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Abstract

Recent studies suggested that Huntington's disease to aberrant interactions between mutantimgai
protein, transcription factors and transcriptioo@activators resulting in widespread transcrigion
dysregulation. Mutant huntingtin also interactshwitstone acetyltransferases, consequently integfevith the
acetylation and deacetylation states of histonesaBse histone modifications and chromatin stractur
coordinate the expression of gene clusters, we dppked a novel mathematical approachromowaveto
analyse microarray datasets of brain tissue andeNdiood to understand how genomic regions areealtby
the effects of mutated huntingtin on chromatinatnee. Results show that, in samples of caudatenduade
blood from Huntington's disease patients, transiongs indeed deregulated in large genomic regions
coordinated fashion, that transcription in theggaes is associated with disease progression atciered
chromosomal clusters in the two tissues are rerbéylsimilar. These findings support the notion afoenmon
genome-wide mechanism of disruption of RNA trams@wn in the brain and periphery of Huntington'sedise
patients.
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INTRODUCTION

Huntington's disease (HD) is an autosomal-dominantodegenerative disorder caused by expansidreof t
CAG repeat region in exon 1 of the HD gene on 46 encodes for the protein huntingtin. Such esjmm
results in abnormal polyglutamine repeats at therfinus of huntingtin (Walker, 2007) that cannetdieaved
by caspase 3 (Hermet al, 2004). The mechanisms leading to huntingtin-mediatgl toxicity are still
unresolved although it is clear that the mutatexdgin affects multiple pathways causing cell death.

Mutated huntingtin has been shown to interfere Withtranscriptional machinery of the cell. The N¥tmal
fragments aggregate and sequester several trammeifiactors leading to decreased availabilityfording to
DNA promoter regions, and consequent decreasamsdription (Chen-Plotkiat al, 2006). Recent studies in
HD models have also shown that mutated huntingtirfieres with the activity of histone acetyltrarske,
suggesting that abnormal activity of this enzymghhbe a cause of transcriptional dysregulatioidn
(Steffanet al, 2001; Sadri-Vakili and Cha, 2006). This observat®saupported by the effect of histone
deacetylase (HDAC) inhibitors in a number of HD ralsdButler and Bates, 2006).

Eukaryotic DNA is wrapped around histones to formoatatin. Nucleosomes, the basic units of chromatia,
composed of eight histones and are arranged todcstructure that facilitates the packaging of ofatin. The
transition between tightly protected chromatinreefy accessible DNA is controlled, in part, by rficdtion of
the tails of histone proteins. These tails may bdifred by adding acetyl groups, phosphates, meghylips,
adenosine diphosphate molecules or ubiquitin pret@{uo and Allis, 1998; Cheurg al, 2000; Kouzarides,
2002; Gill, 2004). Acetylation is an important paftthe histone-modification code (Kuo and Alli§9B)
because DNA is released by removing the positieegds of the histories through the acetylatiorheflysine
residues. This results in the loosening of the tyghécked chromatin with subsequent greater adoetse DNA
by transcription factors and RNA polymerase. Thegad interference of mHtt with histone acetylati®n
therefore expected to affect transcription globéfig. 1).

Since it is thought to affect the acetylation sttlistones and, thus, chromatin structure thatdinates the
expression of gene clusters, we hypothesized dhautated huntingtin affects the transcriptiodafe
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chromosomal domains, (ii) that the effect of mudatentingtin is similar in different body tissuesdd(iii) that
chromosomal expression profiles are associatedthéthlisease state. These hypotheses were testgdhes
genome-scale mMRNA measurements of HD tissue alaitdlthe time of the project. These consistechim o
large microarray study of whole blood in a seriepatients and controls (Borovead al, 2005) and in a
second microarray study of postmortem brain tigsara patients and controls (Hodgetsal, 2006). We then
processed the datasets withromowavga microarray processing tool that allows the id&matiion, with high
specificity, of clusters of adjacent genes with lngeneous changes of expression and maps theiroposit
chromosomes (Turkheimet al, 2006).

Fig. 1 Histone acetylation is generally linked to trariptional activation. Histone acetyltransferasétATs)
acetylate lysine residues at the N-terminals atfolmie proteins, resulting in a loosely packed chromstructure
in which DNA promoter regions are more accessiblganscription factors. Conversely, histone dealegign,
catalysed by histone deacetylases (HDACS), leadditfhtly packed chromatin structure, correspondiog
transcriptional repression. Transcriptional repr@ss also occurs when mHtt interacts with HATS, lagdo a
decrease in the acetylation of histone proteins.
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METHODS
Microarray data

The microarray dataset that analysed global genession in blood samples of HD patients, matchexrots
and pre-symptomatic subjects was taken from a gluadi study that used Affymetrix and Amersham
Biosciences oligonucleotide microarrays (Boroveatkal, 2005) and is available from the GEO database.
Unfortunately, because of the unavailability of ger@ alignment data of the Amersham CodeLink arrayly,
the data from the Affymetrix platform could be ugsdries accession GSE1751, platform Affymetrix Gip
HG-U133A). The set containet= 14 controls,n = 12 HD samples plus=5 samples from subjects with
genetically determined disease but no overt clirigeptoms. The second dataset consisted in samples
caudate nucleusi & 14 controlsn = 15HD), frontal cortexr(= 12 controlsn=17HD)and cerebellumn(= 11

controls,n = 17HD) of genetically confirmed HD patients angpand sex-matched normal subjects. The dataset

is deposited at the Array Express Repository (Expamtn-AFMX-6, platform Affymetrix GeneChip HG-
U133A and HG-U133B).
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Chromowave analysis

ChromowavéTurkheimeret al, 2006) (written in MATLAB 6.5, the Mathworks IndJatick MA, USA)
normalized the microarrays to the background byddig intensities by the median value of those gene
presented with positive detection. Expression \aiuere then log2 transformed, mapped to their spmeding
chromosomal location using the genome alignmewrintion contained in the manifest of each platform
(available at http:// www.affymetrix.com/supporttaical/manual/taf_manual.affx).

Chromowavehen applied the wavelet transform to the spatgtibution of the probes and converted the
original expression values to wavelet coefficighttt are functions of the expression of adjacenegeUnlike
the Fourier transform, that is the classical omerfar stationary (periodic) signals, wavelets amecently
introduced mathematical tool for the treatmentighals with 'non-periodical behaviour' (e.g. a hanivlow, a
plane flyover noise, etc.). Their use is pervasivareas such as data encoding, transmission angression
including the analysis of gene sequences and fumadtgenomics data (Lio, 2003).

The wavelet transform is an orthogonal mathematipatator which means that the noise level is idahtin
the original raw data and at all wavelet transfteuels. This is advantageous because a clustemefsgeith
similar expression is transformed into a waveketsform coefficient that is greater the largerrtbenber of
genes in the cluster. Therefore the net effech@fapplication of the wavelet transform is thategewith
individual expression below the noise level, thatld otherwise go undetected, are identified wHastered
together because their combined energy condentgea greater wavelet coefficient that arises olertoise.

Unsupervised extraction of chromosomal profiles

The genome-wide ensemble of wavelet coefficientsbeansed for traditional ways of statistical analyk this
instance we were interested in extracting the mattern of chromosomal variation across each ofwtioe
datasets, irrespective of the grouping, and tdywafterwardswhether major chromosomal variation was indeed
associated with the disease state (e.g. unsupérarsgysis).

The choice of unsupervised analysis instead of aggcomparison was consequential to the hypothedes t
tested. The first hypothesis stated that mutatexditgtin interference would cause a major disruptib the
chromatin regulation of RNA. Unsupervised analyistor analysis in the instance considered hdl@ya the
identification and quantification (in terms of pentage of total variability) of the major patterfrivariation in a
data-set. Factor analysis also allows the extnadfesubject loadings that can be used in a regressodel to
verify the association of the pattern extractednftbe data with disease states. Finally, one lz@samption of
group analysis is that groups need to be homogenetzarly not the case in the instance of the danaidered
in this work.

For this purposeChromowavepplied the singular value decomposition to theofetavelet coefficients to
extract the first eigenvector, e.g. the main pattdrvariation. This pattern was subsequently #tkusing a
highly conservative threshold that accounted fatigtical noise, the number of wavelets and thb@qorobe
genomic distance; note that@hromowavehe contribution of the individual probes (wavetansform
coefficients at the first level) is zeroed so thially coherent spatial variation of expression ieded. After
filtering, the surviving set of coefficients waethpassed into the inverse wavelet transform tergga the
genome-wide pattern of variation. The contributibeach array to the pattern was calculated asghesin
number, the ‘case loading', where a positive vigidieates an increased pattern of expression cadgara
negative value indicating that a lower patternxisressed.

Analysis of individual probes expression

In order to verify some of the findings wi@hromowavewe also performed traditional probe-by-probe
statistical analysis. The normalized expressionegiuere log2 transformed and then a Stutieast was
applied to identify differentially expressed gebesween groups. The P-values were then correctetidor
number of multiple comparisons using the falsedaliscy rate criterion (Reineat al, 2003) where this was
fixed at 5%.
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RESULTS
Analysis of blood samples

The main pattern of chromosomal variation (40% tdlteariance) obtained from the datasétblaod
samples clearly distinguished controls and HD cées0.000001, Mann-Whitney test) as well as contaoid
preclinical HD @ = 0.0003, Mann-Whitney test). The distinction be#w preclinical and clinically manifested
HD was less sharg’(= 0.06, Mann-Whitney test), likely because of lihe number of preclinical cases (Fig. 2).
Large-scale clusters of co-expressed genes appieabedup-regulated or down-regulated against cta(Fag.
3). Some localized clusters are of interest. Oneithconsiderably down-regulated is on Chrl.p36-@3d
containsMTHFR, CASP9DFFB, FRAPlandSHDBgenes that have been linked to HD (Kieatial, 2002;
Bruneet al, 2004; Ravikumaet al, 2004; Chattopadhyast al, 2005; Majumdekt al, 2006). Among these
genes, onWMTHFRindividual expression was significantly down-redgathand passed false discovery rate
multiple correction (mean expression ratio HD versantrols = 0.55? = 0.0037). The repressed cluster on
Chrép21-23 has been previously implicated in theeatgonset of HD (Lét al, 2003) (Fig. 3).

Analysis of post-mortem tissues

The case loadings of the main chromosomal pattei¥h (&f total variance) obtained with the post-mortem
tissues caudate samples demonstrate a signififéeredce between Hd cases and contrBls 0.00014, Mann-
Whitney test) (Fig. 4). In addition, a Spearmae& found significant positive correlation betwét
pathological grade and mRNA expression profte=(0.017) where the severity of the disease wadegra
according to the Vonsattel classification scaler(34itelet al, 1985). Inspection of Fig. 4, illustrates that the
pattern is markedly expressed in cases graded Bighdr, less so in grades 0 and€Chromowavenalysis of
the arrays obtained from frontal and cerebellar@asndid not result in any significant chromosopralfile. In
caudate, the pattern also extends along largelsé®bf chromatin but at a lower intensity thandhe observed
in blood cells (Fig. 5).

Comparison between blood and post-mortem samples

Striking similarities between the two patterns tigatarly involving the whole of Chr4, Chr5, Chi8hr10,
Chr12, Chr19 and Chr20 are observed between blodgastmortem tissues (Fig. 6). For instance, tiae
both patterns contain localized groups of down-la&gd genes in a telomeric region of ~8 MB of Chadpund
the HD gene confirming the involvement in the déseaf genes on this region other than the HD (Fatral,
1993; Liet al, 2003; Djousset al, 2004).

Fig. 2 Case loadings for blood sample datasets. HD ptiéblack bars, cases HDI-12), controls (whitesdhar
cases NI-14) and pre-symptomatic patients (blagk,bzases PI-5).
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X-axis

y-axis represents the gene expression

contribution (intensity and direction, log2 scalBpsitive values depict up-regulation of mMRNA exjoess

HD patients and down-regulation in controls.

Fig. 3 Pattern of chromosomal expression extracted by @breave for blood sample datasets

represents the genomic distance along each oftttentwosomes
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Fig. 4 Case loadings for caudate sample datagedsitrols = white, HD patients = black, with numbezbove
plotsindicating Vonsattel scale of disease pathology).
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Fig. 5 Pattern of chromosomal expression extracted by @brave for caudate sample datasets: x-axis
represents the genomic distance along each oftttentosomes; y-axis represents the gene expression
contribution (intensity and direction, log2 scalBpsitive values depict up-regulation of mMRNA exjoess
HD patients and down-regulation in controls.
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Fig. 6 Side-by-side comparison of the six chromosont&ilps (chr4, chr5, chr8, chrl0, chrl9, chr20) witte
highest similarity between blood and striatum: xsaepresents the genomic distance along eacheof th
chromosomes; y-axis represents the gene expressidribution (intensity and direction, log2 scale).
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In both datasets, a very large number of transcdj#played significant change and survived theefdiscovery
rate correction. Both original references (Borovestlal, 2005; Hodgegt al, 2006) contain exhaustive lists of
these individual transcripts. Here we focus onstlfe-set of genes that showed the largest up/dogudaton in
those chromosomal locations identified@yromowavend whose deregulation was consistent in both blood
and striatum. This set, listed in Table 1, contames@RD2 receptor gene, the hallmark of movememtrdess,
and genes vital to calcium homeostasis (NRGN, TRRBAZNALA, CACNGA4), G-protein signalling (RGS4,
HRAS), exocytosis (EXOC7, VAMP2) and endocytosi®{@1). Of interest is also the up-regulation of gene
that induce apoptosis (FAS), transducers of Int&ite (IL6ST), whose levels are increased in tresipia of

HD patients (Dalrymplet al, 2007), and the down-regulation of dynamin synaptateins (DNM1) previously
involved in the disease (DiProspeatal, 2004).
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Table 1 Transcripts with major up/down regulation, consigtan both blood and striatum (striatal values in

grey shading)
Probe set nam Mean ratio P value Gene Location Descriptor
symbol
204338.s.at  0.41 0.0028 RGS4 chrlg23.3 Regulator of G-protein signalling
0.71 0.0041
203138.at 2.58 0.0007 HATI chr2g31.2 Histone acetyltransferase 1
1.15 0.0034
200982.s.at  3.57 <0.0001 IL6ST chrs5qll Interleukin 6 signal transducer
1.33 0.001
201255.x.at  0.57 <0.0001 BAT3 chr6p21.3 HLA-B associated transcript
0.87 0.0006
215116.s.at 0.54 0.002 DNMI chr9q34 Dynamin 1
0.54 0.0001
20478l.s.at 2.31 <0.0001 FAS chrl0g24.1 Fas (TNF receptor superfamily, member 6)
1.19 0.0002
212983.at 0.70 0.0033 HRAS chrllpl5.5 v-Ha-ras Harvey rat sarcoma viral oncogene
homolog
0.70 0.0002
216938.x.at  0.59 0.0047 DRD2 chrl1g23 Dopamine receptor D2
0.62 <0.0001
204081.at 0.60 0.0012 NRGN chrl1g24  Neurogranin (protein kinase C substrate, RC3)
0.39 <0.0001
214792.x.at  0.58 0.004 VAMP2 chrl7pl13.1 Vesicle-associated membrane protein 2
0.69 0.0003
62987.r.at 0.52 0.0033 CACNG4 chrl7g24 Calcium channel, voltage- dependent, gamma
sub 4
0.62 <0.0001
211997.x.at  1.49 0.0011 H3F3B chrl7g25 H3 histone, family 3B
1.44 0.0007
212034.s.at 0.71 0.0003 EXOC7 chrl7g25.1 Exocyst complex component 7
0.88 0.0035
208255.s.at  0.50 0.0004 FKBPS8 chrl9pl2  FK506 binding protein 8
0.76 0.0001
218522.s.at 0.55 0.001 MAPIS chr19p13.11 Microtubule-associated protein IS
0.85 0.0001
221506.s.at 0.48 0.0047 TNPO2 chr19p13.1z Transportin 2 (importin 3, karyopherin beta
2b)
0.86 0.0075
210770.s.at 0.44 0.0012 CACNAIA chrl9p13.2 Calcium channel, voltage- dependent, alpha
IA subunit
0.78 <0.0001
205708.s.at 0.74 0.0056 TRPM2 chr21g22.3 Transient receptor potential cation channel
0.79 0.0004
205013.s.at  0.50 0.0005 ADORA2A chr22q Adenosine A2a receptor
0.48 <0.0001 11.23

The mean ratio is calculated as the ratio of themexpression in the HD and the mean expressitireinontrol group.

DISCUSSION

The results extracted by Chromowave using two presijopublished expression microarray datasets stggho
the view that coordinated repression and expresditarge chromosomal regions may explain the pgthetic
mechanism that underlie HD (Boroveedial, 2005; Hodgegt al, 2006). The transcriptional repression of
these regions is consistent with the effect of nadtthe acetylation state of histones and the cresd
compaction of chromatin regions (Butler and Ba28§6; Sadri-Vakili and Cha, 2006). Notably, theseffsize
of the transcriptional changes, particularly inwi®le blood samples, was comparable to the mRN#ndo
regulation previously observed in a set of low gradd anaplastic gliomas (Turkheine¢ial, 2006) where
marked reduction in expression was secondary todbgenetic material, as proved with FISH analisisalso
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to epigenetic control.

Interestingly, transcriptional changes were quiieent in the blood samples of pre-clinical HD sdt§ (4/5
were outside the normal range) but this finding watsreplicated in the caudate samples of subgdtse low
end of the Vonsattel scale. The latter result howeesy be due to the lower quality of RNA in poststem
samples.

In the analysed samples, the observed large doroanepressed transcription co-exist with sizealdmains of
increased transcription. The increased activitg tsfrge number of transcripts, that has been pusiyjioeported
(Boroveckiet al, 2005; Hodgegt al, 2006), can be also explained with the particulaoatosomal model
adopted here. For example, in the dataset frondldamples of HD patients the repressed regionsp3Hérl
Chr179g21 and ChrXp11.2 contain HDAC genes (HDACDAS5 and HDACS, respectively) whose
inactivation could result in increased acetylatidhe relative histones and local increases imstcaption.
Also, the increased transcription observed in sommemosomes can be explained by the changes in cell
population within the affected tissue (i.e. asttosis and microglial activation associated withveetell l0ss).
For instance, the chromosomal region chr6p, wkiows repressed transcription in the blood célisD
samples is largely active in the HD striatal samplikely because of the presence of microgliavégtin
caudate of HD patients (Sappal, 2001) and whose transcriptional signature contsiHE€ molecules, which
are encoded by genes on Chr6p (Hoebal, 2004). Individual probe analysis of the microardaya for the
caudate samples confirmed up-regulation of MHC €lanolecules but not of MHC Class Il nor tumour
necrosis factors, interleukins (IL 1-33) or intede (type 1-3) (data not shown).

The observation of large congruencies between chsomal profiles in blood and brain tissue sampldisiates
further the hypothesis that the mechanism of ieterice of mutated huntingtin with histone acetykfarases
generates a similar pattern of transcriptionalesgion in tissues that are affected by the dis€asthermore,
the similarities between the expression profileslood and tissue samples identify the genes tiegahaolved

in the pathogenesis of HD. The most striking siriks are observed in chr4, chr8, chrl0, chri2]letand
chr20 where changes in expression extend througheuwthromosome. In other chromosomes such as chrb,
chrl4, chrl5, chrl6, chrl7 and chr22 and chrX treespondence between blood and tissue is moreetrbut
still extends to or more than 50% of the chromatin.

Finally, the significant association between genavige patterns extracted wibhromowavend clinical
progression brings quantitative evidence to thegestion made by Boroveckt al. (2005) that analysis of
peripheral blood samples can provide a minimally-mvasive and easily accessible approach to monito
disease progression and therapy efficacy in HDeptgi In particular, chromosomal patterns of exgioesfrom
microarray peripheral data are promising toolslierassessment of biological efficacy of histonzceéylase
inhibitors (Butler and Bates, 2006).

In conclusion, this is the first time that the givia large-scale effects of mutated huntingtin tbgl changes in
gene expression have been visualized in peripbératl and brain tissue. The ability @hromowavef
detecting expression changes of gene clusters apdhmeir position on chromosomes allowed a stepdat in
understanding the widespread effects of mutatetirigtm on the human genome.
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