Geothermobarometry of igneous and metamorphic rocks around the Åna-Sira anorthosite massif: Implications for the depth of emplacement of the So

Implications for the depth of emplacement of the South Norwegian anorthosites

EDITH WILMART & JEAN-CLAIR DUCHESNE

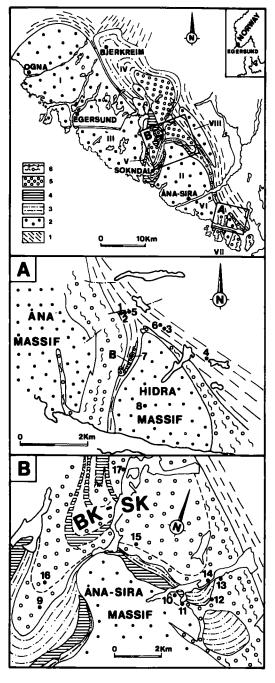
Wilmart, E. & Duchesne, J.-C.: Geothermobarometry of igneous and metamorphic rocks around the Åna-Sira anorthosite massif: Implications for the depth of emplacement of the South Norwegian anorthosites. *Norsk Geologisk Tidsskrift*, Vol. 67, pp. 185–196. Oslo 1987. ISSN 0029–196X.

Orthopyroxenes and clinopyroxenes in metabasites in contact with the massif-type Åna-Sira anorthosite yield the following equilibrium temperatures using various geothermometers: 840°C (Wells 1977); 800°C (Wood & Banno 1973), 650°C (Lindsley & Andersen 1983). Garnet-cordierite-plagioclase-sillimanite-quartz assemblages in neighbouring metapelites give values around 600°C and 3 ± 0.5 kb by means of several geothermobarometers. Armoured relics of symplectitic quartz + spinel in garnet suggest that equilibrium was attained during decreasing temperature. Fayalite + quartz and Ca-poor + Ca-rich clinopyroxene assemblages in charnockitic rocks of late tectonic intrusions yield 800-850°C (Lindsley & Andersen 1983) and 6-7.5 kb for the upper part of the Bjerkreim-Sokndal lopolith and a minimum pressure of 5-5.5 kb for the Hidra massif (Bohlen & Boettcher 1981). When interpreted in terms of the regional geological evolution, the conditions measured reflect two successive stages of a PT path characterizing the post-magmatic evolution. It is inferred that the emplacement of the Rogaland massif-type anorthosites took place at greater depths than these massifs, i.e. not less than 22-28 km near the Bjerkreim-Sokndal massif and not less than 18-20 km near the Hidra body.

E. Wilmart & J. C. Duchesne, Lab. assoc. de Géologie, Pétrologie et Géochimie, Université de Liège, B-4000 SART TILMAN (Belgium)

Anorthositic massifs south of the Grenville Front are associated with medium- to high-pressure granulite-facies rocks, thus suggesting an emplacement at deep levels in the crust (e.g. Morse 1982; Duchesne 1984). However, isotopic data (Valley & O'Neil 1982) seem to indicate that in the Adirondacks, south of the Greenville Front, anorthosites were emplaced at relatively shallow depths (<10 km), prior to burial and metamorphism at high pressure.

The anorthosites of the Rogaland igneous province (South Norway), belonging to the extension of the Grenville Province, have long been considered syntectonic (Michot 1969). Consequently the PT conditions of emplacement seem to be those of the regional granulite-facies metamorphism. The minimum temperature of 660°C, resulting from the occurrence of mesoperthite, suggested to Michot depths of about 20 km (5 kb), assuming a normal geothermal gradient (30°C per km). This view was later supported by the occurrence of Fe-rich orthopyroxene (Duchesne 1972b), and the garnet-cordierite association indicating 6-7 kb (Henry 1974; Demaiffe 1977).


Subsequently, however, geochronological studies (Demaiffe & Michot 1985) and new petrological (Tobi et al. 1985; Jansen et al. 1985) and structural data (Hermans et al. 1975) have led to the suggestion that the emplacement of anorthosites was not coeval with the regional deformation. Moreover, according to Maquil & Duchesne (1984), the anorthosites are late- to post-tectonic intrusions, which were capable of deforming their envelope. These new views differ from the earlier approach which emphasized the syntectonic character of anorthosites.

The purpose of the present paper is to supply data about the PT conditions recorded in rocks from the vicinity of the Åna-Sira anorthosite massif and the upper part of the neighbouring Bjerkreim-Sokndal lopolith (Fig. 1).

Regional geological evolution

In the general model of evolution of the Rogaland igneous province it is widely accepted that the Ana-Sira massif, by analogy with the Egersund-

Ogna massif, had completed its emplacement by the end of the Sveconorwegian orogeny (ca. 1000 Ma) in an envelope of gneisses previously deformed and metamorphosed on a regional scale (Falkum & Petersen 1980; Demaiffe & Michot 1985; Duchesne et al. 1985).

The eastern envelope of the Åna-Sira massif (Fig. 1) comprises a series of banded gneisses. The latter is 1–2 km thick and made up of a variety of rocks, banded on a dm-m scale, intensely deformed, affected by several episodes of migmatization, and locally blastomylonitic. The banded series occurs at the contact with the magmatic rocks and is conformable on a large scale with the Åna-Sira massif.

Several igneous bodies have intruded the contact zone between the Åna-Sira massif and the banded series. They are: The Farsund charnockite; the Apophysis (a thin mangero-monzonoritic sheet intrusion); the Hidra leuconorite body and the Breimyrknutan charnockite (Duchesne et al. 1987). The last two show igneous structures, are free of any post-emplacement deformation, and, because of their post-tectonic character, are of particular interest.

According to Demaiffe & Hertogen (1981), the Hidra massif results from the fractional crystallization of a monzonoritic liquid which yielded charnockitic residual liquids forming a stockwerk of sharpwalled dykes in the leuconorite of the central part of the massif. The Breimyrknutan charnockitic intrusion (Fig. 1A) has been emplaced into the banded series and is probably a product of anatexis triggered by the intrusion of the Hidra massif (Duchesne et al. 1987). These two intrusions show petrographic and geochemical similarities with the upper part of the Bierkreim-Sokndal lopolith (BKSK) (Fig. 1) (Michot 1965). Structurally BKSK is also situated between the metamorphic envelope and the anorthositic massifs; its final crystallization took place at about the same time as the other two intrusions (ca. 930 Ma) (Wielens et al. 1980).

The metamorphic and igneous rocks around the

Fig. 1. Schematic geological maps of the Rogaland igneous province (S.W. Norway) (after Michot & Michot 1969; Rietmeijer 1979; Duchesne et al. 1987). Legend: 1 - high-grade metamorphic rocks; 2 - anorthosites; 3 - leuconorites and norites; 4 - monzonorites; 5 - intermediate to acidic rocks (upper part of the Bjerkreim-Sokndal lopolith); 6 - slightly oriented to foliated intermediate to acidic rocks (Apophysis and Farsund charnockite). I, II and III: massif-type anorthosites of Egersund-Ogna, Ana-Sira and Håland-Helleren, respectively; IV: Bjerkreim-Sokndal layered lopolith; V: Eia-Rekefjord intrusion; VI: Apophysis; VII: Hidra massif; VIII: Garsaknatt massif. A. Detailed map of the southeastern contact zone of the Ana-Sira massif. B. Breimyrknutan charnockitic intrusion. Sample locations indicated by numbers 1 to 8. B. Detailed map of the northern contact zone of the Ana-Sira massif with the Bjerkreim-Sokndal lopolith. Sample locations indicated by numbers 9 to 17.

Ana-Sira anorthosite exhibit mineral associations typical of granulite-facies conditions, which have lasted for a long time in the tectonometamorphic evolution: During the regional metamorphism dated to $1350 \pm 200 \,\mathrm{Ma}$ (Weis & Demaiffe 1983), then during the emplacement of the Ana-Sira intrusion and the concomitant blastomylonitic and migmatitic reworking, finally during the ensuing intrusion and consolidation of the latest charnockitic bodies. The conformable structure of the banded series at its contact with the Ana-Sira massif suggests that the rocks underwent a deformation and a recrystallization connected with the emplacement of the anorthosite. Their mineral association results therefore from contact metamorphism superimposed on an earlier regional metamorphism. It is not excluded, however, that they were also affected by the intrusion of the charnockitic masses or by cooling during isostatic uplift.

A model for the PT evolution of the high-grade metamorphic terrain has been proposed by Jansen et al. (1985) (Fig. 2). Three stages of metamorphism have been distinguished. The last one

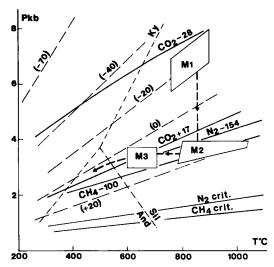


Fig. 2. Pressure-temperature diagram (after Touret 1985) showing the three stages of metamorphism (M1 to M3) of Jansen et al. (1985). The stippled lines are the isochores for the CO2 inclusions of Swanenberg (1980). The numbers in parentheses are the homogenization temperatures (T_b°C) of the liquid phase corresponding to the CO2-equivalent density of the isochore. The continuous lines are isochores corresponding to the CO₂, CH₄ and N₂ fluids analysed by Touret & Van den Kerkhof (pers. comm.). The nature of the fluid and the Th are indicated on each isochore. Al₂SiO₅ stability relations from Holdaway (1971).

(M3) is of retrograde type varying in temperature from 700°C to 600°C at about 3 kb total pressure. The second stage M2, related to the intrusion of the igneous bodies and particularly of the BKSK lopolith, yields temperatures of 800-1050°C at pressures of 3-4 kb. The first stage (M1) is estimated at 750-900°C and 6-8 kb. Swanenberg (1980) indicated fluid inclusions with homogenization temperatures T_h lower than -50°C, and surmised the occurrence of trapped fluids of ultra-high equivalent CO2 densities, quite incompatible with the M1 to M3 evolution. A recent reinvestigation of Swanenberg's samples by Touret and Van den Kerkhof (pers. comm.), however, shows that the trapped fluids studied by Swanenberg are not pure CO₂, but CH₄-N₂ mixtures. These authors, moreover, suggest the range of CO₂ isochores (T_h between -28°C and +17°C) represented in Fig. 2. Only the isochores of the lowest density are compatible with M3 conditions. Moreover, the late stage fluids compositions are dominated by CH₄ and N₂, not by CO₂, the latter being restricted to the early stages of the metamorphic evolution.

Petrography

In an attempt to determine the P-T conditions of equilibrium, a number of rock types have been studied: (1) metabasites (specimen nos. 1-4) and kinzigitic gneisses of the banded series (nos. 5-6), (2) the Breimyrknutan charnockite (no. 7), a charnockitic dyke of the Hidra massif (no. 8), and intermediate and acidic rocks from the upper part of BKSK lopolith (nos. 9-17). Location of the specimens is shown in Fig. 1.

The metabasites of the banded series (nos. 1-4) essentially comprise plagioclase (pl), orthopyroxene (opx) and clinopyroxene (cpx), with amphibole and/or biotite. Apatite, quartz and opaque minerals are accessories. Their texture is granoblastic, generally equigranular. The kinzigitic gneisses of the banded series (nos. 5-6) contain garnet (gt), cordierite (cord), sillimanite (sil), potassium feldspar, plagioclase (pl), aluminous spinel (sp), Fe-Ti oxides and quartz (q); biotite, always minor, is of secondary origin. The rocks have a fine-grained granoblastic matrix (400 µm) in which garnet porphyroblasts (up to 10 mm) occur. These have irregular and lobate shapes but sometimes show idiomorphic outlines. They contain numerous rounded inclusions of quartz, and locally vermicular aggregates of quartz and aluminous spinel. These aggregates are never found outside garnet. On the other hand, a very fine-grained garnet-spinel symplectite is common in the matrix. The minerals present seem to obey the following univariant relation (Hensen & Green 1973):

$$gt + cord + sil \leq sp + q$$

The presence of vermicular spinel-quartz aggregates points to high temperatures resulting in a shift of the equilibrium to the right, while the preservation of this association in the garnet (armoured relic) suggests a subsequent reduction in temperature.

The Breimyrknutan charnockite (no. 7) is a

massive, medium-grained rock containing microperthite, plagioclase, quartz, and an inverted pigeonite (Fs₆₉En₂₄Rh₂Wo₅) (Table 1) with wide cpx exsolutions. The charnockite dyke of Hidra considered here (no. 8: specimen 283 2/2 of Demaiffe (1977) is a medium-grained biotite quartz mangerite in sharp contact with the surrounding leuconorite. Orthopyroxene Fs₈₀En₁₈Wo₂ (Demaiffe 1977:75) in which the Fe ratio (= Fe/(Fe+Mg)) approximates the value reached in BKSK (0.81) (Duchesne 1972b). The upper part of the Bjerkreim-Sokndal lopolith (BKSK) (Duchesne 1972b; Rietmeijer 1979; Wiebe 1984) comprises (1) mangerites with mesoperthite, clinopyroxene, inverted pigeonite and olivine (no. 9); (2) (quartz) monzonites with

Table 1. Representative opx-cpx pairs in metabasites and Hidra charnockite.

	1		2		3		4		7	
Specimen No.	орх	срх	орх	срх	орх	срх	орх	срх	орх	срх
SiO ₂	49.95	50.51	50.13	50.55	50.94	50.73	51.67	51.22	48.02	49.66
TiO ₂	0.11	0.20	0.11	0.25	0.20	0.22	0.13	0.32	0.14	0.19
Al ₂ O ₃	0.97	1.71	0.90	1.63	1.03	1.60	1.25	2.21	0.43	0.97
FeO _{tot}	31.92	13.33	34.90	14.88	28.40	11.14	24.99	9.21	39.83	20.16
MnO	0.59	0.24	0.57	0.30	1.10	0.42	0.61	0.33	1.08	0.50
MgO	14.90	10.71	13.23	9.98	17.31	11.99	20.26	13.24	7.88	6.74
CaO	0.69	21.65	0.92	21.91	0.69	21.30	0.67	22.31	2.25	20.65
Na ₂ O	0.00	0.27	0.04	0.27	0.00	0.35	0.00	0.01	0.00	0.42
K ₂ O	0.01	0.02	0.04	0.00	0.01	0.00	0.01	0.00	0.01	0.00
Total	99.14	98.64	100.84	99.77	99.68	97.75	99.59	98.85	99.64	99.29
Si	1.972	1.948	1.970	1.940	1.968	1.954	1.957	1.938	1.980	1.963
Al ^{IV}	0.028	0.052	0.030	0.060	0.032	0.046	0.043	0.062	0.020	0.037
Al ^{VI}	0.017	0.025	0.012	0.014	0.015	0.027	0.013	0.037	0.001	0.008
Ti	0.003	0.006	0.003	0.007	0.006	0.006	0.004	0.009	0.004	0.006
Fe ³⁺	0.006	0.037	0.017	0.052	0.006	0.032	0.023	0.008	0.012	0.051
Fe ²⁺	1.048	0.393	1.130	0.425	0.911	0.327	0.769	0.284	1.362	0.616
Mn	0.020	0.008	0.019	0.010	0.036	0.014	0.020	0.011	0.038	0.017
Mg	0.877	0.616	0.775	0.571	0.997	0.689	1.144	0.747	0.484	0.397
Ca	0.029	0.894	0.039	0.901	0.029	0.879	0.027	0.905	0.099	0.874
Na	0.000	0.020	0.003	0.020	0.000	0.026	0.000	0.001	0.000	0.032
K	0.001	0.001	0.002	0.000	0.000	0.000	0.000	0.000	0.001	0.000
Total										
Mole%										
Ca	1.47	46.78	1.99	47.25	1.47	46.04	1.39	46.48	4.99	45.90
Mg	44.33	32.23	39.48	29.34	50.53	36.09	58.57	38.37	24.41	20.85
Fe	53.09	20.56	57.56	22.29	46.17	17.13	39.14	14.59	68.68	32.35
Mn	1.01	0.42	0.97	0.52	1.82	0.73	1.02	0.56	1.92	0.89
Temperature (°C	calculated	by								
Wood & Banno	792		775		820		847		768	
Wells	831		812		859		875		803	
Lindsley	620	620	680	600	650	650	650	700	>800	520

Specimen nos. 1-4: metabasites Specimen no. 7: Breimyrknutan charnockite.

orthopyroxene, clinopyroxene, and inverted pigeonite (nos. 10-12); (3) quartz mangerites with inverted pigeonite or olivine and clinopyroxene (nos. 13-17). These rocks contain interesting associations that are used for geothermobarometry: (1) fayalitic olivine + quartz + Ca-rich cpx, in which olivine ranges from Fo₆ to Fo₄ (Table 5); (2) Fe-rich opx either as inverted pigeonite (the most Fe-rich pigeonite is in sample no. 9: Fe ratio = 0.81) or as primary opx (Fe ratio ca. 0.80) (Table 5). A Ca-rich cpx coexists with opx or olivine. Fayalite + quartz have never been found with Fe-rich opx. Pyroxene generally shows exsolution lamellae as well as frequent externallyexsolved granules. Magmatic (solidus) bulk compositions can be reconstituted - or at least approached - through direct measurement with a defocused microprobe beam (Duchesne 1972b), or by recalculation from the composition and proportion of exsolved phases (Rietmeijer 1979).

Geothermometry and geobarometry

A. Metabasites

Twentynine pairs of opx and cpx grains in contact from four samples were analysed and used to calculate temperatures according to the Wood & Banno (1973) and Wells (1977) geothermometers. Four representative pairs are shown in Table 1 and plotted in the pyroxene quadrilateral (Fig. 3). Table 2 summarizes the results and their reproducibility.

The temperatures measured for each rock are remarkably homogeneous (standard deviation

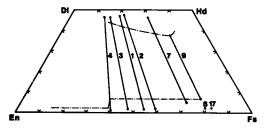


Fig. 3. Composition of representative opx and opx-cpx pairs plotted in the pyroxene quadrilateral: nos. 1 to 4 are from metabasites; no. 7 is from the Breimyrknutan charnockite; no. 8 is from a Hidra charnockitic dyke; no. 9 is from a BKSK mangerite; no. 17 is the most Fe-rich opx in BKSK quartz mangerite. The BKSK trend is also represented.

Table 2. Temperatures determined from opx-cpx pairs in metabasites.

Specimen no.	1	2	3	4
Number of pairs Wood & Banno (°C)	8	11	3	7
mean	795	, 777	820	837
S.D. (s)	11	18	5	9
Wells (°C) mean S.D. (s)	836	814	859	867
	15	27	7	25

<3.5%). There is a 30 to 40°C difference between the values given by the two thermometers, those of Wells being systematically higher, as commonly noted (Maquil & Duchesne 1984; Rietmeijer 1984). The mean of all samples yields a value of $804 \pm 28^{\circ}$ C (2s) for the Wood & Banno geothermometer. This value is identical to the average temperature obtained by Jacques de Dixmude (1978) on metabasites from the envelope. The Lindsley & Andersen (1983) graphic thermometer yields reasonably coherent results for temperatures measured from orthopyroxene and clinopyroxene (Table 1), but the average temperature (650°C) is far lower than those calculated by the other methods. Rietmeijer (1984) has presented convincing arguments that the temperatures obtained with the Wood & Banno thermometer are ca. 150°C too high. This suggests that the Lindsley & Andersen thermometer gives a better approximation of the opx-cpx equilibrium temperature.

B. Kinzigitic gneisses

Two mineral associations were used to estimate the PT conditions: garnet-cordierite and garnetplagioclase, both in the presence of sillimanite and quartz. The compositions of grains in contact have been determined. Repeated measurements do not reveal either zoning or significant compositional variations from grain to grain. Representative compositions of mineral pairs are given in Table 3.

We have determined the equilibrium temperature between garnet and cordierite using the Thompson (1976) thermometer, which, according to Martignole & Sisi (1981), gives a better temperature estimate than that of Hensen & Green (1973). Gt-cord pairs yield a temperature of about 600°C. This temperature approximates those

Table 3. Representative garnet-cordierite and garnet-plagioclase pairs in kinzigitic gneisses.

Specimen no.	5(*)		6		5		6	
	Gt	Cd	Gt	Cd	Gt	PI	Gt	Pl
SiO ₂	38.57	48.82	38.23	48.49	38.56	57.82	39.05	59.43
TiO ₂	0.06	0.03	0.09		0.06	0.04	0.04	0.03
Al ₂ O ₃	22.06	34.69	22.68	34.66	22.07	26.90	23.59	26.01
FeOtot	33.34	5.86	33.74	6.47	31.78	0.17	33.03	0.46
MnO	1.13	0.12	0.70	0.05	1.34	0.08	0.63	
MgO	6.09	9.98	4.76	9.35	6.20		6.58	
CaO	0.78	0.02	0.55	0.03	0.90	7.68	1.01	6.90
Na ₂ O		0.11				7.05	0.08	7.43
K ₂ O	0.01	0.02	0.04	0.05		0.13		0.31
Total	102.04	99.65	100.79	99.10	100.91	99.87	104.01	100.57
Si	2.987	4.911	3.015	4.911	3.009	10.352	2.951	10.564
Al ^{IV}	0.013	1.089		1.089		5.685	0.049	5.445
Al^{VI}	1.998	3.018	2.121	3.049	2.029		2.050	
Ti	0.003		0.005		0.004	0.011	0.002	0.004
Fe ³⁺								
Fe ²⁺	2.152	0.495	2.218	0.548	2.073	0.022	2.080	0.008
Mn	0.074	0.012	0.047	0.006	0.089	0.011	0.040	
Mg	0.708	1.498	0.563	1.412	0.721		0.746	
Ca	0.065		0.046	0.006	0.075	1.475	0.082	1.313
Na		0.024				2.455		2.560
K				0.006		0.022		
Pyr	24.2		19.9		25.1		25.7	
Alm	73.6		78.4		72.3		71.5	
Gro	2.2		1.6		2.6		2.8	
An						37.3		33.3
Ab						62.1		64.9
Or						0.6		1.8

^{*} Al-spinel in this rock has also been analysed. The structural formula is: (Fe_{5.7}Mg_{2.3}) (Al_{15.9}Si_{0.1})O₃₂ (hercynite).

obtained with the Lindsley & Andersen opxcpx thermometer in neighbouring metabasites. Though the blocking temperatures cannot be expected to be similar in the various retrograde equilibria, the difference is small, which increases the consistency of the model. A 3.5 kb pressure corresponding to this 600°C temperature is inferred from the P-T-X_{Fe} grid for garnet and cordierite presented by Martignole & Sisi (1981), assuming that cordierite is anhydrous, as indicated by a sum of oxides near 100% and the occurrence of optically positive crystals (Martignole & Nantel 1982; Armbruster & Bloss 1982). Aranovitch & Podlesskii (1983) geothermobarometer also gives $600 \pm 10^{\circ}\text{C}$ and a pressure between 2.7 ± 0.5 kb (assuming the fluid phase is pure CO_2) and 4.4 ± 0.4 kb (assuming the fluid is pure H₂O). The lower pressure estimate is preferred because of the anhydrous character of cordierite.

Different geobarometers based on the garnet-

plagioclase equilibrium in the presence of sillimanite and quartz have also been applied. Since the petrographic observations do not allow us to reject the hypothesis that the gt-cord and gt-pl equilibria were arrested at different conditions, we have calculated the pressure at a 600°C temperature, estimated by the gt-cord equilibrium. The pressures calculated according to the models of Wood & Fraser (1976) and Newton & Haselton (1981) are 3.5 kb and 2.7 kb respectively. Ganguly & Saxena (1984) have suggested adding +0.6 kb to the Newton & Haselton value, which then yields a value of 3.3 kb. In conclusion it is suggested that the kinzigitic gneisses reflect equilibrium pressures of 3 ± 0.5 kb at about 600°C.

Armoured relics of spinel + quartz in garnet however indicate that the temperature was reached as a retrograde effect. Assuming an anhydrous cordierite, the position of the gt-cord-sill-q-sp univariant reaction curve, suggested by Hensen & Green (1973), can be constrained as

follows: (1) the curve passes through the invariant point (in the system FeO-Al₂O₃-SiO₂) where the association gt-cord-sill-sp-q is stable (Fig. 4) (Holdaway & Lee 1977; Bohlen et al. 1986); (2) a chemographic approach (Vielzeuf 1983) shows that the univariant reaction curve must have a steeper slope than the gt + sill \leq sp + q reaction curve determined by Bohlen et al. (1986). These considerations point to peak temperatures in the envelope, in excess of 800°C to 900°C.

C. Charnockitic rocks

Charnockitic rocks from the upper part of the Bjerkreim-Sokndal lopolith (BKSK) permit an accurate estimation of temperatures and pressures prevailing during crystallization. The graphical thermometer of Lindsley & Andersen (1983) applied to the Ca-poor and Ca-rich clinopyroxenes analysed by Duchesne (1972b) leads to values between 800°C and 830°C (specimen nos. 9 and 16, Table 4), close to the interval of 750-800°C estimated by Duchesne (1972a) by means of the Fe-Ti oxide minerals. It must be emphasized that the pyroxene compositions were determined either via chemical analysis of a separated mineral fraction (specimen no. 16) or via microprobe analysis on grains with fine-scale exsolutions, using a defocused beam (specimen no. 9). The compositions thus considered are, or closely approach, solidus compositions. The use of the same thermometer on opx from specimen nos. 10 and 12 yields lower temperatures (600°C). This can be explained by exsolution processes, difficult to evaluate under the microscope, and also to a lesser precision of the thermometer, due to high sensitivity to small variations in composition.

Microprobe analyses from Rietmeijer (1979) using the Lindsley & Andersen (1983) thermometer give a wide temperature range from ca. 600°C to ca. 880°C (Table 4). However, the high temperature range is obtained on recalculated pigeonites with high wollastonite content, which are less likely to have been re-equilibrated due to granule exsolution processes. On the other hand, as clearly shown by Rietmeijer (1984), the low temperature range is found in subsolvus re-

Table 4. Application of Lindsley & Andersen geothermometer to rocks of the upper part of the Bjerkreim-Sokndal lopolith.

Rock type	Specimen no. (this study)	Thermometer used	T(°C)	Note
Mangerite	9	Ca-poor cpx	830	rock no. TII in Duchesne (1972b)
		Ca-rich cpx	800	Table 2 (anal.8) idem (anal.8a)
Monzonite	10	Ca-poor cpx	880	rock no. R40 in Rietmeijer (1979) Tables 4.1 and 4.5 (anal. 40.1,2) the highest Wo cont. of all recalculated pigeonites.
		Ca-rich cpx	680	idem (anal.40.13): possibly external granule exsolution
		primary opx	600	idem (anal, 40.3)
	12	орх	600	rock no. R217: idem (anal. 217.1)
		Ca-rich cpx	830	idem: recal. pigeon. (anal. 217.2,4)
Quartz mangerite	13	Ca-rich cpx	700	rock no. R98: possibly external granule exsolution (anal. 98.10)
	15	id	700	rock no. R392: idem (anal. 392.3)
	16	id	830	rock no. 66.261 (anal. 9a) in Duchesne (1972b)

Specimen Mineral no. Mineral association (this study) composition Note Favalitic olivine 13 Fa_{96.4}Fo_{3.6} rock no. R98 in Rietmeijer (1979) Table 4.7 (+ quartz) 14 Fa95.6FO4.4 rock no. R95 idem 15 Fa_{95.8}Fo_{4.2} rock no. R392 idem 16 Fa₉₄Fo₆ rock no. 66261 in Duchesne (1972b) Table 2 Primary ortho-8 $Fs_{80}En_{18}Wo_2$ rock no. 283 2/2 in Demaiffe (1977) p. 75 pyroxene 11 $Fs_{80}En_{17}Wo_3$ rock no. R247 in Rietmeijer (1979) Tables 4.1 and 4.7 (+ quartz) 17 $Fs_{80}En_{18}Wo_2$ rock no. 314 in Wiebe (1984) Table 2

 $Fs_{83}En_{15}Wo_2$

Table 5. Application of Bohlen & Boettcher geobarometer to quartz mangerites of the Bjerkreim-Sokndal and Hidra massifs.

equilibrated pyroxenes. Therefore, solidus temperatures in the upper part of BKSK can be estimated in the range 800-850°C.

12

Bohlen & Boettcher (1981) have experimentally determined the PT conditions of the reaction opx \rightleftharpoons olivine + quartz. The equilibrium is strongly influenced by pressure, the value of which increases with the Fe content of the opx. Given the range of crystallization temperatures in the upper part of BKSK, application of this barometer permits the calculation of upper and lower limits for the pressure of crystallization (Table 5). Fa₉₄Fo₆ + quartz (in specimen no. 16) would react to opx + olivine + quartz at a pressure of 7 kb at 800°C, and 7.7 kb at 850°C. The maximum Fe enrichment found in primary opx (Fs₈₃En₁₅Wo₂) (specimen no. 12) implies a minimum pressure of 6 kb at 800°C and 6.5 kb at 850°C. In the Breimyrknutan body, 17 pairs of opx-cpx have been measured between cpx exsolution lamellae and host opx (see Table 1, specimen no. 7): averages of 800 ± 24 °C (Wells) and 550°C (Lindsley & Andersen) give solvus temperatures. Overall similarity in whole-rock chemical composition of the Hidra charnockitic dykes with the late stage olivine quartz mangerite of BKSK points to the same range of crystallization temperatures, i.e. 800-850°C. The stability of the Fe-rich opx (Fe₈₀En₁₈Wo₂) (specimen no. 8) would thus indicate a minimum pressure range 1 kb lower than that of the BKSK crystallization.

Discussion

Two distinct stages of PT conditions have thus been determined here and are shown schematically in Fig. 4. Stage A corresponds to the crystallization of the upper part of BKSK and

probably also of Hidra (800–850°C, 6.0–7.5 kb), while stage B represents the re-equilibration of the metapelites and possibly of the metabasites (600°C, 2.5-3.5 kb), attained by retrogression of an assemblage stable at higher temperatures and pressures. It is therefore suggested that the two sets of PT conditions correspond to two successive stages on a PT path. The upper part of BKSK and the Hidra massif clearly show characteristics of post-tectonic intrusions. They obviously postdate the regional metamorphism M1 phase of Jansen et al. (1985) and the subsequent emplacement of the Ana-Sira massif. Accordingly, the emplacement of all anorthositic massifs as hightemperature crystal mushes (Duchesne et al. 1985), immediately followed by the intrusion of the BKSK parental magma and the other monzonoritic intrusions (Apophysis, Hidra), provided extra heat and produced peak temperatures and a large 'contact aureole' in the metamorphic envelope. Cooling and differentiation of BKSK ended with products of acidic composition, the crystallization of which has been recorded in stage A conditions. Further cooling and retrogression of metapelites led to stage B. Therefore, the PT path linking stages A to B characterizes the postmagmatic evolution.

rock no. R217 in Rietmeijer (1979)

These views on the PT evolution are quite consistent with the independent approach used by Touret and coworkers with fluid inclusions (Figs. 2 and 4). Intrusion of igneous rocks and subsequent crystallization (our stage A) took place in PT conditions compatible with high density CO₂ fluids in the metamorphic envelope. The anorthosites and related magmas can conveniently be considered as the source of these fluids, as already suggested by Touret (1974). The progressive evolution towards stage B conditions of re-equilibration at lower PT values also appears

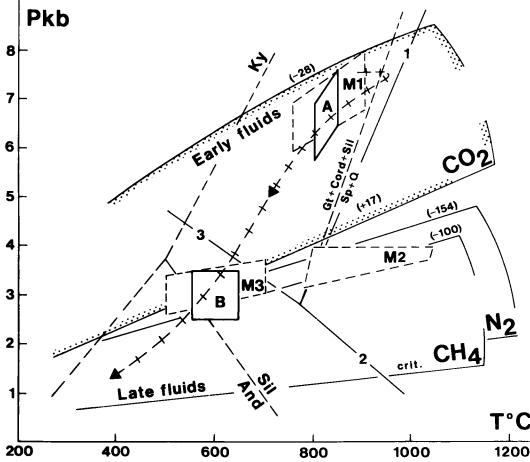


Fig. 4. PT diagram showing evolution stages A and B reconstructed in this paper and M1 to M3 metamorphisms of Jansen et al. (1985). Post-magmatic PT trajectory indicated by a broken tickled line. Range of isochores (labelled with homogenization temperature) for pure CO_2 (stippled), N_2 and CH_4 fluid inclusions (after Touret & Van den Kerkhof, pers. comm.). Al_2SiO_5 stability relations after Holdaway (1971). Reactions curves after Bohlen et al. (1986): (1) gt + sil = sp + q; (2) Fe-cord = sp + q; (3) Fe-cord = sp + q;

consistent with the change in fluid compositions towards CH₄- and N₂-rich fluids.

Our stage B conditions are also consistent with the M3 retrograde metamorphism of Jansen et al. (1985); the relatively large PT interval characterizing retrogression can be ascribed partly to the fact that re-equilibration of the various mineral pairs took place at different PT conditions, depending on the minerals and the controlling processes. The lack of deformation after the emplacement of the igneous bodies did not assist the attainment of uniform PT conditions of reequilibration on a regional scale. Our results however significantly differ from the Jansen et al. (1985) model in the pressure conditions attributed to the emplacement of BKSK and to the associ-

ated M2 metamorphism. Instead of the 4 kb pressure claimed by these authors, we support much higher values (6-7.5 kb) in the range of those of the M1 regional metamorphism.

The M2 pressure estimates are mainly based on the occurrence of osumilite in the contact aureole of the igneous masses, north of BKSK (Maijer et al. 1981). Grew (1982) predicted the stability of osumilite at temperatures above 750°C and total pressure less than 8–9 kb. He showed on a qualitative Schreinemakers petrogenetic grid that the Rogaland osumilite is stable at somewhat higher pressures than the osumilite occurring in the contact aureole of the Nain anorthosite, emplaced at about 3.5 kb pressure (Bohlen et al. 1983). Sillimanite inclusions in osumilite, mentioned by

Tobi et al. (1985), tend to indicate minimum pressures of 5 kb at 900–1000°C. Our ignorance of the influence of volatiles (H₂O, F, Cl, etc.) on the stability of osumilite is a further handicap for an accurate determination of PT conditions. It must therefore be concluded that the pressure conditions at the peak temperature in the envelope, indicated by the present PT path, are not incompatible with the occurrence of osumilite in the contact aureole of BKSK.

Conclusions

Temperatures measured in metabasites near the igneous bodies vary considerably according to the geothermometer used. Calculated values of around 840°C (Wells), 800°C (Wood & Banno), and 650°C (Lindsley & Andersen) corroborate similar differences observed in other metamorphic terranes. The temperature obtained by the Lindsley & Andersen thermometer approaches those measured in neighbouring metapelites. In the latter rocks, various thermometers and barometers point to 600°C and 2.5–3.5 kb for equilibrium conditions, which were attained during decreasing temperature, as evidenced by armoured relics of spinel + quartz in garnet.

PT conditions for the crystallization of the upper part of the BKSK massif are 800–850°C and ca. 6–7.5 kb according to the Lindsley & Andersen thermometer and the Bohlen & Boettcher barometer. Similarly, the minimum pressure conditions for the end of the Hidra crystallization are about 5–5.5 kb. These igneous bodies are clearly atectonic and were emplaced later in the evolution of the province than the massif-type anorthosites.

The two stages of PT conditions thus reconstructed correspond to two successive stages along a PT path characterizing the post-magmatic evolution. The first stage is obtained by temperatures decreasing from a peak due to the intrusion of the igneous masses. The second stage is attained by retrograde metamorphism. The PT path is in good agreement with fluid inclusion data. It is concluded that the depth of emplacement of the Åna-Sira massif-type anorthosite is not less than 22–28 km (6–7.7 kb) along its contact with the neighbouring BKSK massif, and not less than 18–20 km (>5–5.5 kb) near the contact with the Hidra body. It follows that the Rogaland massif-

type anorthosites can still be considered deepseated intrusions.

Acknowledgements. — We thank J. Martignole and T. N. Clifford for improving an earlier version of this paper, as well as J. L. R. Touret for allowing access to unpublished data and for continuing discussions. V. Miocque and G. Bologne provided technical assistance. Microprobe analyses were performed at the 'Centre d'analyse par Microsonde pour les Sciences de la Terre' (University of Louvain — D. Laduron, Director) with the help of J. Wautier, whose kindness and devotion were greatly appreciated.

Manuscript received January 1987 Revised version accepted July 1987

Appendix: Analytical method and calculations

The analyses were performed on a 4 spectrometer Camebax microprobe. Matrix effects were corrected by means of Cameca's ZAF program according to the Philibert models and with the Heinrich coefficients. This method of correction gives good results for most of the minerals analysed, but not for garnet, the analysis of which generally sums to more than 100%. This problem, met with by various users of the Cameca probe, has not been entirely solved (Laduron & Wautier, pers. comm.). However, by modifying the value of some coefficients, it has been possible to reduce the difference to 100% for most of the garnet analyses. This factor is of minor importance in the present study, however, since the proportion of the elements in the calculations remains virtually unchanged by these modifications. In the 58 analysed pyroxenes, the summation is better (99.75 with s = 0.75). It has also been verified that analyses made with a defocused beam are not significantly different from those made in the usual way.

The structural formula of the pyroxenes is calculated on the basis of 4 cations and 12 charges and the trivalent iron is recalculated from the charge deficit. The structural formulae of garnet, cordierite and plagioclase have been calculated on the basis of 12, 18 and 32 oxygens, respectively.

References

Aranovitch, L. Ya. & Podlesskii, K. K. 1983: The cordierite-garnet-sillimanite-quartz equilibrium: Experiments and applications. In Saxena, S. K. (ed.): Kinetics and equilibrium in mineral reactions. Advances in Physical Geochemistry 3, 173-198.

Armbruster, T. & Bloss, F. D. 1982: Orientation and effects of

- channel H₂O and CO₂ in cordierite. American Mineralogist 67, 284-291.
- Bohlen, S. R. & Boettcher, A. L. 1981: Experimental investigations and geological applications of orthopyroxene geobarometry. *American Mineralogist* 66, 951–964.
- Bohlen, S. R., Dollase, W. A. & Wall, V. J. 1986: Calibration and applications of spinel equilibria in the system FeO– Al₂O₃-SiO₂. Journal of Petrology, 1143–1156.
- Demaiffe, D. 1977: De l'origine des anorthosites: pétrologie, géochimie et géochimie isotopique des massifs anorthositiques d'Hidra et de Garsaknatt (Rogaland-Norvège méridionale). Doctorat thesis (unpublished), Free University of Brussels, 303 p.
- Demaiffe, D. & Hertogen, J. 1981: Rare earth geochemistry and strontium isotopic composition of a massif-type anorthositiccharnockitic body: the Hidra massif (Rogaland, S. W. Norway). Geochimica et Cosmochimica Acta 45, 1545-1561.
- Demaiffe, D. & Michot, J. 1985: Isotope geochronology of the Proterozoic crustal segment of Southern Norway. A review. In Tobi, A. C. & Touret, J. L. R. (eds.): The deep Proterozoic crust in the North Atlantic Provinces. NATO Advanced Study Institute Series C158, 411-434. Reidel.
- Duchesne, J. C. 1972a: Iron-titanium oxide minerals in the Bjerkrem-Sogndal massif, Southwestern Norway. *Journal of Petrology* 13, 57-81.
- Duchesne, J. C. 1972b: Pyroxènes et olivines dans le massif de Bjerkrem-Sogndal (Norvège méridionale). Contribution à l'étude de la série anorthosite-mangérite. 24th International Geology Congress, Montreal sect. 2, 320-328.
- Duchesne, J. C. 1984: Massif anorthosites: another partisan review. In Brown, W. S. (ed.): Feldspars and feldspathoids. NATO Advanced Study Institute Series C137, 411-433. Reidel.
- Duchesne, J. C., Demaiffe, D. & Wilmart, E. 1988: The Rogaland intrusive massifs: Apophysis, Hidra massif and Envelope. In Maijer, C. (ed.): The Precambrian of Southernmost Norway. Norges Geologisk Undersøkelse (in press).
- Duchesne, J. C., Maquil, R. & Demaiffe, D. 1985: The Rogaland anorthosites: facts and speculations. In Tobi, A.
 C. & Touret, J. L. R. (eds.): The deep Proterozoic crust in the North Atlantic Provinces. NATO Advanced Study Institute Series C158, 499-476. Reidel.
- Falkum, T. & Petersen, J. 1980: The Sveconorwegian orogenic belt, a case of late-Proterozoic plate-collision. Geologisch Rundschau 69, 622-647.
- Ganguly, J. & Saxena, S. K. 1984: Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermobarometry. *American Mineralogist* 69, 88-97.
- Grew, E. S. 1982: Osumilite in the saphirine-quartz terrane of Enderby Land, Antarctica: implications for osumilite petrogenesis in the granulite facies. *American Mineralogist* 67, 762-787.
- Henry, J. 1974: Garnet-cordierite gneisses near the Egersund-Ogna anorthositic intrusion, Southwestern Norway. *Lithos* 7, 207-216.
- Hensen, B. J. & Green, D. H. 1973: Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. Contributions to Mineralogy and Petrology 38, 151-166.
- Hermans, G. A. E. M., Tobi, A. C., Poorter, R. P. E. & Maijer, C. 1975: The high-grade metamorphic Precambrian of the Sirdal-Örsdal area, Rogaland/Vest-Agder, SW Norway. Norges Geologisk Undersøkelse 318, 51-74.

- Holdaway, M. J. 1971: Stability of andalusite and the aluminosilicate phase diagram. American Journal of Science 271, 97-131.
- Holdaway, M. J. & Lee, L. 1977: Fe-Mg cordierite stability in high grade pelitic rocks based on experimental, theoretical and natural observations. Contributions to Mineralogy and Petrology 63, 175-198.
- Jacques de Dixmude, S. 1978: Géothermométrie comparée de roches du faciès granulite du Rogaland (Norvège méridionale). Bulletin de Minéralogie 101, 57-65.
- Jansen, J. B. H., Scheelings, M. & Bos, A. 1985: Geother-mometry and geobarometry in Rogaland and preliminary results of the Bamble area, S. Norway. In Tobi, A. C. & Touret, J. L. R. (eds.): The deep Proterozoic crust in the North Atlantic Provinces. NATO Advanced Study Institute Series C158, 499-516. Reidel.
- Lindsley, D. H. & Andersen, D. H. 1983: A two-pyroxene thermometer. In Proceedings of the 13th Lunar and Planetary Science Conference, part 2. Journal of Geophysical Research 88, suppl. A887-906.
- Maijer, C., Andriessen, P. A. M., Hebeda, E. H., Jansen, J.
 B. H. & Verschure, R. H. 1981: Osumilite, an approximately 970 Ma old high-temperature index mineral of the granulite-facies metamorphism in Rogaland. *Geologie en Mijnbouw* 60, 267-272.
- Maquil, R. & Duchesne, J. C. 1984: Géothermométrie par les pyroxènes et mise en place du massif anorthositique d'Egersund-Ogna (Rogaland, Norvège méridionale). Annales de la Société Géologique de Belgique 107, 27-49.
- Martignole, J. & Nantel, S. 1982: Geothermobarometry of cordierite-bearing metapelites near the Morin anorthosite complex, Grenville province, Quebec. *Canadian Mineralogist* 20, 307-318.
- Martignole, J. & Sisi, J. 1981: Cordierite—Garnet—H₂O equilibrium: A geological thermometer, barometer and water-fugacity indicator. Contributions to Mineralogy and Petrology 77, 38-46.
- Michot, J. & Michot, P. 1969: The problem of anorthosites: the South-Rogaland igneous complex, southern Norway. In Isachsen, Y. W. (ed.): Origin of anorthosite and related rocks. State Museum Sciences Service Mem. 18, 399-410.
- Michot, P. 1965: Le magma plagioclasique. Geologisch Rundschau 54, 956-976.
- Michot, P. 1969: Geological environments of the anorthosites of South Rogaland, Norway. In Isachsen, Y. W. (ed.): Origin of anorthosite and related rocks. State Museum Sciences Service Mem. 18, 411-423.
- Morse, S. A. 1982: A partisan review of Proterozoic anorthosites. American Mineralogist 67, 1087–1100.
- Newton, R. C. & Haselton, H. T. 1981: Thermodynamics of the garnet-plagioclase-Al₂SiO₅-quartz geobarometer. *In* Newton, R. C., Navrotsky, A. & Wood, B. J. (eds.): Thermodynamics of minerals and melts. *Advances in Physical Geochemistry I*, 131-149.
- Rietmeijer, F. J. M. 1979: Pyroxenes from iron-rich igneous rocks in Rogaland, S.W. Norway. Doctorat thesis, University of Utrecht. Geologica Ultraiectina 21, 341p.
- Rietmeijer, F. J. M. 1984: Pyroxene (re)-equilibration in the Precambrian terrain of SW Norway between 1030-990 Ma and reinterpretation of events during regional cooling (M3 stage). Norsk Geologisk Tidsskrift 64, 7-20.
- Swanenberg, H. E. C. 1980: Fluid inclusions in high-grade metamorphic rocks from S.W. Norway. Doctorat thesis, University of Utrecht. Geologica Ultraiectina 25, 147 p.

- Thompson, A. B., 1976: Mineral reactions in pelitic rocks:
 II. Calculation of some P-T-X (Fe-Mg) phase relations.
 American Journal of Science 276, 425-454.
- Tobi, A. C., Hermans, G. A. E. M., Maijer, C. & Jansen, J.
 B. H. 1985: Metamorphic zoning in the high-grade Proterozoic of Rogaland-Vest Agder, S.W. Norway. In Tobi,
 A. C. & Touret, J. L. R. (eds.): The deep Proterozoic crust in the North Atlantic Provinces. NATO Advanced Study Institute Series C158, 477-497. Reidel.
- Touret, J. L. R. 1974: Facies granulite et fluides carboniques. In Bellière, J. & Duchesne, J. C. (eds.): Géologie des domaines cristallins, 267–287. Société Géologique de Belgique, Liège.
- Touret, J. L. R. 1985: Fluid regime in Southern Norway: the record of fluid inclusions. *In Tobi*, A. C. & Touret, J. L. R. (eds.): The deep Proterozoic crust in the North Atlantic Provinces. *NATO Advanced Study Institute Series C158*, 517–549. Reidel.
- Valley, J. W. & O'Neil, J. R. 1982: Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite. *Nature* 300, 497-500.
- Vielzeuf, D. 1983: The spinel and quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in geothermometry and barometry. Contributions to Mineralogy and Petrology 82, 301-311.

- Weis, D. & Demaiffe, D. 1983: Pb isotope geochemistry of a massif-type anorthositic-charnockitic body: the Hidra massif (Rogaland, S.W. Norway). Geochimica et Cosmochimica Acta 47, 1405-1413.
- Wells, P. R. A. 1977: Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology 62, 129-139.
- Wiebe, R. A. 1984: Comingling of magmas in the Bjerkrem-Sogndal lopolith (Southwest Norway): evidence for the composition of residual liquids. *Lithos* 17, 171–188.
- Wielens, J. B. W., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Priem, H. N. A., Verdurmen, E. A. T. & Verschure, R. H. 1980: Isotope geochronology in the high-grade metamorphic Precambrian of Southwestern Norway: new data and reinterpretations. Norges Geologisk Undersøkelse 359, 1-30.
- Wood, J. & Banno, S. 1973: Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology 42, 109– 124
- Wood, B. & Fraser, D. G. 1976: Elementary thermodynamics for geologists. Oxford University Press, 303p.