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1 Introduction

In many cases, the numerical computation of mechanicallgmolvith Finite Elementmethod has to
transfer some information between two different meshe®[B, 4]. For example, if a remeshing is
needed or if several meshes are used (e.g. one for a therot@épr and another one for a mechani-
cal problem). In spite of the research on the Transfer Methadne of them has been so far clearly
established as the best. Each method has advantages advhdisges. Many problems can happen
during the field transfer, like the minimization of the nuioal diffusion, the value of the field on the
boundaries, etc.

This paper compares on the one hand the performances ofélte Transfer Method by classical
interpolation with on the other hand one using Mortar Eletsiehe comparison of the two methods is
based on two indicators: the numerical diffusion and théuesn of the field on the boundaries. In this
paper, only the continuous fields are considered.

2 Definition of the problem

In this paper a problem is computed with tkiaite Elementmethod. During the computation, a remesh-
ing is needed. To continue the computation, the fielevaluated on the old mesh, is needed on the new
mesh. The evaluation of the fieldon the old mesh is note@®d. This one is defined thanks to nodal
values T2'%). The old mesh is composed of'® elements anai?® nodes. The value 6f°¢ on each
element®'d is written as:

nelem

Id_ ¥ Id—old
Told — Zl NPT @)
J:

WhereNJp'd is the shape function of the nodeindnt'®™the number of node of the element.

The value of this fieldl on the new mesh is noted™". The new mesh is formed of®" elements
andnf®¥ nodes. LikeT°9, T"®Wjs defined thanks to the nodal values (nofgd") and the value on each
element of the new med®"is as:
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whereN"®"is the shape function of the noden the elemeng™".



The aim of the transfer method is to define the nodal valu€"6¥ on the new meshT(™"). The
properties of the transfer method should be:

o weak numerical diffusion,
e conservation of the extrema,

e easily treatment of the boundaries.

3 Transfer Methods

The Field Transfer Method makes the link between the twaeiisations. The reliability of the field on
the new mesh is directly linked with the transfer method used

3.1 Interpolation Method

The interpolation method is the most commonly used. TheevafT "¢V at each node of the new mesh
(T"®W) is equal to the interpolation of the nodal values of the osm{T °'%; [2, 3]). The computation is
done in two steps:

e Firstly, for each node of the new mesh a search is done to fmdléiment of the old mesK!“ in
which the node lies inside.

e Then, the value of the field on this node is computed by intatjpm of the nodal values of the
elemente”'d, as:
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This method does not deal with the elements of the new megselélements have no influence on
the value of the field. The transfer is done from a mesh to a fadall nodes of the new mesh. This
method conserves the extrema, but due to geometrical apmbians, some nodes on the boundary can
be outside of the old mesh. So, a special treatment is redjfier¢éhe boundaries.

3.2 Weak Form Method

The second method (using Mortar Element [1]), is based onakwenservation form of the field. The
new nodal values are not directly computed. The field on tiemesh is evaluated considering that the
integral of the difference between the value of the fieldshenrtew mesh and the value on the old mesh
is null ([1, 5, 6, 7]). The computation of this integral is @oover the new mesh, as:
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where€'®"is a element of the new mesh, ahds a weighting function defined on each elemélit'as :
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The nodal value of the functioh (notedf,) can take any value. The equation (4) can be written like:
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WhereN;g andNZ. are the mortar elements defined as:
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whereN"®"is the shape function of nod€A or B) in the elemeng™®", andNCO'd is the shape function of
the nodeC in the element of the old mesh intersected by the elerd¥&Hit

3.2.1 Computation of mortar element

The first Mortar ElementNzp) is the integral over the elements of the new mesh of the mtoafutwo
shape functions of one of these elements. So, this valuaniget@d by numerical integration over each
element of the new me#i®V as:

Nas(€"") = 5 NA*(ip)Ng*"(ip) (8)
P

The value of the Mortar Elemeid;; is the sum of the contribution of each element of the new mesh:
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The evaluation of the second Mortar Elemex() is more complex because of the shape function of
the nodeC on the element of the old mesNJ?). The sum of the shape functiohMg!d on each element
of the old mesh is not a polynomial function on each elementh®ihew meshg'®"). A numerical and
an exact integration are used to compute this Mortar Element

Numerical integration  The mortar element is computed by numerical integratiom eaeh element
of the new mesh. For the element of the new me&$H, the computation is done withi® integration
points and the part of the mortar element is defined by:

NAc(€™") = 5 NA*(ip)N2“(ip) (10)
ip=1

WhereNg'd is the shape function of the no@eon the element of the old mesh including the integration
pointip. The numerical integration suppose that the sum of the shaypdion of the nodeC can be
evaluated by a polynomial function on each element of the mesh.

Exact integration Each elemeng™" of the new mesh is divided ing"® elements, as each pagf{?)
is only over one element of the old mesh. So, on each elegi#htN2'¢ is a polynomial function.
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Finally, the mortar element can be computed exactly by nigalemtegration over each part of the
element®Y, because is an integration of polynomial function.
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The exact integration of mortar element considers all g&etions between the element of the new mesh
and the elements of the old mesh. However, with the numein¢egration, the mortar elements are
evaluated in function of the intersection in which the imé&gpn point lies inside. So, the intersections
than are smaller than the influence area of the integratiort pan be ignored. Like the Mortar Element
Nig, the value of the Mortar ElemeNE. is the sum of the contribution of each element of the new mesh:
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3.2.2 Evaluation of the field on the new mesh
Global solving The equation (6) can be written as:
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This relation is verified for any nodal valug of the functionf, so the equation to solve can be written:
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The size of this equation is equal to the number of node of éemesh. In addition the solution of this
eqguation cannot certify the conservation of extrema.

Local solving To obtain a local system, a diagonal matrix is used. The valube diagonal term is
equal to the sum of the line (or the column, because the miatdxymmetric). This is totally equivalent
to the row-sum technique used to lump mass matrix in explii¢ integration method. So the value of

the fieldT on each node is done by:
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With this method, the weak conservation of the field is dona aell composed of the elements of the
new mesh including the nod& This technique increases the area of computation of nalakvand

in the same time the numerical diffusion. But, in oppositafthe global solving, the local solving
conserves the extrema.

(16)



To sum up, the evaluation of the fielis directly done at the node of the new me3fi¥Y) on a
function of the elements of the new me#tk), the nodal values and the elements of the old m&8§H (
andNZp).

4 Examples

The comparison of the two methods is done on two dimensiaralemic examples. Two examples are
treated. These exemples expose the numerical diffusiothenelvaluation of the field on the boundaries
of the transfer methods. The meshes are composed of quedhil@lements. With the Weak Form
Method, the evaluation of the Mortar Elemet, is done by numerical integration using two Gauss
points in each direction. For the numerical integratior Mortar ElementZ. is evaluated with five
Gauss points in each direction on each element of the new.rReslthe exact integration, the evaluation
of the Mortar ElementN2. is done using six Gauss points on each triangle of the sgidiiviof the
element (to exact integration of quadratic function).

4.1 Numerical diffusion

The numerical diffusion of the transfer operator is studigdhe transfer of a field between two identical
squares. The new mesh is equal to the old after a rotatioti&f The square’s sides are meshed by 30
elements (see figure 1). The exact value of the field is of afeahichside a circle and null outside. The
centre of the circle is identical to the centre of the squaickthe radius is the half of the side’s square.
This field is defined thanks to the nodal values. This valugjisakto the exact value of the field. The
figure 2(a) show the evaluation of this field on the initial mes

(a) Old mesh (before the first transfer) (b) New mesh (after the first transfer)

Figure 1: Meshes for the first transfer



step 0 1=-0/21 di=1 step 20 1=20/21 df=1

(a) Initial value (b) Interpolation Method

step 20 1=20/21 df=1 step 20 1=20/21 df=1

Iemperatire

(c) Local Weak Form Method (numerical integration) (d) Local Weak Form Method (exact integration)

step 20 1=20/21 df=1 step 20 1=20/21 df=1

Iemperatire

(e) Global Weak Form Method (numerical integration) (f) Global Weak Form Method (exact integration)

Figure 2: Numerical diffusion after twenty transfers: byelpolation and Weak Form Method (numeri-
cal and exact integration of the Mortar Elements)



The evaluation of the field has been transferred twenty tiduesg the rotation and after that, the
comparison of the numerical diffusion is done (see figurdéd, Z(c), 2(d), 2(e), 2(f), and 3). These
figures show that the method that minimizes the numericigidn is the Global Weak Form Method,
but this one does not conserve the extrema. The weak cotisared the field introduces oscillations
around a steep variation (see figure 2(e), 2(f), and 3). Theenigal diffusion is the most important with
the Local Weak Form Method because the area of influence ofea giode is larger. The computation
of the nodal value of the new mesh is done in a cell composed! biyeaelements including this node
(see equation 16). The weak conservation of the field is darthis cell.

In this case, the difference between the numerical and thet éxtegration of the Mortar Elements
is not significant (see figures 2(c), 2(d), 2(e), 2(f), and}(®ith the Global Weak Form Method, the
numerical integration of the Mortar Element absorbs theemiral wave (see figures 2(e), 2(f), and 4(b)).
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Figure 3: Numerical diffusion: by Interpolation and WeakriidMethod (numerical integration of the
Mortar Elements)
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Figure 4: Numerical diffusion of Weak Form Method after twetransfers

4.2 Influence of boundaries

To study the influence of the boundaries, a mesh of a disc withlais used. Like the first problem, the
new mesh is equal to the old after rotationrgB. The half circle is divided in fifteen elements and the



radius in ten (see figure 5). The exact value of the field isealifiunction of the abscissa, the minimal
value is zero and the maximal is hundred (see figure 6(a)k fiéid is defined thanks to the nodal values.
The difficulty is that in the general case, the nodes on thenthaies of the new mesh are not always
inside an element of the old mesh.

(a) Old mesh (before the first transfer) (b) New mesh (after the first transfer)

Figure 5: Meshes for the first transfer

Figures 6 show the exact value of the field (figure 6(a)) andadhee of the field after sixteen transfers
(one revolution, figures 6(b), 6(c), 6(d), 6(e), 6(f), and This problem proves that the Interpolation
Method requires a special technique to deal with the boueslafrhe nodes located on the boundaries of
the new mesh do not lie inside any element of the old meshgseale resulting the sample interpolation
method is null (see figure 6(b) and 7). This problem does npeapwith the Weak Form Method and
the numerical integration of the Mortar Elements (see fig6(e), 6(e), and 7), because the computation
of the field is done on the integration points of the new meshthase points generally lie inside of an
element of the old mesh. In addition, the computation of treethl Elements by numerical integration
does not consider the part of the elements that is outsideeasther mesh. This explains that the Global
Weak Form Method does not introduce any error after the fearisee figure 6(e) and 7). The error after
the transfer with the Local Weak Form Method is a numerictiligion and not a wrong evaluation of
the field on the boundaries (see figures 6(c) and 7).

The exact integration of the Mortar Elements introducesreor ef space discretisation of the bound-
aries. The parts of the element of the old mesh that do natdidé any element of the new mesh are not
considered on the Mortar Elements. In the same time, the pathe element of the new mesh that do
not lie inside any element of the old mesh are consideredtandalue of the field inside is null. So, the
integral of the field over the new mesh is not equal to the nalegver the old mesh. This error impairs
the quality of the solution (see figures 6(c), 6(d), 6(e)),&hd 8).



step 16 t=16/21 di=1

ST
KRS,

AN

i
5

step 16 t=16/21 dt=1 %

sfep 16 1=16/21 dt=1 AW

(e) Global Weak Form Method (numerical integration) (f) Global Weak Form Method (exact integration)

Figure 6: Numerical diffusion after sixteen transfers (o@lution): by Interpolation and Weak Form
Method (numerical and exact integration of the Mortar Eletap
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Figure 7: Numerical diffusion: by Interpolation and WeakrfRoMethod (numerical integration of the
Mortar Elements)
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Figure 8: Numerical diffusion of Weak Form Method after st transfers (one revolution)

5 Conclusion and future works

In conclusion, this paper presents a field Transfer Methoadsen two different meshes: the Weak Form
Method. This one evaluates the nodal value as a functioredi¢ld on the old mesh and the elements of
the new mesh. This paper shows that the Weak Form Method witterical integration of the Mortar
Elements deals with complex boundaries without any spegiicedure. In addition, the Global Weak
Form Method minimizes the numerical diffusion, but the glbbomputation can introduce oscillations
around steep variations of the field. So, this method carmmtearve the extrema. On the other hand, the
local computation increases the smoothing of the field. dddéhe Local Weak Form Method introduces
numerical diffusion because of the importance of the areavaluation of nodal value. The aim of the
future work is to extend the Local Weak Method on the threeedisional problems and reduce the area
of evaluation of the nodal value to decrease the numeriffaisibn.

10



Acknowledgements

The authors wish to acknowledge the Walloon Region for itafamal support to the STIRHETAL project
(WINNOMAT program, convention number 0716690) in the cahtd which this work was performed.

References

(1]

(2]

(3]

(4]

(5]

D. Dureisseix and H. Bavestrello. Information trandfetween incompatible finite element meshes: Applica-
tion to coupled thermo-viscoelasticit@omput. Methods Appl. Mech. Engr$j95:6523-6541, 2006.

P.H. Saksono and D. Péri On finite element modelling of surface tensio@omput. Mech.38:251-263,
2006.

M. Ortiz and J.J. Quigley. Adaptive mesh refinement imistiocalization problemsComputer Methods in
Applied Mechanics and Engineerin@0:781-804, 1991.

G. Kermouche, N. Aleksy, J.L. Loubet, and J.M. BergheBinite element modeling of the scratch response
of a coated time-dependent solMlear, 267:1945-1953, 2009.

M.M. Rashid. Material state remapping in computatiogsalid mechanics.Int. j. Numer. Meth. Engng.
55:431-450, 2002.

[6] A. Orlando. Analysis of adaptative finite element solutions in elagtsiitity with reference to transfer oper-

[7]

ation techniquesPhD thesis, University of Wales, 2002.

P.E. Farrell, M.D. Piggott, C.C. Pain, G.J. Gorman, an®.GNilson. Conservative interpolation between
unstructured meshes via supermesh constructi@omput. Methods Appl. Mech. Engrd.98:2632—-2642,
2009.

11



