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Abstract

Consider the random vector (X, Y ), where Y represents a response variable and
X an explanatory variable. The response Y is subject to random right censoring,
whereas X is completely observed. Let m(x) be a conditional location function of Y
given X = x. In this paper we assume that m(·) belongs to some parametric class
M = {mθ : θ ∈ Θ} and we propose a new method for estimating the true unknown
value θ0. The method is based on nonparametric imputation for the censored obser-
vations. The consistency and asymptotic normality of the proposed estimator are
established.
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1 Introduction

Consider the random vector (X, Y ), where Y represents a (possible transformation of

a) response variable and X an explanatory variable. This paper is concerned with the

estimation of a location functional of Y given X, when Y is subject to random right

censoring and X is completely observed. We suppose that this location functional belongs

to some parametric family.

This problem has been widely studied in the literature when the location functional

is the conditional mean (see e.g. Stute (1993), Fygenson and Zhou (1994), Van Keilegom

and Akritas (2000) among many others) or the conditional median (see e.g. Buchinsky

and Hahn (1998), Portnoy (2003), Yin et al (2008), Wang and Wang (2009) and the

references therein). Here we focus attention on L-functionals, given by

m(x) =

∫ 1

0

F−1(s|x)J(s)ds,

where F (y|x) = P (Y ≤ y|X = x) is the conditional distribution of Y given X = x,

F−1(s|x) = inf{y : F (y|x) ≥ s} is the conditional quantile of order s, and J(s) is a weight

function satisfying J(s) ≥ 0 for all 0 ≤ s ≤ 1 and
∫ 1

0
J(s)ds = 1. This type of location

functionals includes as special cases the conditional mean, trimmed mean, or any other

kind of weighted mean. The conditional median can be regarded as a limiting special

case, obtained when J(s) puts all its mass on s = 1/2.

Another interesting special case is obtained for J(s) = I(1 − δ < s ≤ 1)/δ for some

0 < δ < 1. Suppose the upper bound of the support of Y given X = x is finite (say

equal to τx) and one is interested in the estimation of the support curve x → τx. The

above choice of J yields a robust estimator of this curve for small values of δ, and is an

interesting alternative to the so-called m-frontiers or α-frontiers, which are based on order

statistics of order m or quantiles of order 0 < α < 1 (see e.g. Cazals et al (2002) and

Aragon et al (2005)).

We suppose in this paper that Y is subject to random right censoring, i.e. instead

of observing Y we only observe (Z, ∆), where Z = min(Y,C) is the observed survival

time, ∆ = I(Y ≤ C) is the censoring indicator, and the random variable C represents

the censoring time, which is independent of Y conditionally on X. Let (Xi, Zi, ∆i) (i =

1, . . . , n) be n independent copies of (X, Z, ∆).

In the context of regression with right censored responses it is well known that the

nonparametric kernel estimator of the conditional distribution F (·|x) is inconsistent in

the right tail. The modeling of the above location functional m(x) is therefore especially
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attractive in this framework, since particular choices of J-functions enable us to get rid

of these inconsistent parts (see Section 2 for more detatils).

The goal of this paper is to propose a new estimation method for m(x), when it is

believed that m(·) belongs to the class

M = {mθ : θ ∈ Θ},

consisting of location functionals determined by a finite-dimensional parameter vector

θ ∈ Θ, where Θ is a compact subset of IRd. The class M can be taken equal to the

class of polynomial functions of order d− 1, but any other parametric class of “smooth”

functions (in θ) can be chosen as well.

The paper is organized as follows. In the next section we introduce some notation

and explain in detail the proposed estimation procedure for θ0, the true unknown value of

θ. Section 3 gives the main asymptotic properties of the proposed estimator. In Section

4 we summarize the results of the paper and give ideas for future research, whereas the

Appendix contains the proofs of the main asymptotic results.

2 Description of the method

The estimator θn is defined as follows. First, we note that θ0 can be written as

θ0 = argminθ E
[( ∫ 1

0

F−1(s|X)J(s)ds−mθ(X)
)2]

= argminθ E
[
(Y −mθ(X))2J(F (Y |X))

]
= argminθ E

[
(Z −mθ(X))2J(F (Z|X))∆

+

∫ ∞
Z

(y −mθ(X))2J(F (y|X)) dF (y|X)

1− F (Z|X)
(1−∆)

]
.

The idea is now to estimate θ0 by a minimizer θn of an empirical version of the above

quantity, namely

θn = argminθ∈Θ n−1

n∑
i=1

[
(Zi −mθ(Xi))

2J(F̂ (Zi|Xi))∆i

+

∫ ∞
Zi

(y −mθ(Xi))
2J(F̂ (y|Xi)) dF̂ (y|Xi)

1− F̂ (Zi|Xi)
(1−∆i)

]
. (2.1)
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Here, F̂ (y|x) is the nonparametric kernel estimator of the conditional distribution F (y|x)

proposed by Beran (1981) :

F̂ (y|x) = 1−
∏

Zi≤y,∆i=1

{
1− Wi(x, an)∑n

k=1 I(Zk ≥ Zi)Wk(x, an)

}
, (2.2)

(when no ties are present), where

Wi(x, an) =
K

(
x−Xi

an

)
∑n

k=1 K
(

x−Xk

an

) ,

K is a kernel function and {an} is a bandwidth sequence.

Hence, the estimation procedure for θ0 can be summarized as follows :

1. First, for fixed θ, estimate the weighted squared error (Zi−mθ(Xi))
2J(F (Zi|Xi)) of

an uncensored observation (Xi, Yi, ∆i = 1) by (Yi −mθ(Xi))
2J(F̂ (Yi|Xi)), where F̂

is defined in (2.2), and of a censored observation (Xi, Ci, ∆i = 0) by a nonparametric

estimator of E[(Y −mθ(X))2J(F̂ (Y |X))|X = Xi, Y > Ci].

2. Then, estimate θ0 by minimizing the average of the weighted squared errors obtained

under the previous step.

Although the above idea of estimating θ0 has never been considered in the present con-

text of nonlinear parametric estimation of a general location functional, similar versions

of this idea have been applied in other contexts. See e.g. Akritas (1996), who, in the con-

text of polynomial regression, first replaced all observations Zi (censored and uncensored

ones) by a nonparametric estimator m̂(Xi) of m(Xi), and then applied a classical least

squares procedure on the so-obtained ‘synthetic’ data (Xi, m̂(Xi)). His method has the

disadvantage that it is quite sensitive to the choice of the bandwidth, as the bandwidth

is playing an important role for both the censored and the uncensored data. Another

related methodology is given in Heuchenne and Van Keilegom (2007), who consider the

estimation of the conditional mean of Y given X when the relation between Y and X is

given by a nonparametric location-scale model. They also replace the censored observa-

tions by some kind of synthetic data estimated under the assumed location-scale model.

Also see Pardo-Fernández et al (2007) for a goodness-of-fit test in parametric censored

regression.

For the presentation of the asymptotic results in the next section, we need to introduce

the following notation. Let H(y|x) = P (Z ≤ y|X = x), Hδ(y|x) = P (Z ≤ y, ∆ = δ|X =
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x) (δ = 0, 1), Fε(y|x) = P (ε ≤ y|X = x) and FX(x) = P (X ≤ x). The probability

density functions of the above distribution functions will be denoted by lower case letters.

Also, let

εθ(x, z, δ, F ) =

{
δ(z −mθ(x))2J(F (z|x)) + (1− δ)

∫ +∞
z

(y −mθ(x))2J(F (y|x))dF (y|x)

1− F (z|x)

}
(where E[εθ(X, Z, ∆, F )] = E[(Y −mθ(X))2J(F (Y |X))]), which implies that the estima-

tor θn can be written as

θn = argminθ∈Θ

n∑
i=1

εθ(Xi, Zi, ∆i, F̂ ),

where F̂ is the Beran estimator defined in (2.2).

3 Asymptotic results

We start by showing the convergence in probability of θn and of the least squares criterion

function. This will allow us to develop an asymptotic representation for θnj − θ0j (j =

1, . . . , d), which in turn will give rise to the asymptotic normality of these estimators.

The assumptions used in the results below, as well as the proof of the two first results,

are given in the Appendix.

Theorem 3.1 Assume (A1), (A2) (i), (A4) (i), (iv), (v) and (A7). Moreover, assume

that J is continuously differentiable,
∫ 1

0
J(s)ds = 1, J(s) ≥ 0 for all 0 ≤ s ≤ 1, FX is two

times continuously differentiable, infx∈RX
fX(x) > 0, Θ is compact, θ0 is an interior point

of Θ, and mθ(x) is continuous in (x, θ) for all x and θ. Let

Sn(θ) =
1

n

n∑
i=1

εθ(Xi, Zi, ∆i, F̂ ).

Then

θn − θ0 = oP (1),

and

Sn(θn) = E[εθ0(X, Z, ∆, F )] + oP (1).

The next result decomposes the difference θn − θ0 into a sum of i.i.d. terms and

a negligible term of lower order. This decomposition will be crucial for obtaining the

asymptotic normality of θn.
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Theorem 3.2 Assume (A1)-(A7). Then,

θn − θ0 = Ω−1n−1

n∑
i=1

ρ(Xi, Zi, ∆i) +


oP (n−1/2)

...

oP (n−1/2)

 ,

where Ω = (Ωjk) (j, k = 1, . . . , d),

Ωjk = E

[
∂mθ0(X)

∂θj

∂mθ0(X)

∂θk

]
,

ρ = (ρ1, . . . , ρd)
T , and for any j = 1, . . . , d and i = 1, . . . , n,

ρj(Xi, Zi, ∆i) =
∂mθ0(Xi)

∂θj

{
∆i(Zi −mθ0(Xi))J(F (Zi|Xi))

+(1−∆i)

∫ +∞
Zi

(y −mθ0(Xi))J(F (y|Xi))dF (y|Xi)

1− F (Zi|Xi)

}

+fX(Xi)
∑
δ=0,1

∫
χj((Xi, z, δ), (Zi, ∆i))dHδ(z|Xi),

where the function χj is defined in the Appendix.

We are now ready to state the asymptotic normality of θn.

Theorem 3.3 Under the assumptions of Theorem 3.2, n1/2(θn − θ0)
d→ N(0, Σ), where

Σ = Ω−1E[ρ(X, Z, ∆)ρT (X, Z, ∆)]Ω−1.

The proof of this result follows readily from Theorem 3.2.

4 Summary and future research

In this paper we have proposed a new method to estimate the coefficients of a parametric

conditional location function, when the response is subject to random right censoring.

The proposed estimator is a least squares type estimator, for which the censored observa-

tions are replaced by nonparametrically imputed values. The consistency and asymptotic

normality of the estimator are established.

In the future, it would be interesting to compare the proposed method with other

estimators that have been proposed in the literature, for instance, when the conditional

location is the conditional mean. The least squares estimators obtained in this paper can
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be introduced in a test statistic to test the validity of the assumed parametric model, and

it would be interesting to work out the asymptotic theory for that test statistic. Finally,

extensions of the current work to semiparametric models (like the partial linear or single

index model) can also be worked out based on the results in this paper.

Appendix

We first introduce the following functions, which are needed in the statement of the

asymptotic results given in Section 3 :

ξ(z, δ, y|x) = (1− F (y|x))

−
y∧z∫

−∞

dH1(s|x)

(1−H(s|x))2
+

I(z ≤ y, δ = 1)

1−H(z|x)

 ,

χj(v
1, z2, δ2) =

∂mθ0(x
1)

∂θj

{[
δ1(z1 −mθ0(x

1))J ′(F (z1|x1))

+(1− δ1)

∫ +∞
z1 (y −mθ0(x

1))J(F (y|x1))dF (y|x1)

(1− F (z1|x1))2

]
ξ(z2, δ2, z1|x1)

+(1− δ1)

[∫ +∞
z1 (y −mθ0(x

1))J(F (y|x1))dξ(z2, δ2, y|x1)

1− F (z1|x1)

+

∫ +∞
z1 (y −mθ0(x

1))J ′(F (y|x1))ξ(z2, δ2, y|x1)dF (y|x1)

1− F (z1|x1)

]}
,

j = 1, . . . , d, where v1 = (x1, z1, δ1).

Let Tx be any value less than the upper bound of the support of H(·|x) such that

infx∈RX
(1−H(Tx|x)) > 0. For a (sub)distribution function L(y|x) we will use the nota-

tions l(y|x) = L′(y|x) = (∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and similar notations will

be used for higher order derivatives.

The assumptions needed for the results of Section 3 are listed below.

(A1)(i) na3
n(log n)−3 →∞ and na4

n → 0.

(ii) The support RX of X is a compact interval.

(iii) K is a density with compact support,
∫

uK(u)du = 0 and K is twice continuously

differentiable.

(iv) Ω is non-singular.
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(A2)(i) There exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ infx F (Tx|x), s0 ≤ inf{s ∈
[0, 1]; J(s) 6= 0}, s1 ≥ sup{s ∈ [0, 1]; J(s) 6= 0} and infx∈RX

infs0≤s≤s1 f(F−1(s|x)|x) > 0.

(ii) J is three times continuously differentiable,
∫ 1

0
J(s)ds = 1 and J(s) ≥ 0 for all

0 ≤ s ≤ 1.

(A3) FX is three times continuously differentiable and infx∈RX
fX(x) > 0.

(A4)(i) L(y|x) is continuous,

(ii) L′(y|x) = l(y|x) exists, is continuous in (x, y) and supx,y |yL′(y|x)| < ∞,

(iii) L′′(y|x) exists, is continuous in (x, y) and supx,y |y2L′′(y|x)| < ∞,

(iv) L̇(y|x) exists, is continuous in (x, y) and supx,y |yL̇(y|x)| < ∞,

(v) L̈(y|x) exists, is continuous in (x, y) and supx,y |y2L̈(y|x)| < ∞,

(vi) L̈′(y|x) exists, is continuous in (x, y) and supx,y |yL̈′(y|x)| < ∞,

for L(y|x) = H(y|x) and H1(y|x).

(A5) For the density fX|Z,∆(x|z, δ) of X given (Z, ∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| < ∞, supx,z |f̈X|Z,∆(x|z, δ)| < ∞ (δ = 0, 1).

(A6) Θ is compact and θ0 is an interior point of Θ. All partial derivatives of mθ(x) with

respect to the components of θ up to order three exist and are continuous in (x, θ) for all

x and θ.

(A7) The function E[(Y −mθ(X))2J(F (Y |X))] has a unique minimum in θ = θ0.

Proof of Theorem 3.1. We prove the consistency of θn by verifying the conditions of

Theorem 5.7 in van der Vaart (1998, p. 45). From the definition of θn and condition (A7),

it follows that it suffices to show that

sup
θ
|Sn(θ)− S0(θ)| →P 0, (A.1)

where S0(θ) = E[(Y − mθ(X))2J(F (Y |X))] = E[ε2J(Fε(ε|X))]. The second statement

of Theorem 3.1 then follows immediately from (A.1) together with the consistency of θn.

(A.1) is obtained by using (A2), the uniform consistency of the Beran (1981) estimator

(given in Proposition A.3 of Van Keilegom and Akritas (1999)) and Theorem 2 of Jennrich

(1969). 2
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Proof of Theorem 3.2. For some θ1n between θn and θ0,

θn − θ0 = −
{

∂2Sn(θ1n)

∂θ∂θT

}−1
∂Sn(θ0)

∂θ
= −R−1

1n R2n.

First, we treat R2n.

R2nk = − 2

n

n∑
i=1

∂mθ0(Xi)

∂θk

{
∆i(Zi −mθ0(Xi))J

′(F (Zi|Xi))(F̂ (Zi|Xi)− F (Zi|Xi))

+(1−∆i)

[∫ +∞
Zi

(y −mθ0(Xi))J
′(F (y|Xi))(F̂ (y|Xi)− F (y|Xi))dF (y|Xi)

1− F (Zi|Xi)

+

∫ +∞
Zi

(y −mθ0(Xi))J(F (y|Xi))dF (y|Xi)

(1− F (Zi|Xi))2
(F̂ (Zi|Xi)− F (Zi|Xi))

+

∫ +∞
Zi

(y −mθ0(Xi))J(F (y|Xi))d(F̂ (y|Xi)− F (y|Xi))

1− F (Zi|Xi)

]}

− 2

n

n∑
i=1

∂mθ0(Xi)

∂θk

{
∆i(Zi −mθ0(Xi))J(F (Zi|Xi))

+(1−∆i)

∫ +∞
Zi

(y −mθ0(Xi))J(F (y|Xi))dF (y|Xi)

1− F (Zi|Xi)

}
+ oP (n−1/2)

= R21nk + R22nk + oP (n−1/2),

k = 1, . . . , d. Developing R21nk leads to

R21nk = − 2

n2an

∑
i6=j

K
(Xi −Xj

an

)
χk(Vi, Zj, ∆j) + oP (n−1/2),

where Vi = (Xi, Zi, ∆i). Next, we rewrite R21nk as

R21nk =
−2

n2an

∑
i6=j

{A∗
k(Vi, Vj) + E[Ak(Vi, Vj)|Vi] + E[Ak(Vi, Vj)|Vj]− E[Ak(Vi, Vj)]}

+oP (n−1/2)

= T n
1,k + T n

2,k + T n
3,k + T n

4,k + oP (n−1/2),

where

Ak(Vi, Vj) = K
(Xi −Xj

an

)
χk(Vi, Zj, ∆j)
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and A∗
k(Vi, Vj) = Ak(Vi, Vj)−E[Ak(Vi, Vj)|Vi]−E[Ak(Vi, Vj)|Vj] + E[Ak(Vi, Vj)]. Consider

E[Ak(Vi, Vj)|Vi]

=
∑
δ=0,1

∫ ∫
χk(Vi, z, δ)K

(Xi − x

an

)
hδ(z|x)fX(x) dz dx

= an

∑
δ=0,1

∫ ∫
χk(Vi, z, δ)K(u)(hδ(z|Xi)− anuḣδ(z|Xi) + O(a2

n))

×(fX(Xi)− anuf ′X(Xi) + O(a2
n)) dz du

= anfX(Xi)
∑
δ=0,1

∫
χk(Vi, z, δ)hδ(z|Xi) dz + O(a3

n) = O(a3
n) (A.2)

for i = 1, . . . , n, since ∑
δ=0,1

∫
ξ(z, δ, y|x)hδ(z|x)dz = 0

for all x ∈ RX and y ≤ Tx. Hence, we also have E[Ak(Vi, Vj)] = O(a3
n). In a similar way,

using three Taylor expansions of order 2, we get

E[Ak(Vi, Vj)|Vj] = anfX(Xj)
∑
δ=0,1

∫
χk((Xj, z, δ), (Zj, ∆j)) dHδ(z|Xj)

+O(a3
n). (A.3)

Note that for T n
1,k, E[T n

1,k] = 0, resulting, by Chebyshev’s inequality, in

P (|T n
1,k| > K(nan)−1) ≤ K−2(nan)2E[(T n

1,k)
2]

= 4K−2n−2
∑
j 6=i

∑
m6=l

E[A∗
k(Vi, Vj)A

∗
k(Vl, Vm)],

for any K > 0. Since E[A∗
k(Vi, Vj)] = 0, the terms for which i, j 6= l,m are zero. The

terms for which either i or j equals l or m and the other differs from l and m, are also

zero, because, for example when i = l and j 6= m,

E[A∗
k(Vi, Vj)E[A∗

k(Vi, Vm)|Vi, Vj]] = 0.

Thus, only the 2n(n − 1) terms for which (i, j) equals (l,m) or (m, l) remain. Since

A∗
k(Vi, Vj) is bounded by CK(

Xi−Xj

an
) + O(an) for some constant C > 0, we have (in the

case (i, j) equals (l,m)) that

E[A∗2
k (Vi, Vj)] ≤ C2an

∫
f 2

X(x) dx

∫
K2(u) du + O(a2

n) = O(an).
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The case (i, j) equals (m, l) is treated similarly. It now follows that

T n
1,k = oP (n−1a−1

n ), (A.4)

which is oP (n−1/2). By (A.2), (A.3), (A.4), we finally obtain

R21nk = − 2

n

n∑
i=1

∑
δ=0,1

∫
χk((Xi, z, δ), (Zi, ∆i))fX(Xi)dHδ(z|Xi)

+oP (n−1/2), k = 1, . . . , d.

Finally, we treat the term R1n.

R1n = − 2

n

{
n∑

i=1

[
∆i(Zi −mθ1n(Xi))J(F̂ (Zi|Xi))

+(1−∆i)

∫ +∞
Zi

(y −mθ1n(Xi))J(F̂ (y|Xi))dF̂ (y|Xi)

1− F̂ (Zi|Xi)

]
∂2mθ1n(Xi)

∂θ∂θT

−
n∑

i=1

[
∆iJ(F̂ (Zi|Xi)) + (1−∆i)

∫ +∞
Zi

J(F̂ (y|Xi))dF̂ (y|Xi)

1− F̂ (Zi|Xi)

]

×
(∂mθ1n(Xi)

∂θ

)(∂mθ1n(Xi)

∂θT

)}
= R11n(θ1n, F̂ ) + R12n(θ1n, F̂ ).

Using the uniform consistency of the Beran (1981) estimator together with (A6), it is

clear that

R11n(θ1n, F̂ ) + R12n(θ1n, F̂ ) = R11n(θ0, F ) + R12n(θ0, F ) + oP (1).

Since E[R11n(θ0, F )] = 0 and

E[R12n(θ0, F )] = 2E
[(∂mθ0(X)

∂θ

)(∂mθ0(X)

∂θT

)]
,

we obtain that

R1n = 2E
[(∂mθ0(X)

∂θ

)(∂mθ0(X)

∂θT

)]
+ oP (1).

This finishes the proof. 2
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