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1 Introduction

In many cases, the numerical computation of mechanical problem with Finite ElementMethod has to
transfer some information between two different meshes [1,2, 3, 4]. For example, if a remeshing is
needed or if several meshes are used (e.g. one for a thermal problem and another one for a mechani-
cal problem). In spite of the research on the Transfer Methods, none of them has been so far clearly
established as the best. Each method has advantages and disadvantages. Many problems can happen
during the field transfer, like the minimization of the numerical diffusion, the value of the field on the
boundaries, etc.

This paper compares on the one hand the performances of the Field Transfer Method by classical
interpolation with on the other hand one using Mortar Elements. The comparison of the two methods is
based on two indicators: the numerical diffusion and the evaluation of the field on the boundaries. In this
paper, only the continuous fields are considered.

2 Definition of the problem

In this paper a problem is computed with theFinite ElementMethod. During the computation, a remesh-
ing is needed. To continue the computation, the fieldT evaluated on the old mesh, is needed on the new
mesh. The evaluation of the fieldT on the old mesh is notedTold. This one is defined thanks to nodal
values (Told

•
). The old mesh is composed ofnold

e elements andnold
n nodes. The value ofTold on each

elementeold is written as:

Told =
nelem

n

∑
j=1

Nold
j Told

j (1)

whereNold
j is the shape function of the nodej andnelem

n the number of node of the element.

The value of this fieldT on the new mesh is notedTnew. The new mesh is formed ofnnew
e elements

andnnew
n nodes. LikeTold, Tnew is defined thanks to the nodal values (notedTnew

•
) and the value on each

element of the new meshenew is as:

Tnew=
nelem

n

∑
i=1

Nnew
i Tnew

i (2)

whereNnew
i is the shape function of the nodei on the elementenew.
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The aim of the transfer method is to define the nodal value ofTnew on the new mesh (Tnew
•

). The
properties of the transfer method should be:

• weak numerical diffusion,

• conservation of the extrema,

• easily treatment of the boundaries.

3 Transfer Methods

The Field Transfer Method makes the link between the two discretisations. The reliability of the field on
the new mesh is directly linked with the transfer method used.

3.1 Interpolation Method

The interpolation method is the most commonly used. The value of Tnew at each node of the new mesh
(Tnew

•
) is equal to the interpolation of the nodal values of the old mesh (Told; [2, 3]). The computation is

done in two steps:

• Firstly, for each node of the new mesh a search is done to find the element of the old mesheold in
which the node lies inside.

• Then, the value of the field on this node is computed by interpolation of the nodal values of the
elementeold, as:

Tnew
•

= Told =
nelem

n

∑
j=1

Nold
j Told

j (3)

This method does not deal with the elements of the new mesh. These elements have no influence on
the value of the field. The transfer is done from a mesh to a nodefor all nodes of the new mesh. This
method conserves the extrema, but due to geometrical approximations, some nodes on the boundary can
be outside of the old mesh. So, a special treatment is requered for the boundaries.

3.2 Weak Form Method

The second method (using Mortar Element [1]), is based on a weak conservation form of the field. The
new nodal values are not directly computed. The field on the new mesh is evaluated considering that the
integral of the difference between the value of the fields on the new mesh and the value on the old mesh
is null ([1, 5, 6, 7]). The computation of this integral is done over the new mesh, as:

nnew
e

∑
enew=1

∫
enew

(Tnew
−Told) f de= 0 (4)

whereenew is a element of the new mesh, andf is a weighting function defined on each elementenew as :

f =
nelem

n

∑
i=1

Nnew
i fi. (5)
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The nodal value of the functionf (noted f•) can take any value. The equation (4) can be written like:

nnew
n

∑
A=1

(

nnew
n

∑
B=1

N1
ABTnew

B −

nold
n

∑
C=1

N2
ACTold

C

)

fA = 0. (6)

WhereN1
AB andN2

AC are the mortar elements defined as:

N1
AB=

nnew
e

∑
enew=1

∫
enew

Nnew
A Nnew

B de N2
AC =

nnew
e

∑
enew=1

∫
enew

Nnew
A Nold

C de (7)

whereNnew
i is the shape function of nodei (A or B) in the elementenew, andNold

C is the shape function of
the nodeC in the element of the old mesh intersected by the elementenew.

3.2.1 Computation of mortar element

The first Mortar Element (N1
AB) is the integral over the elements of the new mesh of the product of two

shape functions of one of these elements. So, this value is computed by numerical integration over each
element of the new meshenew as:

N1
AB(e

new) = ∑
ip

Nnew
A (ip)Nnew

B (ip) (8)

The value of the Mortar ElementN1
AB is the sum of the contribution of each element of the new mesh:

N1
AB=

nnew
e

∑
enew=1

N1
AB(e

new) (9)

The evaluation of the second Mortar Element (N2
AC) is more complex because of the shape function of

the nodeC on the element of the old mesh (Nold
C ). The sum of the shape functionsNold

C on each element
of the old mesh is not a polynomial function on each element ofthe new mesh (enew). A numerical and
an exact integration are used to compute this Mortar Element.

Numerical integration The mortar element is computed by numerical integration over each element
of the new mesh. For the element of the new meshenew, the computation is done withnip integration
points and the part of the mortar element is defined by:

N2
AC(e

new) =
nip

∑
ip=1

Nnew
A (ip)Nold

C (ip) (10)

WhereNold
C is the shape function of the nodeC on the element of the old mesh including the integration

point ip. The numerical integration suppose that the sum of the shapefunction of the nodeC can be
evaluated by a polynomial function on each element of the newmesh.

Exact integration Each elementenew of the new mesh is divided innsub
e elements, as each part (esub)

is only over one element of the old mesh. So, on each elementesub, Nold
C is a polynomial function.

N2
AC(e

new) =
nsub

e

∑
esub=1

∫
esub

Nnew
A Nold

C de (11)
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Finally, the mortar element can be computed exactly by numerical integration over each part of the
elementenew, because is an integration of polynomial function.

N2
AC(e

new) =
nsub

e

∑
esub=1

(

∑
ip

Nnew
A (ip)Nold

C (ip)

)

(12)

The exact integration of mortar element considers all intersections between the element of the new mesh
and the elements of the old mesh. However, with the numericalintegration, the mortar elements are
evaluated in function of the intersection in which the integration point lies inside. So, the intersections
than are smaller than the influence area of the integration point can be ignored. Like the Mortar Element
N1

AB, the value of the Mortar ElementN2
AC is the sum of the contribution of each element of the new mesh:

N2
AC =

nnew
e

∑
enew=1

N2
AC(e

new) (13)

3.2.2 Evaluation of the field on the new mesh

Global solving The equation (6) can be written as:
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(14)

This relation is verified for any nodal valuefA of the function f , so the equation to solve can be written:
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(15)

The size of this equation is equal to the number of node of the new mesh. In addition the solution of this
equation cannot certify the conservation of extrema.

Local solving To obtain a local system, a diagonal matrix is used. The valueof the diagonal term is
equal to the sum of the line (or the column, because the matrixis symmetric). This is totally equivalent
to the row-sum technique used to lump mass matrix in explicittime integration method. So the value of
the fieldT on each node is done by:

Tnew
A =

nold
n

∑
C=1

N2
ACTold

C

nnew
n

∑
B=1

N1
AB

(16)

With this method, the weak conservation of the field is done ina cell composed of the elements of the
new mesh including the nodeA. This technique increases the area of computation of nodal value and
in the same time the numerical diffusion. But, in oppositionof the global solving, the local solving
conserves the extrema.
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To sum up, the evaluation of the fieldT is directly done at the node of the new mesh (Tnew
•

) on a
function of the elements of the new mesh (N1

AB), the nodal values and the elements of the old mesh (Told
•

andN2
AC).

4 Examples

The comparison of the two methods is done on two dimensional academic examples. Two examples are
treated. These exemples expose the numerical diffusion andthe evaluation of the field on the boundaries
of the transfer methods. The meshes are composed of quadrilateral elements. With the Weak Form
Method, the evaluation of the Mortar ElementN1

AB is done by numerical integration using two Gauss
points in each direction. For the numerical integration, the Mortar ElementN2

AC is evaluated with five
Gauss points in each direction on each element of the new mesh. For the exact integration, the evaluation
of the Mortar ElementN2

AC is done using six Gauss points on each triangle of the subdivision of the
element (to exact integration of quadratic function).

4.1 Numerical diffusion

The numerical diffusion of the transfer operator is studiedby the transfer of a field between two identical
squares. The new mesh is equal to the old after a rotation ofπ/8. The square’s sides are meshed by 30
elements (see figure 1). The exact value of the field is of a hundred inside a circle and null outside. The
centre of the circle is identical to the centre of the square and the radius is the half of the side’s square.
This field is defined thanks to the nodal values. This value is equal to the exact value of the field. The
figure 2(a) show the evaluation of this field on the initial mesh.

(a) Old mesh (before the first transfer) (b) New mesh (after the first transfer)

Figure 1: Meshes for the first transfer
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(a) Initial value (b) Interpolation Method

(c) Local Weak Form Method (numerical integration) (d) Local Weak Form Method (exact integration)

(e) Global Weak Form Method (numerical integration) (f) Global Weak Form Method (exact integration)

Figure 2: Numerical diffusion after twenty transfers: by Interpolation and Weak Form Method (numeri-
cal and exact integration of the Mortar Elements)
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The evaluation of the field has been transferred twenty timesduring the rotation and after that, the
comparison of the numerical diffusion is done (see figures 2(b), 2(c), 2(d), 2(e), 2(f), and 3). These
figures show that the method that minimizes the numerical diffusion is the Global Weak Form Method,
but this one does not conserve the extrema. The weak conservation of the field introduces oscillations
around a steep variation (see figure 2(e), 2(f), and 3). The numerical diffusion is the most important with
the Local Weak Form Method because the area of influence of a given node is larger. The computation
of the nodal value of the new mesh is done in a cell composed by all the elements including this node
(see equation 16). The weak conservation of the field is done on this cell.

In this case, the difference between the numerical and the exact integration of the Mortar Elements
is not significant (see figures 2(c), 2(d), 2(e), 2(f), and 4(a)). With the Global Weak Form Method, the
numerical integration of the Mortar Element absorbs the numerical wave (see figures 2(e), 2(f), and 4(b)).
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(b) After twenty transfers

Figure 3: Numerical diffusion: by Interpolation and Weak Form Method (numerical integration of the
Mortar Elements)
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(a) Local Weak Method
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(b) Global Weak Method

Figure 4: Numerical diffusion of Weak Form Method after twenty transfers

4.2 Influence of boundaries

To study the influence of the boundaries, a mesh of a disc with ahole is used. Like the first problem, the
new mesh is equal to the old after rotation ofπ/8. The half circle is divided in fifteen elements and the
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radius in ten (see figure 5). The exact value of the field is a linear function of the abscissa, the minimal
value is zero and the maximal is hundred (see figure 6(a)). This field is defined thanks to the nodal values.
The difficulty is that in the general case, the nodes on the boundaries of the new mesh are not always
inside an element of the old mesh.

(a) Old mesh (before the first transfer) (b) New mesh (after the first transfer)

Figure 5: Meshes for the first transfer

Figures 6 show the exact value of the field (figure 6(a)) and thevalue of the field after sixteen transfers
(one revolution, figures 6(b), 6(c), 6(d), 6(e), 6(f), and 7). This problem proves that the Interpolation
Method requires a special technique to deal with the boundaries. The nodes located on the boundaries of
the new mesh do not lie inside any element of the old mesh, so the value resulting the sample interpolation
method is null (see figure 6(b) and 7). This problem does not appear with the Weak Form Method and
the numerical integration of the Mortar Elements (see figures 6(c), 6(e), and 7), because the computation
of the field is done on the integration points of the new mesh and these points generally lie inside of an
element of the old mesh. In addition, the computation of the Mortar Elements by numerical integration
does not consider the part of the elements that is outside of the other mesh. This explains that the Global
Weak Form Method does not introduce any error after the transfer (see figure 6(e) and 7). The error after
the transfer with the Local Weak Form Method is a numerical diffusion and not a wrong evaluation of
the field on the boundaries (see figures 6(c) and 7).

The exact integration of the Mortar Elements introduces an error of space discretisation of the bound-
aries. The parts of the element of the old mesh that do not lie inside any element of the new mesh are not
considered on the Mortar Elements. In the same time, the parts of the element of the new mesh that do
not lie inside any element of the old mesh are considered and the value of the field inside is null. So, the
integral of the field over the new mesh is not equal to the integral over the old mesh. This error impairs
the quality of the solution (see figures 6(c), 6(d), 6(e), 6(f), and 8).
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(a) Initial value (b) Interpolation Method

(c) Local Weak Form Method (numerical integration) (d) Local Weak Form Method (exact integration)

(e) Global Weak Form Method (numerical integration) (f) Global Weak Form Method (exact integration)

Figure 6: Numerical diffusion after sixteen transfers (onerevolution): by Interpolation and Weak Form
Method (numerical and exact integration of the Mortar Elements)
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(a) After eigth transfers (half of revolution)
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(b) After sixteen transfers (one revolution)

Figure 7: Numerical diffusion: by Interpolation and Weak Form Method (numerical integration of the
Mortar Elements)
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(a) Local Weak Method
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(b) Global Weak Method

Figure 8: Numerical diffusion of Weak Form Method after sixteen transfers (one revolution)

5 Conclusion and future works

In conclusion, this paper presents a field Transfer Method between two different meshes: the Weak Form
Method. This one evaluates the nodal value as a function of the field on the old mesh and the elements of
the new mesh. This paper shows that the Weak Form Method with numerical integration of the Mortar
Elements deals with complex boundaries without any specificprocedure. In addition, the Global Weak
Form Method minimizes the numerical diffusion, but the global computation can introduce oscillations
around steep variations of the field. So, this method cannot conserve the extrema. On the other hand, the
local computation increases the smoothing of the field. Indeed, the Local Weak Form Method introduces
numerical diffusion because of the importance of the area ofevaluation of nodal value. The aim of the
future work is to extend the Local Weak Method on the three dimensional problems and reduce the area
of evaluation of the nodal value to decrease the numerical diffusion.
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