patients, and might
contribute to the metabolic impairment observed in
functional imaging [31].

Functional magnetic imaging techniques in
Alzheimer's disease
When we consider the number of biochemical, anatomical,
demographic or clinical variables that may be related to
brain functional activity in AD, it remains important to
explore new functional parameters to improve our under-
standing of the physiopathology of the disease. MRI of the
regional cerebral blood volume has shown decreased values
in the cortical and hippocampal regions of AD patients,
even when atrophy was used as a covariate [32]. An
apparent coef®cient of water diffusion was not statistically
different between AD and controls in that study. However,
it was found to be relatively increased in the temporal stem

and posterior cingulate, the occipital, and parietal white
matter in another population of AD patients compared with
control subjects [33]. Another study [34] demonstrated a
reduced magnetization transfer ratio (MTR) and increased
mean diffusivity in the cortical gray matter of AD patients
compared with control subjects. A decrease in the MTR has
been found in the hippocampus of AD patients with very
mild dementia [35]. A low MTR ratio indicates a reduced
capacity of the macromolecules in tissue membranes of the
brain to exchange magnetization with the surrounding
water molecules, re¯ecting damage to these membranes.
Increased water diffusivity re¯ects a disintegration of brain
tissue compartments. Further studies are required to
correct the values for brain atrophy and to specify their
meaning. The measurements with 1H-magnetic resonance
spectroscopy of absolute metabolite concentrations in the
associative neocortex showed abnormal results in AD.
Abnormalities of N-acetyl aspartate were disputed in mild
AD, but they were positively correlated to the severity of
dementia [36,37]. This probably re¯ects decreased neuro-
nal viability in AD. A weak, but signi®cant positive
correlation was observed between regional cerebral glucose
metabolism measured using 2-[(18)F]¯uoro-2-deoxy-D-
glucose (FDG)±PET and N-acetyl aspartate relative signal
intensity in AD patients [38.]. Diffusion tensor imaging
showed a highly signi®cant reduction in the integrity of the
association white matter ®bre tracts in the splenium of the
corpus callosum, superior longitudinal fasciculus, and
cingulum in patients with probable AD compared with
normal controls [39].

Assessment of physiopathological
hypotheses in Alzheimer's disease using
functional imaging
The clinical bene®t observed in AD with acetylcholine
esterase (AchE) inhibitor therapy has been associated
with an increase of metabolism and perfusion in the
medial temporal and cortical associative cortices [40±42].
Radiolabelled substrates allow the measurement of
cerebral AchE activity with PET [43 .], and cortical
activity is reduced in AD patients compared with controls
[44.]. AchE activity was proved to be reduced in vivo in
AD patients taking AchE inhibitor treatment [45].

Activated microglia have been detected in vivo in the
entorhinal, temporoparietal and cingulate cortex of AD
patients using a speci®c ligand of the peripheral
benzodiazepine binding sites, illustrating the brain's
immune response to neuronal degeneration [46.].
Detection of amyloid plaque burden in vivo in the brain
of patients with AD is also an aim of functional imaging.

Mild cognitive impairment
MRI volume sampling with co-registered and atrophy
corrected FDG±PET scans were used to demonstrate that
entorhinal cortex glucose metabolism and hippocampal
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volume were the most accurate variables to distinguish
mild cognitive impairment without dementia (MCI) from
controls [26.]. Both imaging modalities identi®ed the
temporal neocortex as best separating MCI and AD.
Widespread changes accurately classi®ed AD and controls.
In most between-group comparisons, regional metabolic
values were diagnostically superior to volume measure-
ments. In keeping with those results, a measure of
temporoparietal cerebral metabolism was shown to predict
the evolution of patients with MCI to AD [47]. A regional
decrease in perfusion in the hippocampal±amygdaloid
complex, the posterior cingulate, the anterior thalamus,
and the anterior cingulate had already been shown to be
most prominent among MCI patients who subsequently
converted to AD [48]. MRI has been used to show that the
hippocampal-apparent diffusion coef®cient was higher in
MCI and AD patients than in control subjects [33].

The predictive value of FDG±PET was further demon-
strated in a longitudinal study of initially normal elderly
control subjects [49 ..]. Subjects declining at follow-up
and non-declining controls were matched for demo-
graphic variables. Glucose metabolism in the entorhinal
cortex was shown to predict cognitive decline to MCI or
even to AD. Among those who declined, the baseline
entorhinal cortex metabolism predicted longitudinal
memory and temporal neocortex metabolic impairments.

Vascular dementia
Global cognitive impairment has been related to both
whole cortical and frontal hypoperfusion in vascular
dementia. Frontal lobe perfusion was associated with
subcortical hyperintensity volume measured on MRI,
but not with performances on executive functions [50].
This is in keeping with the idea that executive and
attentional functions would depend on distributed (but
speci®c) cerebral networks.

Dementia with Lewy bodies
A study of autopsy-con®rmed AD and patients with
dementia with Lewy bodies (DLB) [51.] has shown a
signi®cant metabolic reduction involving the parietal,
temporal, posterior cingulate and frontal association
cortices, in both conditions compared with control
subjects. Only DLB patients showed metabolic impair-
ment in the occipital cortex. Clinically diagnosed
probable AD patients showed a signi®cantly higher
frequency of primary visual metabolic reduction among
those who later ful®lled clinical criteria for DLB.
Therefore, a decrease in occipital activity was proposed
as a potential antemortem marker to distinguish DLB
from AD [52.]. However, occipital hypometabolism is
not universal in DLB [53].

Occipital glucose metabolism was observed in DLB with
and without parkinsonism, compared with AD patients [54].

Defects in nigrostriatal dopamine pathways in DLB have
been demonstrated with functional neuroimaging using
ligands probing pre- and post-synaptic dopaminergic
systems [55±57]. On the other hand, DLB patients appeared
to have less frequent medial temporal functional impairment
than an AD group [58]. Accordingly, hippocampal and
parahippocampal volumes have been shown to be signi®-
cantly larger in individuals with DLB compared with AD
patients [59]. Caution is mandatory when FDG±PET is
used for the differential diagnosis of parkinsonian syn-
dromes with dementia, for hypometabolism in associative
cortices and in the caudate has been reported in advanced
non-demented patients with Parkinson's disease [60].

Frontotemporal dementia
A decrease of activity in the frontal and temporal lobes
has been con®rmed in different cases of frontotemporal
dementia (FTD) [61]. Frontotemporal hypoperfusion
has been reported in patients with bulbar onset motor
neuron disease when they present with cognitive
impairment [62]. In keeping with the heterogeneity of
the syndrome, dementia in schizophrenic patients has
been characterized by memory and executive dysfunc-
tion and by lowered frontotemporal CBF [63]. Hypo-
perfusion in the frontal, anterior cingulate and temporal
cortex and in the caudate nucleus has been shown on
mean single-photon emission computed tomography
images of patients with FTD standardized in a common
stereotactical space [64 .], as already reported for PET
data [65]. The neural substratum of the heterogeneity of
FTD has not been much explored by functional imaging
[66]. In the domain of behavioural neurology, dramatic
changes of self, de®ned by essential changes in previous
social values, have been related to prevalent non-
dominant frontal hypoperfusion in FTD patients [67].
The density of degenerating astrocytes was inversely
correlated to CBF in FTD, but relationships with other
lesions were not reported [68].

Miscellaneous dementias
Although there is no consistent pattern of CBF changes
that characterize Creutzfeldt±Jakob disease, a case study
of the Heidenhain variant has illustrated the pathophy-
siological interest of functional imaging. MRI appeared
normal in the patient, but his profound visual impairment
was accompanied by a marked decrease of perfusion in
the primary and associative visual cortices [69].

A study in a population of patients with the clinical
phenotype of classical corticobasal degeneration con-
®rmed a characteristic pattern of asymmetrical metabolic
impairment in the perirolandic cortical areas and in the
central grey nuclei [70 .]. Not all patients were impaired
when performing gestures on verbal command or to
imitation. Those who performed more poorly than
elderly volunteers had a signi®cant decrease of metabo-
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lism in the anterior cingulate cortex, suggesting that a
global attentional factor was involved. When apraxia was
de®ned as an inability to correct in a second trial
erroneous gesture performance, only 38% of patients
with corticobasal degeneration were shown to have a
visuo-imitative upper limb apraxia related to metabolic
impairment in a superior parietal-frontal network.

Conclusion
Functional imaging certainly provides useful information
in the differential diagnosis of dementia. However, the
sensitivity of current studies is not maximal and speci®city
is relatively poor. Technical progress in image analysis,
such as whole-brain voxel-based analyses, multi-modal co-
registration in brain atlases, or anatomically driven meta-
bolic measurements, can provide more precise information.
But re®ned pathophysiological research is of the greatest
importance to explore further the in¯uence of multiple
clinical and biological variables on brain activity measure-
ments. There is also an ongoing search for imaging in vivo
more speci®c brain markers in different diseases.
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