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June 1, 2010

Abstract
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1 Introduction

Study of the conditional variance with censored data involves an increasing interest among

scientists. Indeed, domains like Medicine, Economics, Astronomy or Finance are closely

concerned by this topic. In financial time series for instance, volatility (conditionally on

time) often represents the quantity of interest and in this context, censoring can appear,

by example in Wei (2002), when limitations are imposed on asset prices to mitigate their

fluctuations. Therefore, although the methodology proposed in this paper enlarges beyond

the following topic, we are here interested in the relationship between fatigue life of metal,

ceramic or composite materials and applied stress. This important input to design-for-

reliability processes is motivated by the need to develop and present quantitative fatigue-

life information used in the design of jet engines. Indeed, according to the air speed that

enters an aircraft engine, the fan, the compressor and the turbine rotate at different speeds

and therefore are submitted to different stresses. Moreover, fatigue life may be censored

since failures may result from impurities or vacuums in the studied materials, or no failure

may occur at all due to time constraints of the experiments. In particular, a frequently

asked question in this context is to know whether or not the variability of fatigue life

depends on the applied stress. Furthermore, in case of heteroscedasticity, a parametric

shape for this (conditional) variability should be provided. We therefore consider the

general heteroscedastic regression model

Y = m(X) + σθ0(X)ε, (1.1)

where m(·) = E(Y |·) is the regression curve, σ2
θ0

(·) = Var(Y |·), known upto a parameter

vector θ ∈ Θ with true unknown value θ0, Θ is a compact subset of IRd, and ε is indepen-

dent of the (one-dimensional) covariate X. In the context displayed above, a discussion

can therefore be lead about the constancy of σθ0(·) (σθ0(·) = θ0 for a one-dimensional

θ0) and its parametric refinements to be possibly brought to fit available information.

Suppose also that Y is subject to random right censoring, i.e. instead of observing Y ,

we only observe (Z, ∆), where Z = min(Y,C), ∆ = I(Y ≤ C) and the random variable

C represents the censoring time, which is independent of Y , conditionally on X. Let

(Yi, Ci, Xi, Zi, ∆i) (i = 1, . . . , n) be n independent copies of (Y,C, X,Z, ∆).

The objective is to extend classical least squares procedures to censored data in order

to estimate σθ0(·). If a lot of work was devoted to polynomial estimation of the regression

function for censored data (see e.g. Heuchenne and Van Keilegom (2007a) for a literature

overview), much less work was achieved for the estimation of the conditional variance.

In fact, model (1.1) was already considered in fatigue curve analysis (Nelson, 1984, Pas-

cual and Meeker, 1997) but with parametric forms for m(·) and the distribution of ε.

Since choices for those forms can considerably influence inference results on σθ0(·), it can

2



be important to consider its estimation without any parametric constraint on the other

quantities of model (1.1). In the same idea, Heuchenne and Van Keilegom (2007b) de-

veloped a methodology to estimate a parametric curve for m(·) without any assumed

parametric shape for the conditional standard deviation and the residuals distribution.

In this paper we propose a new estimation method for θ0. The idea of the method is as

follows. First, we construct for each observation a new square of the multiplicative error

term that is nonparametrically estimated. Then, θ0 is estimated by minimizing the least

squares criterion for completely observed data (and parametric conditional variance esti-

mation), applied to the so-obtained new squared errors. The procedure involves different

choices of bandwidth parameters for kernel smoothing.

The paper is organized as follows. In the next section, the estimation procedure is

described in detail. Section 3 summarizes the main asymptotic results, including the

asymptotic normality of the estimator and the Appendix contains the proofs of the main

results of Section 3.

2 Notations and description of the method

As outlined in the introduction, the idea of the proposed method consists of first esti-

mating unknown squares of multiplicative error terms of the type ε̃2(X) = σ2
θ0

(X)ε2, and

second of applying a standard least squares procedure on the so-obtained artificial squared

errors.

Define

ε̃2∗(Xi, Zi, ∆i) = ε̃2∗
i = (Yi −m(Xi))

2∆i + E[(Yi −m(Xi))
2|Yi > Ci, Xi](1−∆i)

and note that E((Yi − m(Xi))
2|Xi) = E(ε̃2∗

i |Xi) = σ2
θ0

(Xi). Hence, we can work in the

sequel with the variable ε̃2∗
i instead of with ε̃2

i . In order to estimate ε̃2∗
i , we first need to

introduce a number of notations.

Let m0(·) be any location function and σ0(·) be any scale function, meaning that

m0(x) = T (F (·|x)) and σ0(x) = S(F (·|x)) for some functionals T and S that satisfy

T (FaY +b(·|x)) = aT (FY (·|x)) + b and S(FaY +b(·|x)) = aS(FY (·|x)), for all a ≥ 0 and

b ∈ IR (here FaY +b(·|x) denotes the conditional distribution of aY + b given X = x). Let

ε0 = (Y −m0(X))/σ0(X). Then, it can be easily seen that if model (1.1) holds (i.e. ε is

independent of X), then ε0 is also independent of X.

Define

F (y|x) = P (Y ≤ y|x), the response conditional distribution,

G(y|x) = P (C ≤ y|x), the censoring conditional distribution,
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H(y|x) = P (Z ≤ y|x) (H(y) = P (Z ≤ y)), the observable (un)conditional distribution,

Hδ(y|x) = P (Z ≤ y, ∆ = δ|x), the observable conditional subdistributions for δ = 0, 1,

F 0
ε (y) = P (ε0 ≤ y), S0

ε (y) = 1− F 0
ε (y), the distribution and survival functions of ε0,

and FX(x) = P (X ≤ x). For E0 = (Z −m0(X))/σ0(X), we also denote H0
ε (y) = P (E0 ≤

y), H0
εδ(y) = P (E0 ≤ y, ∆ = δ), H0

ε (y|x) = P (E0 ≤ y|x) and H0
εδ(y|x) = P (E0 ≤ y, ∆ =

δ|x) (δ = 0, 1). The probability density functions of the distributions defined above will

be denoted with lower case letters, and RX denotes the support of the variable X.

It is easily seen that

ε̃2∗
i = (Yi −m(Xi))

2∆i +

∫∞
E0

i
[m0(Xi) + σ0(Xi)y −m(Xi)]

2 dF 0
ε (y)

1− F 0
ε (E0

i )
(1−∆i)

for any location function m0(·) and scale function σ0(·). m0 and σ0 are now chosen in

such a way that they can be estimated consistently. As is well known (see by example

Van Keilegom and Veraverbeke (1997)), the right tail of the distribution F (y|·) cannot be

estimated in a consistent way due to the presence of right censoring. Therefore, we work

with the following choices of m0 and σ0:

m0(x) =

1∫
0

F−1(s|x)J(s) ds, σ02(x) =

1∫
0

F−1(s|x)2J(s) ds−m02(x), (2.1)

where F−1(s|x) = inf{y; F (y|x) ≥ s} is the quantile function of Y given x and J(s) is a

given score function satisfying
∫ 1
0 J(s) ds = 1. When J(s) is chosen appropriately (namely

put to zero in the right tail, there where the quantile function cannot be estimated in a

consistent way due to the right censoring), m0(x) and σ0(x) can be estimated consistently.

Now, replace the distribution F (y|x) in (2.1) by the Beran (1981) estimator, defined by

(in the case of no ties):

F̂ (y|x) = 1−
∏

Zi≤y,∆i=1

{
1− Wi(x, an)∑n

j=1 I(Zj ≥ Zi)Wj(x, an)

}
, (2.2)

where

Wi(x, an) =
K
(

x−Xi

an

)
∑n

j=1 K
(

x−Xj

an

) ,

K is a kernel function and {an} a bandwidth sequence, and define

m̂0(x) =

1∫
0

F̂−1(s|x)J(s) ds, σ̂02(x) =

1∫
0

F̂−1(s|x)2J(s) ds− m̂02(x) (2.3)
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as estimators for m0(x) and σ02(x). Next, let

F̂ 0
ε (y) = 1−

∏
Ê0

(i)
≤y,∆(i)=1

(
1− 1

n− i + 1

)
, (2.4)

denote the Kaplan-Meier (1958)-type estimator of F 0
ε (in the case of no ties), where

Ê0
i = (Zi − m̂0(Xi))/σ̂

0(Xi), Ê0
(i) is the i-th order statistic of Ê0

1 , . . . , Ê
0
n and ∆(i) is

the corresponding censoring indicator. This estimator has been studied in detail by Van

Keilegom and Akritas (1999). Finally, m(x) is estimated by the method of Heuchenne

and Van Keilegom (2008) applied to the estimation of a conditional mean:

m̂T (x) = m̂0(x) + σ̂0(x)
∫ T

−∞
ydF̂ 0

ε (y), (2.5)

where T < τH0
ε

(τF = inf{y : F (y) = 1} for any distribution F ) is a truncation point that

has to be introduced to avoid any inconsistent part of F̂ 0
ε (y). However, when τF 0

ε
≤ τG0

ε
,

the bound T can be chosen arbitrarily close to τF 0
ε
.

This leads to the following estimator of ε̃2∗
i :

̂̃ε2∗
Ti = (Yi − m̂T (Xi))

2∆i +
{ σ̂02(Xi)

1− F̂ 0
ε (Ê0T

i )

∫ T

Ê0T
i

(y2 − 2y
∫ T

−∞
edF̂ 0

ε (e)) dF̂ 0
ε (y)

+σ̂02(Xi){
∫ T

−∞
ydF̂ 0

ε (y)}2
}
(1−∆i), (2.6)

where Ê0T
i = Ê0

i ∧ T.

Finally, the new squared errors (2.6) are introduced into the least squares problem

min
θ∈Θ

n∑
i=1

[̂̃ε2∗
Ti − σ2

θ(Xi)]
2. (2.7)

In order to focus on the primary issues, we assume the existence of a well-defined min-

imizer of (2.7). The solution of this problem can be obtained using an (iterative) pro-

cedure for nonlinear minimization problems, like e.g. a Newton-Raphson procedure. De-

note a minimizer of (2.7) by θ̂T
n = (θ̂T

n1, . . . , θ̂
T
nd). As it is clear from the definition of̂̃ε2∗

Ti, θ̂T
n1, . . . , θ̂

T
nd are actually estimating the unique θT

0 = (θT
01, . . . , θ

T
0d) which minimizes

E[{E(ε̃2∗
T |X)− σ2

θ(X)}2] (see hypothesis (A9), where

ε̃2∗
T = (Y −mT (X))2∆i +

{ σ02(X)

1− F 0
ε (E0T )

∫ T

E0T
(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF 0
ε (y)

+σ02(X){
∫ T

−∞
ydF 0

ε (y)}2
}
(1−∆i),

mT (X) = m0(X) + σ0(X)
∫ T

−∞
ydF 0

ε (y)
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and E0T = E0 ∧ T . As before, these coefficients θT
01, . . . , θ

T
0d can be made arbitrarily close

to θ01, . . . , θ0d, provided τF 0
ε
≤ τG0

ε
.

Remark 2.1 (Truncation T ) The advantage of using (2.5) in (2.6) is double. On one

side, it enables to use model (1.1) in a very simple way simplifying the censored part of

(2.6) and on the other side, it reduces inconsistencies of those estimated squared errors.

Indeed, suppose a local estimator for m(x) based on (2.2) is chosen instead of (2.5): it is

consistent up to a point T̃x < τH(·|x) depending on x. In this case, it can be shown that

m0(x) + σ0(x)τH0
ε
≥ τH(·|x) for any value of x such that consistent areas of (2.5) can be

substantially larger than for local estimators (see Heuchenne and Van Keilegom, 2008, for

a complete discussion).

3 Asymptotic results

We start by showing the convergence in probability of θ̂T
n and of the least squares criterion

function. This will allow us to develop an asymptotic representation for θ̂T
nj − θT

0j (j =

1, . . . , d), which in turn will give rise to the asymptotic normality of these estimators. The

assumptions and notations used in the results below, as well as the proofs of the two first

results, are given in the Appendix.

Theorem 3.1 Assume (A1) (i)–(iii), (A2) (i), (ii), (A3), (A4) (i), (A6), Θ is compact,

θT
0 is an interior point of Θ, σ2

θ(x) is continuous in (x, θ) for all x and θ and (A9). Let

Sn(θ) =
1

n

n∑
i=1

(̂̃ε2∗
Ti − σ2

θ(Xi))
2.

Then,

θ̂T
n − θT

0 = oP (1),

and

Sn(θ̂T
n ) = E[V ar[ε̃2∗

T |X]] + E[(E[ε̃2∗
T |X]− σ2

θ(X))2] + oP (1).

Theorem 3.2 Assume (A1)-(A9). Then,

θ̂T
n − θT

0 = Ω−1n−1
n∑

i=1

ρ(Xi, Zi, ∆i) +


oP (n−1/2)

...

oP (n−1/2)

 ,
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where Ω = (Ωjk) (j, k = 1, . . . , d),

Ωjk = E

[
∂σθT

0
(X)

∂θj

∂σθT
0
(X)

∂θk

− {ε̃2∗
T − σθT

0
(X)}

∂2σθT
0
(X)

∂θj∂θk

]
,

ρ = (ρ1, . . . , ρd)
′,

ρj(Xi, Zi, ∆i) = χj(Xi, Zi, ∆i) +
∂σθT

0
(Xi)

∂θj

(ε̃2∗
Ti − σθT

0
(Xi))

and χj(Xi, Zi, ∆i) is defined in the Appendix (j = 1, . . . , d; i = 1, . . . , n).

Theorem 3.3 Under the assumptions of Theorem 3.2, n1/2(θ̂T
n − θT

0 )
d→ N(0, Σ), where

Σ = Ω−1E[ρ(X, Z, ∆)ρ′(X, Z, ∆)]Ω−1.

The proof of this result follows readily from Theorem 3.2.

Appendix

The following notations are needed in the statement of the asymptotic results given Section

3.

ξε(z, δ, y) = (1− F 0
ε (y))

−
y∧z∫
−∞

dH0
ε1(s)

(1−H0
ε (s))2

+
I(z ≤ y, δ = 1)

1−H0
ε (z)

 ,

ξ(z, δ, y|x) = (1− F (y|x))

−
y∧z∫
−∞

dH1(s|x)

(1−H(s|x))2
+

I(z ≤ y, δ = 1)

1−H(z|x)

 ,

η(z, δ|x) =

+∞∫
−∞

ξ(z, δ, v|x)J(F (v|x)) dv σ0(x)−1,

ζ(z, δ|x) =

+∞∫
−∞

ξ(z, δ, v|x)J(F (v|x))
v −m0(x)

σ0(x)
dv σ0(x)−1,

γ1(y|x) =

y∫
−∞

h0
ε(s|x)

(1−H0
ε (s))2

dH0
ε1(s) +

y∫
−∞

d h0
ε1(s|x)

1−H0
ε (s)

,

γ2(y|x) =

y∫
−∞

sh0
ε(s|x)

(1−H0
ε (s))2

dH0
ε1(s) +

y∫
−∞

d (sh0
ε1(s|x))

1−H0
ε (s)

,

ϕ(x, z, δ, y) = ξε

(
z −m0(x)

σ0(x)
, δ, y

)
− S0

ε (y)η(z, δ|x)γ1(y|x)− S0
ε (y)ζ(z, δ|x)γ2(y|x),
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π0(v1, v2) =
I(δ1 = 0)

1− F 0
ε (e0T

x1
(z1))


 ∫ T

e0T
x1

(z1) e dF 0
ε (e)

1− F 0
ε (e0T

x1
(z1))

− e0T
x1

(z1)


× ϕ(v2, e

0T
x1

(z1)) + Tϕ(v2, T )

−
∫ T

e0T
x1

(z1)
ϕ(v2, e)de

}
,

π00(v1, z2, δ2) = I(δ1 = 1, z1 ≤ Tx1)(η(z2, δ2|x1) + z1x1
ζ(z2, δ2|x1))

+I(δ1 = 0)

[
−

e0T
x1

(z1)f
0
ε (e0T

x1
(z1))

1− F 0
ε (e0T

x1
(z1))

I(z1x1
≤ T )

+
f 0

ε (e0T
x1

(z1))
∫ T
e0T
x1

(z1) e dF 0
ε (e)

(1− F 0
ε (e0T

x1
(z1)))2


×
[
η(z2, δ2|x1) + e0T

x1
(z1)ζ(z2, δ2|x1)

]
,

π(v1) = −[η(z1, δ1|x1) + Tζ(z1, δ1|x1)]Th0
ε1(T |x1)

+
∫

RX

∫ +∞

−∞

∑
δ=0,1

π0(y, z, δ, x1, z1, δ1)dHδ(z|y)dFX(y)

+
∫ +∞

−∞

∑
δ=0,1

π00(x1, z, δ, z1, δ1)dHδ(z|x1)

+[z1x1
I(z1x1

≤ T, δ1 = 1) +

∫ T
e0T
x1

(z1) edF 0
ε (e)

1− F 0
ε (e0T

x1
(z1))

I(δ1 = 0)]−
∫ T

−∞
edF 0

ε (e),

Ac(x, z) =
∫ T

e0T
x (z)

(y2 − 2y
∫ T

−∞
edF 0

ε (e)) dF 0
ε (y) + (1− F 0

ε (e0T
x (z))){

∫ T

−∞
ydF 0

ε (y)}2,

χk(v1) = −∂σ2
θ(x1)

∂θk

σ0(x1)×

∑
δ=0,1

∫ +∞

−∞

{
2δ(mT (x1)− z)[η(z1, δ1|x1) +

∫ T

−∞
edF 0

ε (e)ζ(z1, δ1|x1)]

−(1− δ)
σ0(x1)

1− F 0
ε (e0T

x1
(z))


f 0

ε (e0T
x1

(z))
∫ T
e0T
x1

(z)(y
2 − 2y

∫ T
−∞ edF 0

ε (e)) dF 0
ε (y)

1− F 0
ε (e0T

x1
(z))

−[e0T
x1

(z)− 2
∫ T

−∞
edF 0

ε (e)]e0T
x1

(z)f 0
ε (e0T

x1
(z))I(zx1 ≤ T )

}
η(z1, δ1|x1)

+

e0T
x1

(z)f 0
ε (e0T

x1
(z))

∫ T
e0T
x1

(z)(y
2 − 2y

∫ T
−∞ edF 0

ε (e)) dF 0
ε (y)

1− F 0
ε (e0T

x1
(z))

− 2Ac(x1, z)

−[e0T
x1

(z)− 2
∫ T

−∞
edF 0

ε (e)](e0T
x1

(z))2f 0
ε (e0T

x1
(z))I(zx1 ≤ T )

}
ζ(z1, δ1|x1)

}}
dHδ(z|x1)

8



+
∑

δ=0,1

∫
RX

∫ +∞

−∞

∂σ2
θ(x)

∂θk

{
2δ(mT (x)− z)σ0(x)π(v1)

+(1− δ)
σ02(x)

1− F 0
ε (e0T

x (z))


∫ T

e0T
x (z)(y

2 − 2y
∫ T
−∞ edF 0

ε (e)) dF 0
ε (y)

1− F 0
ε (e0T

x (z))

−(e0T
x (z))2 + 2e0T

x (z)
∫ T

−∞
eF 0

ε (e)

]
ϕ(v1, e

0T
x (z))

+

[
T 2 − 2T

∫ T

−∞
edF 0

ε (e)

]
ϕ(v1, T )

−
∫ T

e0T
x (z)

(2y − 2
∫ T

−∞
edF 0

ε (e))ϕ(v1, y)dy

+2

[
(1− F 0

ε (e0T
x (z)))

∫ T

−∞
edF 0

ε (e)−
∫ T

e0T
x (z)

ydF 0
ε (y)

]

×π(v1)}} dHδ(z|x)dFX(x) + oP (n1/2),

where vq = (xq, zq, δq) for all xq ∈ RX , zq ∈ IR, δq = 0, 1, q = 1, 2. T = (Tx−m0(x))/σ0(x),

zx = (z −m0(x))/σ0(x), e0T
x (z) = zx ∧ T, for any x ∈ RX , z ∈ IR and θk is the kth com-

ponent of θ, k = 1, . . . , d.

Let T̃x be any value less than the upper bound of the support of H(·|x) such that

infx∈RX
(1−H(T̃x|x)) > 0. For a (sub)distribution function L(y|x) we will use the nota-

tions l(y|x) = L′(y|x) = (∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and similar notations will

be used for higher order derivatives.

The assumptions needed for the asymptotic results are listed below.

(A1)(i) na4
n → 0 and na3+2δ

n (log a−1
n )−1 →∞ for some δ < 1/2.

(ii) RX = [xe, xs] is a compact interval of length LX .

(iii) K is a symmetric density with compact support and K is twice continuously differ-

entiable.

(iv) Ω is non-singular.

(A2)(i) There exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ infx F (T̃x|x), s0 ≤ inf{s ∈
[0, 1]; J(s) 6= 0}, s1 ≥ sup{s ∈ [0, 1]; J(s) 6= 0} and infx∈RX

infs0≤s≤s1 f(F−1(s|x)|x) > 0.

(ii) J is twice continuously differentiable,
∫ 1
0 J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(iii) The function x → Tx (x ∈ RX) is twice continuously differentiable.

(A3)(i) FX is three times continuously differentiable and infx∈RX
fX(x) > 0.

(ii) m0 and σ0 are twice continuously differentiable and infx∈RX
σ0(x) > 0.

(iii) E[ε02] < ∞ and E[Z4] < ∞.
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(A4)(i) η(z, δ|x) and ζ(z, δ|x) are twice continuously differentiable with respect to x and

their first and second derivatives (with respect to x) are bounded, uniformly in x ∈ RX ,

z < T̃x and δ.

(ii) The first derivatives of η(z, δ|x) and ζ(z, δ|x) with respect to z are of bounded varia-

tion and the variation norms are uniformly bounded over all x.

(A5) The function y → P (m0(X) + eσ0(X) ≤ y) (y ∈ IR) is differentiable for all e ∈ IR

and the derivative is uniformly bounded over all e ∈ IR.

(A6) For L(y|x) = H(y|x), H1(y|x), H0
ε (y|x) or H0

ε1(y|x) : L′(y|x) is continuous in (x, y)

and supx,y |y2L′(y|x)| < ∞. The same holds for all other partial derivatives of L(y|x) with

respect to x and y up to order three and supx,y |y3L′′′(y|x)| < ∞.

(A7) For the density fX|Z,∆(x|z, δ) of X given (Z, ∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| < ∞ and supx,z |f̈X|Z,∆(x|z, δ)| < ∞ (δ = 0, 1).

(A8) Θ is compact and θT
0 is an interior point of Θ. All partial derivatives of σ2

θ(x) with

respect to the components of θ and x up to order three exist and are continuous in (x, θ)

for all x and θ.

(A9) The function E[{E(ε̃2∗
T |X)− σ2

θ(X)}2] has a unique minimum in θ = θT
0 .

Proof of Theorem 3.1. We prove the consistency of θ̂T
n by verifying the conditions of

Theorem 5.7 in van der Vaart (1998, p. 45). From the definition of θ̂T
n and condition (A9),

it follows that it suffices to show that

sup
θ
|Sn(θ)− S0(θ)| →P 0, (A.1)

where

S0(θ) = E[V ar[ε̃2∗
T |X]] + E[(E[ε̃2∗

T |X]− σ2
θ(X))2].

The second statement of Theorem 3.1 then follows immediately from (A.1) together with

the consistency of θ̂T
n . First,

Sn(θ) =
1

n

n∑
i=1

(̂̃ε2∗
Ti − ε̃2∗

Ti)
2 +

1

n

n∑
i=1

(ε̃2∗
Ti − σ2

θ(Xi))
2

+
2

n

n∑
i=1

(̂̃ε2∗
Ti − ε̃2∗

Ti)(ε̃
2∗
Ti − σ2

θ(Xi))

= Sn1 + Sn2(θ) + Sn3(θ).

Sn1 and supθ |Sn3(θ)| are treated by Lemma A.1 while Sn2 is rewritten as

Sn2(θ) =
1

n

n∑
i=1

(ε̃2∗
Ti − E[ε̃2∗

Ti|Xi])
2 +

1

n

n∑
i=1

(E[ε̃2∗
Ti|Xi]− σ2

θ(Xi))
2

10



+
2

n

n∑
i=1

(ε̃2∗
Ti − E[ε̃2∗

Ti|Xi])(E[ε̃2∗
Ti|Xi]− σ2

θ(Xi))

= Sn21 + Sn22(θ) + Sn23(θ).

Since E[Z4] < ∞,

Sn21 = E[V ar[ε̃2∗
T |X]] + o(1) a.s..

Using the fact that E[ε02] < ∞ together with two applications of Theorem 2 of Jennrich

(1969) (for Sn22(θ) and Sn23(θ)) finishes the proof.

Proof of Theorem 3.2. For some θ1n between θ̂T
n and θT

0

θ̂T
n − θT

0 = −
{

∂2Sn(θ1n)

∂θ∂θ′

}−1
∂Sn(θT

0 )

∂θ
= −R−1

1n R2n.

We have

R2n = − 2

n

n∑
i=1

(̂̃ε2∗
Ti − ε̃2∗

Ti)
∂σθT

0
(Xi)

∂θ
− 2

n

n∑
i=1

{ε̃2∗
Ti − σθT

0
(Xi)}

∂σθT
0
(Xi)

∂θ
= R21n + R22n,

such that R22n is a sum of i.i.d. random vectors with zero mean (by definition of θT
0 ). For

each component j of R21n, we use Lemma A.2 while for R1n, we write

R1n = − 2

n

{
n∑

i=1

(̂̃ε2∗
Ti − ε̃2∗

Ti)
∂2σθ1n(Xi)

∂θ∂θ′
+

n∑
i=1

(ε̃2∗
Ti − σθ1n(Xi))

∂2σθ1n(Xi)

∂θ∂θ′

−
n∑

i=1

(∂σθ1n(Xi)

∂θ

)(∂σθ1n(Xi)

∂θ′

)}
= R11n + R12n + R13n.

Using assumption (A8) and Lemme A.1, we have that each component of R11n is oP (1).

Again using condition (A8),

R1n =
2

n

n∑
i=1

∂σθT
0
(Xi)

∂θ

(∂σθT
0
(Xi)

∂θ

)′
− 2

n

n∑
i=1

{ε̃2∗
Ti − σθT

0
(Xi)}

∂2σθT
0
(Xi)

∂θ∂θ′
+ oP (1)

= 2E
[∂σθT

0
(X)

∂θ

(∂σθT
0
(X)

∂θ

)′
− {ε̃2∗

T − σθT
0
(X)}

∂2σθT
0
(X)

∂θ∂θ′

]
+ oP (1)

= 2Ω + oP (1).

The result now follows.

Lemma A.1 Assume (A1) (i)–(iii), (A2) (i), (ii), (A3) (i), (ii), E[ε02] < ∞, E[|Z|] <

∞, (A4) (i) and (A6). Then,

|̂̃ε2∗
T − ε̃2∗

T | ≤ (Z2 + |Z|+ 1)OP ((nan)−1/2(log a−1
n )1/2).

where OP ((nan)−1/2(log a−1
n )1/2) is uniform in X and Z, for ∆ = 0, 1.
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Proof. We have

̂̃ε2∗
T − ε̃2∗

T = {(Y − m̂T (X))2 − (Y −mT (X))2}∆ + (1−∆)

×
{

σ̂02(X)

1− F̂ 0
ε (Ê0T )

∫ T

Ê0T
(y2 − 2y

∫ T

−∞
edF̂ 0

ε (e)) dF̂ 0
ε (y) + σ̂02(X){

∫ T

−∞
ydF̂ 0

ε (y)}2

− σ02(X)

1− F 0
ε (E0T )

∫ T

E0T
(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF 0
ε (y)− σ02(X){

∫ T

−∞
ydF 0

ε (y)}2

}
= Au(X, Z, ∆) + Ac(X, Z, ∆).

Using Theorem 3.1 of Heuchenne and Van Keilegom (2009),

|Au(X,Z, ∆)| ≤ |Y |OP ((nan)−1/2(log a−1
n )1/2) + OP ((nan)−1/2(log a−1

n )1/2).

For Ac(X, Z, ∆), write

Ac(X, Z, ∆) =

{
σ̂02(X)− σ02(X)

1− F̂ 0
ε (Ê0T )

Âc(X, Z)

+
σ02(X)(F̂ 0

ε (Ê0T )− F 0
ε (E0T ))

(1− F̂ 0
ε (Ê0T ))(1− F 0

ε (E0T ))
Âc(X, Z)

+
σ02(X)

1− F 0
ε (E0T )

(Âc(X, Z)−Ac(X, Z))

}
(1−∆), (A.2)

where

Âc(X, Z) =
∫ T

Ê0T
(y2 − 2y

∫ T

−∞
edF̂ 0

ε (e)) dF̂ 0
ε (y) + (1− F̂ 0

ε (Ê0T )){
∫ T

−∞
ydF̂ 0

ε (y)}2.

Using Proposition 4.5 and Corollary 3.2 of Van Keilegom and Akritas (1999) together

with an order one Taylor development and the fact that supy |yf 0
ε (y)| < ∞, coefficients of

Âc(X, Z) in the two first terms of Ac(X, Z, ∆) are OP ((nan)−1/2(log a−1
n )1/2). Now, using

Lemma A.2 of Heuchenne and Van Keilegom (2010) and Lemma A.1 of Heuchenne and

Van Keilegom (2007a),

Âc(X,Z) =
∫ T

Ê0T
(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF̂ 0
ε (y) + (1− F 0

ε (E0T )){
∫ T

−∞
ydF 0

ε (y)}2

+OP ((nan)−1/2(log a−1
n )1/2),

such that

Âc(X, Z)−Ac(X, Z) =
∫ T

Ê0T
(y2 − 2y

∫ T

−∞
edF 0

ε (e)) d(F̂ 0
ε (y)− F 0

ε (y))

+
∫ E0T

Ê0T
(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF 0
ε (y) + OP ((nan)−1/2(log a−1

n )1/2).
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Using integration by parts, Corollary 3.2 and Proposition 4.5 of Van Keilegom and Akritas

(1999) makes the first term of the right hand side of the above expression bounded by

(E02

+ |E0|+ 1)OP ((nan)−1/2(log a−1
n )1/2), (A.3)

while the second term is rewritten using an order one Taylor development

−(κ2
n − 2κn

∫ T

−∞
edF 0

ε (e))f 0
ε (κn)(Ê0T − E0T ),

for κn between E0T and Ê0T , which can be shown to be bounded by (A.3) using similar

calculations. This finishes the proof.

Lemma A.2 Assume (A1) (i)-(iii), (A2)–(A8). Then,

(1/n)
n∑

i=1

(̂̃ε2∗
Ti − ε̃2∗

Ti)
∂σ2

θ(Xi)

∂θk

= (1/n)
n∑

i=1

χk(Vi) + oP (n−1/2), k = 1, . . . , d.

Proof. Using similar arguments as in Lemma A.1,

Au(X, Z, ∆) = 2∆(Y −mT (X))

{
(m0(X)− m̂0(X)) + (σ0(X)− σ̂0(X))

∫ T

−∞
ydF 0

ε (y)

−σ0(X)(
∫ T

−∞
ydF̂ 0

ε (y)−
∫ T

−∞
ydF 0

ε (y))

}
+ oP (n−1/2), (A.4)

and

Ac(X, Z, ∆) =

{
2σ0(X)(σ̂0(X)− σ0(X))

1− F 0
ε (E0T )

Ac(X,Z)

+
σ02(X)(F̂ 0

ε (Ê0T )− F 0
ε (E0T ))

(1− F 0
ε (E0T ))2

Ac(X, Z)

+
σ02(X)

1− F 0
ε (E0T )

(Âc(X, Z)−Ac(X, Z))

}
(1−∆) + Rn1(X, Z, ∆), (A.5)

where Rn1(X, Z, ∆) is bounded by

(E02

+ |E0|+ 1)oP (n−1/2). (A.6)

Next,

Âc(X, Z)−Ac(X, Z) = −2[
∫ T

−∞
ed(F̂ 0

ε (e)− F 0
ε (e))]

∫ T

E0T
ydF 0

ε (y)

+
∫ T

E0T
(y2 − 2y

∫ T

−∞
edF 0

ε (e))d(F̂ 0
ε (y)− F 0

ε (y))
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+[E0T − 2
∫ T

−∞
edF 0

ε (e)]E0T

×[F̂ 0
ε (E0T )− F 0

ε (E0T )− F̂ 0
ε (Ê0T ) + F 0

ε (Ê0T )]

−[E0T − 2
∫ T

−∞
edF 0

ε (e)]E0T f 0
ε (E0T )(Ê0T − E0T )

+(F 0
ε (E0T )− F̂ 0

ε (Ê0T )){
∫ T

−∞
edF 0

ε (e)}2

+2(1− F 0
ε (E0T ))

∫ T

−∞
edF 0

ε (e){
∫ T

−∞
yd(F̂ 0

ε (y)− F 0
ε (y))}

+Rn2(X, Z, ∆), (A.7)

where Rn2(X,Z, ∆) is bounded by (A.6). To treat the terms where both Ê0T and E0T

are involved (i.e. the second term on the right hand side of (A.5) and the third, fourth

and fifth terms on the right hand side of (A.7)), we need to introduce the sum used in

the statement of Lemma A.2. More precisely, for the second term of (A.5), we have

1

n

n∑
i=1

(1−∆i)
σ02(Xi)(F̂

0
ε (Ê0T

i )− F 0
ε (E0T

i ))

(1− F 0
ε (E0T

i ))2
Ac(Xi, Zi)

∂σ2
θ(Xi)

∂θk

=
1

n

n∑
i=1

(1−∆i)
σ02(Xi)(F̂

0
ε (Ê0T̂

i )− F 0
ε (E0T

i ))

(1− F 0
ε (E0T

i ))2

×
∫ T

E0T
i

(y2 − 2y
∫ T

−∞
edF 0

ε (e)) dF 0
ε (y)

∂σ2
θ(Xi)

∂θk

+
1

n

n∑
i=1

(1−∆i)
σ02(Xi)(F̂

0
ε (Ê0T

i )− F 0
ε (E0T

i ))

1− F 0
ε (E0T

i )
{
∫ T

−∞
edF 0

ε (e)}2∂σ2
θ(Xi)

∂θk

+Rn3, (A.8)

k = 1, . . . , d, and where T̂i =
TXi

−m̂0(Xi)

σ̂0(Xi)
and Ê0T̂

i = Ê0
i ∧ T̂i, i = 1, . . . , n. It is easily

shown that

Rn3 ≤
C

n

n∑
i=1

|F̂ 0
ε (T̂i)− F̂ 0

ε (Ti)|I(E0
i ≤ T < Ê0

i )

≤ OP ((nan)−1/2(log a−1
n )1/2)

C

n

n∑
i=1

I(E0
i ≤ T < Ê0

i )

for some C > 0. When Ê0
i > T, it holds that E0

i > Tσ̂0(Xi)/σ
0(Xi) + [m̂0(Xi) −

m0(Xi)]/σ
0(Xi) ≥ T −V , where V = [infx σ0(x)]−1[supx |m̂0(x)−m0(x)|+T supx |σ̂0(x)−

σ0(x)|] = OP ((nan)−1/2(log a−1
n )1/2) and hence the above expression is bounded by

OP ((nan)−1/2(log a−1
n )1/2) n−1

n∑
i=1

I(T − V < E0
i ≤ T )

= OP ((nan)−1/2(log a−1
n )1/2) {H̃0

ε (T )− H̃0
ε (T − V )},
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where H̃0
ε (·) is the empirical distribution of E0

i , i = 1, . . . , n. Using the fact that H̃0
ε (y)−

H0
ε (y) = OP (n−1/2) uniformly in y, the above term is oP (n−1/2). Using similar arguments

together with Lemma B.1 of Van Keilegom and Akritas (1999), the third and fourth terms

on the right hand side of (A.7) are treated as

1

n

n∑
i=1

(1−∆i)
σ02(Xi)

1− F 0
ε (E0T

i )

{
[E0T

i − 2
∫ T

−∞
edF 0

ε (e)]E0T
i

×[F̂ 0
ε (Ê0T̂

i )− F 0
ε (Ê0T̂

i )− F̂ 0
ε (Ê0T

i ) + F 0
ε (Ê0T

i )]

−[E0T
i − 2

∫ T

−∞
edF 0

ε (e)]E0T
i f 0

ε (E0T
i )(Ê0T

i − E0T
i )

}
∂σ2

θ(Xi)

∂θk

+ oP (n−1/2)

= − 1

n

n∑
i=1

(1−∆i)
σ02(Xi)

1− F 0
ε (E0T

i )
[E0T

i − 2
∫ T

−∞
edF 0

ε (e)]E0T
i f 0

ε (E0T
i )(Ê0

i − E0
i )I(E0

i ≤ T )

×∂σ2
θ(Xi)

∂θk

+ oP (n−1/2), k = 1, . . . , d. (A.9)

Finally, together with (A.4), (A.5), (A.7), (A.8) and (A.9), and Lemma A.3, we obtain

(1/n)
n∑

i=1

(̂̃ε2∗
Ti − ε̃2∗

Ti)
∂σ2

θ(Xi)

∂θk

(A.10)

=
−1

n2an

n∑
i=1

n∑
j=1

K(
Xi −Xj

an

)
∂σ2

θ(Xi)

∂θk

f−1
X (Xi)σ

0(Xi)

×
{

2∆i(m
T (Xi)− Zi)[η(Zj, ∆j|Xi) +

∫ T

−∞
edF 0

ε (e)ζ(Zj, ∆j|Xi)]

−(1−∆i)
σ0(Xi)

1− F 0
ε (E0T

i )


f 0

ε (E0T
i )

∫ T
E0T

i
(y2 − 2y

∫ T
−∞ edF 0

ε (e)) dF 0
ε (y)

1− F 0
ε (E0T

i )

−[E0T
i − 2

∫ T

−∞
edF 0

ε (e)]E0T
i f 0

ε (E0T
i )I(E0

i ≤ T )

}
η(Zj, ∆j|Xi)

+

E0T
i f 0

ε (E0T
i )

∫ T
E0T

i
(y2 − 2y

∫ T
−∞ edF 0

ε (e)) dF 0
ε (y)

1− F 0
ε (E0T

i )
− 2Ac(Xi, Zi)

−[E0T
i − 2

∫ T

−∞
edF 0

ε (e)](E0T
i )2f 0

ε (E0T
i )I(E0

i ≤ T )

}
ζ(Zj, ∆j|Xi)

}}

+
1

n2

n∑
i=1

n∑
j=1

∂σ2
θ(Xi)

∂θk

{
2∆i(m

T (Xi)− Zi)σ
0(Xi)π(Vj)

+(1−∆i)
σ02(Xi)

1− F 0
ε (E0T

i )


∫ T

E0T
i

(y2 − 2y
∫ T
−∞ edF 0

ε (e)) dF 0
ε (y)

1− F 0
ε (E0T

i )
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−(E0T
i )2 + 2E0T

i

∫ T

−∞
eF 0

ε (e)

]
ϕ(Xj, Zj, ∆j, E

0T
i )

+

[
T 2 − 2T

∫ T

−∞
edF 0

ε (e)

]
ϕ(Xj, Zj, ∆j, T )

−
∫ T

E0T
i

(2y − 2
∫ T

−∞
edF 0

ε (e))ϕ(Xj, Zj, ∆j, y)dy

+2

[
(1− F 0

ε (E0T
i ))

∫ T

−∞
edF 0

ε (e)−
∫ T

E0T
i

ydF 0
ε (y)

]

×π(Vj)}}+ oP (n1/2). (A.11)

Finally, usual calculations on U-statistics (see by example Heuchenne and Van Keilgom

2007a) finish the proof.

Lemma A.3 Assume (A1) (i)-(iii), (A2), (A3) (i)-(ii), E[ε02] < ∞, E[Z2] < ∞, (A4)–

(A7). Then

∫ T

−∞
edF̂ 0

ε (e)−
∫ T

−∞
edF 0

ε (e) = (1/n)
n∑

i=1

π(Vi) + oP (n−(1/2)).

Proof. This result is easily obtained by using the proofs of Lemma A.1 to A.3 of

Heuchenne and Van Keilegom (2010), the asymptotic representation of the residuals distri-

bution given in Theorem 3.1 of Van Keilegom and Akritas (1999) and simple calculations

on U-statistics.
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