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Linear Bénard-Marangoni instability in rigid circular containers

P. C. Dauby,* G. Lebon,† and E. Bouhy
Universitéde Liège, Institut de Physique B5, Sart Tilman, B 4000 Lie`ge 1, Belgium

~Received 15 October 1996; revised manuscript received 28 February 1997!

A linear study of the Be´nard-Marangoni instability in small rigid circular containers is presented. The fluid
is assumed to be Newtonian with a temperature-dependent surface tension at the upper free surface. The layer
is horizontal and heated from below. The principle of exchange of stability is numerically shown to be valid.
The critical conditions for the onset of motion are determined as well as the convective patterns at the
threshold. Generally, the cells take the form of either concentric or ‘‘transverse’’ rolls. The coupled influence
of gravity and capillarity is analyzed and the influence of the gas lying above the fluid on the Biot number is
also taken into account. Comparisons with other works are discussed.@S1063-651X~97!13607-8#

PACS number~s!: 44.25.1f, 47.20.2k, 47.27.Te
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I. INTRODUCTION

The problem of thermoconvective instabilities in flu
layers heated from below has become a classical subje
fluid mechanics. Many authors have analyzed this prob
and the bibliography is very large. An interesting review c
be found, for instance, in the book of Koschmieder@1#.

It is well known that two different effects are responsib
for the onset of motion when the temperature difference
comes larger than a certain threshold value. The first on
referred to as the Rayleigh-Be´nard effect and originates in
the gravity force. After the experiments of Be´nard in 1900
@2#, this effect was studied from a theoretical point of vie
by Rayleigh in 1916@3#. The second possible cause of m
tion is the so-called Marangoni effect, which generates m
tion due to the capillary forces appearing at an upper f
surface whose tension is a function of temperature. This
fect was described theoretically by Pearson in 1958@4#. In
Earth grounded experiments, both effects combine and
rise to the ‘‘Bénard-Marangoni’’ instability studied in 1964
by Nield @5#.

Until rather recently, most of the theoretical studies we
concerned with layers of infinite horizontal extent and the
approaches did not model lateral side-wall effects; the co
sponding experiments were carried out in containers of v
large horizontal extent for which the influence of late
walls may actually be disregarded.

Experimental works on confined thermocapillary conve
tion are today still a bit scarce. A very important paper in t
area is the work of Koschmieder and Prahl@6# who reported
careful experiments on Be´nard-Marangoni instability in
small square and circular containers. Other interesting
perimental works are those of Ezerskyet al. @7#, Ondarçuhu
et al. @8#, and Ondarc¸uhu et al. @9#. A recent work by
Johnson and Narayanan@10# presents experimental resul
for circular containers with aspect ratios equal to 1.5 and
and shows the possibility of oscillatory motion. The partic
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lar case of slippery side walls was also studied experim
tally in @11#.

Despite this relative lack of experimental results, mo
and more theoretical studies are devoted nowadays to
thermoconvective instabilities in fluid layers of finite hor
zontal extent. A precursory theoretical work in this area
the paper of Davis in 1967@12#, who studied pure gravity-
driven instability in rectangular containers with rigid hor
zontal and lateral walls. The problem of thermocapillary co
vection in finite boxes was first considered by Rosenb
Davis, and Homsy@13# and Rosenblat, Homsy, and Dav
@14#. Their studies are both linear and nonlinear but they
the restrictive assumption of vorticity-free lateral walls. Th
assumption has also been used by Daubyet al. @15# who
analyzed hexagonal convective cells and also by Echeba´a
et al. @16# and Johnson and Narayanan@17#. Linear and non-
linear approaches to two-dimensional~2D! Marangoni con-
vection in rigid rectangular containers have been exami
by several authors using different numerical methods@18–
20#.

The three-dimensional problem has been considered
recently. Three papers by Dijkstra@21–23# have been de-
voted to a rather complete study of Marangoni instability
square containers. The convective thresholds are determ
and several bifurcation diagrams are given. Good agreem
with experiments is obtained in small boxes. The appeara
of hexagonal convective cells is also examined in larger c
tainers. Another analysis of this problem was proposed
1996 for rectangular cavities by Dauby and Lebon@24# who
use amplitude equations to reduce the dynamics of the
tem to the dynamics of the most unstable modes of conv
tion. Bifurcation diagrams are presented and the results a
very good agreement with all the experiments of K
schmieder and Prahl in square boxes with aspect r
smaller than about 8.

The case of circular containers has also been examine
several papers. In 1981, Vrentaset al. @25# studied pure
gravity and pure capillarity-driven convection in circula
vessels but their work is restricted to a 2D~axisymmetric!
linear approach. In 1991, Chenet al. @26# considered the 3D
linear Marangoni problem with an adiabatic upper surfa
but their results for axisymmetric perturbations seem a
doubtful since they do not recover Nield’s results in lar
520 © 1997 The American Physical Society
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56 521LINEAR BÉNARD-MARANGONI INSTABILITY I N . . .
aspect ratio boxes. A nonlinear code was also used by W
ner et al. @27# to determine the convective thresholds by
terpolating the bifurcation points. The agreement betw
their results and those of the two above-mentioned pape
good since the deviation with the non-axisymmetric resu
of Chenet al. is about 6% while the difference with Vrenta
et al. is less than 2%.

Very recently, Zaman and Narayanan@28# proposed a lin-
ear study of gravity- and capillarity-driven convection in c
cular boxes. They determine the critical heating for the
pearance of motion and give pictures of the convect
patterns at the threshold. The agreement between this p
and the work of Vrentaset al. is quite good in the case o
pure Rayleigh convection since the deviation between b
results is about 2% for an aspect ratio equal to 1 and
comes still smaller in larger containers. For the Marang
problem, the agreement is also quite good in large bo
~difference less than 2%! but becomes less satisfactory
small aspect ratio vessels. Note also that these aut
present a detailed comparison of their results for conduc
lateral side walls with the experimental data of Koschmie
and Prahl@6#.

In the present work, a similar linear analysis of t
coupled gravity- and capillarity-driven instability is deve
oped. However, our numerical method is different since
used a spectral tau method with Chebishev decomposit
in both thez and r directions. Moreover our code work
differently since it allows one to determine altogether t
Rayleigh and Marangoni numbers defining criticality wh
Ra was fixed in Zaman and Narayanan’s approach. We h
also tried to model carefully the experimental situation us
by Koschmieder and Prahl. In particular, we show that
Biot number to be considered in the calculations depends
the aspect ratio of the container.

Apart from these rather technical reasons, our pape
motivated by the following points. First, it is clear that th
results of a linear analysis of thermoconvection in confin
geometries must tend to Nield’s results@5# corresponding to
horizontally infinite domains when the aspect ratio g
larger and larger. In Zaman and Narayanan’s paper, the c
cal numbers for an aspect ratio equal to 8 are within Niel
values by 1.2% but are smaller than these values. This fa
a bit astonishing since side walls should always play a
bilizing role. Another important point is the comparison b
tween insulating and conducting side walls. For reasons
cussed below, the critical heating for insulating side wa
should always lie below that for conducting boundaries. T
results of Zaman and Narayanan comply with this requ
ment in small boxes but not always in larger ones, even if
error is less than 1%. For these two reasons, we have tho
it interesting to reproduce the calculations. Moreover,
original by-product of our study is a numerical proof of th
validity of the principle of exchange of stability for th
coupled gravity- and capillarity-driven instability problem
Eventually, the comparison with the experiments of K
schmieder and Prahl is also very briefly discussed in the c
of insulating side walls.

The content of the paper is as follows. In Sec. II, the ba
equations are recalled very briefly since these are the sam
in the work of Zaman and Narayanan. Section III and
Appendix consist of a description of the numerical meth
g-
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The results are then presented in Sec. IV. Eventually,
approach is compared with other works and with expe
ments in Sec. V and a short summary is presented in the
section.

II. BASIC LINEAR EQUATIONS

Let us consider a fluid layer of thicknessd filling a circu-
lar container with radiusad ~a is the aspect ratio!. The sur-
face tension at the upper free surface is temperature de
dent and the fluid is heated from below. It is well known th
motion sets in after the vertical temperature gradient
reached a critical value.

In the reference state, there is no motion and heat pro
gates by conduction only. In the linear Boussinesq equatio
the azimuthal variablef can be separated fromr andz. We
will then seek a solution of the form

u~ t,r ,f,z!5um~ t,r ,z!cosmf,

v~ t,r ,f,z!5nm~ t,r ,z!sinmf,

w~ t,r ,f,z!5wm~ t,r ,z!cosmf, ~2.1!

u~ t,r ,f,z!5um~ t,r ,z!cosmf,

p~ t,r ,f,z!5pm~ t,r ,z!cosmf,

where u and v5uer1veu1wez are the infinitesimal tem-
perature and velocity perturbations with respect to the c
ductive solution, p is the pressure perturbation, an
(r ,f,z) are the polar coordinates. Thez axis is vertical and
oriented from the bottom to the top of the box.

The general equations for the fields with indexm in Eq.
~2.1! are easily shown to be

1

ar

]~ru !

]r
1

m

ar
v1

]w

]z
50, ~2.2!

Pr21
]u

]t
52

1

a

]p

]r
1¹m211

2 u2
2m

a2r 2
v, ~2.3!

Pr21
]v
]t

5
m

ar
p1¹m211

2 v2
2m

a2r 2
u, ~2.4!

Pr21
]w

]t
52

]p

]z
1¹m211

2 w1Ra u, ~2.5!

]u

]t
5w1¹m2

2 u, ~2.6!

where the indexm has been canceled for simplicity. Thes
equations are written in dimensionless form with vertical d
tance, horizontal distance, time, and temperature scaled
d, ad, d2/k, andDT, respectively;DT is the ~conductive!
temperature drop between the bottom and the top of
layer, andp is the dimensionless pressure. The Rayle
number is defined by Ra5aTgDTd3/kn, whereaT is the
coefficient of volume expansion andg the intensity of grav-
ity; n is the kinematic viscosity of the fluid andk its heat
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diffusivity. The Prandtl number is given by Pr5n/k. ¹n
2 is

defined by¹n
25a22r21 ]/]r (r ]/]r )2na22r221]2/]z2.

The boundary conditions are the following. The bottom
the box is rigid and assumed to be perfectly heat conduc
so that

v5u50 at z50. ~2.7!

The upper surface of the fluid is assumed to be fr
plane, and nondeformable. The surface tensionj is supposed
to be a linear function of the temperature; the constantg5
2]j/]T will be considered positive, as is usual for mo
fluids. We also assume that, at the top surface, heat is tr
ferred from the liquid to the ambient gas according to Ne
ton’s law of cooling, which results in a Biot condition for th
temperature perturbations. The mathematical expression
the boundary conditions at the upper surface are t
@4,5,12,13,28#

w50 at z51, ~2.8!

]u

]z
1Biu50 at z51, ~2.9!

]u

]z
1Ma

1

a

]u

]r
50 at z51, ~2.10!

]v
]z

2Ma
m

ar
u50 at z51, ~2.11!

where Bi is the Biot number and Ma5gDTd/rkn is the
Marangoni number withr the constant mass density.

The lateral side wall is rigid and we will consider bo
conducting ~CSW! and adiabatically insulated~ISW! side
walls. The corresponding boundary conditions for veloc
and temperature are

v50, ]u/]r50 ~ ISW!, u50 ~CSW! at r51.
~2.12!

Note eventually that the use of cylindrical coordinate
which are singular atr50, imposes regularity conditions o
the velocity and temperature fields@29#. These conditions
express that the unknown fields are single valued atr50.
For the temperature and velocity perturbations, these co
tions are written as

u50 at r50 for mÞ0,

u5n50 at r50 for m50,
~2.13!

u52n; w50 at r50 for m51,

u5n5w50 at r50 for mÞ0,1.

III. SOLUTION AND NUMERICAL METHOD

In order to determine the critical temperature differen
an exponential time dependence of the form exp(st) for all
the variables is introduced in the equations. The principle
exchange of stability is taken for granted here but we sh
later on that this hypothesis is actually valid. So the conv
f
g

,

t
s-
-

of
n

,

i-

,

f
w
-

tion threshold is determined by evaluating the critical M
rangoni and Rayleigh numbers corresponding to a z
growth rates. It is also worth stressing that the vertical an
horizontal coordinates cannot be separated as in vortic
free boxes@13#. For this reason, a numerical solution of th
equations is required.

The numerical method used here is a spectral tau me
@29#, which is similar to the method used by Dauby a
Lebon for the study of rectangular rigid containers@24#. The
unknown fields are expanded in series of trial functions t
form a complete set and satisfy some of the boundary c
ditions, the so-called ‘‘essential’’ boundary conditions. Tru
cated series are introduced in the field equations as well a
the ‘‘natural’’ boundary conditions, which are nota priori
satisfied by the trial functions. Then these equations
natural boundary conditions are projected on the same
functions; i.e., the equations and natural boundary conditi
are multiplied by the trial functions before being integrat
over the (r ,z)-fluid volume.

In the present study, the velocity and temperature per
bations are written in the form

S vu D5(
i51

Nr

(
k51

Nz

AikS vikr0 D1(
i51

Nr

(
k51

Nz

BikS viku0 D1 (
k51

Nz

XkS vk00 D
1(

i51

Nr

(
k51

Nz

CikS 0u ik D , ~3.1!

where Nr and Nz are integers; vik
r 5(uik

r ,0,wik
r ), vik

u

5(0,n ik
u ,wik

u ), vik
0 5(uik

0 ,n ik
0 ,wik

0 ), andu ik are trial functions,
which are specified in the Appendix;Aik , Bik , Xk , and
Cik are unknown constants. The pressurep is not given an
explicit decomposition because the pressure gradient di
pears in the final equations as a result of integration by p
and the boundary conditions.

Before examining in detail the results of our study, it
important to consider the problem of the convergence of
calculations whenNr andNz are increased. Table I presen
the values of the critical Marangoni numbers calculated
the case of insulating side walls for different values of the
two parameters. The aspect ratio is equal to 5 and Bi52. The
Rayleigh number is zero. These values are selected to ex
ine the convergence for the following reasons. The slow
convergence is obtained in large aspect ratio boxes since
convective pattern is then more complex. Similarly, lar

TABLE I. Convergence of the critical Marangoni number Mc
with Nr andNz for insulating side walls. The aspect ratio is equal
5; Bi52 and Ra50. The values of the azimuthal wave numbers a
given in the first column. The next three columns give the values
Mac for differentNr3Nz . The last column gives the difference i
% between columns ‘‘1339’’ and ‘‘935.’’

Nr3Nz 935 1137 1339 D1339–935(%)

m50 154.1463 154.0648 154.0630 0.05
m51 152.9577 152.9518 152.9515 0.004
m52 154.3350 154.2497 154.2105 0.08
m53 153.2802 153.2720 153.2684 0.008
m54 153.9933 153.9915 153.9908 0.002



The

67
04
18
31

56 523LINEAR BÉNARD-MARANGONI INSTABILITY I N . . .
TABLE II. Critical Marangoni numbers Mac for insulating~ISW! and conducting~CSW! side walls and
for different azimuthal wave numberm. The Rayleigh and Biot numbers are 100 and 0.2, respectively.
corresponding Nield’s value for an infinite layer is equal to 75.544. Fora58, we usedNr3Nz51337.

m

a51 a52 a54 a58

ISW CSW ISW CSW ISW CSW ISW CSW

0 163.57 179.73 80.876 91.174 78.777 79.545 76.196 76.4
1 109.08 198.06 91.249 94.459 77.870 79.326 76.487 76.5
2 160.15 274.09 99.113 105.53 79.783 79.968 76.233 76.5
3 257.86 390.67 101.20 123.50 78.141 79.902 76.531 76.5
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Biot numbers make smaller cells~see below! and thus more
complicated structures. The Rayleigh number does not h
a great influence on the pattern~see below! and is then arbi-
trarily fixed to zero.

Table I shows thatNr3Nz5935 gives very good results
for aspect ratios less than about 5 and Biot numbers less
about 2. So, except where otherwise stated, all results g
below correspond to the valuesNr3Nz5935.

IV. NUMERICAL RESULTS

For possible checking, we present a sample of numer
results in Table II. Some interesting comments may be m
about these results. First of all, the critical Marangoni nu
bers for finite boxes are always larger than the values co
sponding to an infinite domain, which means that rigid s
walls are stabilizing as expected. Moreover, Mac tends to
Nield’s values for large aspect ratios, whatever the value
the azimuthal wave numberm and for both conducting and
insulating side walls. We also notice that the critical M
rangoni numbers for insulating side walls are always sma
than for conducting ones. This is due to the fact that a te
perature perturbation arriving at an insulating boundary
reflected towards the bulk of the fluid while it is dissipated
the walls when these are conducting. For this reason, c
ducting side walls give rise to more stable systems. T
argument is similar to Nield’s@5# who interpreted the in-
crease of Mac with Bi in infinite layers.

It is also interesting to plot Mac as a function of the aspec
ratio of the container. Results for insulating side walls a
presented in Fig. 1 when Ra5Bi50. The aspect ratio varie
from 0.5 to 5. The curves corresponding to values ofm be-
tween 0 and 3 are presented; the critical Marangoni num
is the absolute minimum of these curves. Azimuthal wa
numbers larger than 3 are not considered in the figures s
these never correspond to the absolute minimum. We
serve that the critical Marangoni number is a globally d
creasing function of the aspect ratio of the box. Similar
sults were obtained by Dauby and Lebon in the case
square and rectangular containers@24#. The decrease o
Mac consists of different portions of concave curves, each
which corresponds to a typical convective pattern. The
ferent convective patterns are discussed in more detail
low.

Despite its theoretical importance, it is worth noting th
the ‘‘usual case’’ Ra5Bi50 can never correspond to re
experimental conditions. Actually, under terrestrial con
tions, gravity is never completely negligible and Ra is n
ve
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zero. Moreover, the zero Biot number condition at the t
surface is also approximate. Note also that the adiabatic
eral wall assumption must also be considered with cau
since the thermal condition on lateral walls may be of so
importance in small containers.

For these reasons, we have tried to provide a better
count of the real experimental conditions by modeling w
some care the conditions under which the observations
Koschmieder and Prahl@6# were realized. Let us consider i
particular the thermal condition at the upper free surface
the fluid layer. In the experiments, a 0.5-mm air layer li
above the fluid and the temperature is kept fixed at the to
this air layer. In these circumstances, one can give the
lowing approximate value for the Biot number at the upp
free surface of the liquid@30#:

Bi5
lair
lfl

k

tanh~kdair!
. ~4.1!

In this formula,lair andlfl represent the conductivities of th
air and of the fluid;dair is the dimensionless thickness of th
air layer, that is, 0.5 mm divided by the thickness of t

FIG. 1. Critical Marangoni number Mac as a function of the
aspect ratioa for insulating side walls. Curves corresponding
different azimuthal wave numbersm are represented. The Rayleig
and Biot numbers are zero.
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FIG. 2. Critical Marangoni number Mac as a function of the aspect ratioa in a container with radius 5.6 mm. A 0.5-mm gas layer li
above the fluid and the lateral walls are insulating~a! or conducting~b!. In ~a!, small letters indicate aspect ratios for which the convect
structure is represented in Fig. 3; the corresponding azimuthal and radial wave numbersm and i are also indicated.
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fluid. The wave numberk is somewhat undetermined in con
fined convection, but its importance is minor for smalldair
and we will usek52, which is a typical value in natura
convection.

Another important point for earth-based experiments
that both the Rayleigh and Marangoni numbers are prop
tional to the temperature difference so that both of th
parameters increase simultaneously in a progressive he
experiment. For this reason, we introduce two dimension
parametersl anda by the following relations@31#:

~12a!
Ra

Ra0
5a

Ma

Ma0
and l5

Ra

Ra0
1
Ma

Ma0
, ~4.2!

where Ra0 and Ma0 are two arbitrary constants. Here we fi
Ra05669 and Ma0579.6. These two values correspond r
spectively to the critical values of pure gravity-driven a
pure capillary convection in a horizontally infinite fluid laye
with Bi50. The parameterl is proportional to the tempera
ture difference and will be considered as the eigenvalue
rameter whilea, which is independent ofDT, can be inter-
preted as the percentage of the buoyancy effect with res
to the capillary effect. This parameter can be expresse
a5@11Ra0g(Ma0aTrgd

2)21#21 and depends on the flui
material properties and on the thickness of the liquid lay
Thick fluid layers correspond to largea and to mainly
buoyancy-driven convection while thin films give rise
smalla and to capillary instability.

In the experiments of Koschmieder and Prahl, the asp
ratio of the container is varied by modifying the thickness
the fluid layer. It is then clear thata is different in all ex-
periments. Similarly, the Biot number defined in Eq.~4.1!
also varies withd. In view of these observations we hav
computed the critical value ofl for aspect ratios between 0.
and 5 by considering the corresponding variations of Bi a
a. These parameters are determined by using the mat
coefficients given in@6,28#. The case of a circular cylinde
with radius 5.6 mm is considered in the following. Som
typical values of the Biot number for this container are 1.
0.66, and 0.46 for aspect ratios equal to 1, 3, and 5, res
tively.

In Fig. 2, we plot the critical Marangoni number as
s
r-
e
ing
ss

-

a-

ct
as

r.

ct
f

d
ial

,
c-

function of the aspect ratio for this container and for bo
insulating@Fig. 2~a!# and conducting side walls@Fig. 2~b!#.
For insulating side walls, it is interesting to notice that Mac is
not globally decreasing since the first portion of the cur
lies below the next ones. This is due to the fact that, in sm
aspect ratio boxes, the instability is mainly gravity driven.
larger boxes, the Marangoni effect is dominant and the c
cal Rayleigh number tends to zero.

The convective patterns appearing at threshold depen
the aspect ratio, and, in particular, depend on the azimu
wave numberm giving rise to the absolute minimum of th
different curves in Fig. 2. The classification of the possib
patterns is also made easier by defining a radial wave num
i . To define this number, we note first that each curve c
responding to a fixedm in Fig. 2 is made up of different
regions in which the concavity is successively upwards a
downwards. This is most easily seen in Fig. 2~a! where local
minima and maxima appear. Then, every region with u
wards concavity can be associated with a radial wave n
ber i , which is obtained by counting the successive upwa
concavity regions from the left of the picture: on a cur
with fixedm, the first upwards concavity region has a rad
wave numberi50, the next corresponds toi51, etc. Note,
however, that, form50 the i50 region does not exist for a
reason that is explained below.

Typical convective patterns corresponding to insulat
side walls are shown in Fig. 3 for different aspect ratios. T
vertical velocityw at mid-depth of the container is repre
sented. On each picture, the corresponding radial and
muthal wave numbers are given. The azimuthal wave nu
berm is the number of timesw vanishes for anyr within the
u interval #0,2p@. The radial wave numberi can also be seen
as the number of timesw is equal to 0 within ther interval
#0,1@, that is, the number of ‘‘radial rolls’’ that make up th
structure. We can now better understand why the m
(m,i )5(0,0) is not present in Fig. 2. This mode would co
respond to a pure thermal mode, with zero velocity and u
form horizontal temperature. This mode is the well-know
‘‘0 mode’’ @31# and is never marginally stable since i
growth rate is always negative~when Ra5Bi50, for in-
stance, this growth rate is equal to2p2/4!.
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FIG. 3. Convective patterns at the thresho
for different aspect ratios. The vertical velocit
w at mid-depth of the container is represente
The aspect ratios and the critical azimuthal a
radial wave numbers are indicated. The lette
~a!–~f! correspond to the labels in Fig. 2~a!.
th
th

e
e
ow
te
th
l

e
un

e

ig.
is
is-
ect
the
ios,
not
The main results about the convective patterns at
threshold are the following. For very small aspect ratios,
critical mode is the modem51, i50. For simplicity, this
mode is denoted~1,0!. A picture of the convective structur
is given in Fig. 3~a! for a50.7. We observe an upflow in th
right-hand half of the container and a symmetrical downfl
in the left-hand part. For aspect ratios around 1.8, the pat
is axisymmetric and consists of a circular roll centered in
middle of the box@Fig. 3~b!#. For a close to 2.5, the critica
mode is the mode~1,1!, which is represented in Fig. 3~c!.
The structure may be seen as made up by three transv
and somewhat deformed rolls. In a very small area aro
e
e

rn
e

rse
d

a52.9, the critical pattern has the form given in Fig. 3~d!;
the marginally stable mode is the mode~2,1!. Neara53.4,
the critical mode is the mode~0,2!, which is also axisymmet-
ric @Fig. 3~e!# and consists of two concentric rolls. When th
aspect ratio is very close to 3.7, the mode~3,1!, drawn in Fig.
3~f!, is linearly unstable. The last mode represented in F
3~g! corresponds toa54.15; the wave numbers are in th
case (m,i )5(1,2) and 5 deformed transverse rolls are d
played. The critical modes for larger values of the asp
ratios are not given because they are easily derived when
wave numbers are known. Moreover, for large aspect rat
many modes are nearly critical at threshold and it is
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always easy to determine which one is unstable first.
Let us mention that the succession of the different criti

modes whena is increased is similar in Fig. 1 and in Fig
2~a! even if the aspect ratios for which the switchings occ
are somewhat different. Similarly, we observed the sa
succession when Mac is calculated for Ra50, Bi52, for
Ra5200, Bi50 and also when we calculatedlc for the ex-
periments of Koschmieder and Prahl in containers with ra
8.75 and 11.9 mm. In summary, we can say that an incre
of Ra gives rise to a decrease of Mac but no significant
variation of the pattern is observed. An increase of the B
number makes the critical Marangoni number larger si
perturbations may be dissipated in the upper gas layer. In
case, the cells become smaller and smaller as Bi incre
but the succession of the patterns for increasing aspect r
remains the same. So, it may be stated that gravity and
Biot number do not seem very important for the success
of the eigenmodes.

The patterns for conducting side walls will not be studi
in detail since, for any value of the azimuthal wave numb
m, they are quite similar to those given in Fig. 3. No
however, that the succession of the critical modes is differ
since in the conducting case, modesm52 @Fig. 3~d!# and
m53 @Fig. 3~f!# are never observed at the threshold.

The succession of patterns whena becomes larger and
larger can be summarized in the following way. Except
the structures described by Fig. 3~d! and Fig. 3~f!, which
appear only for insulating side walls and for a very sm
range of the aspect ratio, the patterns observed at the th
old are made up by concentric rolls or by some kind
deformed transverse rolls. In very small boxes, a uniq
transverse roll is observed@Fig. 3~a!#. Then, whena is in-
creased, a unique roll with its center in the middle of t
vessel appears@Fig. 3~b!#. Figure 3~c! exhibits 3 transverse
rolls while 2 concentric rolls are displayed in Fig. 3~e!. Fi-
nally, 5 transverse rolls are present in Fig. 3~g!. So, the num-
ber of rolls is progressively increased. The number of tra
verse rolls is always odd while the number of concen
rolls may take any value.

A last comment on the radial wave numberi is in order. It
is important to notice that along a curve with fixed azimuth
wave numberm in Fig. 2, the variations of the convectiv
structure are continuous. So a radial wave number is not e
to define everywhere along these curves. For instance,
m50 convective pattern in the neighborhood ofa52.5 in
Fig. 2~a! shows a continuous transition fromi51 to i52.
For aspect ratios just on the right of the minimum ata
51.7 for them50 curve in Fig. 2~a!, two small and very
weak axisymmetric rolls appear along the side walls, one
the top surface and the other one at the bottom of the c
tainer. When the aspect ratio still increases, these two r
grow and eventually merge to give birth to thei52 mode
~see also@25#!.

In view of a future nonlinear approach of the problem,
is worth making some comments on the symmetry of
different patterns@32–35#. First we can note that all curve
in Figs. 1 and 2 are crossing each other, which is m
possible because the eigenmodes corresponding to thes
ferent curves have different azimuthal wave numbers
thus different symmetries. On the other hand, if the succ
sive increasing eigenvalues for eachm had been presented
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the different curves corresponding to a fixed azimuthal wa
number could not cross because the eigenmodes have
sameu symmetry. Some further remarks may be added c
cerning the bifurcation of the different eigenmodes. First,
m50 eigenmodes are axisymmetric and are also invar
for a reflection about any diameter of the box. The bifurc
tion of such modes is nondegenerate and transcritical for
Bénard-Marangoni problem. On the other hand, the bifur
tion of eigenmodes with nonvanishing azimuthal wave nu
bers is degenerate and a complete family of solutio
emerges symmetrically at the bifurcation point, each mem
being characterized by its azimuthal phase. The transcrit
or symmetric character of the bifurcation for axisymmetric
nonaxisymmetric modes, respectively, was also noticed
the numerical study of Wagneret al. @27#.

To finish this section, we discuss briefly the principle
exchange of stability. Our code has the possibility to co
sider the growth rate of the perturbations as the eigenva
parameter when Ra and Ma are fixed. The validity of t
principle of exchange of stability has then been checked
the following way. First, a zero growth rate is fixed and t
critical Rac and Mac are determined. Then the growth rate
recalculated with fixed Ra5Rac and Ma5Mac . The result is
then that, in all cases, the growth rate with the largest r
part is actually 0. This analysis provides thus a numeri
proof of the validity of the principle of exchange of stabilit
in the circular Be´nard-Marangoni problem for both insula
ing and conducting side walls.

V. COMPARISON WITH OTHER THEORETICAL WORKS

As already mentioned in the Introduction, several pap
on the same problem exist, whose results are now comp
with ours.

A linear study of thermoconvective instabilities in circul
bounded domains was first presented by Vrentas, Naraya
and Agrawal in 1981 for axisymmetric perturbations@25#. It
is easy to compare ourm50 results with those of thes
authors. Some typical situations are analyzed in Table
which shows excellent agreement between both approa
~difference nearly always less 0.1%!, except for the critical
Rayleigh numbers when the aspect ratio is equal to 1. T
disagreement for the Rayleigh problem with smalla is some-
what surprising and we have rechecked the convergenc
our results in this case~for Bi51, we got Rac51483.11 with
Nr3Nz5434 and Rac51481.84 withNr3Nz520320!.
Actually, we have also checked the other results given
Vrentaset al. Except for the Rayleigh problem with aspe
ratios lower than or equal to 1, the agreement was excell

The comparison of the critical numbers with the work
Chen et al. @26# is not easy because their results are p
sented only graphically. Moreover, we have already m
tioned that their axisymmetric results are probably incorre
However, except for them50 mode, it is interesting to note
that the succession of the modes in their Fig. 2 is the sam
in our Fig. 1, with codimension-2 points appearing for valu
of the aspect ratios close to ours.

The numerical results given in Table I of Wagneret al.
have also been compared to our calculations. The deviat
between the 4 numbers they give and ours are, respectiv
0.3, 3, 2, and 6%; the agreement can thus be considere
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TABLE III. Comparison between our results~D. et al.! and those of Vrentaset al. ~V. et al.! @25#. The
first lines give the critical Marangoni number when Ra50 and for different Biot numbers; the bottom of th
table presents the critical Rayleigh number for Ma50. Note that the values of Vrentaset al. have been
multiplied by Bi/~Bi11! in order to correspond to our notation.

Bi~Ra50!

a51 a52 a54

Mac
~D. et al.!

Mac
~V. et al.!

Mac
~D. et al.!

Mac
~V. et al.!

Mac
~D. et al.!

Mac
~V. et al.!

0.01 164.55 164.40 84.638 84.635 82.486 82.483
0.1 168.34 168.35 88.344 88.264 86.263 86.582
1 206.16 206.00 125.01 125.0 120.63 120.65

Bi~Ma50!
Rac

~D. et al.!
Rac

~V. et al.!
Rac

~D. et al.!
Rac

~V. et al.!
Rac

~D. et al.!
Rac

~V. et al.!

0.01 1419.47 1558.3 712.667 712.466 695.668 695.548
0.1 1426.24 1565.9 726.704 726.482 709.457 709.336
1 1482.12 1628.2 836.072 835.85 799.735 799.5
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satisfactory since the numbers given by Wagneret al. are
obtained by interpolating the bifurcation points from t
nonlinear regime.

The agreement between our work and that of Zaman
Narayanan can be tested by comparing our Table II~for in-
sulating side walls! with their Table II. For aspect ratio
equal to 1 or 2, the difference between both approaches
reach 13% or 12% but it is important to stress that the a
muthal wave number of the most unstable mode is the s
in both papers~m51 for a51 andm50 for a52!. For a
54 ora58, the deviations are far less~less than 2%! but the
criticalm’s are different in both approaches. More genera
we have checked that the succession of the eigenmodes
a is increased is not the same in both approaches. In par
lar, the criticalm52 zone in the neighborhood ofa51.2 in
Fig. 3 of Zaman and Narayanan’s paper does not appea
our Fig. 2.

It is not easy to guess the reason for this disagreemen
their paper, Zaman and Narayanan do not discuss the r
larity conditions atr50, but these seem to be satisfied
their trial functions, at least formÞ1. Probably, the differ-
ence between our work and those of Vrentaset al. and of
Zaman and Narayanan originate in the numerical metho
which are not exactly similar and which could be more
less efficient, depending on the aspect ratio or on the typ
the problem under consideration~Marangoni, Rayleigh, or
coupled problem! @28,37#.

Comparison with the work of Rosenblatet al. @13# is not
easy since the lateral vorticity-free wall assumption used
these authors is quite different from our more realistic mo
of no-slip boundaries. It is, however, worth noting that t
artifact that some finite containers have the same crit
value for the control parameter as infinite layers disappe
with rigid side walls. Moreover, the succession of the critic
modes when the aspect ratio is increased in@13# is also quite
different and many critical modes predicted in slippery co
tainers are never observed at the threshold with a no-
condition. This reduction of the possible patterns observe
criticality is due to the continuous variation of the structu
along a curve with a fixed azimuthal wave numberm. In the
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case of rectangular boxes, a similar behavior was also
served in@24#.

VI. COMPARISON WITH EXPERIMENTS

Zaman and Narayanan@25# have already considered i
detail the comparison between experiments and a linear
proach to the stability problem with conducting side walls.
particular, they propose several arguments to explain w
the calculated critical values of the control parameters
usually 20% higher than the experimental measurement
Koschmieder and Prahl@6#. Let us add that this difference
can be slightly decreased by considering insulating s
walls ~Koschmieder and Prahl used bakelite for the s
walls!, which make the system more unstable but the i
provement is minor. Note also that the assumption of a p
sive gas above the fluid may have some influence on
discrepancy between theoretical predictions and experim
tal measurements of the thresholds@38#. This point will not
be discussed in more detail here but we would like to a
some comments on the convective patterns. The main p
we want to stress now is that, in most cases, the linear s
of the pattern does not provide a good description of wha
experimentally observed, whatever the insulating or condu
ing character of the side walls. Actually, the comparison
Fig. 1 in @6# with our Fig. 3 shows that the observed patter
are different from the structures we deduced from our ana
sis, except perhaps the axisymmetric pattern of Fig. 1~a! in
@6#, which is the one-circular roll solution depicted in ou
Fig. 2~b!. In fact, we already stressed this disagreement
tween linear theory and experiments in a previous work
confined thermoconvection in rectangular vessels@24#. It
was shown in this work that the convective pattern in t
nonlinear regime may be quite different from the pattern p
dicted at the threshold, especially for large containers. T
reason is twofold. First, the modes that are generated by
self-interactions of the critical mode in the nonlinear regim
do not always have a small amplitude so that their prese
may deeply influence the final pattern, which is actually t
superposition of the linearly unstable structure and th
nonlinearly generated modes. Second, and this was
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mentioned by Zaman and Narayanan, some stable, and
observable, solutions in the nonlinear regime correspon
branches that do not emanate from the lowest bifurca
point on the Ma axis. This is particularly true in large box
in which the successive eigenmodes bifurcate quite near
threshold: Fig. 2 shows indeed that the curves are quite
each other on the right side of the picture. In small boxes,
curves for the successive eigenmodes are well separated
the secondary modes should not be observed in the ne
borhood of the threshold.

VII. SUMMARY

By using a spectral tau method, we have analyzed
linear Bénard-Marangoni problem in circular rigid contain
ers. We have shown that the principle of exchange of sta
ity is valid so that the linear instability is stationary. Th
numerical convergence of our method has been analyze
particular, we have checked that the critical parameters
confined geometries remain always larger than in infinite
mains and tend to Nield’s values for large vessels. We h
also verified that the system is more stable with conduc
lateral boundaries than with insulating side walls.

The main results are summarized in Figs 2 and 3. Fig
2 describes the succession of the possible patterns whe
aspect ratio is increased. This succession differs slightly
insulating and conducting side walls but is independent
the Biot number and of the ratio of the Rayleigh and M
rangoni numbers. Figure 3 gives pictures of the convec
motions, which generally take the form of either concent
or ‘‘transverse’’ cells. Eventually, comparisons with prev
ous analyses and with experiments are also discussed.
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APPENDIX

In this Appendix, we present some details on the num
cal method used to solve the linear eigenvalue problem.

First we present the trial functions to be used in the sp
tral method. The undefined symbols in Eq.~3.1! are given by
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to
n

he
ar
e
nd
h-

e

il-

In
or
-
e
g

re
the
r
f
-
e
c

i-

-
-
r
.
V.
f
o

d

i-

is

i-

c-

uik
r 5 f i~r !]zgk~z!, wik

r 5a21ui~r !gk~z!, ~A1!

v ik
u 5mfi~r !]zgk~z!, wik

u 5m2a21v i~r !gk~z!, ~A2!

uk
05F~r !]zgk~z!, vk

052F~r !]zgk~z!,

wk
05a21U~r !gk~z!, ~A3!

u ik5mi~r !nk~z!, ~A4!

where]z denotes derivatives with respect toz. The functions
f i , ui , v i , F, U, mi , gk , andnk are selected in order tha
~A1!–~A4! form a complete set but also in such a way th
most of the boundary and regularity conditions are satisfiea
priori . Here, we consider products of shifted Chebysh
polynomials ~defined on@0,1#! and other polynomials tha
allow one to take the boundary and regularity conditions i
account. The trial functionsgk andnk , which depend on the
vertical coordinatez, are independent of the valuem of the
azimuthal wave number. Thesez functions are written for
k51,...,Nz as

gk~z!5z2~z21!Tk21~z!, nk~z!5zTk21~z!, ~A5!

whereTk’s are the shifted Chebyshev polynomials defin
on @0,1#.

With this choice for thez functions, it is easy to check
that the zero velocity and the fixed temperature conditions
the rigid bottom wall are identically satisfied. The nond
formability condition at the top surface is also ensured.

The functionsui , v i , andU are given by

ui52r21]/]r ~r f i !, v i52r21f i ,

U52]F/]r . ~A6!

Because of these relations, it is easily checked that the
compressibility condition~2.2! is automatically fulfilled.

The horizontal trial functionsf i , F, andmi depend on the
azimuthal wave numberm. Form51, one has

f i~r !5r 2~r21!2Ti21~r !, F~r !5~r 221!2,

mi~r !5E
0

r

~j21!Ti21~j!dj ~ ISW!,

mi~r !5r ~r21!Ti21~r ! ~CSW!. ~A7!

With the above choice for the trial functions, it is easy
verify that the zero velocity condition is automatically e
sured as well as the regularity conditions. Indeed, the te
perature perturbations actually vanish atr50; the terms pro-
portional toAik andBik vanish for the three components o
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the velocity while the terms proportional toXk allow one to
satisfyu52v; w50 atr50. So, all the boundary and regu
larity conditions area priori satisfied, except for the Ma
rangoni and Biot conditions.

The horizontal trial functionsf i andmi for m.1 take the
same from~A7!, but the terms inXk are canceled in Eqs
~A1!–~A3! ~the functionsF andU are no longer necessary!.
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Except for the Marangoni and Biot relations, the bounda
conditions are directly satisfied as well as the regularity c
ditions.

The particular casem50 is obtained from Eqs.~A1!–
~A4! by canceling terms proportional toXk and toBik . In
order to fulfill the natural boundary conditions and the reg
larity conditions, the functionsf i andmi are selected as
f i~r !5r ~r21!2Ti21~r !, H m1~r !51

mi.1~r !5E
0

r

~j21!Ti22~j!dj ~ ISW!, mi~r !5~r21!Ti21~r ! ~CSW!. ~A8!
t
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er-
m-
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ar-
The spectral tau method consists in introducing the g
eral expressions~A1!–~A4! with Eqs. ~A5!–~A8! in Eqs.
~2.3!–~6! and the boundary conditions~2.9!–~11!. The alge-
braic equations are obtained by projection on the trial fu
tions, that is, by multiplying the equations by the trial fun
tions and integrating the products over the fluid volume. T
method is similar to that used in@24# and will not be com-
mented upon in detail. The whole set of equations forms
algebraic eigenvalue problem for Ma and/or Ra. The dim
sion of the eigenvalue problem is 33Nr3Nz for an azi-
muthal wave numberm larger than 1. Form51 andm50,
the dimensions are respectively (33Nr11)3Nz and 2
3Nr3Nz . The calculations have been carried out using
-

-

e

n
-

e

ESSL routineDGEGV. Note eventually that all singularities a
r50 due to factorsr21 or r22 in ~2.2!–~2.6!, ~2.10!, ~2.11!,
or ~A6! disappear from the final projected equations as
result of the regularity conditions, which area priori satis-
fied by our trial functions.

Note also that the normalization condition used to det
mine the algebraic eigenvectors is the following. The te
perature perturbation is calculated at mid-depth of the la
for r equal to 0.25, 0.5, 0.75, and 1. The point for whichuuu
is maximum is then chose to fixu51. This normalization
condition is of importance for the nonlinear analysis to
developed in a future work but is of no concern in a line
ized approach.
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