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Abstract 

Recent studies suggested that Huntington's disease is due to aberrant interactions between mutant huntingtin 
protein, transcription factors and transcriptional co-activators resulting in widespread transcriptional 
dysregulation. Mutant huntingtin also interacts with histone acetyltransferases, consequently interfering with the 
acetylation and deacetylation states of histones. Because histone modifications and chromatin structure 
coordinate the expression of gene clusters, we have applied a novel mathematical approach, Chromowave, to 
analyse microarray datasets of brain tissue and whole blood to understand how genomic regions are altered by 
the effects of mutated huntingtin on chromatin structure. Results show that, in samples of caudate and whole 
blood from Huntington's disease patients, transcription is indeed deregulated in large genomic regions in 
coordinated fashion, that transcription in these regions is associated with disease progression and that altered 
chromosomal clusters in the two tissues are remarkably similar. These findings support the notion of a common 
genome-wide mechanism of disruption of RNA transcription in the brain and periphery of Huntington's disease 
patients. 
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INTRODUCTION  

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by expansion of the 
CAG repeat region in exon 1 of the HD gene on 4p16 that encodes for the protein huntingtin. Such expansion 
results in abnormal polyglutamine repeats at the N-terminus of huntingtin (Walker, 2007) that cannot be cleaved 
by caspase 3 (Hermel et al., 2004). The mechanisms leading to huntingtin-mediated cell toxicity are still 
unresolved although it is clear that the mutated protein affects multiple pathways causing cell death. 

Mutated huntingtin has been shown to interfere with the transcriptional machinery of the cell. The N-terminal 
fragments aggregate and sequester several transcription factors leading to decreased availability for binding to 
DNA promoter regions, and consequent decrease in transcription (Chen-Plotkin et al., 2006). Recent studies in 
HD models have also shown that mutated huntingtin interferes with the activity of histone acetyltransferase, 
suggesting that abnormal activity of this enzyme might be a cause of transcriptional dysregulation in HD 
(Steffan et al., 2001; Sadri-Vakili and Cha, 2006). This observation is supported by the effect of histone 
deacetylase (HDAC) inhibitors in a number of HD models (Butler and Bates, 2006). 

Eukaryotic DNA is wrapped around histones to form chromatin. Nucleosomes, the basic units of chromatin, are 
composed of eight histones and are arranged to form a structure that facilitates the packaging of chromatin. The 
transition between tightly protected chromatin to freely accessible DNA is controlled, in part, by modification of 
the tails of histone proteins. These tails may be modified by adding acetyl groups, phosphates, methyl groups, 
adenosine diphosphate molecules or ubiquitin proteins (Kuo and Allis, 1998; Cheung et al., 2000; Kouzarides, 
2002; Gill, 2004). Acetylation is an important part of the histone-modification code (Kuo and Allis, 1998) 
because DNA is released by removing the positive charges of the histories through the acetylation of the lysine 
residues. This results in the loosening of the tightly packed chromatin with subsequent greater access to the DNA 
by transcription factors and RNA polymerase. The alleged interference of mHtt with histone acetylation is 
therefore expected to affect transcription globally (Fig. 1). 

Since it is thought to affect the acetylation state of histones and, thus, chromatin structure that coordinates the 
expression of gene clusters, we hypothesized that (i) mutated huntingtin affects the transcription of large 
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chromosomal domains, (ii) that the effect of mutated huntingtin is similar in different body tissues and (iii) that 
chromosomal expression profiles are associated with the disease state. These hypotheses were tested using the 
genome-scale mRNA measurements of HD tissue available at the time of the project. These consisted in one 
large microarray study of whole blood in a series of patients and controls (Borovecki et al., 2005) and in a 
second microarray study of postmortem brain tissue from patients and controls (Hodges et al., 2006). We then 
processed the datasets with Chromowave, a microarray processing tool that allows the identification, with high 
specificity, of clusters of adjacent genes with homogeneous changes of expression and maps their position on 
chromosomes (Turkheimer et al., 2006). 

 

Fig. 1   Histone acetylation is generally linked to transcriptional activation. Histone acetyltransferases (HATs) 
acetylate lysine residues at the N-terminals of histone proteins, resulting in a loosely packed chromatin structure 
in which DNA promoter regions are more accessible to transcription factors. Conversely, histone deacetylation, 
catalysed by histone deacetylases (HDACs), leads to a tightly packed chromatin structure, corresponding to 
transcriptional repression. Transcriptional repression also occurs when mHtt interacts with HATs, leading to a 
decrease in the acetylation of histone proteins. 

 

 

METHODS  

Microarray data  

The microarray dataset that analysed global gene expression in blood samples of HD patients, matched controls 
and pre-symptomatic subjects was taken from a published study that used Affymetrix and Amersham 
Biosciences oligonucleotide microarrays (Borovecki et al., 2005) and is available from the GEO database. 
Unfortunately, because of the unavailability of genome alignment data of the Amersham CodeLink arrays, only 
the data from the Affymetrix platform could be used (series accession GSE1751, platform Affymetrix GeneChip 
HG-U133A). The set contained n = 14 controls, n = 12 HD samples plus n = 5 samples from subjects with 
genetically determined disease but no overt clinical symptoms. The second dataset consisted in samples of 
caudate nucleus (n = 14 controls, n = 15HD), frontal cortex (n = 12 controls, n = 17HD) and cerebellum (n = 11 
controls, n = 17HD) of genetically confirmed HD patients and age-and sex-matched normal subjects. The dataset 
is deposited at the Array Express Repository (Experiment E-AFMX-6, platform Affymetrix GeneChip HG-
U133A and HG-U133B). 
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Chromowave analysis 

Chromowave (Turkheimer et al., 2006) (written in MATLAB 6.5, the Mathworks Inc., Natick MA, USA) 
normalized the microarrays to the background by dividing intensities by the median value of those genes 
presented with positive detection. Expression values were then log2 transformed, mapped to their corresponding 
chromosomal location using the genome alignment information contained in the manifest of each platform 
(available at http:// www.affymetrix.com/support/technical/manual/taf_manual.affx). 

Chromowave then applied the wavelet transform to the spatial distribution of the probes and converted the 
original expression values to wavelet coefficients that are functions of the expression of adjacent genes. Unlike 
the Fourier transform, that is the classical operator for stationary (periodic) signals, wavelets are a recently 
introduced mathematical tool for the treatment of signals with 'non-periodical behaviour' (e.g. a hammer blow, a 
plane flyover noise, etc.). Their use is pervasive in areas such as data encoding, transmission and compression 
including the analysis of gene sequences and functional genomics data (Lio, 2003). 

The wavelet transform is an orthogonal mathematical operator which means that the noise level is identical on 
the original raw data and at all wavelet transform levels. This is advantageous because a cluster of genes with 
similar expression is transformed into a wavelet transform coefficient that is greater the larger the number of 
genes in the cluster. Therefore the net effect of the application of the wavelet transform is that genes with 
individual expression below the noise level, that would otherwise go undetected, are identified when clustered 
together because their combined energy condenses into a greater wavelet coefficient that arises over the noise. 

Unsupervised extraction of chromosomal profiles 

The genome-wide ensemble of wavelet coefficients can be used for traditional ways of statistical analysis. In this 
instance we were interested in extracting the main pattern of chromosomal variation across each of the two 
datasets, irrespective of the grouping, and to verify afterwards whether major chromosomal variation was indeed 
associated with the disease state (e.g. unsupervised analysis). 

The choice of unsupervised analysis instead of a group comparison was consequential to the hypotheses to be 
tested. The first hypothesis stated that mutated huntingtin interference would cause a major disruption of the 
chromatin regulation of RNA. Unsupervised analysis (factor analysis in the instance considered here) allows the 
identification and quantification (in terms of percentage of total variability) of the major pattern of variation in a 
data-set. Factor analysis also allows the extraction of subject loadings that can be used in a regression model to 
verify the association of the pattern extracted from the data with disease states. Finally, one basic assumption of 
group analysis is that groups need to be homogeneous, clearly not the case in the instance of the data considered 
in this work. 

For this purpose, Chromowave applied the singular value decomposition to the set of wavelet coefficients to 
extract the first eigenvector, e.g. the main pattern of variation. This pattern was subsequently filtered using a 
highly conservative threshold that accounted for statistical noise, the number of wavelets and the probe-probe 
genomic distance; note that in Chromowave the contribution of the individual probes (wavelet transform 
coefficients at the first level) is zeroed so that only coherent spatial variation of expression is detected. After 
filtering, the surviving set of coefficients was then passed into the inverse wavelet transform to generate the 
genome-wide pattern of variation. The contribution of each array to the pattern was calculated as a single 
number, the 'case loading', where a positive value indicates an increased pattern of expression compared to a 
negative value indicating that a lower pattern is expressed. 

Analysis of individual probes expression 

In order to verify some of the findings with Chromowave, we also performed traditional probe-by-probe 
statistical analysis. The normalized expression values were log2 transformed and then a Student t-test was 
applied to identify differentially expressed genes between groups. The P-values were then corrected for the 
number of multiple comparisons using the false discovery rate criterion (Reiner et al., 2003) where this was 
fixed at 5%. 
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RESULTS 

Analysis of blood samples 

The main pattern of chromosomal variation (40% of total variance)   obtained   from   the   dataset   of blood   
samples clearly distinguished controls and HD cases (P < 0.000001, Mann-Whitney test) as well as controls and 
preclinical HD (P = 0.0003, Mann-Whitney test). The distinction between preclinical and clinically manifested 
HD was less sharp (P = 0.06, Mann-Whitney test), likely because of the low number of preclinical cases (Fig. 2). 
Large-scale clusters of co-expressed genes appeared to be up-regulated or down-regulated against controls (Fig. 
3). Some localized clusters are of interest. One that is considerably down-regulated is on Chr1.p36-p35 and 
contains MTHFR, CASP9, DFFB, FRAP1 and SHDB genes that have been linked to HD (Kiechle et al., 2002; 
Brune et al., 2004; Ravikumar et al., 2004; Chattopadhyay et al., 2005; Majumder et al., 2006). Among these 
genes, only MTHFR individual expression was significantly down-regulated and passed false discovery rate 
multiple correction (mean expression ratio HD versus controls = 0.55, P = 0.0037). The repressed cluster on 
Chr6p21-23 has been previously implicated in the age at onset of HD (Li et al., 2003) (Fig. 3). 

Analysis of post-mortem tissues 

The case loadings of the main chromosomal pattern (51% of total variance) obtained with the post-mortem 
tissues caudate samples demonstrate a significant difference between Hd cases and controls (P = 0.00014, Mann-
Whitney test) (Fig. 4). In addition, a Spearman's test found significant positive correlation between HD 
pathological grade and mRNA expression profile (P = 0.017) where the severity of the disease was graded 
according to the Vonsattel classification scale (Vonsattel et al., 1985). Inspection of Fig. 4, illustrates that the 
pattern is markedly expressed in cases graded 2 and higher, less so in grades 0 and 1. Chromowave analysis of 
the arrays obtained from frontal and cerebellar samples did not result in any significant chromosomal profile. In 
caudate, the pattern also extends along large stretches of chromatin but at a lower intensity than the one observed 
in blood cells (Fig. 5). 

Comparison between blood and post-mortem samples 

Striking similarities between the two patterns, particularly involving the whole of Chr4, Chr5, Chr8, Chr10, 
Chr12, Chr19 and Chr20 are observed between blood and postmortem tissues (Fig. 6). For instance, note that 
both patterns contain localized groups of down-regulated genes in a telomeric region of ~8 MB of Chr4p around 
the HD gene confirming the involvement in the disease of genes on this region other than the HD (Farrer et al., 
1993; Li et al., 2003; Djousse et al., 2004). 

 

Fig. 2  Case loadings for blood sample datasets. HD patients (black bars, cases HDI-12), controls (white bars, 
cases NI-14) and pre-symptomatic patients (black bars, cases PI-5). 
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Fig. 3   Pattern of chromosomal expression extracted by Chromowave for blood sample datasets: x-axis 
represents the genomic distance along each of the chromosomes; y-axis represents the gene expression 
contribution (intensity and direction, log2 scale). Positive values depict up-regulation of mRNA expression in 
HD patients and down-regulation in controls. 

 

 



Published in : Brain : A Journal of Neurology (2008), vol. 131, pp. 381-388 
Status : Postprint (Author’s version) 

 

Fig. 4  Case loadings for caudate sample datasets (controls = white, HD patients = black, with numbers above 
plots indicating Vonsattel scale of disease pathology). 

 



Published in : Brain : A Journal of Neurology (2008), vol. 131, pp. 381-388 
Status : Postprint (Author’s version) 

 

Fig. 5   Pattern of chromosomal expression extracted by Chromowave for caudate sample datasets: x-axis 
represents the genomic distance along each of the chromosomes; y-axis represents the gene expression 
contribution (intensity and direction, log2 scale). Positive values depict up-regulation of mRNA expression in 
HD patients and down-regulation in controls. 
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Fig. 6  Side-by-side comparison of the six chromosomal profiles (chr4, chr5, chr8, chr10, chr19, chr20) with the 
highest similarity between blood and striatum: x-axis represents the genomic distance along each of the 
chromosomes; y-axis represents the gene expression contribution (intensity and direction, log2 scale). 

 

 

Individual probes analysis 

In both datasets, a very large number of transcripts displayed significant change and survived the false discovery 
rate correction. Both original references (Borovecki et al., 2005; Hodges et al., 2006) contain exhaustive lists of 
these individual transcripts. Here we focus on the sub-set of genes that showed the largest up/down-regulation in 
those chromosomal locations identified by Chromowave and whose deregulation was consistent in both blood 
and striatum. This set, listed in Table 1, contains the DRD2 receptor gene, the hallmark of movement disorders, 
and genes vital to calcium homeostasis (NRGN, TRPM2, CACNA1A, CACNG4), G-protein signalling (RGS4, 
HRAS), exocytosis (EXOC7, VAMP2) and endocytosis (DNM1). Of interest is also the up-regulation of genes 
that induce apoptosis (FAS), transducers of Interleukin6 (IL6ST), whose levels are increased in the plasma of 
HD patients (Dalrymple et al., 2007), and the down-regulation of dynamin synaptic proteins (DNM1) previously 
involved in the disease (DiProspero et al., 2004). 
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Table 1  Transcripts with major up/down regulation, consistent in both blood and striatum (striatal values in 
grey shading) 
Probe set name Mean ratio P value Gene 

symbol 
Location Descriptor 

204338.s.at 0.41 0.0028 RGS4 chr1q23.3 Regulator of G-protein signalling 

 0.71 0.0041    
203138.at 2.58 0.0007 HATI chr2q31.2 Histone acetyltransferase 1 
 1.15 0.0034    
200982.s.at 3.57 <0.0001 IL6ST chr5q11 Interleukin 6 signal transducer 
 1.33 0.001    
201255.x.at 0.57 <0.0001 BAT3 chr6p21.3 HLA-B associated transcript 
 0.87 0.0006    
215116.s.at 0.54 0.002 DNMI chr9q34 Dynamin 1 
 0.54 0.0001    
204781.s.at 2.31 <0.0001 FAS chr10q24.1 Fas (TNF receptor superfamily, member 6) 
 1.19 0.0002    
212983.at 0.70 0.0033 HRAS chr11p15.5 v-Ha-ras Harvey rat sarcoma viral oncogene 

homolog 
 0.70 0.0002    
216938.x.at 0.59 0.0047 DRD2 chr11q23 Dopamine receptor D2 
 0.62 <0.0001    
204081.at 0.60 0.0012 NRGN chr11q24 Neurogranin (protein kinase C substrate, RC3) 
 0.39 <0.0001    
214792.x.at 0.58 0.004 VAMP2 chr17p13.1 Vesicle-associated membrane protein 2 
 0.69 0.0003    
62987.r.at 0.52 0.0033 CACNG4 chr17q24 Calcium channel, voltage- dependent, gamma 

sub 4 
 0.62 <0.0001    
211997.x.at 1.49 0.0011 H3F3B chr17q25 H3 histone, family 3B 
 1.44 0.0007    
212034.s.at 0.71 0.0003 EXOC7 chr17q25.1 Exocyst complex component 7 
 0.88 0.0035    
208255.s.at 0.50 0.0004 FKBP8 chr19p12 FK506 binding protein 8 
 0.76 0.0001    
218522.s.at 0.55 0.001 MAPIS chr19p13.11 Microtubule-associated protein IS 
 0.85 0.0001    
221506.s.at 0.48 0.0047 TNP02 chr19p13.13 Transportin 2 (importin 3, karyopherin beta 

2b) 
 0.86 0.0075    
210770.s.at 0.44 0.0012 CACNAIA chr19p13.2 Calcium channel, voltage- dependent, alpha 

IA subunit 
 0.78 <0.0001    
205708.s.at 0.74 0.0056 TRPM2 chr21q22.3 Transient receptor potential cation channel 
 0.79 0.0004    
205013.s.at 0.50 0.0005 ADORA2A chr22q Adenosine A2a receptor 
 0.48 <0.0001  11.23  
The mean ratio is calculated as the ratio of the mean expression in the HD and the mean expression in the control group. 

 

DISCUSSION 

The results extracted by Chromowave using two previously published expression microarray datasets supported 
the view that coordinated repression and expression of large chromosomal regions may explain the pathogenetic 
mechanism that underlie HD (Borovecki et al., 2005; Hodges et al., 2006). The transcriptional repression of 
these regions is consistent with the effect of mHtt on the acetylation state of histones and the consequent 
compaction of chromatin regions (Butler and Bates, 2006; Sadri-Vakili and Cha, 2006). Notably, the effect size 
of the transcriptional changes, particularly in the whole blood samples, was comparable to the mRNA down-
regulation previously observed in a set of low grade and anaplastic gliomas (Turkheimer et al., 2006) where 
marked reduction in expression was secondary to loss of genetic material, as proved with FISH analysis but also 
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to epigenetic control. 

Interestingly, transcriptional changes were quite evident in the blood samples of pre-clinical HD subjects (4/5 
were outside the normal range) but this finding was not replicated in the caudate samples of subjects at the low 
end of the Vonsattel scale. The latter result however may be due to the lower quality of RNA in post-mortem 
samples. 

In the analysed samples, the observed large domains of repressed transcription co-exist with sizeable domains of 
increased transcription. The increased activity of a large number of transcripts, that has been previously reported 
(Borovecki et al., 2005; Hodges et al., 2006), can be also explained with the particular chromosomal model 
adopted here. For example, in the dataset from blood samples of HD patients the repressed regions Chr1p34, 
Chr17q21 and ChrXp11.2 contain HDAC genes (HDAC1, HDAC5 and HDAC6, respectively) whose 
inactivation could result in increased acetylation of the relative histones and local increases in transcription. 
Also, the increased transcription observed in some chromosomes can be explained by the changes in cell 
population within the affected tissue (i.e. astrocytosis and microglial activation associated with nerve cell loss).  
For instance,  the  chromosomal region  chr6p, which shows repressed transcription in the blood cells of HD 
samples is largely active in the HD striatal samples, likely because of the presence of microglial activity in 
caudate of HD patients (Sapp et al., 2001) and whose transcriptional signature contains MHC molecules, which 
are encoded by genes on Chr6p (Horton et al., 2004). Individual probe analysis of the microarray data for the 
caudate samples confirmed up-regulation of MHC Class I molecules but not of MHC Class II nor tumour 
necrosis factors, interleukins (IL 1-33) or interferon (type 1-3) (data not shown). 

The observation of large congruencies between chromosomal profiles in blood and brain tissue samples validates 
further the hypothesis that the mechanism of interference of mutated huntingtin with histone acetyltransferases 
generates a similar pattern of transcriptional repression in tissues that are affected by the disease. Furthermore, 
the similarities between the expression profiles in blood and tissue samples identify the genes that are involved 
in the pathogenesis of HD. The most striking similarities are observed in chr4, chr8, chr10, chr12, chr19 and 
chr20 where changes in expression extend throughout the chromosome. In other chromosomes such as chr5, 
chr14, chr15, chr16, chr17 and chr22 and chrX the correspondence between blood and tissue is more limited but 
still extends to or more than 50% of the chromatin. 

Finally, the significant association between genome-wide patterns extracted with Chromowave and clinical 
progression brings quantitative evidence to the suggestion made by Borovecki et al. (2005) that analysis of 
peripheral blood samples can provide a minimally non-invasive and easily accessible approach to monitor 
disease progression and therapy efficacy in HD patients. In particular, chromosomal patterns of expression from 
microarray peripheral data are promising tools for the assessment of biological efficacy of histone deacetylase 
inhibitors (Butler and Bates, 2006). 

In conclusion, this is the first time that the putative large-scale effects of mutated huntingtin on global changes in 
gene expression have been visualized in peripheral blood and brain tissue. The ability of Chromowave of 
detecting expression changes of gene clusters and map their position on chromosomes allowed a step forward in 
understanding the widespread effects of mutated huntingtin on the human genome. 
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