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Abstract

Several authors have proposed mechanical models to ptedgcterm tooth movement consid-
ering both the tooth and its surrounding bone tissue asoigiatiinear elastic materials coupled
to either an adaptative elasticity behavior or an updatdefeiasticity constants with density
evolution. However, tooth movements obtained throughaaitimtic appliances result from a
complex biochemical process of bone structure and dend#ptation to its mechanical envi-
ronment, called bone remodeling. This process is far fravedi reversible elasticity. It leads
to permanent deformations due to biochemical actions. Topgsed biomechanical constitu-
tive law, inspired from [1], is based on a elasto-viscoptastaterial coupled with Continuum
isotropic Damage Mechanics ([1] considered only the case lofear elastic material coupled
with damage). The considered damage variable is not actmahde of the tissue but a measure
of bone density. The damage evolution law therefore img@idensity evolution. It is here for-
mulated as to be used explicitly for alveolar bone, whoseodsting cells are considered to be
triggered by the pressure state applied to the bone matrD Anodel of a tooth submitted to
a tipping movement is presented. Results show a reliablitafivge prediction of bone density
variation around a tooth submitted to orthodontic forces.

Key words: biomechanics, bone remodeling, orthodontics, darfiegair model, continuum
damage mechanics, elastoplasticity

1. Introduction

One of the guiding principles in orthodontics is to gradpathpose progressive and irre-
versible bone deformations. By optimizing load positions intensities, treatment can be re-
duced both in time and cost. This optimization requires alrarical model of the biochemical
phenomena involved and the activated dental movement. @&keod this work is to provide a
constitutive model able to simulate those coupled phenamen

Dental movement is achieved through a biochemical proceskedetal adaptation to me-
chanical stimuli called bone remodeling, controlled by éaells and first described by Wbin
1892 [2] (as cited in [3] among others). Therapeutic forggsliad through orthodontic appli-
ances change the physiological equilibrium. Loading ofgkeletal system is altered and bone
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Figure 1: Tooth and surrounding tissue - anatomy

remodeling cells are triggered to modify the bone shape @ngity in order to achieve a new
equilibrium and adjust the stress level. This state will @mained until new mechanical exter-
nal conditions trigger new remodeling events. Beyond thisadeling process due to a change
of external conditions, a physiological remodeling pracaiso exist. Its function is to maintain
bone cells in use and to ensure a relatively high turn-ovéhetissue. To distinguish between
these two processes, the first one is often referred as bodelimg or external remodeling and
the second as bone (internal) remodeling. However, witihénarthodontics literature, the des-
ignation “remodeling” is used for both processes ; one woakt [4] for a discussion about
the paradigm it causes. The word “bone remodeling” will beehesed for the process due to
external mechanical events. Internal remodeling is notefextin this work. We consider, as
a simplifying assumption, that its function is to renew tleiwith no alteration of the overall
bone mechanical properties.

For most types of bones, remodeling processes take placedér o adjust the amount
of tissue and its topology according to long term loadingditions, following what is called
“Wol ff's law” of bone adaptation [5, 6, 7]. Bone resorption occuhewdisuse is observed. This
resorption tends to decrease the amount of bone where itrie afechanical relevance. Bone
apposition occurs in overloaded conditions, in order tofogte bone where it is necessary.
The bone therefore adapts its density in such a way to achiev®meostatic state of stresses.
Besides the density change, remodeling also occurs to ehtéregbone topology, mainly in
trabecular tissue for which the trabeculae tend to aligngtbe principal stress directions. Bone
remodeling therefore depends not only on the stressessititdaut also on their direction.

Contrary to the majority of bones, alveolar bone remodediegms on a macroscopic scale
to depend mainly on the pressure state [4, 8, 9]. One can dndbserve apposition on the
tension side of a tooth when loaded with an abnormal mechheiwironment, such as the one
obtained with orthodontics appliances, as well as resampin the compression side. The actual
biomechanical processes causing suchfeidince is not quite clear and uniformly accepted
among biology and biochemistry literature (see discussian[7, 10, 11]). To model these
processes, several authors do not consider non lineaotiéise bone. Some focus only on
the initial tooth mobility and extrapolate their resultstivan adaptative elasticity framework
as described in [3] or a density update [4, 12] or anothert-buitemodeling law applied as
a second step to the finite element computation [8, 13, 14heBtfocus on the periodontal
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ligament (PdL) non linear response [15, 16, 17, 18, 19]. dis imearity and dierent behaviors

in traction and compression leads to opposite loading timmdi of the bone on each side of
the tooth. The compressive side of the tooth would causerusdeof the bone and therefore
resorption while the traction side would get overuse andsapipn. However, when no non-
linearities are considered in the PdL, ndfelience in the stress level on both side of a tooth
can be observed. A non pressure dependent remodeling lalWfarsthe alveolar bone would
therefore lead either to apposition or to resorption on lsaths.

Instead of focusing on the PdL response, the present wordetwrates on the bone behavior
during remodeling. We assume the pressure state (positisegative) of the bone matrix as
the key stimulus to dierentiate apposition and resorption in overloaded camdti This can be
justified as follows. The cell supply needed for bone remiades performed by the vasculature,
however, the alveolar bone main cell supply is done throbghperiodontal ligament. As this
membrane’s sfiness is much less than the surrounding tissue’s, the sénaghis high. If the hy-
drostatic stress level is higher than the blood vessetstiat pressure, the blood flow is stopped
as well as the remodeling cell supply to the bone. The rentglprocess is therefore triggered
by the PdL pressure and stopped when these stresses argltiod\lei therefore assume that it is
the same stimulus which is responsible for th@edlentiation between apposition and resorption
as well as for the triggering of the phenomenon.

Within the diverse approaches that have been adopted tolinode remodeling processes,
most of them are qualified as phenomenological models. Taesenodels that do not try to
predict the evolution of the microstructure and biologicahstitution of a tissue or an organ
as a consequence of the mechanical environment (contravietthanobiological models) but
whose goal is to predict the mechanical behavior (movenstnatins and stresses) of a tissue or
an organ, taking into account the applied loads, its micuctiire and the constraints imposed
by other organs. Most of these models admit the existencecefrtain mechanical stimulus
(input) that produces bone apposition or resorption (ddiipwsuch a way that the stimulus tends
to a given physiological level in the long-term (homeostasAmong these phenomenological
models, the definition of a remodeling stimulus uses a widgeaof mechanical measures :
stresses, strains, strain energy density, strain ratesor g@mage.

The original model which is proposed in this work is built odamaggepair based model,
which is therefore a phenomenological model, stated firdDbiglae and co-workers [1, 20].
This model has been chosen as a working framework becasserieiof the few models whose
stimulus variation is justified through thermodynamicahoepts of continuum mechanics. It
is here extended and enhanced in order to be used for thdahmme and therefore it takes
into consideration the pressure state of the tissue as aihe stimuli for bone remodeling. It is
also coupled to an elasto-viscoplastic material behaviarder to capture permanent strains of
the tissue. The proposed model can therefore be used tsespriegermanent irreversible tooth
displacement and alveolar bone deformation due not onlgrmodeling but also to permanent
deformation of the bone (and therefore plasticity-lik¢haligh it is clear that the relevant inelas-
tic process is dferent from that of the classical metal plasticity). It casodbe used to describe
a fracture process with a plasticity-like yield functiomtodel the envelope of bone failure. The
main originalities with respect to [1] are therefore, fiemt, extension for alveolar bone pressure
dependency of the remodeling rate and, second, a finite $tesmework within which the model
is written, allowing for the use of a elasto-plastic modeltfee bone matrix.



Figure 2: Stanford remodeling rate

2. Material and Methods

Based on physical experiments [21], one can show that relingdeccurs to modify the
bone density proportionately to the bone matrix dengigyand as a function of a remodeling

ratef [mnys],
p=KkSypo T (1)

The term«kS, accounts for the available bone specific surface édgarfternal surface area per
unit volume, related to the densitynfr?/mn?]) as defined in [22].

This remodeling ratd, is shown [21, 23, 24, 25] to be a non-linear function of theiak&on
from a given mechanical stimulug,(a daily stimulus at tissue level function of the strain eygr
from an homeostatic valuest). The remodeling process thus tends to reduce this dewiatio
This model, known as the Stanford model, considers thatahe bissue needs a certain level of
mechanical stimulus to maintain homeostasis and autdateguitself to maintain such a level.
The remodeling rate also takes into consideration the endst of a lazy zone (width of«?)
within which no remodeling is achieved (Fig. 2). The actudktence of this lazy zone is a
concept which is not uniformly accepted among the bioldgicenmunity. Some people do
seem to believe that this zone has been introduced by therfmatngmmunity for convergence
purpose more than for actual biological reasons.

Once the density variation is computed, the bone Young'sutusds updated according to
density using a classical law based on experimental obsengaas proposed in [26] :

E = B(p)o"® @)
with B=2014 =25 : ifp < 1l2g/ccandE expressed iMPa
B=1763 =32 : ifp > 12g/ccandE expressediMPa

Doblae and co-workers [1, 20] modified this model so as to formutatéthin a Continuum
Damage Mechanics approach but limited to small straingieiigsfor the bone matrix. We here
extend the use of such a family of materials model to finitaist of the bone matrix. The use
of the continuum damage theory allows to define indepengémd internal variables such as
density and mechanical properties. It is therefore an ingrent of the extension of [21] which
was proposed in [25]. Indeed, in [25], Jacobs and co-wonkses a global optimization function
to define the remodeling stimulus and therefore the intefa@bles were not independent. Even
though the continuum damage formulation solves tHisadilty, Doblaé and co-workers limited
their approach in [1] to an elastic bone matrix as was done]nTherefore, they are limited to
low strain levels, which is not the case here.
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We propose to extend the model described in [1] to a much menerglized mechanical
behavior of the bone matrix, considering it as an elastoeykastic material, mandatory in order
to effectively predict long term tooth movement. This model iasapted to account for an
explicit pressure dependence of the remodeling rate inltle®lar bone which, as explained in
the introduction, has a filerent behavior in overloaded traction and compressionctmatot be
represented by the remodeling rate used in [1].

In order to couple continuum damage and plasticity, the fisestrain equivalence approach,
relating the stress level in the damaged matetidlwith the stress in the undamaged material
(effective stressy) that leads to the same strain, is chosen [27]. This apprkeshs the physical
definition of damage as related to the surface density ofctiefén [1], Doblaé and co-workers
used the energy equivalence approach, relating the streskih the damaged material with
the stress in the undamaged material that leads to the saaire estergy, therefore loosing the
relation to the surface density of defects. This choicenallto couple plasticity to damage by
assuming an additive decomposition of the strain rigif its elastic 0®') and non-elastic))
parts and expressing the plastic criterion in term féé@ive stresses instead of stresses which
cannot be done with an energy equivalence approach.

The proposed model therefore uses the following set of @nst

damage parameted: 3)
effective stressé = ﬁ (4)
strain rate :D = D® + DP (5)
constitutive law : & = C : (D — DP) ©6)
damage variation d = f(d, o, T, po) (7

with d a normalized scalar damage varialilg,Hooke’s tensor for the undamaged material and
where the sign accounts for an objective time derivative.

Stress and strain rate tensors are energy conjugated intorde adequately used in a large
deformation framework. The constitutive law (Equ.6) exyses that theffective stress rate is
proportional to the elastic part of the strain rate througioké’s tensor. The viscoplastic part
of the strain rate is computed according to a given plastterdon f < 0, function of a scalar
representation of theffective stressieq) and a boundary that this equivalent stress cannot cross
(oerit, accounting for the yield stress and viscotiees, see [28] for details):

f= &eq — Ocrit (8)

This set of equation is integrated in a finite element frantkveecording to an iterative “stag-
gered scheme” (see [29] for details on the method) :

e Stresses are first computed at constant damage value asdollstrains are updated ac-
cording to the initial state of stresses, strain and damadenéth updated loading condi-
tions. An elastic predictor for stresses is therefore cdsgbaccording to Hooke's law. A
plastic correction is computed in an iterative scheme iessary. This correction is calcu-
lated through the normality rule on the plastic criteriogs@ciated plasticity) expressed in
term of dfective stresses. One can show that the normal to the plag&dan expressed
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in term of efective stresses is equivalent to the normal to the critéfibwas expressed in
terms of stresses, and is therefore proportional to theattavt part of the elastic predictor
&):
of 8f
'éel
ST ©)

TR

e Once convergence of stresses at constant damage is aclilaveahe is updated according
to the dfective stresses and plastic strains and following the dareagjution law (Equ.7).

e The elastic predictor for stresses is finally reevaluateith thie new damage value, with
iterations up to convergence of damage.

The yield criterion used here for the bone is the Von Miseteddn. This assumes that
only shear stresses are responsible for plastic strainsothsremodeling triggering and damage
variation are function of the pressure value, this asswmptiay be too restrictive. However, as
no data is available to us on bone behavior at plasticity, Widase our study on this restrictive
hypothesis.

In the case of bone remodeling, as proposed in [1], damageecanderstood as a measure of
the void volume fraction inside the bone tissue. Equ.(1)tharefore be formulated as a damage
variation function. The damage concept used is therefargypuirtual and is actually a measure
of the evolving bone density. There is no actual damage ititkae, only a variation of density.
The undamaged material is the ideal situation of bone withparosity and perfect isotropy
therefore representing fully mineralized bone. CleaHig situation can be considered isotropic
on a macroscopic level. A fully resorbed bone would have aadgnvalue of one. However, this
situation cannot strictly be treated only within the coatim damage mechanics framework as
the dfective stress would be undetermined. The process of booept&s corresponds to the
classical damage evolution concept, since it increasegdidefraction (porosity) and therefore
damage (decreases the density). However, bone appositioreduce damage and lead to bone
repair, which has to be adequately considered in this erttddmage theory. Damage repair
can be considered here because the total energy dissijatiodes biological dissipation due
to metabolism on top of the mechanical dissipation whictegative for damage repair.

In analogy with plasticity, a remodeling stimulus is idéietl with the variable thermody-
namically associated with damage. One can therefore, dg,iegtablish two damage criteria,
0o and gy, representing the domain of the remodeling stimulus foicWliamage is not modified
(the lazy zone) both for overuse and underuse.

{ Go
Qu

These criteria depend d#, as expressed in Equ.(11), function of a strain energy teasi
well as the density and the number of cycles considengdof the applied loads, and*, as

expressed in Equ.(13), a reference homeostatic vall. ofhey are consistent with Beawpr
and Carter’s approach [21] if we relaiegto U, y* to U* andw to Q, the normalized width of the

lazy zone.
U(d, &) = n¥4 /B(d)p2p /8 \/3U(5) (11)

6

U-(1+QU*<0

1/U -1/((1-Q)U*) <0 (10)
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Figure 3: Pressure dependent remodeling rate, pregdugang positive in traction.

with g andB defined in Equ.(2) and, the dfective elastic energy density (as also defined in [27]).
Using an isotropic elastic undamaged material reduces él®odnsor to two parameteEsand

v, Young's modulus and Poisson’s ratio. TlEeetive elastic energy density, accounting for the
stress triaxiality, is therefore written as :

o Jg f)
ulo) = 2E|3 (1 +v)+3(1-2v) JTg (12)
. ~ 3: = 1 N A
with J = éo'ijo'ij =—d O'”U'” ;0 = dev(o)
U*(d) = y*p*¥/® (13)

Using consistency conditions and Equ.(1), one can exphesddamage variation as propor-
tional to a remodeling rate such as the one proposed by thdo®dagroup [21, 25, 26] and
presented in Fig. 2. We can therefore retrieve Equ.(14) bybioing Equ.(1), Equ.(2) as well as
the damage definition used in a strain equivalence approqeH{a).

d= —pkS, %(1 —d) (14)

As stated previously in the introduction of this paper, &iedis remodeling rate cannot
be applied to alveolar bone if no PdL nonlinearities are mw®red. In accordance with the
observation of a pressure dependent phenomenon, the ringodete definition is modified
(Fig. 3, Equ.(15)) taking into account the pressure staltés fiew rate is thus given by :

Cigo If go=0,0u<0 and p>0
e |-CGQo If o=0,0,<0 and p<O0

r= ) (15)
0 if go<0, gy<0

—CQgy if gu>0,0,<0

wherec; andcs are two remodeling constants respectively for bone foimnadind bone resorp-
tion, pis the pressure (positive in tension) apcndg, are the remodeling criteria (same units as
the one of stresses) respectively for bone overload and lnasherload used in [1] and expressed
for a strain equivalence approach in continuum damage méhas in Equ.(10). For numerical
purpose, the dierentiation between formation and resorption wggg 0 is not exactly ap = 0
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but atp = +6p < 1. A linear regression of the cfiients €;, ct) betweenp = —6pandp = §p
is used.

As stated earlier, damage evolution is proportional to fiecHic surfaceS, as defined in
[22]. It is written as a 5th order polynomial of the porositydais null for null porosity as well
as for full porosity f = 1.0). This specific surface is introduced in order to take imtwoaint the
necessity of a bone surface to exist for bone remodeling tekhct. Its presence in the damage
variation law has therefore a biological justification blstceserves a numerical purpose. Using
this specific surface will decrease substantially the cayemce problem that would arise when
reaching high damage values. Indeed, thedative stress definition of the continuum damage
theory in a strain equivalence approach can be written fasatnmopic damage variable, as
Equ.(6). Therefore when obtaining a damage variable egublX (full resorption of the bone),
the model cannot be used anymore. Yet, this will tend not fgpba in the model because
when reaching the critical value, the damage variationebeses to zero. However, the damage
variation for high damage values can be high, due to the tafiimit value of the remodeling
rate. It also has to be noticed that for an initial null boneosdy, there will be no damage
creation, because of the zero value of the specific surfatteaapoint. This would mean that a
fully mineralized bone could not be resorbed.

Using a continuum damage approach as well as Equ.(2), ongetdor both types of bone
(trabecular and cortical bone), usipg = 2.1g/cc (and therefordey = 189G Pg) for the fully
mineralized bone :

Density Stifness Damade Porosity

plg/cq E[GP4 d f
Trabecular bon 115 - 29 0.85 045
Cortical bone j 199 - 16.1 0.15 005

Table 1: Bone sffness, damage and porosity as a function of density, for arofgotmaterial

aDamage is calculated from gtiess as d = 1 — E/Eq.
PPorosity is calculated from density a$ = 1 — p/po.

For given stresses and initial density, damage variation with damage can be expressed
for both formation and resorption stimuli, as in Fig. 4. Reswill nevertheless depend on the
law parameters, as y (actually only the ratiqu has an influence on the variation, their values
have just a stretching impact) atdd As damage variation is positive for resorption and negativ
for formation when the pressure is positive, we can deteEign4 diferent remodeling zones
as well as the lazy zone as a function of damage. As expectadagke variation for values
of damage close t0.Q tend to high (negative) values but is reduced to zero fdrdaimage
(not shown in the figure). In resorption, although the renfinderate increases (in absolute
value) for a damage decay, damage variation does not reghtvhiues due to the tendency of
the surface density to decrease faster than the remodeliagncreases. The discontinuity of
damage variation for damage values of abaB880s due to the slight discontinuity introduced
by Equ.(2) in the definition of bone Young’s modulus.

The presented bone remodeling model has been implemenikéet&ior [30], a home-made
finite element software as a new constitutive law. Once thedeling model has been formu-
lated, we need to check its ability to achieve qualitativeuts close to the ones obtained in
experimental testing of actual alveolar bone. This is aqdsined in the next section in which
the model is applied to study the remodeling behavior of tkkecdar bone in the case of or-
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thodontic treatments.

As an example, we present a 2D model of a tooth surroundedstpaitbdontal tissue, on
the crown of which a pressure load is applied in the vestifingual direction. The aim is to
predict the bone density and its evolution from an initisdddsituation (isotropic material with
uniform density distribution) when loaded by forces thaeltterize orthodontic appliances such
as brackets. As the loading applied by the use of orthodappdiances is considered to be an
homogeneously distributed pressure force on the vestifada of the crown, it would produce
a tipping movement of the tooth in the vetibulo-lingual diien. Neither this problem nor the
starting situation are “real” problems, therefore the hostatic values are not relevant. The
tooth geometry is idealized, with a parabolic root surraahiy a constant thickness periodontal
ligament as well as trabecular and cortical bone. The 2Dreligation used here is shown in
Fig. 5. The root is 1&imhigh and énmwide at the collar. The crown isntmhigh, the PdL’s
thickness is constant and of2tnm It is surrounded by a trabecular bone of variable thickness
and a cortical layer of about®mmwidth. The tooth and the PdL mechanical behavior are
linear elastic Eipoth ® 20GPa vigoth = 0.3, Epg. = 0.6MPa, vpg. = 0.45). The cortical layer
as well as the trabecular bone mechanical behavior is egdastic with a continuum damage
model (Young’s modulus as in Table 1 and Poisson’s ratia®)f O he damage evolution follows
the remodeling law proposed in this work. Finite Elementlysia is performed, using finite
strains code Metafor [30], considering a plane strain stateell as a quasi-static analysis. The
basal bone junction is fixed in both vertical and horizonfa¢ations. The mesh is composed
of 2670 nodes and 2600 linear quadrangular elements, 60%ichvis trabecular bone, 25%,
tooth (crown and root) and the remaining 15% is equally itisted among PdL and cortical
bone. The element sizes result in the choice of a mesh deatiifyution so that element are
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Figure 5: Tooth and surrounding tissue - mesh and geometry

smaller in the region of interest (i.e. PdL and closest surding tissue) than in the rest of the
model, especially the crown and root as it is almost rigid paraed to other tissues. Loading is
performed using two levels of pressure value (correspantir ON and 20N force) as well as
a different set of remodeling constants (see Table 2).

Force| ¢ =c; Cr, Ct
[um/day] | [um/day]
(case 1): 1IN 2.0 0.4,4.0
(case 2): 2N 1.0 0.2,2.0

Table 2: Remodeling constants used for trabecular bone

3. Numerical results

In this section we consider the potential of the pressureégnt model to predict the den-
sity evolution of alveolar bone tissue on the case presezddubr.

The obtained tooth movement is a rotation around a centestafion situated at one third
of the root length starting from the apex for small loads and ffth for higher loads. This
corresponds to what is exposed in the literature aboutrtgppiovement of a tooth (see [14]
among others). The rotation angle is almost null for smatidés, corresponding to initial tooth
mobility, while it reaches about.3 degrees for higher forces. For the later situation, if the
whole movement was a rigid rotation around the same centestafion, one could expect a
displacement of.1mmhorizontally and+.04mmyvertically at the collar. However, as the bone
is fixed at its base and as the rotation leads to deformatitimregberiodontal ligament as well as
the bone, the movement actually observed leads to smatipladements at the collar.

The initial tooth mobility depends only on the applied loadl aot on the remodeling model
used. However the possibilities of long term tooth movenaeret to bone density change varies
strongly with the type of model used (1 constant or 2 constambdel) as well as with the
homeostatic valug* and the number of cycles considered. When using the same edimpd
constant for both resorption and formation, one does nattxget symmetric values for damage
variation (Fig. 6, top row) because of its dependence on #made value (Fig. 4). In the case
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Figure 6: Damage variation at the apex for a pressure dependetel - both for the compression side for whighis
used (plain line) and the traction one for whichis used (dashed line).
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Figure 7: Stimulus variation at the apex for a pressure degr@ndodel - both for the compression side for whéghs
used (plain line) and the traction one for whichis used (dashed line).

of two different remodeling constants (Fig. 6, bottom row), the ond useesorptiong;, is the
restrictive one because it is the one increasing the danage.\ts value is restrained so that the
damage value cannot reach 1.0. The constant used in formatiocan be increased almost at
will (as long as numerical convergence is concerned, notmolagical point of view). However,

if it is too high, the défective stitness will increase, so will the stress. The stress statendrou
the apex will be modified andf&ct the resorption side as well (with a tendency to increlase t
resorption).

Damage variation at the collar level is much less than at gex ar along the root for all
simulations and on both sides of the root main axis. Indeetipping movement leads to smaller
shear and hydrostatic stresses at the collar than anng)meéJgo”af ~ 1IMPa, J?° ~ 3MPa,
pcolar ~ 0.2MPa, p°t ~ 1 — 3MPa). It also gives a ratio hydrostatic stress to shear stre@L0f
at the collar while it is of around 1 to 3 along the root. Theref the value ofiis smaller at the
collar than along the root (see Equ.(12)). The remodelitgisaalso smaller because even tough
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Figure 8: Alveolar bone damage. For comparison purpose, damgggeal has been set from .5 to .9 but lowers to 0.1
both in case (b) and (c) as shown in Fig. 9 (a) and (b) respygtiv

reducingu reducedJ, its value stays above its homeostatic vdlifeand overloaded conditions

are still observed at the collaris therefore reduced and so is damage variation.

Concerning the stress state of the periodontal ligameris, iftteresting to notice that the
hydrostatic stresses are several times higher in magnihaaethe shear stresses (up to 8 times
for low forces). For the lower applied load, the later oneyyfeom 0 to Q025M Pa along the
tooth root (highest values reached at the collar) while ferdstatic stresses’range goes from 0
to 0.2MPaboth in compression and traction (highest values reachdgbdevel of the center of
rotation position). The pressure is as expected the keyssinethe PdL.

Qualitatively analyzing the results of this model, one caa &s in Fig. 8 and 9), as can be
expected of an orthodontic treatment, that while highed$¢daad to higher initial displacement,
density variation of the bone can be observed only in the apgion while it is observed on
the entire length of the root for smaller loads. For a givertisal position, while overloaded
conditions are kept for all simulations, one can see apiposiin one side (reduction of mean
damage) and resorption on the other (increase of mean dawfhe root. As the remodeling
law has been built so, one can see that the bone gets resarbieel@dmpression side and formed
on the traction one along the root but also along the corkégedr when high displacements are
obtained (as in Fig. 8-(c) and 9-(b)).

4, Conclusion

The present study introduces a numerical model for the sitioul of orthodontic tooth move-
ment based on the assumption that bone remodeling proadisseg tooth movement are con-
trolled by elastic energy density as well as pressure sfate@lveolar bone. The model is built
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Figure 9: Alveolar bone damage - extending damage intervabing=(b) and (c)

on a damage-repair law proposed by Dobland co-workers. This model has been chosen as
a working framework because it is one of the few models whtissukis variation is justified
through thermodynamical concepts of continuum mechariicslentifies the bone voids with
the cavities or microcracks of other material damage moteischanges some of the standard
assumptions to adapt it to the special requirements ofgitissues, especially the possibility of
decreasing the damage level (repair) by providing the redunetabolic energy [1]. It also con-
siders the dferent behavior with respect to damage criteria where damageases in low stress
regions. Its main drawback is the elastic character of theeboatrix which therefore does not
include permanent strains of the matrix as a possible mésinaio get irreversible movements
of a tooth in its socket.

We therefore propose an enhanced model to be used in a firaia #iamework and for
the specificities of alveolar bone remodeling. We assumedherbone matrix a generalized
material model and considered it to be elasto-viscoplastie coupling of plasticity and damage
is obtained using a strain equivalence approach for ffextve state in a continuum damage
framework. The model can therefore be used to predict lomg teoth movement due both to
remodeling and permanent strains of the bone matrix. Thespre dependency of alveolar bone
remodeling is also treated, proposing a new remodeling dtis model has been implemented
in a in-house finite strains FE code, Metafor, as a new méatavia

We also consider the potential of this pressure dependedéhtm predict the density evolu-
tion of alveolar bone tissue on 2D representation of a toolimstted to orthodontic appliances.
In spite of the necessary idealizations, a reliable qual@grediction of bone density varia-
tion around the tooth is possible for porosity variatior@tir0% (null damage) to almost 70%
(damage of ®5), starting from an homogenized porosity of 45%.
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