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Abstract

Several authors have proposed mechanical models to predictlong term tooth movement consid-
ering both the tooth and its surrounding bone tissue as isotropic linear elastic materials coupled
to either an adaptative elasticity behavior or an update of the elasticity constants with density
evolution. However, tooth movements obtained through orthodontic appliances result from a
complex biochemical process of bone structure and density adaptation to its mechanical envi-
ronment, called bone remodeling. This process is far from linear reversible elasticity. It leads
to permanent deformations due to biochemical actions. The proposed biomechanical constitu-
tive law, inspired from [1], is based on a elasto-viscoplastic material coupled with Continuum
isotropic Damage Mechanics ([1] considered only the case ofa linear elastic material coupled
with damage). The considered damage variable is not actual damage of the tissue but a measure
of bone density. The damage evolution law therefore impliesa density evolution. It is here for-
mulated as to be used explicitly for alveolar bone, whose remodeling cells are considered to be
triggered by the pressure state applied to the bone matrix. A2D model of a tooth submitted to
a tipping movement is presented. Results show a reliable qualitative prediction of bone density
variation around a tooth submitted to orthodontic forces.

Key words: biomechanics, bone remodeling, orthodontics, damage/repair model, continuum
damage mechanics, elastoplasticity

1. Introduction

One of the guiding principles in orthodontics is to gradually impose progressive and irre-
versible bone deformations. By optimizing load positions and intensities, treatment can be re-
duced both in time and cost. This optimization requires a mechanical model of the biochemical
phenomena involved and the activated dental movement. The goal of this work is to provide a
constitutive model able to simulate those coupled phenomena.

Dental movement is achieved through a biochemical process of skeletal adaptation to me-
chanical stimuli called bone remodeling, controlled by bone cells and first described by Wolff in
1892 [2] (as cited in [3] among others). Therapeutic forces applied through orthodontic appli-
ances change the physiological equilibrium. Loading of theskeletal system is altered and bone
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remodeling cells are triggered to modify the bone shape and density in order to achieve a new
equilibrium and adjust the stress level. This state will be maintained until new mechanical exter-
nal conditions trigger new remodeling events. Beyond this remodeling process due to a change
of external conditions, a physiological remodeling process also exist. Its function is to maintain
bone cells in use and to ensure a relatively high turn-over ofthe tissue. To distinguish between
these two processes, the first one is often referred as bone modeling or external remodeling and
the second as bone (internal) remodeling. However, within the orthodontics literature, the des-
ignation “remodeling” is used for both processes ; one wouldread [4] for a discussion about
the paradigm it causes. The word “bone remodeling” will be here used for the process due to
external mechanical events. Internal remodeling is not modeled in this work. We consider, as
a simplifying assumption, that its function is to renew the cells with no alteration of the overall
bone mechanical properties.

For most types of bones, remodeling processes take place in order to adjust the amount
of tissue and its topology according to long term loading conditions, following what is called
“Wolff’s law” of bone adaptation [5, 6, 7]. Bone resorption occurs when disuse is observed. This
resorption tends to decrease the amount of bone where it is ofno mechanical relevance. Bone
apposition occurs in overloaded conditions, in order to reinforce bone where it is necessary.
The bone therefore adapts its density in such a way to achievean homeostatic state of stresses.
Besides the density change, remodeling also occurs to change the bone topology, mainly in
trabecular tissue for which the trabeculae tend to align along the principal stress directions. Bone
remodeling therefore depends not only on the stresses intensity but also on their direction.

Contrary to the majority of bones, alveolar bone remodelingseems on a macroscopic scale
to depend mainly on the pressure state [4, 8, 9]. One can indeed observe apposition on the
tension side of a tooth when loaded with an abnormal mechanical environment, such as the one
obtained with orthodontics appliances, as well as resorption on the compression side. The actual
biomechanical processes causing such a difference is not quite clear and uniformly accepted
among biology and biochemistry literature (see discussions in [7, 10, 11]). To model these
processes, several authors do not consider non linearitiesof the bone. Some focus only on
the initial tooth mobility and extrapolate their results with an adaptative elasticity framework
as described in [3] or a density update [4, 12] or another built-in remodeling law applied as
a second step to the finite element computation [8, 13, 14]. Others focus on the periodontal
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ligament (PdL) non linear response [15, 16, 17, 18, 19]. Its non linearity and different behaviors
in traction and compression leads to opposite loading conditions of the bone on each side of
the tooth. The compressive side of the tooth would cause underuse of the bone and therefore
resorption while the traction side would get overuse and apposition. However, when no non-
linearities are considered in the PdL, no difference in the stress level on both side of a tooth
can be observed. A non pressure dependent remodeling law used for the alveolar bone would
therefore lead either to apposition or to resorption on bothsides.

Instead of focusing on the PdL response, the present work concentrates on the bone behavior
during remodeling. We assume the pressure state (positive or negative) of the bone matrix as
the key stimulus to differentiate apposition and resorption in overloaded conditions. This can be
justified as follows. The cell supply needed for bone remodeling is performed by the vasculature,
however, the alveolar bone main cell supply is done through the periodontal ligament. As this
membrane’s stiffness is much less than the surrounding tissue’s, the strain level is high. If the hy-
drostatic stress level is higher than the blood vessels’internal pressure, the blood flow is stopped
as well as the remodeling cell supply to the bone. The remodeling process is therefore triggered
by the PdL pressure and stopped when these stresses are too high. We therefore assume that it is
the same stimulus which is responsible for the differentiation between apposition and resorption
as well as for the triggering of the phenomenon.

Within the diverse approaches that have been adopted to model bone remodeling processes,
most of them are qualified as phenomenological models. Theseare models that do not try to
predict the evolution of the microstructure and biologicalconstitution of a tissue or an organ
as a consequence of the mechanical environment (contrary toMechanobiological models) but
whose goal is to predict the mechanical behavior (movement,strains and stresses) of a tissue or
an organ, taking into account the applied loads, its microstructure and the constraints imposed
by other organs. Most of these models admit the existence of acertain mechanical stimulus
(input) that produces bone apposition or resorption (output) in such a way that the stimulus tends
to a given physiological level in the long-term (homeostasis). Among these phenomenological
models, the definition of a remodeling stimulus uses a wide range of mechanical measures :
stresses, strains, strain energy density, strain rate or even damage.

The original model which is proposed in this work is built on adamage/repair based model,
which is therefore a phenomenological model, stated first byDoblaŕe and co-workers [1, 20].
This model has been chosen as a working framework because it is one of the few models whose
stimulus variation is justified through thermodynamical concepts of continuum mechanics. It
is here extended and enhanced in order to be used for the alveolar bone and therefore it takes
into consideration the pressure state of the tissue as one ofthe stimuli for bone remodeling. It is
also coupled to an elasto-viscoplastic material behavior in order to capture permanent strains of
the tissue. The proposed model can therefore be used to represent permanent irreversible tooth
displacement and alveolar bone deformation due not only to remodeling but also to permanent
deformation of the bone (and therefore plasticity-like, although it is clear that the relevant inelas-
tic process is different from that of the classical metal plasticity). It can also be used to describe
a fracture process with a plasticity-like yield function tomodel the envelope of bone failure. The
main originalities with respect to [1] are therefore, first,an extension for alveolar bone pressure
dependency of the remodeling rate and, second, a finite strain framework within which the model
is written, allowing for the use of a elasto-plastic model for the bone matrix.
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2. Material and Methods

Based on physical experiments [21], one can show that remodeling occurs to modify the
bone density proportionately to the bone matrix density,ρ0 and as a function of a remodeling

rate
•

r [mm/s],
•

ρ= kSvρ0
•

r (1)

The termskSv accounts for the available bone specific surface area (Sv, internal surface area per
unit volume, related to the density, [mm2/mm3]) as defined in [22].

This remodeling rate,
•

r, is shown [21, 23, 24, 25] to be a non-linear function of the deviation
from a given mechanical stimulus (ψ, a daily stimulus at tissue level function of the strain energy)
from an homeostatic value (ψ⋆). The remodeling process thus tends to reduce this deviation.
This model, known as the Stanford model, considers that the bone tissue needs a certain level of
mechanical stimulus to maintain homeostasis and auto-regulates itself to maintain such a level.
The remodeling rate also takes into consideration the existence of a lazy zone (width of 2ω)
within which no remodeling is achieved (Fig. 2). The actual existence of this lazy zone is a
concept which is not uniformly accepted among the biological community. Some people do
seem to believe that this zone has been introduced by the numerical community for convergence
purpose more than for actual biological reasons.

Once the density variation is computed, the bone Young’s modulus is updated according to
density using a classical law based on experimental observations as proposed in [26] :

E = B(ρ)ρβ(ρ) (2)

with B = 2014 ;β = 2.5 : if ρ ≤ 1.2 g/cc andE expressed inMPa
B = 1763 ;β = 3.2 : if ρ ≥ 1.2 g/cc andE expressed inMPa

Doblaŕe and co-workers [1, 20] modified this model so as to formulateit within a Continuum
Damage Mechanics approach but limited to small strains elasticity for the bone matrix. We here
extend the use of such a family of materials model to finite strains of the bone matrix. The use
of the continuum damage theory allows to define independently the internal variables such as
density and mechanical properties. It is therefore an improvement of the extension of [21] which
was proposed in [25]. Indeed, in [25], Jacobs and co-workersused a global optimization function
to define the remodeling stimulus and therefore the internalvariables were not independent. Even
though the continuum damage formulation solves this difficulty, Doblaŕe and co-workers limited
their approach in [1] to an elastic bone matrix as was done in [3]. Therefore, they are limited to
low strain levels, which is not the case here.

4



We propose to extend the model described in [1] to a much more generalized mechanical
behavior of the bone matrix, considering it as an elasto-viscoplastic material, mandatory in order
to effectively predict long term tooth movement. This model is also adapted to account for an
explicit pressure dependence of the remodeling rate in the alveolar bone which, as explained in
the introduction, has a different behavior in overloaded traction and compression thatcannot be
represented by the remodeling rate used in [1].

In order to couple continuum damage and plasticity, the use of a strain equivalence approach,
relating the stress level in the damaged material (σ) with the stress in the undamaged material
(effective stress,̃σ) that leads to the same strain, is chosen [27]. This approachkeeps the physical
definition of damage as related to the surface density of defects. In [1], Doblaŕe and co-workers
used the energy equivalence approach, relating the stress level in the damaged material with
the stress in the undamaged material that leads to the same strain energy, therefore loosing the
relation to the surface density of defects. This choice allows to couple plasticity to damage by
assuming an additive decomposition of the strain rate (D) in its elastic (Del) and non-elastic (Dpl)
parts and expressing the plastic criterion in term of effective stresses instead of stresses which
cannot be done with an energy equivalence approach.

The proposed model therefore uses the following set of equations :

damage parameter :d (3)

effective stress :̃σ =
σ

(1− d)
(4)

strain rate :D = Del + Dpl (5)

constitutive law :
▽

σ̃ = ℂ0 : (D − Dpl) (6)

damage variation :
•

d = f (d,σ,
•

r , ρ0) (7)

with d a normalized scalar damage variable,ℂ0 Hooke’s tensor for the undamaged material and
where the▽ sign accounts for an objective time derivative.

Stress and strain rate tensors are energy conjugated in order to be adequately used in a large
deformation framework. The constitutive law (Equ.6) expresses that the effective stress rate is
proportional to the elastic part of the strain rate through Hooke’s tensor. The viscoplastic part
of the strain rate is computed according to a given plastic criterion f < 0, function of a scalar
representation of the effective stress ( ˜σeq) and a boundary that this equivalent stress cannot cross
(σcrit , accounting for the yield stress and viscous effects, see [28] for details):

f = σ̃eq− σcrit (8)

This set of equation is integrated in a finite element framework according to an iterative “stag-
gered scheme” (see [29] for details on the method) :

• Stresses are first computed at constant damage value as follows : strains are updated ac-
cording to the initial state of stresses, strain and damage and with updated loading condi-
tions. An elastic predictor for stresses is therefore computed according to Hooke’s law. A
plastic correction is computed in an iterative scheme if necessary. This correction is calcu-
lated through the normality rule on the plastic criterion (associated plasticity) expressed in
term of effective stresses. One can show that the normal to the plastic criterion expressed
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in term of effective stresses is equivalent to the normal to the criterionif it was expressed in
terms of stresses, and is therefore proportional to the deviatoric part of the elastic predictor
(s̃el) :

N =

∂ f
∂σ
∥

∥

∥

∥

∥

∂ f
∂σ

∥

∥

∥

∥

∥

=

∂ f
∂σ̃
∥

∥

∥

∥

∥

∂ f
∂σ̃

∥

∥

∥

∥

∥

=
s̃el
∥

∥

∥s̃el
∥

∥

∥

(9)

• Once convergence of stresses at constant damage is achieved, damage is updated according
to the effective stresses and plastic strains and following the damage evolution law (Equ.7).

• The elastic predictor for stresses is finally reevaluated with the new damage value, with
iterations up to convergence of damage.

The yield criterion used here for the bone is the Von Mises criterion. This assumes that
only shear stresses are responsible for plastic strains. Asboth remodeling triggering and damage
variation are function of the pressure value, this assumption may be too restrictive. However, as
no data is available to us on bone behavior at plasticity, we will base our study on this restrictive
hypothesis.

In the case of bone remodeling, as proposed in [1], damage canbe understood as a measure of
the void volume fraction inside the bone tissue. Equ.(1) cantherefore be formulated as a damage
variation function. The damage concept used is therefore purely virtual and is actually a measure
of the evolving bone density. There is no actual damage in thetissue, only a variation of density.
The undamaged material is the ideal situation of bone with null porosity and perfect isotropy
therefore representing fully mineralized bone. Clearly, this situation can be considered isotropic
on a macroscopic level. A fully resorbed bone would have a damage value of one. However, this
situation cannot strictly be treated only within the continuum damage mechanics framework as
the effective stress would be undetermined. The process of bone resorption corresponds to the
classical damage evolution concept, since it increases thevoid fraction (porosity) and therefore
damage (decreases the density). However, bone apposition can reduce damage and lead to bone
repair, which has to be adequately considered in this extended damage theory. Damage repair
can be considered here because the total energy dissipationincludes biological dissipation due
to metabolism on top of the mechanical dissipation which is negative for damage repair.

In analogy with plasticity, a remodeling stimulus is identified with the variable thermody-
namically associated with damage. One can therefore, as in [1], establish two damage criteria,
go and gu, representing the domain of the remodeling stimulus for which damage is not modified
(the lazy zone) both for overuse and underuse.

{

go = U − (1+ Ω)U⋆ < 0
gu = 1/U − 1/((1−Ω)U⋆) < 0

(10)

These criteria depend onU, as expressed in Equ.(11), function of a strain energy density as
well as the density and the number of cycles considered (n) for the applied loads, andU⋆, as
expressed in Equ.(13), a reference homeostatic value ofU. They are consistent with Beaupré
and Carter’s approach [21] if we relateψ to U, ψ⋆ to U⋆ andω toΩ, the normalized width of the
lazy zone.

U(d, σ̃) = n1/4
√

B(d)ρ2
0ρ
−β/8
√

3ū(σ̃) (11)
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with β andBdefined in Equ.(2) and ¯u, the effective elastic energy density (as also defined in [27]).
Using an isotropic elastic undamaged material reduces Hooke’s tensor to two parametersE and
ν, Young’s modulus and Poisson’s ratio. The effective elastic energy density, accounting for the
stress triaxiality, is therefore written as :

ū(σ̃) =
J̃2

2

2E













2
3

(1+ ν) + 3(1− 2ν)
p̃2

J̃2
2













(12)

with J̃2 =

√

3
2

ˆ̃σi j ˆ̃σi j =
1

1− d

√

3
2
σ̂i j σ̂i j ; σ̂ = dev(σ)

U⋆(d) = ψ⋆ρ2−5β/8 (13)

Using consistency conditions and Equ.(1), one can express the damage variation as propor-
tional to a remodeling rate such as the one proposed by the Stanford group [21, 25, 26] and
presented in Fig. 2. We can therefore retrieve Equ.(14) by combining Equ.(1), Equ.(2) as well as
the damage definition used in a strain equivalence approach Equ.(6).

•

d= −βkSv
•

r
ρ0

ρ
(1− d) (14)

As stated previously in the introduction of this paper, Stanford’s remodeling rate cannot
be applied to alveolar bone if no PdL nonlinearities are considered. In accordance with the
observation of a pressure dependent phenomenon, the remodeling rate definition is modified
(Fig. 3, Equ.(15)) taking into account the pressure state. This new rate is thus given by :

•

r=







































cf go if go ≥ 0, gu < 0 and p > 0

−crgo if go ≥ 0, gu < 0 and p < 0

0 if go < 0, gu < 0

−crgu if gu ≥ 0, go < 0

(15)

wherecr andcf are two remodeling constants respectively for bone formation and bone resorp-
tion, p is the pressure (positive in tension) andgo andgu are the remodeling criteria (same units as
the one of stresses) respectively for bone overload and boneunderload used in [1] and expressed
for a strain equivalence approach in continuum damage mechanics as in Equ.(10). For numerical
purpose, the differentiation between formation and resorption whengo ≥ 0 is not exactly atp = 0
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but atp = ±δp≪ 1. A linear regression of the coefficients (cr , cf ) betweenp = −δp andp = δp
is used.

As stated earlier, damage evolution is proportional to the specific surface,Sv as defined in
[22]. It is written as a 5th order polynomial of the porosity and is null for null porosity as well
as for full porosity (f = 1.0). This specific surface is introduced in order to take into account the
necessity of a bone surface to exist for bone remodeling cells to act. Its presence in the damage
variation law has therefore a biological justification but also serves a numerical purpose. Using
this specific surface will decrease substantially the convergence problem that would arise when
reaching high damage values. Indeed, the effective stress definition of the continuum damage
theory in a strain equivalence approach can be written for anisotropic damage variable,d, as
Equ.(6). Therefore when obtaining a damage variable equal to 1.0 (full resorption of the bone),
the model cannot be used anymore. Yet, this will tend not to happen in the model because
when reaching the critical value, the damage variation decreases to zero. However, the damage
variation for high damage values can be high, due to the infinite limit value of the remodeling
rate. It also has to be noticed that for an initial null bone porosity, there will be no damage
creation, because of the zero value of the specific surface atthat point. This would mean that a
fully mineralized bone could not be resorbed.

Using a continuum damage approach as well as Equ.(2), one canget for both types of bone
(trabecular and cortical bone), usingρ0 = 2.1g/cc (and thereforeE0 = 18.9GPa) for the fully
mineralized bone :

Density Stiffness Damagea Porosityb

ρ[g/cc] E[GPa] d f
Trabecular bone 1.15 → 2.9 0.85 0.45
Cortical bone 1.99 → 16.1 0.15 0.05

Table 1: Bone stiffness, damage and porosity as a function of density, for an isotropic material

aDamage is calculated from stiffness as :d = 1− E/E0.
bPorosity is calculated from density as :f = 1− ρ/ρ0.

For given stresses and initial density,ρ0, damage variation with damage can be expressed
for both formation and resorption stimuli, as in Fig. 4. Results will nevertheless depend on the
law parameters, asn, ψ (actually only the ratio ψ

n1/4 has an influence on the variation, their values
have just a stretching impact) andΩ. As damage variation is positive for resorption and negative
for formation when the pressure is positive, we can detect inFig. 4 different remodeling zones
as well as the lazy zone as a function of damage. As expected, damage variation for values
of damage close to 1.0 tend to high (negative) values but is reduced to zero for full damage
(not shown in the figure). In resorption, although the remodeling rate increases (in absolute
value) for a damage decay, damage variation does not reach high values due to the tendency of
the surface density to decrease faster than the remodeling rate increases. The discontinuity of
damage variation for damage values of about 0.83 is due to the slight discontinuity introduced
by Equ.(2) in the definition of bone Young’s modulus.

The presented bone remodeling model has been implemented inMetafor [30], a home-made
finite element software as a new constitutive law. Once the remodeling model has been formu-
lated, we need to check its ability to achieve qualitative results close to the ones obtained in
experimental testing of actual alveolar bone. This is accomplished in the next section in which
the model is applied to study the remodeling behavior of the alveolar bone in the case of or-
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thodontic treatments.
As an example, we present a 2D model of a tooth surrounded by its parodontal tissue, on

the crown of which a pressure load is applied in the vestibulo-lingual direction. The aim is to
predict the bone density and its evolution from an initial ideal situation (isotropic material with
uniform density distribution) when loaded by forces that characterize orthodontic appliances such
as brackets. As the loading applied by the use of orthodonticappliances is considered to be an
homogeneously distributed pressure force on the vestibular face of the crown, it would produce
a tipping movement of the tooth in the vetibulo-lingual direction. Neither this problem nor the
starting situation are “real” problems, therefore the homeostatic values are not relevant. The
tooth geometry is idealized, with a parabolic root surrounded by a constant thickness periodontal
ligament as well as trabecular and cortical bone. The 2D discretization used here is shown in
Fig. 5. The root is 12mmhigh and 6mmwide at the collar. The crown is 7mmhigh, the PdL’s
thickness is constant and of 0.2mm. It is surrounded by a trabecular bone of variable thickness
and a cortical layer of about 0.5mm width. The tooth and the PdL mechanical behavior are
linear elastic (Etooth ≈ 20GPa, νtooth = 0.3, EPdL = 0.6MPa, νPdL = 0.45). The cortical layer
as well as the trabecular bone mechanical behavior is elasto-plastic with a continuum damage
model (Young’s modulus as in Table 1 and Poisson’s ratio of 0.3). The damage evolution follows
the remodeling law proposed in this work. Finite Element analysis is performed, using finite
strains code Metafor [30], considering a plane strain stateas well as a quasi-static analysis. The
basal bone junction is fixed in both vertical and horizontal directions. The mesh is composed
of 2670 nodes and 2600 linear quadrangular elements, 60% of which is trabecular bone, 25%,
tooth (crown and root) and the remaining 15% is equally distributed among PdL and cortical
bone. The element sizes result in the choice of a mesh densityditribution so that element are

9



LABIAL SIDE

Tooth

PDL

Alveolar
Bone

Cortical
Bone

F
CROWN

ROOT

Figure 5: Tooth and surrounding tissue - mesh and geometry

smaller in the region of interest (i.e. PdL and closest surrounding tissue) than in the rest of the
model, especially the crown and root as it is almost rigid compared to other tissues. Loading is
performed using two levels of pressure value (corresponding to 1.0N and 2.0N force) as well as
a different set of remodeling constants (see Table 2).

Force cr = cf cr , cf

[µm/day] [µm/day]
(case 1) : 1N 2.0 0.4, 4.0
(case 2) : 2N 1.0 0.2, 2.0

Table 2: Remodeling constants used for trabecular bone

3. Numerical results

In this section we consider the potential of the pressure dependent model to predict the den-
sity evolution of alveolar bone tissue on the case presentedearlier.

The obtained tooth movement is a rotation around a center of rotation situated at one third
of the root length starting from the apex for small loads and one fifth for higher loads. This
corresponds to what is exposed in the literature about tipping movement of a tooth (see [14]
among others). The rotation angle is almost null for small forces, corresponding to initial tooth
mobility, while it reaches about 1.5 degrees for higher forces. For the later situation, if the
whole movement was a rigid rotation around the same center ofrotation, one could expect a
displacement of−.1mmhorizontally and±.04mmvertically at the collar. However, as the bone
is fixed at its base and as the rotation leads to deformation ofthe periodontal ligament as well as
the bone, the movement actually observed leads to smaller displacements at the collar.

The initial tooth mobility depends only on the applied load and not on the remodeling model
used. However the possibilities of long term tooth movementdue to bone density change varies
strongly with the type of model used (1 constant or 2 constants model) as well as with the
homeostatic valueψ⋆ and the number of cycles considered. When using the same remodeling
constant for both resorption and formation, one does not exactly get symmetric values for damage
variation (Fig. 6, top row) because of its dependence on the damage value (Fig. 4). In the case
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Figure 6: Damage variation at the apex for a pressure dependent model - both for the compression side for whichcr is
used (plain line) and the traction one for whichcf is used (dashed line).
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Figure 7: Stimulus variation at the apex for a pressure dependent model - both for the compression side for whichcr is
used (plain line) and the traction one for whichcf is used (dashed line).

of two different remodeling constants (Fig. 6, bottom row), the one used in resorption,cr , is the
restrictive one because it is the one increasing the damage value. Its value is restrained so that the
damage value cannot reach 1.0. The constant used in formation, cf , can be increased almost at
will (as long as numerical convergence is concerned, not on abiological point of view). However,
if it is too high, the effective stiffness will increase, so will the stress. The stress state around
the apex will be modified and affect the resorption side as well (with a tendency to increase the
resorption).

Damage variation at the collar level is much less than at the apex or along the root for all
simulations and on both sides of the root main axis. Indeed the tipping movement leads to smaller
shear and hydrostatic stresses at the collar than along the root (Jcollar

2 ≈ 1MPa, Jroot
2 ≈ 3MPa,

pcollar
≈ 0.2MPa, proot

≈ 1− 3MPa). It also gives a ratio hydrostatic stress to shear stress of0.2
at the collar while it is of around 1 to 3 along the root. Therefore, the value of ¯u is smaller at the
collar than along the root (see Equ.(12)). The remodeling rate is also smaller because even tough
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(a) case 1,cr = cf (b) case 1,cr , cf (c) case 2,cr , cf

Figure 8: Alveolar bone damage. For comparison purpose, damageinterval has been set from .5 to .9 but lowers to 0.1
both in case (b) and (c) as shown in Fig. 9 (a) and (b) respectively.

reducingū reducesU, its value stays above its homeostatic valueU⋆ and overloaded conditions

are still observed at the collar.
•

r is therefore reduced and so is damage variation.
Concerning the stress state of the periodontal ligament, itis interesting to notice that the

hydrostatic stresses are several times higher in magnitudethan the shear stresses (up to 8 times
for low forces). For the lower applied load, the later ones vary from 0 to 0.025MPa along the
tooth root (highest values reached at the collar) while the hydrostatic stresses’range goes from 0
to 0.2MPa both in compression and traction (highest values reached atthe level of the center of
rotation position). The pressure is as expected the key stress in the PdL.

Qualitatively analyzing the results of this model, one can see (as in Fig. 8 and 9), as can be
expected of an orthodontic treatment, that while higher loads lead to higher initial displacement,
density variation of the bone can be observed only in the apexregion while it is observed on
the entire length of the root for smaller loads. For a given vertical position, while overloaded
conditions are kept for all simulations, one can see apposition on one side (reduction of mean
damage) and resorption on the other (increase of mean damage) of the root. As the remodeling
law has been built so, one can see that the bone gets resorbed on the compression side and formed
on the traction one along the root but also along the corticallayer when high displacements are
obtained (as in Fig. 8-(c) and 9-(b)).

4. Conclusion

The present study introduces a numerical model for the simulation of orthodontic tooth move-
ment based on the assumption that bone remodeling processesduring tooth movement are con-
trolled by elastic energy density as well as pressure state of the alveolar bone. The model is built

12



(a) case 1,cr , cf (b) case 2,cr , cf

Figure 9: Alveolar bone damage - extending damage interval in Fig. 8-(b) and (c)

on a damage-repair law proposed by Doblaré and co-workers. This model has been chosen as
a working framework because it is one of the few models whose stimulus variation is justified
through thermodynamical concepts of continuum mechanics.It identifies the bone voids with
the cavities or microcracks of other material damage models, but changes some of the standard
assumptions to adapt it to the special requirements of living tissues, especially the possibility of
decreasing the damage level (repair) by providing the required metabolic energy [1]. It also con-
siders the different behavior with respect to damage criteria where damageincreases in low stress
regions. Its main drawback is the elastic character of the bone matrix which therefore does not
include permanent strains of the matrix as a possible mechanism to get irreversible movements
of a tooth in its socket.

We therefore propose an enhanced model to be used in a finite strain framework and for
the specificities of alveolar bone remodeling. We assume forthe bone matrix a generalized
material model and considered it to be elasto-viscoplastic. The coupling of plasticity and damage
is obtained using a strain equivalence approach for the effective state in a continuum damage
framework. The model can therefore be used to predict long term tooth movement due both to
remodeling and permanent strains of the bone matrix. The pressure dependency of alveolar bone
remodeling is also treated, proposing a new remodeling rate. This model has been implemented
in a in-house finite strains FE code, Metafor, as a new material law.

We also consider the potential of this pressure dependent model to predict the density evolu-
tion of alveolar bone tissue on 2D representation of a tooth submitted to orthodontic appliances.
In spite of the necessary idealizations, a reliable qualitative prediction of bone density varia-
tion around the tooth is possible for porosity variations from 0% (null damage) to almost 70%
(damage of 0.95), starting from an homogenized porosity of 45%.
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