
� �������	��
������
��������������������� 
!"�#�%$��&�"��'(���*)"���+��,
-.�/�0�1�2)3
4$���51$��&�3,6�7�����+)98:�/�3;�!

<>=>?A@.BDCFEHGIBDJLKLCFEMBDEONMPRQS=UTWVXNYQ9Z
[#\^]_\^`6acbedgf+hjilk2ilhnm+\okqp�rXacsDilhutwvuf#huilxy\oac]_izkc{7|w\�}9il~^tX\�v>�������/}Oil~^t�\/��vu�3\^�ltXi��j�

�^�u�X�y�w�4�W���X���X�u���X���X�y�"�F�>��D�.�X�w���X�.�����j�X���q�D���� w�
¡ �y�X¢"£¥¤�¤6¦y¦y¦W�§�X�y�"�¨�u��D�.���D���X�.�©�ª�j�X���¥�D�9�� w�D¤

Abstract. d-RADAR1 is a neighbourhood discovery protocol for overlay network
environments designed for (but not limited to) active network overlays. The core
of the algorithm is an expanding ring-search based on the IP routing table content
augmented with traffic-based and dynamic refreshing techniques that allows it to
react to virtual topology changes (nodes joining/leaving the overlay) as well as IP
topology changes (broken and repaired link, route changes and moving nodes).
This paper presents how the protocol detects overlay candidate nodes using prob-
ing capsules and the algorithms needed to select neighbours among the candi-
dates. We also show how d-RADAR keeps the neighbouring table up to date and
learns topology changes while keeping a low discovery and refresh overhead.
A short summary of simulations carried out with our active network simulator
illustrates how these algorithms actually behave.

1 Discovering Neighbours in an Overlay Network

1.1 Introducing the Problem

In several new network technologies like ip multicast, IPv6 or active networks, we have
to face the situation of a heterogenous network made of routers that understand the
new protocol and legacy IP routers for which new packets are invalid. One solution
to incrementally deploy a new routing protocol while keeping backward compatibility
with the existing solution is to build virtual links or tunnels between routers that support
the new technology (for instance using IP over IP encapsulation [11]).

The mesh obtained with these tunnels can then be considered as a regular network
by the new routing protocol, and will be referred to as the overlay network. Experimen-
tal overlay networks have already been set up for the routing technologies cited above,
respectively MBONE [6], 6BONE [7] and ABONE [4,5].

Several parameters distinguish overlay networks from ’real’ networks, like the fact
that link costs may change at any time (due to a change in the underlying topology), or
the fact that there’s usually no broadcast facility to discover peer routers.

If we consider the setup of a new router in a ’real’ network, one of the first steps is
to discover neighbour routers that are directly reachable through the router’s interfaces.

1 This work has been partially supported by the Walloon Region in the framework of the WDU programme (ARTHUR
project), and by the Belgian Science Policy in the framework of the IAP programme (MOTION P5/11 project). Sylvain
Martin is a Research Fellow of the Belgian National Fund for Scientific Research (FNRS).



This discovery usually involves simple packets using a conventional (“all routers”) IP
destination address that are broadcast on the link/LAN to which the router is connected.
In overlay networks, this technique can be used to maintain links once they’re estab-
lished, but not to setup the virtual links the router will use.

1.2 Approaches to Neighbourhood Discovery

In most existing frameworks, overlay networks use manually-provided lists of neigh-
bours for their local domains and connect to a large scale backbone using a manually
designated access router [4,5]. While this is affordable to interconnect small testbeds, it
cannot reasonably be used to deploy a new technology in a large or frequently changing
network.

Alternative solutions have been proposed, mainly based on the use of the local DNS
server to locate candidate neighbours for a given protocol, or to locate database main-
tainers of these candidate neighbours. Once the DNS has been used as a rendez-vous
point, the neighbourhood discovery is reduced to probe active2 routers listed by the
registry and select the most interesting ones. An algorithm like TAO [9], for instance,
creates clusters of close nodes and selects a leader for each cluster, which is the sole
router having virtual links to other clusters.

Even though DNS-based solutions may be useful in some circumstances, maintain-
ing and updating DNS mapping usually requires human intervention which make them
unappropriate for dynamic environments.

Other works expect active nodes to join a given multicast group used to advertise
that they are active and listen for other nodes’ messages. However, assuming that all the
routers of a domain are multicast-enabled is a very restrictive hypothesis, and we can’t
assume that the active router is member of a multicast overlay, of course.

The approach we selected is completely distributed, and avoid the need for a single
node which would register and list active routers. Candidate neighbours simply come
from the IP routing table, which is used to feed an expanding ring search (we refer to
this technique as table-driven discovery), and from previous hop information carried by
traffic that uses the same execution environment (traffic-based discovery).

Our previous work on RADAR [10] has shown that this technique could be used
to create an overlay network that guarantees that if node A is a neighbour of B on the
overlay, no other node of the overlay receives the messages B sends to A.

Solutions developped for peer-to-peer overlays like CAN[16] or Pastry[15] are not
well suited for building overlays of routers, but they could help end-systems to join an
overlay built by d-RADAR.

1.3 Challenges in Neighbourhood Discovery

As a ring-based discovery combines the search for active routers and the check for
neighbourhood in one single operation, special care must be taken to make sure the
discovery is not flooding the network with scans.

2 without loss of generality, we’ll restrict the discussion to overlays of active routers for the sake
of readability



inactive (IP) node

active node S

X

Y

Y1

Y2 Y3

S

X

Y6

Y4 Y5 Y7

Z1

Z3

Z2

IP routes
used by S

link unused by
traffic from S

Fig. 1. (a) stopping at the first discovered neighbour may isolate some nodes from the topology,
(b) illustrating the problem of hidden targets

– One neighbour per physical interface is usually not enough. If you look at fig.
1.a, you’ll notice that stopping the search at the first neighbour discovered on an
interface will result in the impossibility for both X and S to discover Y .

– Scanning targets in the whole domain will usually be too costly, but on the other
side, it is not possible to tell a priori how far the scan should go. Depending on the
density of active nodes in a domain, the distance needed to find N neighbours may
change, as well as the amount of neighbours needed to keep routing efficient.

Note that registry-assisted discovery will suffer from the same kind of problem if the
amount of active nodes in the domain becomes pretty large. As soon as a neighbour X
is discovered by S, all the targets Y1 . . . Yn (see fig. 1.b) that require crossing X to be
reached will actually be hidden byX , in the sense that as X will see any capsule sent to
Yi, the routing decision could have been deferred to X . Identifying hidden routers and
avoiding to scan them as soon as possible will help reducing the unwanted discovery
overhead.

Moreover, as soon as one considers dynamic topologies – i.e. networks where the
subset of active nodes and the routes to targets may change frequently3, hidden nodes
become even more important as knowing the hidden-by relationship will help telling
which previously discarded target need to be re-scanned due to a topology change.

It should also be taken into account that active routers may join or leave the overlay
without a topology change at the IP level. Indeed, active routers may stop supporting a
given execution environment due to administrative decision, while the router itself (at
IP level) is still present in the network.

This means that a neighbourhood discovery technique that will be used to build ac-
tive network overlays will have to check the state of the current neighbours periodically,

3 this will especially be the case in wireless networks, but may be extended to any network in
which such a topology change is not considered as a exceptional event



even if no state change is announced by the IP layer, rather than waiting for an update
of the IP table to learn that a neighbour is down.

Even though pro-active checking of the neighbours’ state for non-active overlays
is not mandatory, it may be an interesting property as it allows the overlay to recover
situations (like selecting an alternative route) quicker than the underlying network.

1.4 Probing Targets

d-RADAR4 uses active probes, known as AYA5 capsules that it sends to neighbour candi-
dates in order to check whether they’re active or not. Compared to ICMP echo packets,
AYA capsules also allow to check if the target is currently responding to specific execu-
tion environment’s messages.

When no active router is met on the road to a non-active target X , the AYA capsule
is lost when reaching X . But if any router on the road is active, it will intercept the
AYA capsule and store its own address in it before sending it back to its source. This
technique of allowing a capsule that has X as its IP destination to be intercepted by a
node other than X - referred to as capsule grabbing - is detailed in RADAR[10].

While it isn’t a usual behaviour for a non-active router, grabbing could also be
implemented in non-active networks by means of techniques like IP router alert option
[12]. However, router alerts usually slow down packets a lot on every node while a
grabbable capsule is processed at top-speed by a legacy router.

2 Required Environment

d-RADAR has been implemented for the ANTS execution environment [1,2,3] which
itself relies on NodeOS infrastructure [8]. Small modifications to the ANTS code are
needed to implement our solution, mainly in order to allow emission and reception
of grabbable capsules and to access the IP routing table. However, d-RADAR uses very
lightweight capsules and could be easily adapted to overlays that use only passive pack-
ets.

d-RADAR expects the NodeOS to be able to deliver the network layer routing ta-
ble for table-driven discovery, and it also requires a method to get notified of changes
(added/removed entries and cost changes) to this table. It does not, however, make
changes to the IP table and therefore its presence is transparent to legacy routing. The
only system table alterred by d-RADAR is the overlay’s neighbourhood table which
may be used by active protocols that directly use neighbourhood information or an ac-
tive routing protocol. Our discovery technique also expects that route table entries will
at least contain the route cost, preferably expressed as a hops count, and an identifier of
the interface used (for the purpose of grouping targets based on the interface they use).

It is important that the IP routing table holds enough information about the local
domain. If some routers are not listed in that table, the only chance to detect them is by
grabbing part of the traffic they send to other nodes. In particular, a host node is unlikely

4 Dynamic Ring-based Adaptive Discovery of Active neighbour Routers
5 for “Are You Active?”



to discover any neighbour (but its default gateway) if it does not first start sending (or
receiving) traffic from another active node. To make this possible, the overlay routing
table will always contain a “default” entry that will create direct tunnels to any IP
destination on demand.

The routing protocol used to build the IP routing table has little significance, but
d-RADAR may be made much more efficient if the table contains information about the
last router crossed before a destination D is reached. With this information, we can
retrieve the whole sink tree and deduce for some targets whether they can be reached
or not without actually probing them. In the absence of such information, for instance
if IP was running a distance vector or if we receive the forwarding table rather than the
routing table, we can either try to get the information by sending ICMP echo packet
that would have the Route Record option set, or simply assume that every target must
be probed.

Finally, in order to support traffic-based discovery6, it is mandatory that packets
processed by the execution environment carry a previous hop information. While this is
virtually true in every active network environment (as the previous hop is the node that
will be asked for code download if the protocol of a packet is unknown by the current
node), it’s less direct in a IPv6 or multicast overlay, but the source address of the current
tunnel should be a good candidate.

3 d-RADAR Approach

d-RADAR is mainly based on a ring-search discovery that adapts the maximum search-
ing distance (a.k.a. the discovery threshold) to the density of neighbours. Targets are
grouped by their cost7 in rings and then probed by increasing ring cost. Everytime a
new neighbour or a hidden target is found, the threshold is reduced multiplicatively by
the α constant, and everytime a ring completes, the threshold is increased by the amount
of remaining targets. In other words, if Ti is the threshold value after ring i discovery
has been completed, we have

Ti = Ti−1 · αai + (ni − ai) (1)

where ai is the amount of positive replies (neighbours and hidden targets) for ring i
and ni is the total amount of targets on ring i. If there were enough replying targets
on ring i, it may occur that Ti < i, which stops the discovery. Rather than excluding
discovered neighbours that have a cost c such as Ti < c < i, we then use max(i, Ti) as
the effective threshold.

Our previous work on static topologies has shown that this approach offers good
results, especially when T0 = 2, α ∈ [0.5 . . . 0.8] and that the exact value chosen
for α has little significance on the overall mesh obtained8. One interesting property of

6 traffic-based discovery consists of selecting targets to probe by looking at the intercepted data
capsules

7 Here comes the main reason why hops count costs are preferred: we need to ensure that a
target on ring i+ 1 can only be reached through a target on ring i.

8 a higher α value will result in more neighbours per node, but it usually does not degenerate
into a full mesh and α does not need to be fine-tuned for a particular network (see [10]).



XS

A

cost=1 cost=2 cost=3

T0=2 T1=3

B(a)

T2=4.4

YS

X

YS

X

X.cost=2

X.cost=4
Z

Z

T U V

(b)

(c)

T2=2.92

Fig. 2. assuming α = 0.8, (a) Initial treshold after ring 2 detection is complete is T2 = 3·0.8+2,
which is above 3 and allows S to scan X . If B now becomes active, we have T2 = 3 · 0.64 + 1,
which excludes X from the neighbourhood of S. (b) if the link on default route to X is broken, X
can no longer respond and is excluded from the neighbourhood of S. T2 then raises to 4.4 which
allows Y to join the neighbourhood. (c) when the IP routes are updated, X appears at level 4
and will come back to the neighbourhood.

this threshold computation technique is that, once a neighbour is found, the search will
stop quicker when the neighbour hides more targets (and thus potentially serves more
destinations).

3.1 Neighbours Come and Go ...

The changes of the “activity” state of a router (i.e. an Execution Environment starts
or stops) as well as routing updates that affect the cost of neighbours will be reflected
on the set of neighbours a node can use. Not only because of trivial modifications –
of course if X stops being an active node, X must be removed from the set of active
neighbours – but also because it affects the global environment of the considered ac-
tive router S. As explained in section 1.3 and illustrated in fig. 1.b, when a neighbour
X leaves, a set of targets {Y1 . . . Yn} leaves the hidden state9 and become potentially
reachable. These new neighbour candidates must be re-scanned and the closest active
ones have good chance to be included in the new set of neighbours.

The departure of X will also lower the active nodes density in S’s surrounding and
may require that S increases the maximum distance at which neighbours should be
scanned (i.e. increasing the threshold in d-RADAR).

Similar changes may occur when an inactive (and not hidden) node with a cost that
is lower than the actual threshold becomes active (see fig. 2.a) :

– some other inactive or neighbour nodes may become hidden.
– as a result of newly responding targets (the newly active one and nodes moving

from inactive to hidden state), the threshold may be reduced, excluding some of the
furthest neighbours from the new neighbourhood set.

The case of an IP route change (modification of the route’s next hop or cost) is
simply handled by removing every information we had about the route’s destination

9 a node Y is hidden if AYA capsules sent to Y are intercepted and replied by another node X .



X

N

Y
(a)

X

N(down)

Y
(b)

?

?
X

N

Y
(c)

?successful AYA
(replied)

filtered AYA
(threshold too low)

dropped AYA
(inactive target)

Fig. 3. A problematic scenario if down neighbours are not re-scanned periodically: (a) N is
initially discovered by X which has a high threshold but X can’t be discovered by N because
it’s out of its scope, (b) when N crashes, both X and Y notice it after their refresh AYA gets
dropped, (c) after N recovered, only Y is able to detect it fromN ’s boot-time scanning. X being
out of scope, it believes N is still down

and then re-inserting the new route as if it was a completely new target (see fig. 2.b and
c).

d-RADAR stores, for each output interface, the history of the boot-time discovery
as a list of (Ti−1, ai, ni) parameters that can be used to recompute the current thresh-
old from Tk when a change occurs on nk+1 or ak+1, by simply re-applying (1) on
Tk, Tk+1, . . . until we reach l : Tl ≤ l. As soon as the new threshold l is defined, its
value is committed to the scanning processes that use this interface and will result in
some probes being filtered out (if their cost is above the new threshold) or granted, and
thus removing or reintegrating some active nodes in the neighbourhood set.

3.2 The Soft-State Refresh Mechanism

In order to maintain an up-to-date neighbourhood set, d-RADAR associates every entry
X in the neighbour table with an expiration dateEX , which defines how long the entry
will remain valid. Once the entry expires, it will trigger a refreshing scan of X , which
may either confirm the current state of X or detect that X is no longer a responding
neighbour, but that it has become a down target10.

A similar timer is kept for every down target so that we can check whether an old
neighbour has recovered or not.

To understand the role of down targets refresh, it is important to remember that a
neighbourhood relationship may not be symmetric. Therefore, as figure 3 illustrates, it
is possible that a target N , neighbour of X , will not send AYA capsules to X after it
recovered from a crash, which could lead X to conclude that N is still down while it
could actually be reintegrated in X’s neighbourhood.

10 a down target is a target that has been a neighbour earlier, but which no longer responds to AYA
capsules. This state is different from the inactive node which never replied to any AYA.



The duration of the validity period, i.e. the period between two refreshes for a given
target, is not constant in d-RADAR. Instead, it depends on the age of the information. In
other words, for a neighbourX , if TX is the time at whichX has entered the neighbour-
hood for the last time, and if CX is the time at which the last refresh for X occurred,
the current expiration for X will be EX , given by (2).

EX = CX + k · (CX − TX) (2)

Everytime a target moves between the neighbour and the down state, its last join/leave
time TX is reset. As a result, the more stable a neighbour is, the more we will trust it
and assume it’s unlikely to disappear in a near future. On the opposite side, a new (or
recently recovered) neighbour will be scanned more often.

Defining the expiration time this way can be interesting to protect against short node
failures. When a node stops responding, we first assume this is a temporary situation
and that it is likely to respawn in a near future. As the time goes by, chances are that
it was rather a permanent failure and refreshes will become more spaced. How fast a
temporary situation will be considered as permanent will depend on the k value.

Another context in which this behaviour may be useful is the field of ad hoc net-
works where we could have a low refresh rate for permanent neighbours and keep a
high refresh rate for more mobile neighbours.

In order to prevent the validity period from becoming too long in the case of very
old entries and keep a useful failures detection time, a maximal refresh period (typically
a few tenths of seconds) is enforced regardless of the age of the information.

3.3 Freshness Through Traffic Monitoring

In addition to the periodic neighbour state refresh controlled by EX , it may be inter-
esting to use traffic received from a neighbourX to monitorX’s activity. As d-RADAR
already catches every incoming capsules for the sake of traffic-based discovery, this ad-
ditional monitoring would virtually come with no cost at all. A smart routing protocol
that wishes to offer a low packet loss probability might compare those activity reports
and select the route which goes through the most recently (or the most frequently) re-
freshed neighbour.

To help building such protocols, d-RADAR offers information about the last time
a capsule has been received from neighbour X in the neighbourhood table (RX ) and
maintains the average inter-arrival time ∆TX according to (3).

∆TX = β · (now −RX ) + (1− β) ·∆TX (3)

An active protocol that would like to ensure to be notified of node failures at last t
seconds after the failure could check now − RX before sending a capsule to X and
require X to send back an acknowledgement if now −RX > t.

In classical networks, the incoming traffic on an interface can be used as a replace-
ment of the heartbeat that maintains neighbourhood information up to date. If IP re-
ceives traffic from a link, the routing protocol can safely assume that the router at the
end of that link is still up and running without even monitoring it. It can also decide to
make heartbeats more frequent when there’s not enough traffic to keep the information



refreshed, as the monitoring traffic will replace the normal traffic without competing
with it.

Even though information about incoming capsules from X provide a kind of fresh-
ness information aboutX , some neighbours in an overlay network cannot be monitored
that way.

First, because our neighbourhood relationship isn’t symmetric, we may receive no
traffic from a neighbour X as well as we may receive traffic from a node Y that is not
a neighbour. Indeed, when IP routes N → X and X → N are different, it is possible
that an active node Y hides N from X while the messages sent by N directly reach X .
We thus have to keep on sending AYA refreshes regardless of the amount of traffic we
receive from our neighbours.

Moreover, on an overlay network, we should be very careful before we increase the
AYA refresh rate. One should keep in mind that active capsules may represent only a
small part of the traffic received from a given link and that other traffics like UDP, TCP
or capsules from another execution environment could suffer from extra refreshes. An-
other possible problem comes from the fact that one single network interface card may
be used to connect to a great number of neighbours {X1 . . . Xn}. A simultaneous in-
crease of the probing traffic for those n neighbours could lead to an excessive scanning
overhead on links close to the scanner.

Finally, d-RADAR lacks information about the requirements of the active data flows
like minimal neighbour freshness or tolerated response time to a neighbour failure. All
it could offer is a generic service which could be insufficient for some application and
unneeded by other ones. We will thus defer the decision of whether a refresh is required
or not to the active routing protocol (or to autonomous active transport protocols) which
will base it on the statistics provided in the neighbourhood table, and possibly on other
statistics gathered by the execution environment or the NodeOS.

4 Simulation results

All the simulations have been run using our Run Active Network Simulator, which pro-
vides an ANTS platform for a generic network simulator (so far, both SSFNet [13] and
javasim [14] are supported).

We have first run the d-RADAR on 4 series of 5 random networks, each consisting of
60 nodes, with a varying density of active nodes. Fig. 4 show how the network resource
consumption evolves after every active node boot simultaneously, which is the worst
possible situation. As one could expect, both the amount of AYA capsules sent by a
node and the average travelled distance are higher when the density decrease. However,
if we consider the global cost (summing the individual costs over all the active nodes),
we can see on fig. 4b that dense networks consume more bandwidth than scarse ones.

Another interresting fact is that the refreshing traffic is quite independent from the
considered density.

In addition, we ran a collection of proof-of-concept qualitative simulations to ensure
that each of the possible topology change was identified by the protocol and that the
proper updates were made to neighbourhood sets and discovery thresholds:



0

5

10

15

20

25

0 1 2 3 4 5 6
Time (seconds)

consumed bandwidth per active node

7% of active nodes
12% of active nodes
21% of active nodes
49% of active nodes

0

50

100

150

200

250

0 1 2 3 4 5 6
Time (seconds)

consumed bandwidth (all active nodes)

7% of active nodes
12% of active nodes
21% of active nodes
49% of active nodes

Fig. 4. Average bandwidth (in Kbps) consumed by AYA over all the links in random 60 nodes
network. (leftmost) AYA traffic generated by one average active node, (rightmost) traffic generated
by all the active nodes together

– stopping and resuming a neighbour’s execution environment while keeping the IP
layer of that neighbour up and running, including the case where the neighbour was
hiding other active nodes (cf fig. 1.b),

– forcing active node X to be excluded from the neighbourhood set by activating
other routers either on the path to X or not, but at a small enough distance to
trigger threshold reduction (cf fig. 2.a),

– breaking and restoring links on the path to X , forcing d-RADAR to removeX from
the neighbourhood until the IP routing table announces a new route with a different
cost for X (cf fig. 2.b),

– making an active neighbour unreachable by breaking the sole path that reaches it
or by stopping its IP layer.

In every situation that involved a change at IP level, d-RADAR has offered better
response time due to its adaptive and pro-active behaviour (from 0.5 to 10 seconds to
detect the loss of a neighbour X depending on the maximal value defined for DX ,
respectively 5 to 25 seconds, compared to OSPF’s 60 seconds heartbeat).

5 A word about the implementation

5.1 The structure

We developped d-RADAR as an active application that runs on top of a slightly modified
ANTS [1,3] framework. Special care has been taken to make the solution as modular as
possible, mainly regarding to the dependence to ANTS and the NodeOS.

As fig. 5 shows, the core class «S¬Oy®u¯>°O±D²Y³>´uµ>µO¶Ou·w¸j¹9D±Dº , with its helper class »y¼�½¾ ±w²Y¹S¬j¿Y¸w°9¶u¬ , is the only component which depends on (and interfaces with) the exe-
cution environment. It will take care of sending capsules created by the scanners and
dispatching capsules received to the appropriated scanner. The core also carries every
communication between the other internal components it is connected to, which reduces
the inter-components dependency to a small set of “pipes”.



:Neighbour
Application

:IProuteTable
(copy) scanner

neighbours Target

ANTS

RouteTableListener ants.core.Application

run, receive
delRoute
addRoute

Fig. 5. our software design

The protocol’s policy is implemented in the ÀS·w¸wº>ºO¬w³ classes, which decide when
and to which target the AYA capsules should be sent. They are also responsible for
modifying the threshold of their respective network interface appropriately when cap-
sules come back or when timer for unreplied AYA expire. Decisions of the scanners are
transmitted as new ¿S¸j³u®S¬j¹ -based objects which will join the «Y¬9y®u¯>°S±w²Y³�Á hashtable.

This table receives clock ticks from the core and will send the expired objects
back to the core for refresh, which will enqueue them to the appropriated scanner. the
«Y¬9y®u¯>°S±w²Y³�Á table is the class where all the soft-state part of the algorithm takes place.

5.2 Extensions facilities

Unlike its former static version, d-RADAR can deal with several parallel scanners for
the same interface, and share the same threshold result, which makes the encoding of
the algorithms clearer and more straightforward. So far, only two types of scanners have
been used (pro-active and refresh scanner), but the modular nature of the actual code
allows d-RADAR to be easily extended by new types of scanners (such as a reverse
scanner that would scan one far target from time to time when the “bottom up” ring
expansion does not give good results), or even virtual scanners (forcing the state of some
targets or reordering the search based on informations gathered from other neighbours).

This just requires a new extension of the scanner class to be written, overloading
the behaviour of the periodic “time for scanning” and of the “capsule replied” events
delivered by the core.

6 Conclusion and Future Work

We proposed a distributed algorithm that builds an overlay dynamically, adapting to the
density of active routers in the network, and that can evolve to follow topology changes.
This algorithm require no special support from non-active routers and its principles can
be translated to overlays other than active networks.



The feature implemented by d-RADAR can be seen as a service that can be reused
by several active routing protocols, decoupling the problem of neighbourhood discovery
from the routing itself. Therefore, some of the routing-specific decisions, like adapting
the refreshing rate to applicative flow requirements or filtering oscillating neighbours,
are delegated to the routing protocol itself: d-RADAR simply includes required timing
information into the neighbourhood table.

Simulations have been carried on our active networks simulator, which completes
our previous results on static topologies ([10]) with response to events such as routing
table updates, active node failure, etc. An appropriate refresh mechanism should also
allow d-RADAR to keep track of mobile neighbours or handle ad hoc networks, even
though no specific simulations have been performed in that area so far.

Several optimization techniques can still be envisioned, and the existing framework
can host them without changing the overall code structure. For instance, the initial dis-
covery cost could be reduced through the reverse scanner quickly introduced in section
5.2, or d-RADAR could be made more conservative on discovered neighbours by using
an hysteresis mechanism based on two thresholds (Tin used by the active scanner to
accept new neighbours and Tout = γ ·Tin used by the refresh scanner to reject existing
neighbours).

References
1. D. Wetherall, A. Whitaker : ANTS - an Active Node Transfer System. version 2.0.
2. D. Wetherall : Service Introduction in an Active Network. http://www.cs.washington.edu/-

research/networking/ants/ants-thesis.ps.gz
3. D. Wetherall, J. Guttag, D. Tennenhouse : ANTS - A Toolkit for Building and Dynamically

Deploying Network Protocols. IEEE OPENARCH’98, April 1998
4. S. Berson, B. Braden : DANTE : Dynamic Topology Extension for the ABone. ABone: Tech-

nical Specs - http://www.isi.edu/abone/DOCUMENTS/dante2.ps
5. S. Berson, B. Braden, L. Ricciulli : Introduction to the ABone. http://www.isi.edu/abone/-

DOCUMENTS/ABoneIntro.pdf
6. H. Eriksson : MBONE : the multicast backbone, Communications of the ACM, vol. 37 issue

8 pp. 54-60 (1994)
7. I. Guardini, P. Fasano, G. Girardi : IPv6 Operational Experience within the 6bone. http://-

www.isoc.org/inet2000/cdproceedings/1e/1e_1.htm
8. L. Peterson (Editor) : NodeOS Interface Specification. DARPA AN NodeOS Working Group

Draft, 1999.
9. A. Collins, R. Mahajan, and A. Whitaker : The TAO Algorithm for Virtual Network Man-

agement. Unpublished work. December 1999. http://citeseer.nj.nec.com/collins99tao.html
10. S. Martin, G. Leduc : RADAR: Ring-Based Adaptive Discovery of Active Neighbour

Routers. Lecture Notes in Computer Science 2546, “Active Networks”, Springer, 2002
(IWAN 2002), pp 62-73

11. D. Farinacci et al. : RFC 2784 - Generic Routing Encapsulation (GRE). IETF, March 2000
12. D. Katz (cisco Systems) : RFC 2113 - IP Router Alert Option, IETF, February 1997
13. SSFNet : Scalable Simulation Framework for modeling the Internet. http://www.ssfnet.org
14. Java-integrated, component based network simulation environment. http://www.j-sim.org/
15. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron: Topology-aware routing in structured

peer-to-peer overlay networks, Tech. Rep. MSR-TR-2002-82
16. S. Ratnasamy et al.: A Scalable Content-Addressable Network, Proceedings of ACM SIG-

COMM 2001


