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Abstract

Suppose the random vector (X,Y") satisfies the regression model Y = m(X) +
o(X)e, where m(-) = E(Y]-), 0%(-) = Var(Y|-) belongs to some parametric class
{op(-) : # € ©} and ¢ is independent of X. The response Y is subject to random
right censoring and the covariate X is completely observed. A new estimation
procedure is proposed for op(-) when m(:) is unknown. It is based on nonlinear
least squares estimation extended to conditional variance in the censored case. The

consistency and asymptotic normality of the proposed estimator are established.
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1 Introduction

Study of the conditional variance with censored data involves an increasing interest among
scientists. Indeed, domains like Medicine, Economics, Astronomy or Finance are closely
concerned by this topic. In financial time series for instance, volatility (conditionally on
time) often represents the quantity of interest and in this context, censoring can appear,
by example in Wei (2002), when limitations are imposed on asset prices to mitigate their
fluctuations. Therefore, although the methodology proposed in this paper enlarges beyond
the following topic, we are here interested in the relationship between fatigue life of metal,
ceramic or composite materials and applied stress. This important input to design-for-
reliability processes is motivated by the need to develop and present quantitative fatigue-
life information used in the design of jet engines. Indeed, according to the air speed that
enters an aircraft engine, the fan, the compressor and the turbine rotate at different speeds
and therefore are submitted to different stresses. Moreover, fatigue life may be censored
since failures may result from impurities or vacuums in the studied materials, or no failure
may occur at all due to time constraints of the experiments. In particular, a frequently
asked question in this context is to know whether or not the variability of fatigue life
depends on the applied stress. Furthermore, in case of heteroscedasticity, a parametric
shape for this (conditional) variability should be provided. We therefore consider the

general heteroscedastic regression model
Y =m(X) + 0g,(X)e, (1.1)

where m(-) = E(Y|-) is the regression curve, o (-) = Var(Y|-), known upto a parameter
vector 6 € © with true unknown value 6, © is a compact subset of IR?, and ¢ is indepen-
dent of the (one-dimensional) covariate X. In the context displayed above, a discussion
can therefore be lead about the constancy of oy, () (0g,(-) = 0o for a one-dimensional
0p) and its parametric refinements to be possibly brought to fit available information.
Suppose also that Y is subject to random right censoring, i.e. instead of observing Y,
we only observe (Z,A), where Z = min(Y,C), A = I(Y < C) and the random variable
C represents the censoring time, which is independent of Y, conditionally on X. Let
(Y, Ci, X, Zi, A;) (i =1,...,n) be n independent copies of (Y,C, X, Z, A).

The objective is to extend classical least squares procedures to censored data in order
to estimate oy, (-). If a lot of work was devoted to polynomial estimation of the regression
function for censored data (see e.g. Heuchenne and Van Keilegom (2007a) for a literature
overview), much less work was achieved for the estimation of the conditional variance.
In fact, model (1.1) was already considered in fatigue curve analysis (Nelson, 1984, Pas-
cual and Meeker, 1997) but with parametric forms for m(-) and the distribution of «.

Since choices for those forms can considerably influence inference results on oy, (+), it can



be important to consider its estimation without any parametric constraint on the other
quantities of model (1.1). In the same idea, Heuchenne and Van Keilegom (2007b) de-
veloped a methodology to estimate a parametric curve for m(-) without any assumed
parametric shape for the conditional standard deviation and the residuals distribution.

In this paper we propose a new estimation method for 6. The idea of the method is as
follows. First, we construct for each observation a new square of the multiplicative error
term that is nonparametrically estimated. Then, 6 is estimated by minimizing the least
squares criterion for completely observed data (and parametric conditional variance esti-
mation), applied to the so-obtained new squared errors. The procedure involves different
choices of bandwidth parameters for kernel smoothing.

The paper is organized as follows. In the next section, the estimation procedure is
described in detail. Section 3 summarizes the main asymptotic results, including the
asymptotic normality of the estimator and the Appendix contains the proofs of the main

results of Section 3.

2 Notations and description of the method

As outlined in the introduction, the idea of the proposed method consists of first esti-
mating unknown squares of multiplicative error terms of the type £*(X) = o (X)e?, and
second of applying a standard least squares procedure on the so-obtained artificial squared

errors.
Define

E(Xy, Ziy, ) = &% = (Vi — m(X0))? A + E[(Y: — m(X0)?|Y; > Ci, Xi](1 — A)

7

and note that F((Y; — m(X;))?*|X;) = E(£*|X;) = 05,(X;). Hence, we can work in the
sequel with the variable £2* instead of with £2. In order to estimate £2*, we first need to
introduce a number of notations.

Let m°(+) be any location function and ¢°(-) be any scale function, meaning that
m®(z) = T(F(:]z)) and ¢"(z) = S(F(-|z)) for some functionals 7" and S that satisfy
T(Foyip(-|x)) = aT(Fy(-]z)) + b and S(Fayis(-|z)) = aS(Fy(-|x)), for all @ > 0 and
b € IR (here F,y4(-|z) denotes the conditional distribution of aY + b given X = x). Let
e = (Y —m°(X))/o%(X). Then, it can be easily seen that if model (1.1) holds (i.e. € is
independent of X), then £° is also independent of X.

Define

F(ylz) = P(Y < y|z), the response conditional distribution,

G(y|lxr) = P(C < y|z), the censoring conditional distribution,
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H(ylx) = P(Z <y|z) (H(y) = P(Z <)), the observable (un)conditional distribution,
Hs(ylx) = P(Z <y, A = §|x), the observable conditional subdistributions for 6 = 0, 1,
F(y) = P(e° <), S°(y) =1 — F2(y), the distribution and survival functions of £°,
and Fx(z) = P(X < z). For E' = (Z —m°(X))/0%(X), we also denote H?(y) = P(E° <
y), His(y) = P(E° <y, A = 9), H)(y|z) = P(E® < y|a) and Hi(ylr) = P(E° <y, A =
d|lz) (6 = 0,1). The probability density functions of the distributions defined above will

be denoted with lower case letters, and Ry denotes the support of the variable X.

It is easily seen that

N S [m®(X;) + 0°(Xy)y — m(X;)]* dF2 (y)

g = (Yi —m(X,)* A 1 — FO(EY)

(2

(1-4y)

for any location function m°(-) and scale function ¢°(-). m° and ¢° are now chosen in
such a way that they can be estimated consistently. As is well known (see by example
Van Keilegom and Veraverbeke (1997)), the right tail of the distribution F'(y|-) cannot be
estimated in a consistent way due to the presence of right censoring. Therefore, we work

with the following choices of m" and o*:
1 1
m(z) = / F\(sla)J(s)ds, o%(z) = / F\(s]2)2 0 (s) ds — m®(z), (2.1)
0 0

where F~!(s|z) = inf{y; F(y|z) > s} is the quantile function of Y given x and J(s) is a
given score function satisfying [y J(s)ds = 1. When .J(s) is chosen appropriately (namely
put to zero in the right tail, there where the quantile function cannot be estimated in a
consistent way due to the right censoring), m°(z) and ¢°(z) can be estimated consistently.
Now, replace the distribution F(y|z) in (2.1) by the Beran (1981) estimator, defined by

(in the case of no ties):

% V[/i('r;an)
Fylx) =1 - - = , 2.2
() Zi<y,l_£i=1{ i1 1(Z; ZZi)Wj(ﬂfaan)} 22)
where N
e — 1 Co)
jle( anj)

K is a kernel function and {a,} a bandwidth sequence, and define

() = / FV(slo)J(s)ds, 6%(x) = / F(sla)2T(s) ds — () (2.3)



as estimators for m°(z) and 0% (z). Next, let

Foyy=1— ]I <1 1), (2.4)

. n—1i+1

denote the Kaplan-Meier (1958)-type estimator of FC (in the case of no ties), where
EY = (Z; — m°(X;))/6°(X;), E?i) is the i-th order statistic of E?,..., EQ and Ay is
the corresponding censoring indicator. This estimator has been studied in detail by Van
Keilegom and Akritas (1999). Finally, m(z) is estimated by the method of Heuchenne

and Van Keilegom (2008) applied to the estimation of a conditional mean:

(@) = () +6°() [ yaF), 2.5

where T' < 7o (7p = inf{y : F(y) = 1} for any distribution F') is a truncation point that
has to be introduced to avoid any inconsistent part of F°(y). However, when Tro < Tao,
the bound 7" can be chosen arbitrarily close to 7po.

This leads to the following estimator of £2* :

o 5’02(XZ)

T T ~ A
= =T ()P A+ { s [, 0 =2 [ edF2e) dE2)

EOT
i

(X[ pdE )P} - A, (2:6)

where ET = EOAT.
Finally, the new squared errors (2.6) are introduced into the least squares problem

n

: 2% 2/ v .\]2
pip I — oh O] (27)
In order to focus on the primary issues, we assume the existence of a well-defined min-
imizer of (2.7). The solution of this problem can be obtained using an (iterative) pro-

cedure for nonlinear minimization problems, like e.g. a Newton-Raphson procedure. De-

note a minimizer of (2.7) by 07 = (67,,...,07,). As it is clear from the definition of
E2 QAYTLI, o ,é{d are actually estimating the unique 61 = (6%,,...,60%,) which minimizes

E[{E(e¥|X) — 02(X)}?] (see hypothesis (A9), where

G = v -t 0P+ (T [ - [ edr?(e) artty

EOT

PO [ pdFP )7} - ),

m(X) =m*(X) + 0°(X) [ ydFO(y)
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and E°T = E° AT. As before, these coefficients 67}, ..., 0%, can be made arbitrarily close

to bo1, . . ., boa, provided 7o < Tgo.

Remark 2.1 (Truncation 7)) The advantage of using (2.5) in (2.6) is double. On one
side, it enables to use model (1.1) in a very simple way simplifying the censored part of
(2.6) and on the other side, it reduces inconsistencies of those estimated squared errors.
Indeed, suppose a local estimator for m(z) based on (2.2) is chosen instead of (2.5): it is
consistent up to a point T, < TH(|») depending on z. In this case, it can be shown that
m°(z) + 0%(x)Tgo > Tp(jx) for any value of a such that consistent areas of (2.5) can be
substantially larger than for local estimators (see Heuchenne and Van Keilegom, 2008, for

a complete discussion).

3 Asymptotic results

We start by showing the convergence in probability of ég and of the least squares criterion
function. This will allow us to develop an asymptotic representation for égj — 9(7);- (7 =
1,...,d), which in turn will give rise to the asymptotic normality of these estimators. The
assumptions and notations used in the results below, as well as the proofs of the two first

results, are given in the Appendix.

Theorem 3.1 Assume (A1) (i)-(iii), (A2) (i), (i), (A3), (A4) (i), (A6), © is compact,
0T is an interior point of ©, o3 (x) is continuous in (x,0) for all x and 6 and (A9). Let

5.(6) = - Y3 - o)
Then,
95 - Gg = op(1),
and

Su(6y) = BV are7 | X)) + E[(BEF|1X] — 05(X))*] + op(1).
Theorem 3.2 Assume (A1)-(A9). Then,

. Op(n—l/Z)
ég — Qg =Q pt Zp(Xi, Ziy ;) + : )

i=1 Op(n_l/z)



where Q = (Q1) (J,k=1,...,d),

aaeoT (X) ageg (X)
00, 06y,

82095 (X)
00;00y |’

Qj = —{&F —agr(X)}

p =P, pa),
dogr(Xi) , .
pi(Xis Ziy i) = x5( Xy Ziy D) + T(t?n — ogr(Xi))
j
and x;(X;, Z;, A;) is defined in the Appendix (j =1,...,d;i=1,...,n).
Theorem 3.3 Under the assumptions of Theorem 3.2, n'/?(07 — 4T 4 N(0,%), where

Y =QE[p(X, Z, M) (X, Z, M)

The proof of this result follows readily from Theorem 3.2.

Appendix

The following notations are needed in the statement of the asymptotic results given Section
3.

YNz

§(2,0,y) = (1 - Fgo(y)) {_ / (1 {H;[lo(zj))z + I(Zl f g;—}g(:) 2 } ’

—00

YNz

£(z,8,ylz) = (1 — F(y|z)) {_ / (165_12(2'12))2 + I(ffz’(‘i;)l) } ,

+0o0
1z 0l0) = [ 6,8 0la) I (F(ofe)) dvo®(a) ™,

i v-m(z)
((z,d]x) :_ZO 5(2,5,v|x)J(F(v|x))007<x)dva ()™,

ho(s|x) 0 [ AR (sla)
Yi(ylz) = / (1—H0(s))2dH51(5>+00 TZ HO(s)’

—0o0 €

rooshslz) g [ d(sh%(slz))
Y2(y|z) = / HWde(S)JF_ZO 1—H(s)

3 3

0

zom (x>,5, y) — S2y)n(z, 8|x)n (ylz) — S2(y)¢ (2, 8|z)ya(y|2),

gO(ZL’,Z, 67 y) = ga <00($)

7



1= F2(eg7 (1))

- PP C))

1= fez(;T 21 edFao(e)
ro(osg) = —101=0) { (=) Zl)]

x p(va, €3] (21)) + Tep(va, T)
- [y o lie].

Too(v1, 22, 02) = 1(01 = 1, 21 < Ty, ) ((22, 02| 1) + 21, ((22, 02| 21))
ea, (21) f2(e3; (#1))
1 — F2(e(21))
P (0)) oy € AF2(e)
(1= F2(ed] (21)))?

(8, =0) |-

I(lel S T)

X [77(227 Gala1) + €9 (21)¢ (2, 52|$1)} :
m(v1) = —=[n(z1, 61]x1) + T¢ (21, 1)) | Ty (T )

—+00
_;_/R > moly, 2,6, 1, 21, 61)dHs (2|y)dFx (y)

T 5=0,1

X
“+oo

—l—/ moo(Z1, 2, 0, 21, 01 )dHs(z|z1)
© §=0,1

ft});{(zl) edFSO(e) T 0
+[le1](zlx1 S T, 51 - ]-) + 1 — Fg()(eg?(zl))l(él = O)] - /—oo edFe (6)7

Aw2) = [ 07 =2 [ edFe)dF) + (1~ FAS G wdFPw)
Xk(?h) _ _8O§éjl)00(xl) %

Z / { xl — 2)[n(21, 01|71) +/ edFO( )C(21,01|21)]

6=0,1

) [ [ 07 = 2 dE(e) dE)
1 >1—F£<eOT<z>> 1= FT)
2/ edF? (e (2) f2(eX(2)) ] (2, < T)}U(Z1,51|901)
T () FT()) Lo o0 — 29 [ edF2()) dF2(y)
' { L= F((2)) IR
2 [ R T () e < T)}(;(zhalm)}}dH5<z|x1>

8



b [T o) — 2o ()

6=0,1

+(1—9)

o%(x) Jor () (= 2y JZ o edF2(e)) dF2(y)
1— F2(ed"(2)) 1— F2(ed"(2))

2 [ R et ()

+ [TZ —2T /_:; edFEO(e)l (v, T)

T T
~Jpr, 20 =2 edF2 () (wn, )y

12 [(1 — F2(27(2))) /T edF.(e) - /T

—oo 9" (2)

)
x7(v1)}} dHs(z|x)dFx (z) + Op(n1/2>,

where v, = (x4, 24,0,) forallz, € Rx, 2z, € R, 0,=0,1,¢=1,2. T = (T,—m°(x))/c°(x),
2 = (2 = m®(2))/0%(x), €2 (2) = 2, AT, for any x € Ry, z € IR and 6}, is the k' com
ponent of 0, k=1,...,d.

Let T, be any value less than the upper bound of the support of H(-|z) such that
infyepy (1 — H(Ty|x)) > 0. For a (sub)distribution function L(y|z) we will use the nota-
tions I(y|z) = L' (y|z) = (0/dy)L(y|x), L(y|z) = (0/0z)L(y|z) and similar notations will
be used for higher order derivatives.

The assumptions needed for the asymptotic results are listed below.

(A1)(i) nat — 0 and na**(loga,!)~! — oo for some § < 1/2.

(i7) Rx = [z.,xs] is a compact interval of length Lx.

(737) K is a symmetric density with compact support and K is twice continuously differ-
entiable.

(1v) Q is non-singular.
(

A2)(i) There exist 0 < sy < s; < 1 such that s; < inf, F(T,|z), so < inf{s €
[0,1]; J(s) # 0}, s1 > sup{s € [0,1]; J(s) # 0} and inf,cp, inf, <s<s, f(F 7 (s|z)|z) > 0.
i) J is twice continuously differentiable, [y J(s)ds =1 and J(s) > 0 for all 0 < s < 1.

i11) The function © — T, (x € Rx) is twice continuously differentiable.

ii) m® and 0¥ are twice continuously differentiable and inf,cg, 0%(x) > 0.

(
(
(A3)(i ) Fx is three times continuously differentiable and inf,cr, fx(x) > 0.
(
(ii1) E[e"] < oo and E[Z%] < oco.



(A4)(i) n(z,d0|x) and ((z,d|x) are twice continuously differentiable with respect to xz and
their first and second derivatives (with respect to x) are bounded, uniformly in x € Ry,
z < Tx and 0.

(77) The first derivatives of n(z, d|z) and ((z, §|z) with respect to z are of bounded varia-

tion and the variation norms are uniformly bounded over all x.

(A5) The function y — P(m°(X) + ec®(X) < y) (y € IR) is differentiable for all e € IR

and the derivative is uniformly bounded over all e € IR.

(A6) For L(y|z) = H(y|z), Hi(y|z), H(y|x) or HY (y|x) : L'(y|z) is continuous in (z,y)
and sup, , [y°L’(y|z)| < co. The same holds for all other partial derivatives of L(y|z) with
respect to « and y up to order three and sup, , [y*L" (y|x)| < oo.

(A7) For the density fx|za(z|z,0) of X given (Z,A), sup, . |fxza(z|z,6)] < oo,

sup,. . |fx 12,4 (w]2,8)| < oo and sup,. |fxjza (|2, 6)| < 00 (8 =0,1).

(A8) © is compact and ] is an interior point of ©. All partial derivatives of o3(x) with
respect to the components of § and x up to order three exist and are continuous in (z, 6)

for all z and 6.

(A9) The function E[{F(¢3|X) — 02(X)}?] has a unique minimum in 6 = 6]

Proof of Theorem 3.1. We prove the consistency of GAZ; by verifying the conditions of
Theorem 5.7 in van der Vaart (1998, p. 45). From the definition of 67 and condition (A9),
it follows that it suffices to show that

sup |55 (0) — So(8)] —p O, (A.1)
where
So(0) = E[Varler' | X]] + E[(EET|X] — 05(X))’].

The second statement of Theorem 3.1 then follows immediately from (A.1) together with

the consistency of éTTL . First,

1 &S aox 1 &) o
RGBS SIEIE LIS I I 16905
i=1 i=1
2 n
ﬁ Z 52T*z - 5Tz 5T§ - Ug(Xz‘))

= Snl + Sn2(9) + SnS(e)

Sp1 and supg |Sn3(0)| are treated by Lemma A.1 while S5 is rewritten as

n

= 3~ BRIP4 Y (EEIX] - o)

=1

10



2 (&~ BIEIXDEERIX] - 53(X.)

=1

= Spa1 + Sna2(0) + Spaz(0).

+

Since E[Z1] < oo
Spo1 = E[Var[E3]X]] + o(1) a

Using the fact that E[e%?] < oo together with two applications of Theorem 2 of Jennrich
(1969) (for Sp2(0) and S,23(#)) finishes the proof.

Proof of Theorem 3.2. For some 6;,, between 67 and 67

) 2 -1 T
o _gr— _ {a Sn(em)} 0Su(67) _ _ _Rm,,

0000 00

We have

211/\ ~*80' ’i o 80'T(XZ)
Ry, = - > (% — E%«Z)i - = 2{52% ogr( )}6;)979 = Ro1n + Rogn,

such that Ry, is a sum of i.i.d. random vectors with zero mean (by definition of §7). For

each component j of Rs,, we use Lemma A.2 while for Ry, we write

n — N 8 09 (Xz) n N 820'9 (Xz)
Dk _ 2* in % _ . in
{Zl 8Tz Tz 8960/ + Z(gTz O-Gln (X )) 8969/

i= i=1

n

3 ((‘3001 )) (809159(/)( ))} — Rits + Rigy + Rign.
i=1

Using assumption (A8) and Lemme A.1, we have that each component of Ryy, is op(1).

Again using condition (A8),

Rln N ﬁ ; a@ ( 86 ) Z{gTz UHT (Xz)}W + OP(l)
o (X) (Dogr(X)\1 (. 82065()()
N ZE[ o0 ( o0 ) —ér _Ueg(X)}W} + op(1)

The result now follows.

Lemma A.1 Assume (A1) (i)-(iii), (A2) (i), (i), (A3) (i), (i), E[e"] < oo, E[|Z]] <
00, (A4) (i) and (A6). Then,

& — &1 < (22 +12] + 1)0p((nan) ™ (log)'?).
where Op((na,)~"?(loga;*)'/?) is uniform in X and Z, for A =0, 1.

11



Proof. We have

F g =y = (X)) = (Y = (X)MA+ (1 - A)

x{l_lp((];))/;@ 2y [* B2 ) dE0y) + 6O ydF(y)
_%/;T(y —Qy/ edF?(e)) dF°(y) — o™ {/ ydF2(y) }

= A (X, Z,A)+ A(X, Z, A).
Using Theorem 3.1 of Heuchenne and Van Keilegom (2009),
[Au(X, Z,A)] < [Y|Op((nay) =2 (log a,)!/?) + Op((na,) " (log a,")'/?).

For A.(X, Z,A), write

AdX, Z,A) = {602()( ) = o(X) 4%, 2)
1 — FO(EOT)
PRXFUET) = FHE™) 4 o
(1= F2(E)(1 = FO(E"T))
ﬂjFJ%(AC(X, Z) = A[(X, Z))} (1-A), (A.2)
where
A2 = [ =2 [ edF@)ar2) + (1= FED) [y}

Using Proposition 4.5 and Corollary 3.2 of Van Keilegom and Akritas (1999) together
with an order one Taylor development and the fact that sup,, |y f2(y)| < oo, coefficients of
A.(X, Z) in the two first terms of A.(X, Z, A) are Op((na,)~"/?(loga;")"/?). Now, using
Lemma A.2 of Heuchenne and Van Keilegom (2010) and Lemma A.1 of Heuchenne and
Van Keilegom (2007a),

Ax.z) = [ 2o [ edrPe)dEy) + (1 - FET) [ ydR ()Y
+0p((na,)~"*(loga, ")),
such that

AX.2) = A, 2) = [ (7 =2 [ edF2e)) d(ENy) ~ ()

[0 2 [ edF(e) aFy) + Opl(na) A (loga; ).

EOT

12



Using integration by parts, Corollary 3.2 and Proposition 4.5 of Van Keilegom and Akritas
(1999) makes the first term of the right hand side of the above expression bounded by

(E” +|E°| + 1)0p((na,) " *(log a; 1)/?), (A.3)
while the second term is rewritten using an order one Taylor development

(52~ 2 [ edFO(0) 20 (BT — BT,

for k, between E'T and E°T, which can be shown to be bounded by (A.3) using similar

calculations. This finishes the proof.

Lemma A.2 Assume (A1) (i)-(iii), (A2)-(A8). Then,

(1/n) ZE:ET,L—%’; aagék) (1/n )z WV)+op(nY?), k=1,...,d.

i=1
Proof. Using similar arguments as in Lemma A.1,

AX,2,8) = 280 = CO) {n(0X) = i 00) + (0060 =60 [ yar)

—00

0 a2 - [ sar2n |+ op (A.4)

and
209(X)(8°(X) — 0°(X)
1 — FO(ET)

0% (X)(FL(E™) — FA(ET))
(1= F2(ET))?
002(X)

1 — FO(ET)

A(X, Z,A) = { A(X,Z)

+ A(X, 7Z)

+ (A (X, Z) — A (X, Z))} (1—=A)+ R (X, Z,A), (A.5)

where R,1(X, Z, A) is bounded by
(E” + |E°| + 1)op(n~/?). (A.6)
Next,

AdX,2) = A(X,2) = o[ ed(Fo(e) ~ F))] [ yiF2y)

P EOT €

T

07 =2 [ edEe)d(E) — FO(y)

EOT

13



T
L[ET — 9 / edFO(e)] BT
X[FO(E™) — FO(E™") — FO(E™") + FO(E™)]

(B 2 [ P (e)] BT (BT (B~ BT
HEET) = BB [ car(e))?

1201 = R [ o) [ yd(Ey) ~ FO(w))

+Ru0 (X, Z,A), (A.7)

where R,2(X, Z,A) is bounded by (A.6). To treat the terms where both E°T and E°T
are involved (i.e. the second term on the right hand side of (A.5) and the third, fourth
and fifth terms on the right hand side of (A.7)), we need to introduce the sum used in
the statement of Lemma A.2. More precisely, for the second term of (A.5), we have
(X (FO(EYT) — F2(E))) 0o (Xi)
S0 (1~ F(ET))? o

A (X5, Z)

L O — RET)
2 (1= (= FO(ET))?

% /T (v* - 29/1 ede(e))dFS(y)aag(Xi)

:M—‘

EOT 00y,

+Tll ;(1 B Ai)002(Xi)(fgo_(%T()£??T§70 (ET)) {/ edFO(e }zaUgéi(i)

+ Ry, (A.8)
k=1,...,d, and where T} = % and E?T = Ef/\fi, 1 =1,...,n. It is easily
shown that

Rus < ©SO|BNT) — FOT)IES <T < )

< Op((nan)™"*(loga;")"/*)— ZI (E° < T < EY)

i=1
for some C' > 0. When E° > T, it holds that E? > T6%(X;)/0%(X;) 4+ [m°(X;) —
m®(X;)]/o%(X;) > T -V, where V = [inf, ¢°(2)] " [sup, |[m°(z) —m°(z)|+T sup, |6°(x) —
a%(2)|] = Op((na,) /*(log a;*)1/?) and hence the above expression is bounded by
Op((na,) *(loga, YW )n Y I(T -V < E! <T)
i=1

— Op((na,) " (log a,)) {HA(T) — HA(T — V)},
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where HO(-) is the empirical distribution of E%, i = 1,...,n. Using the fact that H(y) —
HC(y) = Op(n~'/?) uniformly in y, the above term is op(n~'/2). Using similar arguments
together with Lemma B.1 of Van Keilegom and Akritas (1999), the third and fourth terms
on the right hand side of (A.7) are treated as
n 0.02 (X )

1 A)—L EOT—2/ dF(e)| BT
>0 - 80 cdF? (o)

1
ni4

<[F(EYT) = FO(EYT) — F2(E) + FA(E)")]

T R 2 .
BT -2 [ edP(e) BTS2 (E - E?T>} ) op(u )

00,
13 ‘702<Xi) 0T T 0 0T 0/ 0T [ 120 0 0
= n Z(l_Ai)l—FU(EQT) [E; _2/ edF.(e)| By fo (B ) (B — EQ)I(E; <T)
i=1 5 7 —00
02 (X;
Ugék )+op(n*1/2), k=1,....d (A.9)

Finally, together with (A.4), (A.5), (A.7), (A.8) and (A.9), and Lemma A.3, we obtain

(1/n) En: 2 — 7% aagék ) (A.10)
LSS we(K X0 9000 o g0,

00y,

anz 15=1 n

X {2Ai(mT(Xi) — Z)n(Z;, A1 X5) + /Too ede(e)C(Zp AjXG)]

~(1- )2 ){{ff(E?TN%T(y?—2yfTooedF£<e>>dF£<y>

1— FO(EOT 1 — FO(EPT)

3 )

(B 2 [ car s EIE < )z, A1)

—2A.(X;, Z;)

ET fO(EIT) [por (y* — 2y JT, edF2(e)) dF(y)
i - FO(ETT)

(B 2 [ ard o) B EIE < 1) o850

232 TG (A (0) = 200 ()Y

+(1—-A))

UOQ(XZ‘) fg?T (y2 -2y fTOO edFaU(e)) dFso(y)
1 — FO(EIT) 1 — FO(EYT)

£
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T
(B 42 [ erde)| ol 2,0, B

T
+ |?12 - 2T/_oo edFEO(e)] SO(XJ'?ZJHAJ?T)

T T
— [ y=2 [ edFP(e)e(X;. 2,0 y)dy

E

v2 )= rem) [ eartte) - [ warety)

xn(V)}} + op(n'?). (A.11)

Finally, usual calculations on U-statistics (see by example Heuchenne and Van Keilgom
2007a) finish the proof.

Lemma A.3 Assume (A1) (i)-(iii), (A2), (A3) (i)-(ii), E[e™] < 0o, E[Z?] < oo, (A4)-
(A7). Then

n

T . T
/ edF0(e) — / edF(e) = (1/n) " (Vi) + op(n=(/2).
- o i=1
Proof. This result is easily obtained by using the proofs of Lemma A.1 to A.3 of
Heuchenne and Van Keilegom (2010), the asymptotic representation of the residuals distri-
bution given in Theorem 3.1 of Van Keilegom and Akritas (1999) and simple calculations

on U-statistics.
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