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Abstract

In this dissertation, we investigate the macroscopic magnetic properties of bulk high-temperature
superconductors (HTS) containing an array of artificial holes in view of enhancing their performances.
The study involves a numerical modelling part and an experimental characterization part. In each
part, novel concepts are highlighted and detailed. In particular, we develop a three-dimensional finite-
element method (FEM) for calculating the magnetic field penetration in HTS where a single time-step
is used in the case of a linearly varying applied magnetic field, and we probe the magnetic field in the
volume of drilled samples with the help of microcoils inserted inside the holes.

The thesis starts with an introductory chapter that describes the general concept of high-temperature
superconductivity and particularly draws the attention on the interests and on the synthesis of drilled
structures. Then, we detail the modelling tools that are used for evaluating the magnetic properties
of drilled samples. Three models are taken into account: (1) the numerical Bean model which is a
generalization of the Bean model for arbitrary cross sections where the samples are assumed to have
an infinite height; (2) a 2D finite element model implemented in the open source solver GetDP for
samples with an infinite height and assuming a power law relationship, that is characterized by a critical
exponent n, between the electric field, E, and the current density, J; (3) a 3D finite element model with
the same equations as those of model (2), but where these are solved in a three-dimensional sample
with a finite height. For large values of n, both FEM models use the properties of a slow magnetic
diffusion to reduce the number of time steps. In particular, the trapped flux can be calculated with only
two time-steps: during the first step, the applied magnetic flux density is increased with a constant
sweep rate to a maximum value, it then decreases to zero with the same sweep rate during the second
step.

The models are first used in simple geometries where they are compared to other available techniques.
These are next applied to drilled samples. A systematic numerical study of the influence of the holes on
the magnetic properties of the sample is reported. A single hole perturbs the critical current flow over
an extended region that is bounded by a discontinuity line, where the direction of the current density
changes abruptly. In samples with several holes and a given critical current density, we demonstrate
that the trapped magnetic flux is maximized when the centre of each hole is positioned on one of
the discontinuity lines produced by the neighbouring holes. For a cylindrical sample, we construct a
polar triangular hole pattern that exploits this principle; in such a lattice, the trapped field is ~ 20%
higher than in a squared lattice, for which the holes do not lie on discontinuity lines. These results
are experimentally validated. Two parallelepipedic samples are drilled with two different hole lattices.
The trapped magnetic flux density of these samples is characterized by a Hall probe mapping before
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and after drilling holes. The sample in which the holes are aligned on the discontinuity lines exhibits
the smallest magnetization drop that results from the hole drilling.

Then, we resort to a novel experimental technique using microcoils inside the holes to characterize the
local magnetic properties in the volume of drilled samples. In a given hole, three different penetration
regimes can be observed when the sample is subjected to an AC magnetic field: (i) the shielded regime,
where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the amplitude
of the magnetic field scales with the applied field; and (iii) the flux concentration regime, where the
magnetic field exceeds that of the applied field. A comparison of the measurements with simple models
assuming an infinite height shows that the holes may serve as a return path for the demagnetizing
field lines. In the case of a pulsed field excitation, that measurement technique also allows us to
estimate the trapped magnetic flux density in the volume of the sample and compare it with that on
the surfaces. Moreover, the penetration of a magnetic pulse from hole to hole is described in the
median plane and on the surface and the differences of penetration speeds are explained.

Finally, we investigate the magnetic properties of drilled samples whose holes are filled with a fer-
romagnetic powder. To this aim, we use experimental techniques (Hall probe mapping techniques,
together with measurements of the volume magnetization and of the levitation force between the HTS
sample and a permanent magnet) and a numerical model (3D FEM) to characterize the modification
of the magnetic properties resulting from the impregnation of the holes with AISI 410 ferromagnetic
powder. Numerical results support the experimental observations and give clues to understand the
mutual interaction between the HTS sample and the ferromagnetic powder inserted in its holes. In
particular, the Hall probe mappings of the distribution of the trapped flux above the non-impregnated
and impregnated samples reveal an increase of trapped flux after impregnation that is confirmed by
simulations.



Version abrégée

Cette theése est consacrée a I'étude des propriétés magnétiques des supraconducteurs massifs a haute
température (SHT) contenant un réseau artificiel de trous en vue d’en optimiser les performances.
Elle est basée sur des résultats provenant de modeéles numériques et d'expériences menées sur des
échantillons troués. Dans cette optique, nous proposons une méthode par éléments finis pour cal-
culer la pénétration d'un champ magnétique dans un SHT, utilisant un seul pas de temps dans le
cas d'un champ magnétique appliqué variant linéairement dans le temps, ainsi qu'une technique de
caractérisation des propriétés magnétiques locales dans le volume des supraconducteurs troués a |'aide

de micro-bobines insérées dans les trous.

En guise d'introduction, nous dressons un panorama des concepts généraux liés a la supraconductivité
a haute température et détaillons I'attrait et les techniques de synthése des structures trouées. Les
méthodes numériques qui sont utilisées pour calculer les propriétés magnétiques des supraconducteurs
troués sont ensuite décrites. Trois modeles sont considérés: (1) le modele de Bean numérique qui est
une généralisation du modele de Bean dans des sections droites arbitraires avec des échantillons de
hauteur infinie; (2) un modele éléments finis 2D implémenté dans le logiciel open source GetDP et qui
modélise des échantillons de hauteur infinie a I'aide d'une loi en puissance reliant le champ électrique,
E, et la densité de courant, J, caractérisée par un exposant critique n; (3) un modéle éléments finis
3D qui utilise les mémes équations que dans le modele (2), mais qui les résout dans des échantillons
de hauteur finie. Pour de grandes valeurs de n, on utilise les propriétés de diffusion lente du champ
magnétique pour réduire le nombre d'itérations temporelles. En particulier, le profil de champ piégé
peut étre calculé en deux pas de temps: dans un premier temps le champ appliqué augmente a taux
constant jusqu'a une valeur maximale, et il est ramené vers zéro dans un second temps avec le méme
taux de variation

Les modeles numériques sont tout d'abord testés dans des géométries simples dans lesquelles ils sont
comparés a d'autres techniques disponibles. lls sont ensuite utilisés dans des structures trouées afin de
mener une étude systématique de I'influence des trous sur les propriétés magnétiques des échantillons
troués. Un trou unique perturbe I'écoulement du courant critique dans une région limitée par une
ligne de discontinuité ou la densité de courant change brutalement de direction. Lorsque plusieurs
trous entrent en jeu et que les échantillons ont la méme densité de courant critique, on démontre
que le champ piégé dans I'échantillon est maximisé si le centre de chaque trou se trouve sur une ligne
de discontinuité. Dans un échantillon cylindrique, le réseau de trou polaire triangulaire exploite ce
principe et permet d'augmenter le champ piégé d’environ 20% par rapport a celui d'un réseau carré
dans lequel les trous ne se situent pas sur des lignes de discontinuité. Ces résultats sont vérifiés



expérimentalement. Deux échantillons parallélépipédiques sont percés par deux réseaux différents de
trous. Le champ piégé au-dessus de ces échantillons est caractérisé par une cartographie par sonde de
Hall avant et apres percage des trous. L'échantillon dans lequel les trous sont alignés sur des lignes
de discontinuité possede la plus petite chute d'aimantation résultant de la présence de trous.

Ensuite, les propriétés magnétiques des échantillons troués sont caractérisées dans leur volume a |'aide
de micro-bobines insérées dans les trous. Dans un trou donné, trois régimes de pénétration différents
sont observés dans le cas d'un champ appliqué alternatif: (i) le régime de blindage dans lequel il n'y
a pas de flux pénétrant le trou; (ii) le régime de pénétration graduelle ot I'amplitude du champ dans
le trou varie avec celle du champ appliqué; et (iii) le régime de concentration de flux pour lequel le
champ magnétique dans le trou est plus grand que le champ appliqué. Une comparaison des mesures
avec des modeles simples supposant un échantillon de hauteur infinie montre que les trous peuvent
servir de chemin de retour pour le champ démagnétisant. Dans le cas d'une excitation par un champ
pulsé, cette technique de mesure nous permet d’estimer le champ piégé en volume et de le comparer
a celui en surface. De plus, la pénétration du pulse de trou en trou est décrite dans le plan médian et
en surface et les différences entre les vitesses de propagation sont expliquées.

Enfin, nous étudions les propriétés magnétiques des supraconducteurs troués dont les trous sont rem-
plis d'une poudre ferromagnétique. Dans cette optique, nous utilisons des techniques expérimentales
(cartographie par sonde de Hall, mesure de I'aimantation volumique et de la force de lévitation entre
un échantillon supraconducteur et un aimant permanent) et un modele numérique (de type éléments
finis 3D) pour caractériser les modifications des propriétés magnétiques induites par le matériau fer-
romagnétique. On observe en particulier que le champ piégé en surface de I'échantillon augmente

lorsque les trous sont imprégnés par le matériau ferromagnétique.
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Introduction

Discovered by Kamerlingh-Onnes in 1911, superconductors rapidly attracted the attention of the
scientific community for their remarkable electrical and magnetic properties, characterized by a lack of
electrical resistance to a DC current flow and a nearly perfect diamagnetism [1]. Almost one century
later, the interest aroused by superconductors has not faded away and superconductivity remains a
fascinating research domain, from which several new applications are still believed to emerge.

Among the promising applications, bulk high-temperature superconductors (HTS) can be used as
powerful magnets. When cooled down below their critical temperature, bulk HTS can permanently
trap a large magnetic flux; trapped fields of a few teslas have been measured at 77 K in bulk HTS
of a few cubic centimeters [2]. Such performances cannot be attained with the traditional iron-
based magnets, as their saturation flux density is of the order of 2 T. Cooling might be an issue for
applications. As is the case of most HTS, the critical temperature exceeds the boiling point of liquid
nitrogen, so that simple non-expensive cooling systems can be used. As a result, HTS trapped field
magnets are promising alternatives to iron-based magnets.

Permanent magnets are often used in electrical rotating machines, where they act as sources of the
magnetic field (either located in the stator or in the rotor) required for the electromechanical energy
conversion. Their replacement by trapped field HTS magnets leads to a significant increase of the
output efficiency [3]. The compact size of trapped field magnets, associated with their very large
trapped flux on their surfaces, provide high torques on the shaft with a substantial gain of size and
weight with respect to permanent iron-based magnets.

Moreover, HTS bulk magnets can be used in magnetic bearing systems, where they provide the means
for a stable levitation between a bulk HTS and a permanent iron magnet. Such a levitation is impossible
with two permanent magnets [4], unless some degrees of freedom are constrained (guided levitation).
The stable magnetic levitation with HTS trapped field magnets is at the basis of several prototypes
of magnetic bearing vehicles, such as a magnetic levitation train [5].

In spite of their remarkable magnetic properties, bulk HTS magnets also present drawbacks that have
hindered their use in applications. Two main issues have been recently addressed in the literature:
(i), the difficulty to synthesize samples of large size (> 1 cm?) with homogeneous superconducting
properties [6], and (ii), the necessity to maintain a uniform temperature when the magnet is used [7].

The first concern is related to the synthesis of HTS single domains, i.e. samples having a pseudo
single crystal behaviour but containing impurities and microcracks. These are usually obtained from
the top-seeded melt-grown process [8]. The superconducting properties of the single domains are

13



directly related to the oxygen stoichiometry which results from an oxygen annealing step taking place
at the end of the synthesis process. Unfortunately, the oxygen annealing in bulk HTS is a very long
step that usually creates cracks that are detrimental to the superconducting properties.

The second problem is inherent to the use of the samples in applications. \When located in a motor or
in a magnetic bearing system, HTS are often subjected to variable magnetic fields due to mechanical
vibrations or to variations in the applied torque on the shaft [9]. The variation of the magnetic
flux may lead to significant heat losses, and the resulting local temperature rise is detrimental to the
superconducting properties. It is therefore of prime importance to enhance the cooling and the thermal
stability of the sample.

In view of proposing a remedy to both issues, an improvement of the oxygen diffusion and of the
cooling in the samples has been recently demonstrated with bulk HTS cylinders containing a lattice of
holes drilled parallel to their axis [9, 10]. These are usually referred to as drilled samples. The holes
are drilled in the initial powder before the synthesis of the sample, and, at the end of the process, the
oxygen content has been shown to increase and the density of cracks to decrease with respect to the
situation in a plain sample. In addition to reducing the oxygen diffusion path, the presence of the holes
also offers a large heat exchange surface with the cryofluid, which improves the thermal stability.

These two improvements unfortunately occur at the expense of the magnetic properties of the trapped
field magnet. The presence of the holes leads to a redistribution of the trapped flux density in the
sample and reduces the trapped magnetic flux with respect to that in a sample having the same
dimensions, the same critical current density and no hole.

The purpose of this dissertation is to carry out a systematic study of the magnetic properties of drilled
samples, with the aim of optimizing their performances. By keeping in mind the known improvements
regarding the synthesis and the thermal stability, we investigate how one can even further take advan-
tages of the presence of the holes so as to improve the magnetic properties of drilled samples. We
work simultaneously on two front lines: the numerical modelling of the magnetic properties of drilled
samples and their measurements with specific experiments. The thesis is organized in six chapters:

1. Chapter 1 is devoted to an introduction of the concepts associated with the phenomenon of
superconductivity. The emphasis is put on high-temperature superconductors and their applica-
tions. In particular, the drilled structures are introduced.

2. Chapter 2 presents the numerical methods that are used for modelling the magnetic properties
of drilled samples. Two methods have been developed in this work: (1), an implementation of
the Bean model in samples with an infinite height and an arbitrary cross-section, which is based
on Campbell and Evett's approach [11], and, (2), a two- or three-dimensional finite-element
formulation of the Maxwell equations associated with a non-linear conductivity law for the HTS.
Each method is thoroughly discussed and their practical implementation is detailed. In order to
check their validity, the results obtained with these methods are compared to those obtained
with other techniques (analytical or numerical) in the case of simple geometries for which the
solutions are well known.

3. Chapter 3 discusses the influence of the hole lattice on the magnetic properties of the drilled
samples. It exposes a systematic numerical study of the modifications of the current stream



lines and of the magnetization that are caused by the presence of the holes. Several geometries
are investigated, from the simplest model consisting of a sample with an infinite height and a
semi-infinite cross section that is drilled by a single hole, to the most complex situation involving
a cylinder with a finite height and containing several holes arranged according to various regular
patterns. The conclusions drawn from the numerical analysis are confronted to experiments.

4. Chapter 4 investigates a characterization technique that allows us to probe locally the magnetic
field inside the holes of a drilled sample with the help of sensing microcoils. The method is
discussed in details and is applied to the measurement of the diffusion of an AC magnetic field
in the bulk of two drilled samples. The results of the measurements are compared to those
obtained with Hall probe mapping techniques. The microcoil technique is then applied to the
measurement of the penetration of the magnetic flux in the bulk of the sample during a pulsed
field magnetization (PFM) process.

5. Chapter 5 studies a method for enhancing the magnetic properties of drilled samples that
consists in filling the holes with ferromagnetic powder. Measurements and numerical analysis
are used to assess the influence of the ferromagnetic powder on the magnetic properties of the
sample, and in particular, on the trapped magnetization in the volume and on the maximum

trapped flux density above its surface.

6. Chapter 6 presents the conclusions and perspectives of this dissertation.






Survey of high-temperature superconductivity and
related applications

Strictly speaking, superconductivity refers to a physical property of carrying an electrical current with
a zero resistance. Superconductors are therefore often compared to perfect conductors across which
a current flows without encountering any obstacle, and consequently, with no energy loss. However,
the superconductors are not only perfect conductors, they also exhibit astonishing magnetic properties
that no other material has ever possessed.

Thanks to their unique physical properties, superconductors have numerous potential applications; be
it a totally new kind of application or an improvement of an existing one. The shape in which the
materials are processed determines the type of applications intended. Superconductors can be released
in wires, tapes, thin films, or in bulk monoliths. This latter form constitutes the main subject of the
present manuscript. Tapes and wires are suited for electrical current transport, thin film technology
is intensively used for superconducting electronics, whereas the bulk monoliths turn out to be very
efficient trapped field magnets.

This introductory chapter offers a description of the superconductivity phenomenon, starting from the
early discoveries to the most recent developments. The properties of high-temperature superconduc-
tors (HTS), together with their related applications, are then detailed, with a particular emphasis on
those processed in bulk monoliths.
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CHAPTER 1. HIGH TEMPERATURE SUPERCONDUCTIVITY

1.1 Discoveries of superconducting materials

The discovery of the first superconducting material is intimately linked to the research on low temper-
ature physics, and in particular, to the breakthrough achieved in that field in 1908 by H. Kamerlingh
Onnes. At that time, he succeeded to obtain a liquid phase of helium with a temperature of 4.2 K
under an atmospheric pressure [1], which was the lowest ever achievable temperature on earth. Shortly
after, in 1911, he made use of liquid helium to study the electrical properties of metals at very low
temperatures (in a first time, he concentrated on mercury — Hg). The electrical resistance of Hg was
found to drop to a non-measurable value when the sample was cooled down below a temperature of
transition, called the critical temperature, T, (see Figure 1.1). The superconductivity in mercury was
discovered. The resistivity of the mercury below its critical temperature was considered to be almost
zero although it was not perfectly measured as so: the measurement only indicated that its resistivity
lied below the sensitivity of the most accurate devices.

Very soon, the discovery of superconductivity aroused a strong interest in the scientific community.
In the following years, several other pure metals were shown to exhibit superconducting properties
when cooled down below a certain temperature. Unfortunately, their critical temperature did not
exceed 10 K. Cooling with liquid helium was mandatory to take benefits of these astonishing material
properties. The complexity and the cost of the cooling technology with liquid helium forced the
scientists to search for new superconducting materials with a larger T.

Figure 1.2 illustrates the evolution of the largest critical temperature through the years [12]. After
the pure metal superconductors discovered in the beginning of the 20t century (Hg, Pb), a first
breakthrough was realized in 1940 with the discovery of superconductivity in niobium nitride [13],
NbN, that enabled wires with metallic alloys of NbTi and Nb3Sn to be developped. Although the
critical temperature of niobium alloys were not larger than 20 K, these wires, associated with a liquid
helium-based cooling system, were successfully used in practical applications. Two reasons may explain
the success of Ni-based superconducting wires: (i) the maximum current density carried by these wires,
which was of the order of 1010 A/m? [14] at 4.2 K, allowed high field magnets to be created while
there was no other alternative technology showing similar performances, and (ii) the evolution of
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Figure 1.1: Schematic illustration of the low temperature dependence of the electrical resistivity of a normal
conductor (grey line) and of a superconductor like Hg (black line)
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Figure 1.2: Evolution of the critical temperature of newly discovered superconductors through years

liquid helium-based cooling systems since 1908 made the cryogenics part more affordable than at the
beginning of the century. Nowadays, these wires are still meeting a big commercial success.

Despite the discovery of the niobium-based wires, the search for a material with a higher critical
temperature evolved quite slowly before 1980, as shown in Figure 1.2. The year 1986 was a turning
point in that chase. During that year, G. Bednorz and K.A. Miiller discovered superconductivity at
30 K in the copper oxide perovskite compound LaBaCuO [15]. This new compound having a critical
temperature larger than 30 K is referred to as a High Temperature Superconductor (HTS). Promptly,
other scientists all around the world tried to find a superconducting phase in other types of copper
oxide perovskites, also known as layered cuprates. One year later, in 1987, the YBaCuO compound
was shown to be superconducting at the liquid nitrogen temperature, 77 K [16].

Following the discovery of the superconductivity in YBCO at 77 K, the research on superconductivity
blew up. There was a renewed interest in finding applications of superconductors that only required
a cooling with liquid nitrogen (cheaper and less complex than with liquid helium) and on discovering
new materials with a higher critical temperature that could even be larger than the room temperature.
Figure 1.2 shows that the rapid increase of the largest T, unfortunately ends in 1993 when the
compound HgBaCaCuO was shown to have a critical temperature of 138 K under an atmospheric
pressure and 164 K under a pressure of 30 GPa [17]. It still constitutes today the highest-T, record.

Since 1993, the efforts for finding new materials with a critical temperature that is larger than 164 K
have not been rewarded with the discovery of a room temperature superconductor. However, some
researchers now wonder whether that quest is still necessary to increase the number of commercial
applications using superconductors. It would be, for instance, more crucial to enhance the properties
of the known superconductors that are already used in devices cooled with well established cooling
systems. Then, in order to make them competitive with other technologies, the simplification of the
processing of superconducting materials is of prime importance in view of a mass production. This sim-
plification could be obtained either by modifying the existing process or by finding new superconducting
materials with very good superconducting properties at cryogenic temperatures but whose processing
is easier to carry out than that required for the copper oxide ceramics — this latter one is discussed in
more details in Section 1.5. Within this philosophy, the commercial success of superconductors relies
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more on achievements in material science and on the design of low-cost and high-efficient cooling
systems, than on the discovery of room temperature superconductors.

This trend is confirmed by the recent evolution of the research on superconductivity. In early 2001, a
Japanese group discovered that the magnesium diboride, MgB5, was a superconductor below 40 K [18].
The simple and low-cost fabrication process of MgB, enables to shape the material very easily in
various forms. In the same time, the development of HTS wires was progressing toward more and
more efficient system with large current carrying capacity [19, 20]. Recently in January 2008, a
Japanase paper reported the existence of superconductivity in iron pnictide compounds — compounds
that contain elements from group V, such as arsenic, phosphorus or nitrogen [21, 22]. A transition
temperature of 26 K was measured in La(O;_xFyx)FeAs [22], and the substitution of lanthanum
atoms by samarium yields a transition temperature of &~ 55 K [23]. It is believed that these materials
could help unravel how high-temperature superconductivity works. All these recent discoveries tend
to reinforce existing superconducting applications at cryogenic temperatures with new materials, new
performances, and new theories.

1.2 Two categories of superconductors

Contrary to their literal definition, the superconductors are not only ideal conductors that carry an
electrical current with a zero resistance. They distinguish themselves from perfect conductors by their
behaviour when subjected to an applied magnetic field. This distinction was discovered in 1933 by
W. Meissner and R. Ochsenfeld [24] with the help of an experiment during which they cooled down
superconducting samples below their critical temperature in the presence of an applied magnetic field.
While a perfect conductor would not modify the magnetic field lines when the temperature is lower
than its transition temperature, the superconductors were found to expel the magnetic field from their
volume; they became perfectly diamagnetic at T < T, — that is the Meissner effect. Figure 1.3
illustrates the expulsion of the magnetic field lines from a superconductor when the sample is cooled
down below T, in the presence of a magnetic field. The Meissner effect, together with the zero DC
resistance, provides a unique definition of the superconducting state.

The Meissner effect cannot be observed with magnetic fields of arbitrary strength. If the applied field
is larger than a critical field, magnetic field lines penetrate inside the superconductor. According to
how the magnetic field penetrates their volume, we classify the superconductors in two types: (i)
the type-I superconductors for which superconductivity disappears when the magnetic field exceeds
the critical field, and (ii) the type-1l superconductors where a superconducting state may coexist with
magnetic field lines in the volume of the sample.

1.2.1 Type-I superconductors

Type-I superconductors return back to their normal state when the applied field exceeds their critical
field Hc. The superconducting state vanishes, even if the temperature is smaller than the critical
temperature. All superconducting pure metals are type- superconductors. Typical values of pugHc lies
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Figure 1.3: Field-cooling process below T, of a superconductor and of a perfect conductor (having only o = 0).
The superconductor excludes the flux lines from its volume as soon as its temperature is below
T.. That is the Meissner effect, which is not exhibited by a perfect conductor.

within the range of 10 —200 mT [25] at T = 0 K.

A type-l superconductor is subjected to a phase transition to the normal state by increasing the
applied magnetic field, in a similar manner to what occurs when the temperature exceeds T.. Beside
the critical temperature, T, the superconducting state is also defined by a second external parameter,
namely the critical magnetic field, H,.

A macroscopic description of the type-l superconductivity involves a two-fluid model, where super-
electrons coexist with normal electrons. It was explained by F. and H. London in Ref. [26]. The
density of super-electrons, ns, is maximum when T = 0 K, that is ng, and vanishes when T = T¢; it

n = { (DA}- 1)

The model assumes that the repulsion of the field lines from the volume of the type-I samples is

is given by [27]

explained by the circulation of super-electrons in a peel of width A all round the sample. Inside the
peel, the magnetic field is governed by the following equations,

E:%(/\J) and  V x (AJ)=-B, (1.2)

where A = m/(nse?), m and e are the mass and the charge of an electron. Equations (1.2) are
respectively the first and the second London equation that describe both the zero DC resistance and
the Meissner effect in type-I superconductors. Actually, the first London equation implies that a static
current (8J/9t = 0) induces a zero electric field, and hence zero dissipation since the dissipation is
proportional to E - J. On the other hand, in the case of a time-varying current, part of the current is
carried by normal electrons that dissipate energy. Moreover, the London equations, associated with
the Maxwell equations, yield the diffusion equation for the magnetic flux density in the superconductor
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Figure 1.4: (a)- Infinite slab of superconducting material with a thickness w along the y-axis. (b)- Penetration
in the slab of a uniform applied magnetic field oriented along the z-axis.

that describes the Meissner effect,

1 _ A
0B = 5B with A=/ (1.3)

where X stands for the penetration length. The solution of Eq. (1.3) is represented in Figure 1.4
in the case of an infinite slab of width w along the y-axis, and infinitely extended along the x- and
z-axis. A DC magnetic flux density applied along the z-axis, B, is exponentially decaying inside the
superconducting slab (along the y-axis) within a distance of few A. In the centre of the slab, the

magnetic flux density is almost zero.

At 0 K, the penetration depth g lies within the range of 30 — 100 nm for type-I superconductors [12],
and tends to infinity at the transition temperature, T, with the following dependence [25]

NT) = Do (1.4)

4
-
Let us note that the penetration depth must be negligible with respect to the characteristic size of
the sample in order to observe the Meissner effect in type-l superconductors.

While already described phenomenologically by London in 1935, type-l superconductivity was only
explained at a microscopic scale by Bardeen, Cooper and Schrieffer in 1957 [28]. Within the framework
of their model (BCS theory), the superconductivity can be viewed as a frictionless motion within
the atomic lattice of two electrons that form a Cooper pair. Although they are subjected to a
Coulomb repulsion, two electrons may be paired with the help of an electron-phonon interaction, i.e.
an interaction between the electrons and the vibrations of the lattice.

The Cooper pairs have a characteristic size &, called the coherence length, whose value at T = 0 K
is usually few hundreds of nanometers for type-l superconductors. Contrary to the single electrons
that are subjected to the Pauli exclusion principle that prevent electrons from occupying the same
electronic state, the Cooper pairs act like bosons and condensate at a same energy level. In type-
| superconductors, the electronic state of the Cooper pairs lies at a slightly lower energy than the
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unpaired electrons, with an energy gap, Eg4 of the order of 0.001 eV [29]. In the Cooper state, the
usual collisions that lead to normal resistivity are inhibited. For temperatures such that the thermal
energy is less than the energy gap Eg4, the material exhibits zero resistivity. The BCS theory predicts
that, due to the energy gap value, superconductivity cannot be observed at temperatures larger than
approximately 30 K [28].

1.2.2 Type-Il superconductors

In type-1 superconductors, the transition from a superconducting state to a normal state occurs when
the applied field exceeds H. — the critical field Hc is unique. In type-ll superconductors, that transition
occurs in two steps through a mixed state defined by a lower and an upper critical fields, respectively
called H¢1 and Hea. When the applied field H, is larger than the lower critical field H¢q, the type-ll
materials remain in a superconducting state and are simultaneously penetrated by discretized quanta
of magnetic flux, called vortices. Metal alloys, cuprates, MgB,, and pnictide compounds are of type-II.

The three states of a type-ll superconductor in the H — T plane are illustrated in Figure 1.5 and
discussed here below:

1. Meissner state (H, < He¢)
The superconductor behaves in the same manner as a type-I does. In particular, the magnetic
field penetrates the superconductor from its surface, over a distance roughly equal to its London
penetration depth and the magnetic flux is expelled from the remaining volume of the supercon-
ductor. At T = 0 K, typical values for the lower critical field, uoHc1, of type-Il superconductors
are 0.1 T for conventional superconductors [30], and few mT for cuprates [31].

2. Mixed state (He1 < Hy < Heo)
In the mixed state, vortices penetrate inside the superconductor. These are columnar cylinders
parallel to the applied field with a normal conducting core, having a radius equal to the coherence
length &, and surrounded by circulating supercurrents within a distance X, as illustrated in
Figure 1.6-(a). The magnetic flux contained in a vortex is constant, that is a quantum of

(a) Type-l superconductor (b) Type-ll superconductor
H H
He2
Normal state
H Normal state
C
Mixed state
or vortex state
Her -
Te T T T

Figure 1.5: H — T phase diagrams of (a) a type-l superconductor and (b) a type-1I superconductor.
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Figure 1.6: (a)- Sketch of three vortices in a superconducting plane. The surrounding supercurrents are

also represented. (b)- Magnetic decoration above a NbSe, superconductor [32] highlighting the
presence of vortices (dark spots). (c)- Same experiments above a Y-Ba-Cu-O material [33]

magnetic flux, ®g,
by = — (1.5)

where h is the Planck constant and e is the electron charge, and hence, ®y = 2,07.107> Wh.
Outside the core of the vortes, the magnetic field vanishes over a distance X due to the circulation
of supercurrents.

Inside pure superconductors, i.e. samples containing no defects or impurities, the vortices are
not held in a fixed position and can move freely when subjected to a non-vanishing resulting
force.

The forces acting on vortices are mainly of two types. First, there is the mutual force acting
between two vortices. Two vortices with magnetic field lines oriented in the same direction are
subjected to a repulsive Lorentz force that drives them apart. When several vortices come into
play, the vortices take an equilibrium position that minimizes their mutual interaction energy. At
equilibrium, all the vortices are arranged on a triangular lattice, called the Abrikosov lattice [34].
Figure 1.6-(b,c) shows an Abrikosov lattice in a NbSe; and in a YBa;CuzO7_s superconductor.
The lattice constant a defines the density of vortices in the lattice, n,, which is proportional to
the magnetic flux density, B = n,®g. When the lattice constant becomes comparable to the
coherence length, the material returns to the normal state.

Second, a DC current flowing across a type-Il superconductor in the mixed state exerts a Lorentz
force on the vortices. For a current density J, that force is given by [35]

f = Jxoo, (1.6)

where ®¢ is the flux quantum associated to an isolated vortex. This driving force causes the
vortices to leave their equilibrium position and move as long as the current flows in the sample.
Since the core of the moving vortices contains normal electrons, the induced motion of the
array of vortices involves a drag force that acts on the vortices and causes energy dissipation
that is detrimental for the current transport abilities of the superconductor. In order to prevent
that situation from happening, impurities can be incorporated in the crystal lattice so as to pin
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Table 1.1: Characteristics of type-I and type-1l superconductors

Type-I Type-1l
Single critical field H, Dual critical fields Hqq1 and Heo
Meissner state Meissner state or Mixed state with quantized vortices
Generally pure elements Metal alloys, cuprates, MgBs or pnictide
Low critical field High critical field
E> A <A

Surface current flow for H < H.  Bulk current flow for Hey < H < Heo

the vortices. Superconductors possessing pinning centres for the vortices are called irreversible
type-Il superconductors, in contrast to reversible type-Il superconductors in which the vortices
are free to move. The magnetic response of irreversible type-1l superconductor exhibits an
hysteretic behaviour, that is not observed with reversible type-1l superconductor. That specific
point is discussed further in Section 1.4.

Thanks to the very low energy dissipation when carrying a current, only irreversible type-II
superconductors are used for applications, and we only consider them in this manuscript.

3. Normal state (H, > Hco)

When the applied field is larger than their upper critical field Heo, the material looses its super-
conducting properties. There are no more vortex inside its volume, the magnetic field uniformly
penetrates the material. At T = 0 K, typical values of ugHco are few dozen of T in metal
alloys [25] and few hundreds of T in cuprates [2].

The penetration of the magnetic field by quantized fluxoid has been theoretically predicted by Abrikosov,
whose calculations detailed in Ref. [34] were based on the Ginzburg-Landau model for superconduc-
tivity [36]. The description of that model goes beyond the scope of the manuscript, but a remarkable
conclusion can be deduced from a dimensionless parameter k, that is the ratio between the penetration
depth A and the coherence length &,

K= —. (1.7)

3
This parameters illustrates in a simple way the difference between type-l and type-II superconductors:
when k < 1/v/2, that is € > X, the superconductor is of type-I, and when k > 1/4/2, that is € < X, it
is a type-Il superconductor. A non exhaustive list of the characteristics of each type of superconductors
is summarized in Table 1.1.

1.3 Critical parameters of a superconducting state

Usually, the superconducting state of a material is described in a three-dimensional (3D) phase diagram
where a 3D surface defines the boundary between the normal and the superconducting phases [25],
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Figure 1.7: J — T — H phase diagram of a type-l superconductor representing upon which conditions the
superconducting state is stable.

as represented in Figure 1.7. The critical surface intersects the axis respectively at the critical current
density Jc, at the critical temperature T, and at the critical field H. (or Hco in the case of a type-ll
material). Each critical parameter is thus defined when both remaining ones are considered to be
equal to 0.

Figure 1.7 illustrates that the temperature, the magnetic field and the current density must satisfy
conditions such that the transition to/from a superconducting state occurs. In particular, for a given
T and H, such that it lies in the superconducting state, a material cannot carry a current density
exceeding a critical value J. without loosing its superconducting properties. In type-1 superconductors,
such a transition to the normal state is explained by the breaking of all the Cooper pairs due to a large
current density, that is the depairing critical current density. In irreversible type-Il superconductors,
the critical current density is defined as the current density that pulls out the vortices from the
defects or impurities, that is the depinning critical current density. Contrary to T, and H, the critical
current density is not an intrinsic properties of a given superconducting material. In irreversible type-II
superconductors, it depends strongly on the presence of pinning centres in the material. Two samples
of same stoichiometric composition may exhibit different critical current densities.

The shape of the critical surface is representative of almost all the superconductors. Inside the volume
determined by that surface, the phase diagram is however not similar for both types of superconductors.
Such a difference appears clearly in the phase diagram in the H — T plane represented in Figure 1.5.
That two-dimensional phase diagram is a particular cut along a J-plane of the critical surface.

The analysis of the J— T — H surface plays an important role for applications using superconductors.
Careful attention must be drawn when designing the systems: the operating point (J, 7, H) can never
lie above the critical surface.

Moreover, the critical surface reveals that working at a temperature close to T¢ is not very optimal;
the critical current density is quite low in that region, and hence, is not convenient for applications.
This partly justifies the extensive research effort that has been devoted during the recent years to the
enhancement of the critical current density of HTS operating at 77 K, rather than running toward
higher-T. materials. For instance, a hypothetic room temperature material would only exhibit an
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admissible critical current density for applications at lower temperatures than T.; a cooling system
would be also required to use them. Therefore, the scientists have rather chosen to strengthen the
critical current density of known superconductors for which the associated cooling system is already
well understood.

1.4 Magnetic properties of irreversible type-1l superconductors

Irreversible type-1l superconductors contain impurities and/or defects in their crystal lattice that act
as traps for the vortices. These vortices are held up in place by the defects with a large attraction
energy, they are said to be pinned in the superconductor. The displacement of the vortices needs to
be triggered by an external intervention, such as a variation of the applied magnetic field or a large
current flow exceeding the critical current density.

The distribution of the vortices in a superconductor with pinning centres results from an equilibrium
between the forces acting on these vortices. Although the microscopic interaction between vortices is
a complex problem, it is possible to describe the force balance with macroscopic quantities. The first
interaction is the Lorentz force acting on the vortices due to a current flow with a density J. In the
case of an isolated vortex, that Lorentz force is given by Eq (1.6). Let us now assume that there are
n, vortices per unit of volume, the average Lorentz force density, F, is therefore given by

F

J x nvd)o, (18)
JxB (1.9)

In addition to the Lorentz force, the pinning force has also to be taken into account. In a sample
with a uniform distribution of pinning centres, one can define an average pinning force density, Fp.
That pinning force describes the minimal force density that causes a vortex motion. In other words,
if the DC current density is such that F < F,, the vortices stay pinned and the current flows in the
superconductor with no energy dissipation (non-dissipative regime) ; whereas if F > F, the flux line
lattice moves and the superconductor enters in the flux flow regime. When the force balance equation

(a) Reversible type-ll  (b) intermediate pinning
strength

lew \ e '
non-dissipative regime

Figure 1.8: Current-voltage relationship, as measured by the experiment sketched in the inset, in a reversible
type-1l superconducting bar (grey line) and in an irreversible type-1l superconducting bar with an
intermediate (dashed line) and a strong (solid line) pinning strength (after Strnad et al [37]).
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is satisfied F = Fp, the current density is equal to the depinning critical current density, Jc.

The aforementioned regimes are illustrated in Figure 1.8, on which is represented the current-voltage
relationship at a finite temperature in type-Il superconductors with (a) no defects, (b) an intermediate
pinning strength, and (c) a strong pinning, i.e. a high density of efficient pinning centres. The reversible
superconductor (a) has a single flux motion regime with a dissipative current flowing through it; the
pinning force is strictly equal to 0 and only a drag force acts on the vortices and causes energy
dissipation. The material with the strong pinning (c) shows nearly an abrupt transition between the
non-dissipative regime and the flux flow regime at a critical current /. corresponding to the critical
current density Je. In the more realistic case of an intermediate pinning strength (b), a third regime is
observed — the flux creep regime —, where the vortices are depinned from the impurities by thermal
fluctuations. The Lorentz force acting on the vortex is not sufficient to make it moving, but a small
amount of thermal energy is sufficient to pull out the vortex from the pinning centre.

1.4.1 Bean critical state model

In an irreversible type-1l superconductor, the dynamic of a vortex is mainly governed by the force
balance condition that assumes the following form,

F, = JxB, (1.10)

This equation brings C. P. Bean in 1962 to describe macroscopically the magnetization of the irre-
versible type-Il superconductors with a strong pinning [38, 39]. This model, called the Bean critical
state model, assumes that the distribution of the current J, and hence of the magnetic field H with
V x H =], is such that the force balance condition (1.10) is satisfied everywhere in the volume of the
superconductor penetrated by flux lines. Thus, the current density J can only have three values: +.J.
or 0. The sign of the current flow is such that it induces a magnetic field that opposes the variation
of the applied field.

The microscopic interpretations of the critical state are the following:

1. When the superconductor is subjected to a positive (resp. negative) increment of applied field,
flux lines are nucleated (resp. destroyed) at the surface of the material. The magnetic field
becomes discontinuous at the surface. The large spatial variation of the magnetic field at the
surface thus involves a local current density J = V x H that is initially larger than J..

2. The flux lines at the surfaces move inside the material (resp. toward the surface) until the
gradient force, i.e. the Lorentz force due to the current induced by the curl of the magnetic
field J x B, is balanced by the pinning force F,

The Bean model is described by a single equation,

+uod in the penetrated regions
VxB = { Hole P 9 (1.11)

0 in the virgin regions
under the following assumptions:

1. a strong pinning,



1.4. MAGNETIC PROPERTIES OF IRREVERSIBLE TYPE-II SUPERCONDUCTORS 29

return lines of Hp
sent at infinity

Ha

h~d h>d h>>d

Figure 1.9: Demagnetizing field Hp, defined as H = Hp + H,, in cylinders of diameter d and height h, such
that h~ d (a), h > d (b) and h > d (c) which represents a geometry of infinite height.

a negligible lower critical field, Hey — O,
a very large upper critical field, H.o — oo,
. dimensions of samples that are not negligible with respect to the penetration depth, A,

a surface barrier that is neglected?,

o oA W

a constant critical current density in the sample.

Critical state in an infinite superconducting slab

Although the Bean model is defined by a single explicit differential equation, Eq (1.11), it is not trivial
to find an analytical solution to that model in several geometries. The analytical solution of the critical
state can only be determined in few ideal geometries with obvious symmetries. In particular, the Bean
model can be solved analytically when the vector Bean equation (1.11) can be reduced to a single
scalar equation, like in an infinite superconducting slab, of width w, subjected to a longitudinal field,
as illustrated in Figure 1.4-(a).

In view of further understanding the consequences of the symmetries in such a geometry, one has
to introduce the concept of the demagnetizing field, Hp. The demagnetizing field is defined as the
magnetic field created by the induced currents flowing in the superconductors, such that

H = H,+Hp. (1.12)

The demagnetizing field lines form closed loops, as skecthed in Figure 1.9 in the case of cylinders
of various heights (the situation around a superconducting slab is similar). In the infinite geometry
(c), the demagnetizing field has a single component oriented along the z-axis inside the cylinder, and
due to the symmetry along the z-axis, the field lines close at infinity. Moreover, the return field lines
that surround the sample are sent to infinity and no longer influence the applied field at the border

The surface barrier represents the interaction between a vortex and the surface of the superconductor that prevents
the entry of a flux line or its exit from the sample. That surface barrier has only an influence at low magnetic fields [25].
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of the cylinder, like in geometries with finite height. Therefore, the demagnetizing effects — i.e.
the effects associated with the return lines of the demagnetizing field, and with the curvature of the
demagnetizing field lines such that they form closed loops — have no influence in samples having an
infinite height.

Consequently, the Bean equation simply assumes the following form in the case of the infinite slab as
represented in Figure 1.4-(a),

B, _ {iquc (1.13)

dy 0

where J. flows along the x-axis direction. The orientation of the current flow is such that the magnetic
flux density is smaller (resp. larger) inside the slab (at least in the vicinity of the surface) than at the
surface if the applied field is increasing (resp. decreasing).

To illustrate the critical state in the infinite slab, let us consider the following sequence of applied
magnetic flux density at the surface of the slab: (i) 0 — Bmax, (i) Bmax — —Bmax, and (iii)
—Bimax — Bmax. Such a sequence is usually referred to as a full magnetization cycle.

We consider each of the steps separately, and we calculate the analytical expression of the magnetic
flux density profile within the slab. The corresponding profile is represented in Figure 1.10.

(i) 0 < B; < Bmax, With Bpax > toJew
As long as B, < ugJew/2, the slab is not fully penetrated, i.e. the current density is not equal
to |Jc| in all the slab, and the magnetic flux profile is given by

Ba — toJe(w/2 — iflyl > yi
B - a— ko C(W/l ly[) * ifly] > yy (1.14)
0 iflyl <y
) w Ba
with yf = — — : L15)
1 2 toJe :

When B, exceeds the penetration field B, = uoJew/2, the slab is fully penetrated and the
profile reads

B, = B, tod(w/2—Iy)) (1.16)

In particular, the magnetic flux density decays linearly with a slope J., from the surface toward
the centre of the slab. Note that the condition Bumax > poJew is further explained in case (ii).

(ii) Bmax < Ba < —Bmax
Since the applied field is now decreasing, the current induced at the surface is now oriented in
the opposite direction to that of case (i). The position where the current switches between the
positive and the negative orientation, fy;, starts from the surface and moves toward the slab
centre as the applied field keeps decreasing, as long as B; > Bmax — oJcw. In that situation
the magnetic flux profile reads

B 2 — ifly| > v3
5 :{ o Hode(w/2 = Iyl) ifly| > y3 (1.17)

Bmax_MOJC(W/Q_ ‘y|) |ﬂy‘ <y2*
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Figure 1.10: Distribution of the magnetic flux density and of the current density in an infinite superconducting
slab when the uniform applied magnetic flux density is increased from 0 to Bmax in (i) and
decreases to —Bpayx in (ii). The distribution is calculated at successive increments of the applied
field according to the Bean model.

Bmax - Ba

1.18
20 Je (1.18)

w
with  y) = — —
Y2 2
For |y| > y3, the flux profile increases linearly from the surface toward the centre and has the
opposite slope to that in case (i). Then, for |y| < y3, the profile remains the same as when
B = Bmax in case (i). When B, < Bmax — oJcw, the profile gets simpler:

B, = Ba+ugJc(w/2—1yl), (1.19)

and the current density is oriented in the same direction in a half-slab. In particular, when
B, = 0, there remains a positive magnetic flux density in the slab, that is the trapped magnetic
flux. If the initial condition in case (i) was not fulfilled, i.e. if Bmax — oJcw < 0, the current
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(a)- Bean model - Uniform critical current density (b)- Bean model - Field-dependent critical current density
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Figure 1.11: Magnetization curve of an irreversible type-Il infinite superconducting slab with a strong pinning
and with, (a), a constant critical current density or, (b), a field-dependent critical current density
according to Eq. (1.21).

would not be oriented in the same direction in the half-slab when B, = 0 and the trapped
magnetic flux density would not have been maximum at the slab centre.

(iii) —Bmax < Ba < Bmax. That situation is symmetric to the case (ii) and leads to similar relations.

According to the description of the Bean critical state model in Figure 1.10, the vortex pinning involves
a hysteretic magnetic behaviour in irreversible type-ll superconductors. In particular, it is responsible
for the remnant magnetic flux density observed in the case (ii). The hysteresis arises from the vortices
that are only nucleated or destroyed close to the surface of the superconductor, and that do not
diffuse immediately in all the sample. In the centre of the sample, the effect due to an increment of
the applied field is delayed.

The full magnetization cycle described by cases (i), (i) and (iii) is usually represented with a mag-
netization curve that highlights the hysteresis in the magnetic properties of the irreversible type-II
superconductors. The magnetization is defined as
M(H,) = ! [Bav-w (1.20)
7 eV - o
where Hy = B,/uo. The magnetization curve, ugM(B,), is plotted in Figure 1.11-(a). An hysteresis
loop with a maximum width of B, = poJ-w/2 is observed.

The considerations on the magnetization of irreversible type-1l superconductors are based on the Bean
model that simply assumes a constant critical current density. Refinements of that model are brought
by the Kim’s model [40], where the critical current density depends on the magnetic flux density,

JcO

Je(IB) = 1+B|/B:"

(1.21)

An analysis of the critical state of the infinite slab, with a field-dependent critical current density
can be also carried out analytically. It yields a magnetization curve with a hysteresis loop, where the
magnetization does not saturate anymore at |uoM| = B,/2, but exhibits two extremum values close
to B, = 0, as schematically represented in Figure 1.11-(b).
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1.4.2 Power law model

Although the critical state model is very efficient to qualitatively describe the main features of irre-
versible type-1l superconductors subjected to an applied magnetic field, it nevertheless fails in describing
some effects associated with the dynamic of vortices in the material. Actually, the critical state model
refers to a steady-state where the vortices are so efficiently pinned that their motion follows instan-
taneously the variations of the applied magnetic field: the critical current density has a single value
such that the balance force equation (1.10) is satisfied everywhere; the time during which the driving
force, J x B, is unbalanced and the vortices rearrange between themselves is negligible.

In the critical state, the current has a single value, such that the electric field E reads

0 in the regions with no vortices motion
E(J) d

B, (1.22)

dt
The electric field is only induced by time-variations of the applied flux density B,. The critical state

in the regions with vortices motion

model does not take into account the thermally-activated motion of vortices, which is dissipative and
implies the existence of an electric field that is different from that given by Eq. (1.22).

However, it has been already shown in Figure 1.8 that the flux creep phenomenon that occurs when
the driving force is almost equal to the pinning force, J ~ J., can be observed in samples with
intermediate pinning strength when the pinning energy of the vortices U becomes comparable with
the thermal energy kgT. That thermally induced motion of vortices is more and more important when
the temperature increases. In particular, it cannot be neglected in HTS.

The flux creep in superconductors is usually observed when studying the time evolution of the mag-
netization of a sample [40]. The trapped magnetic flux decays with time according to a logarithmic
law. The field gradient within the superconductor decays with time because of thermally activated
flux motion of the vortices resulting in a relaxation of the persistent current and of the magnetization.

The thermally activated flux creep causes dissipation. The electric field associated with a vortex

motion accross the pinning energy barrier with a height U is expressed in Ref. [2] as
-U(J)

ksT )

where the pinning energy depends on the current density. In HTS, the observed magnetic relaxation

E = Eoexp( (1.23)

can be understood by considering collective motion of vortices grouped into large flux bundles [41].
According to the model of collective flux creep applied to HTS oxides, as described in Refs. [42, 43,
44, 45], the activation energy in HTS depends on the current density with a logarithmic law

UJ) = Upln (Jj) (1.04)

where J¢ is the critical current density and Ug is the pinning energy when there is no current flowing
in the sample. Therefore, Eq. (1.23) yields a power-law relationship between the electric field and the
current density, which is in agreement with measured data [46, 47, 48, 49, 50]. The E(J) power law
was introduced in 1990 by Gilchrist [46] and assumes the following form

J n
E = E. <7> , (1.25)
Cc
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Figure 1.12: Relation between the electric field and the current density according to the power law (1.25)
with a critical exponent n equals to 1, 10, 20 and 100. The E — J relationship corresponding to
the Bean model is reproduced with a dashed line.

where n = Up/kT is a critical exponent, E. is a critical field and J. is the critical current density. The
power law model with a critical exponent n equal to 1, 10, 20 and 100 is represented in Figure 1.12;
the E — J relationship corresponding to the Bean’s critical state is also plotted with a dashed line.
When n = 1, Equation (1.25) corresponds to the ohmic law, with a linear relationship between E
and J. The critical exponent associated to the HTS is typically around 25. The power law model is
asymptotically equivalent to the Bean model, for n — oo.

The main advantage of using a power law instead of the critical state model for calculating the
magnetic flux penetration in a HTS samples is that the effects of the dissipative motion of vortices
across energy barriers are taken into account. In particular, the observed dependence of the width
of the hysteresis loop AM with the sweep rate dB,/dt is well reproduced [51, 52]. Moreover, the
power law model yields an analytical expression for the conductivity of the material, unlike in the Bean
model, for which the conductivity of the superconductor is discontinuous, it is either 0 or infinite. The
power law can be directly incorporated in usual numerical methods for solving the Maxwell equations
in the superconductor.

1.5 A further insight on high-temperature superconducting oxides

High-temperature superconductors (HTS) relate to a family of superconducting materials whose crit-
ical temperature exceeds 30 K. Among the HTS family, the most famous materials are the copper
oxide-based superconductors, or the cuprates. Discovered in 1986, the HTS oxides are now slowly leav-
ing the research laboratories to creep into the industrial market; the workhorse of the HTS applications
being the second generation of superconducting wires using YBCO coated conductors [20, 53].

The following section introduces the HTS oxides in general, describes their main characteristics and
focuses particularly on the bulk monolith forms of YBay;CuszO7_3.

HTS are brittle ceramics containing CuO, layers that govern most of the HTS properties and make
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the material highly anisotropic. The unit cell of a YBaCuO material is shown in Figure 1.13-(a) in
both tetragonal and orthorhombic phases. The tetragonal phase, with the stoichiometry YBasCu3QOg,
is not superconducting, as opposite to the oxygen-rich orthorhombic phase, YBayCu3zO7_ 5. We
notice the presence in both phases of the copper-oxide layers separated by Ba and Y atoms. The
structure of a YBCO crystal is schematically represented in Figure 1.13-(b). The layered structure
along the c-axis consists of two CuO, planes separated by Y site. Between these layers, one find an
interlayer region that corresponds to the CuQO chains linked to the CuO, planes by a barium oxide.
The superconductivity essentially takes place within the CuO, planes. The CuO planes may be viewed
as charge-reservoirs which bring mobile charge inside the CuO, planes. In a YBCO compound, these
charge reservoirs are created by adding oxygen site to a YBayCu3QOg crystal that enters the compound
as 0%~ and creates the CuO chains. To maintain the charge equilibrium, electrons are removed from
the copper oxide planes; the remaining holes are mobile inside the CuO; planes and form kinds of
Cooper pairs below T.. Such a description leads us to deduce the schematic model of the structure
of all HTS oxides represented in Figure 1.13-(c).

In HTS oxides, the distance between neighbouring atoms is very different in the a, b-plane than along
the c-axis; in a YBCO, it is 38 nm in the CuO, planes and it is 116 nm along the c-axis. That
difference has a great influence on the superconducting properties of the HTS oxides, and leads to
anisotropy in their properties. Even at room temperature, the electrical conductivity of these metallic
oxides is much larger along the a- and b-axis, than along the c-axis.

The coherence length of HTS oxides is very small, £, ~ 15 A and & ~ 4 A for YBCO, which
is practically equal to the separating distance between two adjacent CuO, planes. Consequently,
HTS oxides are type-ll superconductors, as described by the Ginzburg-Landau theory. Moreover,
the coherence length is also anisotropic. The Ginzburg-Landau theory leads to the definition of an
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Figure 1.13: (a)- Crystallographic structure of a Y-Ba-Cu-O system arranged on a tetragonal lattice,
YBa; Cus Og, and on an orthorhombic lattice, YBa,CuzO7_s. (b)- Schematic representation
of a YBCO. (c)- Schematic representation of a (RE)-Ba-Cu-O system, where RE stands for a
rare-earth element.
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Figure 1.14: (a)- H — T diagram of a HTS oxides. The vortex state is split in two parts by the irreversibility
line. (b)- Irreversibility fields of several HTS cuprates, taken from Ref. [55]

anisotropy ratio, 7y, such that
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(y>1). (1.26)

In YBCO, typical values of «y are within the range [5 — 7] and are rather in the range [50 — 200] for
highly anisotropic layered compounds like Bi;SroCaCuyOg . The anisotropy ratio mainly depends on
the coupling strength between adjacent CuO, planes [54].

Due to the anisotropy and the small coherence length of the cuprates, the mixed state of HTS reveals
some peculiar features:

(i) The transition from the non-dissipative regime to the flux flow regime due to an increase of
current is broader than in the case of conventional type-Il materials. As a result, large flux
creep effects are observed in HTS oxides and the critical exponent n of the power law is smaller
(n ~ 25) than that of the conventional superconductors (n ~ 100) [43].

(ii) An additional transition line appears in the H — T phase diagram of HTS, that is called the
irreversibility line. Below H.o, there exists a magnetic field H,,, such that there is no more
effective pinning in the HTS if H, > H,,,. When H, > H,;,,, the pinning energy becomes
comparable with the thermal energy, the vortices are depinned by thermal fluctuations and
Je = 0 [2]. The irreversibility line is of prime importance for applications, much more than
Hco governs the maximum field that maintain the pinned vortex state with no dissipation. The
irreversibility line of several HTS oxides is reproduced in Figure 1.14. Note that H;,, is much
smaller than Hco, particularly in Bi-based cuprates.

(iii) The vortex lattice exhibits only a short-range hexagonal order, not a long-range order like in an
Abrikosov lattice. Moreover, while the flux lines along the c-axis have a circular cross section,
those along the a, b-plane have rather an elliptical cross section due to the anisotropy.
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1.6 Bulk HTS materials

Among all the available forms in which high-temperature superconductors may be processed, two of
them are particularly important in the framework of this thesis. These are the polycrystalline bulk
monoliths and the single domains?, both types are referred to as bulk HTS. We will come back on
the other forms (wires, cables, thin films) in the last section of this chapter, when dealing with the
applications of HTS.

Although great progress has been achieved in the recent years in the field of HTS thin films and tapes,
several interesting applications, such as levitation systems and flywheels, remain still more efficiently
realized with bulk materials. Therefore, there is still a need for developing bulk HTS materials for
engineering applications.

HTS bulk materials are of mainly two types : (RE)-BaCuQ, where (RE) denotes a rare earth such as
yttrium and (X)-CuOCa where (X) denotes either TIBaO, HgBaO or (Bi,Pb)SrO such as in Bi-2223
which is the most common material of that type. The second type of bulk HTS has a very weak
interactions between the superconducting layers. As a result, they have a smaller irreversibility field
than that of (RE)-BaCuO materials and are therefore less interesting for applications involving high
magnetic fields. Moreover, Bi-based materials are not processed in single crystals, but as a sintered
powder, having therefore a smaller critical current density than that of single domain (RE)-BaCuQ.
In the present manuscript, we will mainly focus on (RE)-BaCuO bulk materials, and particularly on
YBaCuO, whose processing is described in the following paragraphs.

Bulk HTS made of (RE)-BaCuO materials are typically processed in plane-parallel or in cylindrical
shape, with a typical diameter that may extend up to maximum 100 mm [57], or even more with
multiple seeding [58]. However, the processing of single domains with such large dimensions is very
difficult and time-consuming. The bulk samples with larger dimensions are polycrystalline with numer-
ous single domains, or grains, that are weakly coupled together [59]. The polycrystalline samples are
characterized by two different current flows:

(i) the intragranular current that flows inside an isolated grain, without crossing the joints between
the grains,

(ii) the intergranular current that crosses the grain boundaries.

In the case of a transport current flowing in the sample, only the intergranular current is activated.
When an applied magnetic field penetrates the sample, both current types plays a role in the magnetic
properties of the sample. In particular, the intergranular critical current density between naturally-
occurring grain boundaries is several orders of magnitude smaller than the intragranular one, and is
very sensitive to low magnetic fields [60]. As a result, the trapped magnetic flux above a cylindri-
cal polycrystalline bulk HTS exhibits a non-axisymmetric profile with several local maxima that are
observed in a Hall probe mapping experiment, provided the probe may resolve these maxima; while
the trapped flux profile above a single domain has a single maximum. That difference is illustrated in
Figure 1.15.

2A single domain consists of a pseudo-crystalline matrix composed of large parallel crystal plates having a common
perpendicular axis. It also includes numerous defects such as microcracks or inclusions of another type of materials [56].
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Figure 1.15: Distribution of the trapped magnetic flux density above the sample surface of a single domain
YBCO (a) and of a polycrystalline YBCO (b), taken from Ref. [61]

In order to avoid the polycrystalline behaviour of bulk materials, the crystallographic alignment of the
different grains may be forced during the processing of bulk materials, that is the texturing technique.
The description of the texturing and of the processing of HTS single domains is described in the
following section.

1.6.1 Processing of bulk YBCO single domains

Bulk YBCO single domains are realized with a textured crystal growth. The most common method
is the top-seeded melt-textured growth (TSMG) [8, 62]. It consists in melting an initial powder
mixture, containing mainly Y>,BaCuOs — Y211 —, by heating the mixture slightly above the peritectic
temperature, T ~ 1050°C [63], and then reducing slowly the temperature to solidify the YBa;CuzOg
— Y123 — phase with the help of a seed having a higher melting temperature, thereby ensuring the
alignment of the Y123 grains (see Figure 1.16-(a)).

The texturing technique is based on the peritectic recombining reaction of Y123 from the Y211 phase
and a liquid phase saturated in baryum and copper [64, 65, 66],

Y>BaCuOs + liquide(Ba, Cu) — YBayCuzOs. (1.27)

The superconducting phase YBa;CuszO7_5 is then obtained after an oxygen annealing of the isolating
phase YBa;CuzOg. In order to enhance the texturing during the crystal growth, a Y211 excess is
added to the initial powder mixture that acts as an yttrium tank [67]. Moreover, the smaller are the
Y211 particles, the higher is the critical current density, since the Y211 particles that did not react and
that are surrounded by the Y123 matrix may act as efficient pinning centres for the vortices [68, 69].
Usually, some dopants, such as Ce and Sn, are also present in the initial mixture in order to obtain
fine particles of Y211 [67].

The seed that controls the crystal growth direction has a crystallographic structure that is close to
YBayCuzO7_5 and a higher melting point. Typically, the seed is a single crystal of SmBa,CuzOy or
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tal growth of a top-seeded melt-grown YBCO sample, from a seed located at the surface of a

powder.

NdBa,CuzOy [70]. The a, b-planes of the seed are parallel to the surface of the liquid phase of Y123
such that the growth front follows these directions. The crystal growth proceeds epitaxially, layer
by layer, starting from the surface that is in contact with the seed. A schematic illustration of the
top-seeded melt-growth process is shown in Figure 1.16-(b).

The TSMG process allows for obtaining single domains in cylindrical shape with a diameter up to
100 mm. The melt grown samples are nevertheless subjected to numerous microcracks and macroc-
racks [71, 72] that impede on the superconducting properties. These cracks are either due to material
contraction during the growth [73] or during the oxygen annealing [74]. Actually, the oxygen annealing
modifies the crystallographic structure of the material. Y123 switches from the tetragonal phase to
the orthorhombic one having a different mesh size; it causes material contractions which may generate
cracks.

1.6.2  Drilling holes in bulk YBCO

The macro- and microcracks appearing in melt-grown samples mainly during the oxygen annealing
degrade their superconducting properties. Besides, the oxygen annealing of large bulk samples is a
long process. In order to improve the oxygen annealing process, it has been shown that a gradual oxygen
annealing process may contain the gradient of the oxygen rate below the limit of crack creation [75].
However, that technique has been revealed efficient only on small samples (< 2 mm) where the oxygen
has only to diffuse on a very small distance. For using that technique on large samples, it has been
proposed to create an array of parallel columnar holes in the bulk material, so as to create thin walls
for the oxygen diffusion [6, 10, 61, 76, 77, 78, 79].

These drilled samples are also aimed to

(i) reduce the porosity inside the bulk materials, since the holes could serve as a gas extraction
conduit [80],
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(ii) induce a higher critical current density,

(iii) ensure a good thermal stability in applications, since the heat exchange surface is increased as
compared to a non-drilled sample.

The drilled samples are processed with the top-seeded melt-grown technique. The holes are drilled in
the sintered powder before the crystal growth. In order to prevent the powder from crumbling, it is
first sintered for a better mechanical behaviour. The holes are usually drilled vertically in the pellet,
along the direction of the axis of the cylinder, with the help of a usual high speed drilling machine.
The drills are coated with a diamond film against abrasion and have a typical diameter of 0.5 —1 mm.
Although the holes are believed to be only useful during the oxygen annealing, these are drilled before
the texturing of the material for the sake of mechanical stability. In fact, drilling holes in a brittle
ceramic without breaking it, as it is done in Ref. [81], is a very difficult task that is time-consuming
and may require heavy equipments, such as an ultrasonic drilling machine [82].

The first drilled superconducting single domain was successfully processed in 2004 [76]. Although
initially aimed at being gradually annealed under an oxygen flow, the drilled samples still require a very
long annealing time, even with a distance between holes that is smaller than 1.5 mm (diameter of the
sample is ~ 20 mm). Up to now, these were usually annealed with a classical process. Recently, it
has been proposed to use a high oxygen pressure (16 MPa) for the annealing [83]. Such high pressure
allows one to work at a higher temperature, and consequently, the oxygen diffusion rate in the single
domain is increased. Drilled samples with a high-pressure oxygen annealing were successfully processed
by X.Chaud et al. in Ref. [83].

Independent of the oxygen annealing process (gradual or classical), the as-obtained drilled samples
possess several advantages with respect to non-drilled (or plain) samples having similar dimensions:

(i) A reduction of the porosity with respect to a plain sample, as revealed by microstructural analysis.
A picture of a vertical cross section of a plain sample (1) and of a drilled sample (2) is shown in
Figure 1.17-(a). The drilled sample is more dense than the plain one. In particular, a continuous
distribution of pores with a typical size of 100 um is found in the bulk of the plain sample, and
not in the drilled sample. In a drilled sample, the smaller diffusion path intended for an improved
oxygen annealing also allows the trapped gas to escape from the bulk.

(i) A higher critical current density than that of a plain sample. Thanks to the reduced oxygen
diffusion path, the oxygen content in a drilled sample is larger and more uniform than in a plain
sample, either with the classical (non-gradual) process [6, 84] or with the high-pressure gradual
one [83]; in the latter case, the drilled sample exhibits almost no crack. A comparison of the
trapped flux profile of a plain (1) and a drilled (2) samples processed under the same conditions
as described in Ref. [6] is shown in Figure 1.17-(b). Even if the volume of the superconducting
material is smaller in the drilled sample than in the plain one, the increase of critical current
density compensates that material removal. As a result, the trapped flux is larger in the drilled
sample than in the plain one.

(iii) a larger heat exchange surface with the cryofluid that ensures a better thermal stability. In
particular, Laurent et al. in Ref. [9] compares the trapped flux decay in a drilled and in a non-
drilled sample that results from a small heater glued at the surface of both samples. The drilled
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Figure 1.17: (a)- Vertical cross section of a top-seeded melt-grown sample having no holes (top panel) or
several holes along the c-axis (bottom panel), from Ref. [6]. (b)- Distribution of the trapped
magnetic flux density above the sample surface of a non-drilled and a drilled top-seeded melt-
grown cylindrical sample, from Ref. [6]

sample exhibits the smallest trapped flux decay, and hence, the best thermal stability. When
used in a motor, drilled samples are thus believed to suffer less from the heat generated by the

motion of vortices due to magnetic flux variations.

(iv) A new way for reinforcing mechanically the sample with the help of a resin impregnation inside
the holes [81, 85]. The reinforcement is very important in samples used as trapped field magnets,
where huge radial Lorentz forces may break them up. It has been shown that reinforcing the
samples may increase the tensile strength of (RE)-BaCuO samples (typically 20 — 30 MPa [2])
up to 80 MPa [86].

Besides these advantages, the drilling of holes in the sintered powder also has some drawbacks. First,
the crystal growth of the sintered powder is influenced by the presence of holes. When a growth front
coming from the seed and propagating along the a, b-plane reaches a hole, it leads to the formation of
a small closed growth subsector beyond the hole that does not disturb the Y123 crystal growth [79].
Furthermore, a Y211 layer extending along the c-axis may be observed in the neighbouring of holes,
due to the formation of the growth subsector. On the other hand, if the hole lies on the boundary
between two growth fronts coming from adjacent sides of the seed, it yields a more complex situation,
with the formation of other growth sector boundaries extending beyond the hole; the crystal growth
of Y123 is modified [79]. It is therefore strongly advised to position the seed in a hole free region and
such that the growth sector boundary will not cross the holes.

Then, the presence of the holes in the sample affects its mechanical properties [87]. Calculations
based on the Bean model has shown that the stresses caused by flux pinning around a central hole

may increase by a factor of 2 [88].

Finally, drilling holes in a superconductor is detrimental to its magnetic properties. It was found
in [89, 90] that removing superconducting matter decreases both the full penetration field and the
trapped flux, provided the critical current density remains unchanged. For bulk samples, studies based
on the Bean model already pointed to the magnetization drop that results from drilling holes [89, 90].
Holes also lead to macroscopic changes in the current distribution. According to the Bean model, the
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current stream lines near a hole abruptly change their direction along discontinuity lines [11] and circle
the hole in a region that extends far beyond the hole itself. This effect is enhanced in thin films, as
the magnetic flux density displays sharp peaks at the discontinuity lines. Such macroscopic changes
of the magnetic flux were observed with magneto-optical imaging of thin films having macroscopic
defects [91, 92].

1.7 Applications using HTS cuprates

The discovery of high-temperature superconductivity in 1986 rose scientists' hopes for providing new
and very efficient applications that could force some technological barriers and open new research
horizons. For instance, the non-dissipative current flow at the liquid nitrogen temperature would solve
the problem of energy losses on long-distance transmission lines; next, the large current density that
may flow continuously in a closed loop of HTS cable would be used for generating large DC magnetic
fields (up to several tens of teslas) that would lead to new scientific discoveries, in a similar manner
as the development of ultra-sensitive magnetic probe incorporating superconducting layers does; and
finally, the pinning of vortices in HTS samples enable a stable levitation between a permanent magnet
and a HTS sample from which would follow the creation of levitating transportation systems.

Unfortunately, the early passions for HTS applications faded slowly away because of difficulties arising
from their synthesis processes. The development of HTS applications was therefore intimately related
to the progresses realized in material processing. Nowadays, the research on material science have
allowed for a mass production of YBCO coated conductors that are believed to occupy a leading role
for the appearance in the forthcoming years of HTS applications in the everyday's life.

The coated conductors, which represent the second generation of HTS wires, were precessed by a
first generation of HTS cables made of BiySrpCayCuz019 (Bi-2223) material. HTS cables of the first
generation consisted of several Bi-2223 tapes embedded in a silver alloy matrix. The tapes had a typical
size of 0.2 by 4 mm, and a cable contained approximately 50 tapes [20]. These cables were able to
sustain critical current densities up to 108 A/m2 that allowed them to successfully meet the technical
requirements of the first HTS applications. However, the much higher irreversibility field and critical
current density of YBCO have always forced scientists to work towards YBCO-based HTS cables.
They stroke against several processing problems, mainly due to the polycrystalline features of such
materials, but they eventually developed the concept of YBCO coated conductors with unbeatable
superconducting properties at the liquid nitrogen temperature. Coated conductors are made with a
thin-film of a layer of YBa;CuzO7_g, with grain-to-grain misorientations of at maximum 5° [93, 94].
Coated conductors rely on the thin-film technology to deposit epitaxially a superconducting layer on
a highly biaxially textured tape-shaped template. The nickel-textured RABITS substrates are usually
chosen [93]. Coated conductors are flexible and available in long lengths.

While the coated conductor technology is the latest released and the most discussed progress in the
field of HTS, it is worth mentioning that superconducting electronics using HTS have greatly taken
advantage of the development of HTS thin films. In the same spirit, advances have been also made
in bulk materials processing, with, for instance, the introduction of drilled samples, as discussed in
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Section 1.6.2. The applications using bulk materials become more and more efficient and feasible for
industry and everyday's life.

The success of HTS applications is also dependent on the efficiency of the solutions brought to the
cooling-related problems. Working with HTS requires an efficient cooling system with low thermal
losses for reducing the working costs as far as possible. Actually, the main relevant aspect that
will push (or not) HTS applications into the economic market is the price of the system. Even if
the efficiency and the technical advantages of a HTS application are undoubtedly demonstrated, its
commercial success will almost entirely depends on its market price. Therefore, the cooling price
should be kept at a minimal value [95]. On the other hand, the technical features of the cooling
systems, such as their sizes or their efficiency, are also decisive for the success of HTS applications.
The cooling of HTS in large-scale applications is performed via a cryofluid, whereas HTS thin-films
used in electronic applications are cooled by small cryocoolers. That difference must be taken into
account when developing the cryosystems.

In the following section, we describe first some recent applications using HTS shaped in wires and
thin films. Then, we present in more details the application domains where the bulk monoliths are
intended to be used.

1.7.1 HTS wires

The HTS cables, no matter if they are of first or second generation, are used for energy transport.
They are advantageous with respect to classical copper cables for several reasons. First, HTS cables
achieve large power transmission capacity with a compact size. For instance, an aluminum alloy cable
with a diameter of 30 mm carries as much energy as a YBCO coated conductors having a rectangular
cross section of 2 um by 4 mm. This is fruitful for the total cost of the cable system, and for solving
the problems related to the continuously growing power requirement around big city centres. The
energy transport in HTS cable occurs with low power losses. It is worth mentioning here that the
electrical power is usually carried with an AC current. Although a superconductor has almost a zero
DC resistance, it exhibits small losses in AC regime due to the induced motion of pinned vortices.
The AC losses are still much smaller than the resistive losses measured with conventional cables.
Then, transporting electrical power through HTS cables is also respectful for the environment. The
low power losses allows for an energy consumption reduction at the upstream part of the power grid.
Then, because the HTS cables are cooled down, and usually immersed in a continuous flow of liquid
nitrogen, there is no risk of fire or burst. Finally, the magnetic field created around a cable carrying a
current may be efficiently shielded by an additional superconducting layer that circle the cable. There
is therefore no electromagnetic pollution around the HTS cables.

Nowadays, several prototypes of HTS cables are being installed all around the world [96, 97, 98],
including the Long Island project of replacement of a 600 m-long wire by a 2G HTS wire in the
commercial power grid [99]. These are conceived in order to better clarify the reliability and the
stability of the HTS cables.

The unique nature of superconductors wires enables for the design of compact fault-current limiter
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preventing from rapid increases of the current in the network [100, 101]. Actually, when the current
density flowing in the superconductor becomes greater than J., the superconductor returns back
into its normal state, whose impedance is quite high for HTS and avoid the increase of the current
propagating in the network and causing damages on the connected devices. The quenching of the
superconductor, i.e. the transition from the superconducting to the normal state, is reversible, provided
that the heat produced by the current flowing in the high resistive state is efficiently removed from
the cable.

The HTS wires may also be used as current leads in large superconducting coils for the generation
high magnetic fields. HTS current leads substantially reduce the heat load to the cold superconducting
coil made of LTS wire. The resistive losses in usual cables that electrically connect the coil to the
power source generates a large amount of heat in the cold part that has to be removed by the cooling
system. In particular, the LTS superconducting coils of the Large Hadron Collider (LHC) are equipped
with HTS current leads [102].

Superconducting coils can be now also realized with HTS wires. The high irreversibility fields of HTS
wires, on the order of 70 T for 2G wires, allows one for working with much higher magnetic fields
than those achieved with LTS coils. HTS coils have therefore the potential to breach the limit of
today's superconducting magnet using LTS (45 T in a hybrid magnet (resistive and superconducting)
at NHMFL, Florida, USA [103]) and open opportunities for developments in magnetic resonance,
particle accelerators, colliders, and fusion devices [104, 105]. Nowadays, the world-record’s magnetic
flux density in the centre of a 2G HTS coil is 26.8 T in a background field of 19 T and cooled down
at 4.2 K [105, 106]. The coil has a very compact size with a diameter of ~ 200 mm and a height of

~ 150 mm.

Another use of the superconducting coils is related to electrical energy storage. The superconducting
magnetic energy systems (SMES) transform electric energy into magnetic energy by a lossless current
flowing continuously in a closed superconducting coil [107, 108]. The SMES are able to store up to tens
of kJ/kg (limited by mechanical constraints) with a specific power that is typically 100 MW /kg [109],
which makes them ideal candidates for power sources. By increasing the operating temperature, 2G
HTS SMES require a simple refrigeration system and are cheaper than LTS SMES due to reduced
exploitation and investment costs. Note however that the very fast discharge of the energy stored in
HTS SMES is inappropriate for a domestic use, where the power has to be almost constant over time.
HTS SMES rather aim at the compensation of the power grid deficiencies during a very short period.

Motors, transformers and generators based on 2G HTS coils are of considerable interests for appli-
cations where the weight reduction is of prime importance. In particular, the US Navy works toward
lightweight small-sized HTS motors for their battleships and submarines [110]. In the same spirit, the
US Air Force develops a new generation of aircrafts where the hydraulic will be completely replaced by
electronics, and where HTS generators could save weight and volume together with providing a higher
efficiency than classical motors [111]. Other civilian projects are also lead in different laboratories.
For instance, compact and light HTS transformers are taken on board of train wagons in order to
improve the welfare of the passengers (low noise) and the ecological impact (high efficiency) [112].
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1.7.2 HTS thin films

Superconducting electronics constitutes maybe one of the most important field of applications for
superconductors because superconducting thin-films offer technical features for electronic system that
no other known material is able to reproduce. In the other domains, HTS with their unique properties
aim at enhancing the performance of existing systems, and sometimes quite impressively, but rarely
provide totally new kinds of applications that were not available with classical technologies.

The Josephson junctions lie at the basis of these new applications. The Josephson junctions are trilayer
structures comprising two superconductors separated by an isolating or metallic material. Without
any applied voltage, an electrical current is able to cross the junction by tunnel effect. When a DC
voltage is applied to the junction, it induces current oscillations whose frequency lies in the range
1 GHz — 1 THz. Moreover, the current across the junction can be modulated with the help of a
magnetic field. Both effects are referred to as Josephson effects.

The Josephson junctions are used as a voltage standard, defining physically the volt unit from a fre-
quency [113]. The coupling of resonators to microwave filters is enhanced by using the low microwave
losses of HTS thin films [114]. The improved coupling with much sharper frequency characteristics
than conventional compact filters is used for instance in aircraft electronics [95] or in mobile phone
communications systems [115].

Two junctions arranged in a closed loop constitute a superconducting quantum interference device
(SQUID) sensor. The SQUIDs are the most sensitive magnetic field sensors ever realized that probe
magnetic fields that are several order of magnitudes smaller than the sensitivity of conventional mag-
netic probes. The smallest measured magnetic flux density is of the order of 10718 T after averaging
few days of measurements [116]. HTS SQUIDs are believed to have an important commercial impact
since they can be handled without complex cryosystems. An important aspect associated with HTS
SQUIDs is their possibility to be used without the burden of a magnetic shield. To this aim, the
SQUIDs measure the magnetic field gradient instead of the local magnetic field value. Mobile non-
shielded HTS SQUIDs were tested successfully in biomedical [117] and geophysical applications [118].
In Josephson samplers, the fast voltage reaction of a Josephson junction when a current exceeds the
critical current of the junction determines repeated signal forms with picosecond resolution [119].

1.7.3 Bulk HTS in levitation systems

The ability of bulk HTS to trap a high magnetic field that is almost constant in time makes them ideal
candidates for replacing conventional permanent magnets. These classical magnets have typically a
maximum magnetic flux density of 500 mT at their surface, while HTS bulk magnets can trap flux
densities that are one order of magnitude larger. The world record is hold by Tomita and Murakami
with over 17 T at 29 K [81]. Since stored magnetic energies and forces scale quadratically with
the trapped flux density, these trapped magnets offer magnetic energies and forces of two orders of
magnitude higher than conventional magnets. New classes of applications are available for permanent

magnets.
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Among these applications, there is a particular interest for superconducting bearing systems. The
stable magnetic levitation of a bulk HTS above a permanent magnet is one of the most fascinating
phenomenon associated with superconductivity. This levitation is completely passive and results from
the trapping of the magnetic flux surrounding the permanent magnet by the pinned vortices. The
magnet and the HTS then constitute a single body inside which all relative motions of one part with
regards to the other one require the application of a force at least equal to the pinning force [2].
It is worth mentioning that no stable levitation is possible with two permanent magnets [4], unless
some degrees of freedom are limited or unless it is controlled with an active feedback. The magnetic
bearings using HTS levitation are found in linear transportation systems (MAGLEV train or contactless
transportation system in microelectronic cleanroom), in magnetic trap systems or in flywheels energy

storage.

Activation of bulk HTS trapped field magnets

In order to be used as trapped field magnets, the bulk HTS need to be magnetized. There are usually
three ways for activating the magnets: the field-cooled magnetization (FC), the zero field-cooled
magnetization (ZFC) and the pulsed-field magnetization (PFM), the latter technique being a part of
the ZFC process.

(i) Field-cooled (FC) magnetization: the HTS bulk magnet is cooled down to its operating tem-
perature in a magnetic environment. When the temperature is above T, the sample behaves as
a non magnetic material and is fully penetrated by the magnetic field. As soon as its temperature
becomes smaller than T, the uniform magnetic flux inside its volume reorganizes itself in vor-
tices, each one carrying a quantum of magnetic flux. At a microscopic sale, the distribution of
the magnetic flux is discontinuous, while at a macroscopic scale, it remains continuous. As usual
with HTS materials, the vortices are pinned by impurities, such that there remains a trapped
flux in the bulk HTS when the applied field vanishes. Because of the large flux creep observed in
HTS samples, a 15 min period is needed after the external magnetic field has vanished in order
to stabilize the trapped flux.

In order to fully magnetize the sample, i.e. to have a critical current density flowing in the same
direction all over its volume, and hence, to trap the maximum magnetic flux, it is necessary
to apply a DC uniform field whose flux density is at least equal to the maximum magnetic flux
density that can be trapped in the sample — also called the penetration field B, in Section 1.4.1.
The applied magnetic flux density can be very large. For instance, the full magnetization of a
(RE)-BCO single domain samples with a diameter of 20 mm and a height of 10 mm may
require magnetic flux densities up to 3 T. Typically, such large flux densities are achieved with
superconducting coils. These coils are bulky, heavy and usually not mobile; the HTS magnet
has to be first magnetized in the facility where the coil is located and then moved toward the
location where it is needed.

A FC activation is also obtained with permanent magnets located close to the HTS samples.
For many samples, the use of a permanent magnet does not allow one to fully magnetize a
HTS sample. A full magnetization with a permanent magnet may only be achieved in small
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(RE)-BCO single domain samples, with a characteristic size smaller than 5 mm.

(ii) Zero field-cooled (ZFC) magnetization: the HTS sample is first cooled down below its critical
temperature in a zero magnetic field environment. Then, a uniform magnetic field is applied
around the sample. In a ZFC process, it is usual to apply a linearly increasing magnetic field
with a given sweep rate (usually few mT/s) up to a maximum magnetic field that is larger than
twice the penetration field of the sample (in order to fully magnetize the sample), followed by
a linearly decaying field with typically the same sweep rate. Like in a field cooled magnetization
process, the applied magnetic field is usually produced by a superconducting coil.

(ii) Pulsed field magnetization (PFM): the HTS is first cooled down below its critical temperature
in a zero magnetic field environment. Then, a pulse of magnetic field produced by a fast discharge
of a capacitor through a copper coil is used for activating the magnet. Even if the magnetic
field is applied during a very small time (typically up to hundreds of ms), the PFM enables
to trap as large magnetic flux densities as those obtained with the other techniques, provided
the amplitude of the pulse is twice the penetration field of the sample. As opposite to the
other activation processes, no superconducting coil is required. The as-obtained gain of weight
and volume of the exciting coil is very convenient for in situ activation of the magnets. The
pulsed-field magnetization will probably be used widely in future applications using trapped field

magnets.

MAGLEYV train

Rising a train wagon at few centimeters above the tracks has been a challenge for engineers since
decades. Since there is no contact between the car and the ground, a levitating train travels at
high speeds (more than 500 km/h) with an energy consumption that is reduced with respect to that
required by a conventional train; the energy in a levitating train is only necessary to overcome the air
drag and maintain a constant velocity.

Magnetic levitation (MAGLEV) trains may be designed with various technologies: (i) electrodynamic
suspension or (ii) stabilized permanent magnet suspension. In an electrodynamic suspension, the
levitation of the cars is achieved by the repulsive force between two current coils arranged in a specific
configuration. Secondary coils on the tracks that are crossed by an alternating current ensure the
propulsion of the train. In the stabilized permanent magnet suspension, the levitation is ensured by
the repulsive force between two magnets. The stable levitation with two permanent magnets requires
a guidance or an active feedback control, that become unnecessary when using HTS trapped field
magnets. HTS bulks are therefore ideal substitutes for rare-earth permanent magnets in MAGLEV
trains

MAGLEV trains using a passive levitation with HTS bulk magnets are under development, in China
particularly. The basic idea is to use a permanent magnet guideway and onboard HTS bulk magnets
cooled down at liquid nitrogen temperature [5, 120, 121]. The permanent magnet levitation, by its
nature, reduces drastically the electromagnetic drag, and hence, the power consumption. Moreover,
since no current is required for levitating the train, the power supply system is less complex than that
needed for the electromagnetic levitation and the line losses are reduced. The guideway magnets are
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NdFeB permanent magnetic materials exhibiting a high residual magnetic field and a high coercive
force. The arrangement of the permanent magnets on the guideway is also an important factor that
determines the efficiency of the suspension. Although the advantages of such systems are numerous,
there is still progress to be done in view of a first commercialized MAGLEV trains with bulk HTS.

Water treatment for environmental purposes

The stable levitation with HTS trapped field magnets also provides a way for magnetic separation.
That technique has been successfully applied for purifying contaminated water plants in Japan [122].
HTS bulk-based systems remove aggregated ferromagnetic parts, including emulsion oil, from a water
flow, by making them levitating above HTS magnets that were previously magnetized. Such a system
is more compact than conventional ones and has the advantage of not having a filter to replace
periodically. The disposal efficiency is close to 100 %, but the flow rate is rather limited, tens of liters
per min.

Flywheels

With similar objectives than those of SMES, flywheels are energy storage systems based on the me-
chanical rotation of a magnetized piece. In order to reduce the energy losses during its motion, the
rotating part is suspended in the air. The levitated flywheels offer several advantages for stationary
applications: few maintenance services, low-noise operation and minimized losses. A flywheel be-
haves both like a motor, when accelerating the rotating piece for accumulating kinetic energy, and a
generator, when delivering part of the kinetic energy.

In that field of applications, HTS trapped field magnets are very promising. Several HTS flywheel
prototypes have already been developed [123, 124, 125]. The storage capacity ranges up to 10 kWh.
Such systems are believed to be associated with windmills or solar plants, in order to deliver energy in
the event of lack of wind or sunshine [2].

1.7.4 Bulk HTS used as magnetic shields

Beside constituting very efficient trapped field magnets, bulk high-temperature superconductors pro-
cessed in hollow tubes may also act as magnetic screens that strongly attenuate the magnetic field at
their centre. HTS shielding tubes achieve very high attenuation factors, in longitudinal (field parallel
to the tube axis) as well as in transverse (field perpendicular to the tube axis) configurations. Such a
dual shielding is not possible with a single high-permeability ferromagnetic tube.

The shielding mechanism is already illustrated by the description of the critical state in the infinite
slab (see Section 1.4.1). When the magnetic field surrounding the slab is lower than its penetration
field, the centre of the slab is not penetrated by the external field. The same effect is used in shielding
tubes.

Shielding tubes consist either of BioSr,CasCuszO1g sintered powder [51, 126, 127], of polycrystalline
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YBCO (since the shield has to have large dimensions) [128], or even in YBCO thin films deposited
on a substrate [129, 130]. Bi-2223 tubes have been shown to shield the tube centre from magnetic
flux densities up to tens of mT at 77 K [51], while YBCO tubes are believed to shield a much larger
magnetic flux density, especially in the case of textured YBCO.

The shielding applications with bulk YBCO do not form by themselves a part of this thesis, since
drilled structures are rather intended for trapped field magnet applications. However, the shielding
properties are intrinsically related to the magnetic properties of bulk HTS materials, exactly as the
trapping ones are. In a magnetic environment, the inside of the holes may be preserved from magnetic
field and may serve as shielding pockets.

1.7.5 Electrical rotating machines using bulk HTS elements

Bulk HTS are also intended to be used in electrical rotating machines for providing very high specific
output power with very few losses. These machines are still at the primary laboratory tests, provide
great power density [3] and are be very useful for typical applications where the weight reduction is of

prime importance, such as in submarines [2].

In many topologies envisaged for designing an efficient electrical rotating machines based on bulk
superconductors, the HTS sample is permanently magnetized parallel to its c-axis and placed in the
machine rotor [3, 131]. In this configuration, the sample is likely to experience transient variations of
the applied magnetic field caused by modifications of the applied torque on the shaft. The resulting
vortex motion may cause large hysteresis losses and a significant temperature increase which, in turn,
has a detrimental effect on the initial trapped flux [9, 132]. Drilled structures are therefore believed
to improve the stability of the trapped field magnets used in rotating machines.

1.8 Summary of Chapter 1

In this first chapter, we review the basic concepts lying behind the term superconductivity and we
specify the role played by the bulk drilled high-temperature superconductors in the broad range of
applications using superconductivity. We particularly discuss the interest of creating an array of artificial
holes in bulk YBCO superconductors for enhancing its synthesis. The pattern of holes separated by
very thin walls favors the oxygen diffusion process in the superconductor. As a result, the oxygen
annealing, required for the transition of the crystal structure to its superconducting phase, is enhanced,
and provides critical current densities, and hence trapped magnetic flux densities, in drilled samples
that are substantially larger than in plain samples processed similarly. The drawbacks of the drilled
structures are also described. The presence of holes impedes the growth front propagation and perturbs
the current stream lines that have to circle the holes. These observations prepare the ground for the
study and the optimization of the magnetic properties of the drilled bulk HTS that is reported in this
manuscript.

The applications of HTS are then described. We particularly point out the features of bulk drilled HTS
that are of prime importance in applications, such as the trapped magnetic flux or the magnetization
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process. We are now able to target more precisely the study of the magnetic properties of drilled
structures in the perspective of trapped field magnet applications.



Numerical methods for the modelling of the magnetic
properties of drilled bulk high-T. superconductors

Drilling holes in the pellet of a YBCO powder has several advantages regarding the synthesis of the
superconductor, as well as its mechanical and thermal properties. However, the removal of super-
conducting volume is detrimental for the magnetic properties of the sample, as the current stream
lines in drilled bulk HTS are modified with respect to those of a plain sample. It is therefore of prime
importance to model these current stream lines and the modification they induce on the magnetic
properties of the superconducting sample!.

This chapter introduces several models and methods for calculating the current stream lines and the
magnetic field distribution in samples with artificial holes. These models are intensively used in the
following chapters to study the influence of the holes, of their sizes and of their arrangement on the
magnetization of the drilled samples and to explain the measurement results.

2.1 Different strategies for modelling the magnetization of HTS drilled sam-

ples

In a series of geometric configurations of samples with a high level of symmetry, e.g. a cylinder
subjected to an applied field with an axial symmetry, the current flows azimuthally, i.e. its direction is
known a priori for symmetry reasons. In such cases, it is possible to reduce the three-dimensional (3D)
model to an axisymmetric 2D model. Such a simplification is however not possible when considering

LPart of the materials presented in this chapter are published in G P Lousberg et al, Supercond. Sci. Technol., 21,
025010 (2008) [133], and in G P Lousberg et al, Supercond. Sci. Technol., 22, 055005 (2009) [134].
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Figure 2.1: Geometry of a drilled sample with two particular cross sections in the (r, z)-plane.

drilled samples, since these samples are three-dimensional (3D) bodies having no particular symmetry
that can be used to reduce the dimension of the model, as shown in Figure 2.1.

Calculating a three-dimensional magnetic field distribution in HTS is notoriously difficult [135, 136].
In the limit of strong pinning, the magnetic flux distribution can be described with the concept of the
critical state, introduced by C.P. Bean [38]. The critical state assumes that the current density has a
constant magnitude and flows perpendicular to the local field lines, since the magnetic force exerted
on the vortices only depends on that component [136]. However, for some configurations where either
the sample or the source of the field has no particular symmetry, such as those including holes in the
sample cross section, the critical state model must be modified in order to properly describe the time
evolution of the component of the current density that is parallel to the local magnetic field [136]. This
problem was recently solved in very simple geometries, but the generalization to arbitrary geometries
is still not established.

However, in drilled samples, we expect that modelling the longitudinal currents only yields second-
order corrections to the magnetic field distribution calculated with a model neglecting them for several
reasons. First, the flux distribution near the median plane of the sample is not affected by longitudinal
currents, since the current lines are expected to lie in the plane and thus to be perpendicular to the
local flux lines. Then, close to the sample surface, the radial component of the magnetic flux density
that may be parallel to the critical current density in the regions of influence of the holes still remains
very small in samples for which the height is comparable to the diameter. Finally, when considering
global quantities, such as the magnetization of the sample, the effects of the longitudinal current are
averaged and thus become negligible since they are expected to only have impact close to the cylinder
surfaces. Therefore, we believe that the first-order approximations of the magnetic field distribution
neglecting the longitudinal currents may lead to qualitative conclusions regarding the influence of the
hole lattice on the magnetic properties of the drilled samples.

At the same time, the critical state concept fails in reproducing the magnetic relaxation effects
observed in HTS samples. These effects are more important in HTS than in conventional type-
Il superconductors, particularly at the temperature of liquid nitrogen (77 K) [48, 137, 138]. It is
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thus necessary to take them into account for accurately describing the magnetic properties of HTS
samples. Numerical methods as those introduced by Campbell [139, 140, 141, 142] or those involving
the minimization of the magnetic energy [143, 144], which are however applicable to 3D geometries,
are not well suited for modelling the flux creep in the superconductor. We use instead the £ — J power
law with a finite critical exponent, as described by Eq. (1.25).

Considering these remarks, this thesis aims at making progress toward a 3D modelling of the magnetic
properties of drilled HTS samples, by taking into account the flux creep and the demagnetizing effects,
while neglecting those related to the longitudinal currents. The modelling of the magnetic properties
of HTS samples by taking into account the demagnetizing effects and a finite n-value remains however
still a delicate problem, and the results obtained with a model combining a 3D geometry and the highly
non-linear resistance of HTS must be discussed with a carefully. Consequently, we adopt a step-by-step
strategy to move toward the 3D model.

(i) First, we start with a hypothetical geometry of drilled samples having an infinite height, for
which we develop a numerical model to solve the Bean critical state. The model is based
on the approach of Campbell and Evetts [11] as regards the propagation of the flux front in
superconductors of arbitrary cross section.

(i) Then, we build a model for calculating the magnetic properties of samples with an infinite
height, an arbitrary cross section, and a finite value of the critical exponent n in the £ — J power
law. Several numerical methods are available to calculate the magnetic field penetration in HTS
with a power law conductivity: finite-difference approximation in cylinders [145], Green's function
approach in cylinders [135] or in tubes [126], and finite element method (FEM) with so-called A-
¢ formulations [146, 147], T-® formulations [148, 149], or unconstrained H-formulations [150,
151].

In this thesis, we adopt a finite-element formulation implemented in the open source numerical
solver GetDP [152, 153, 154] for several reasons. The choice of a FEM formulation is mainly
motivated by the robustness provided by this method when considering highly non-linear problems
and its flexibility with respect to a change of geometry. As opposed to commercial softwares
such as Flux2D/3D or COMSOL Multiphysics, GetDP is an open source code widely available
and well documented.

(iii) Finally, we study geometries with a finite height with the help of a 3D FEM model. The approach
is validated for an axisymmetric problem — the magnetic field penetration in hollow cylinders
of finite height — where the results of the 3D FEM model are compared with those obtained
with a Green's function approach [126].

Let us finally note that the three methods that are discussed in the following sections are not intended
to be used with drilled geometries only. These methods are general and may also serve for calculating
the magnetic properties of various HTS samples with various geometries and external sources of
magnetic field. In particular, we propose a single time-step iteration for calculating the magnetic
field penetration in HTS samples subjected to a linearly increasing (or decreasing) magnetic field in
order to drastically speed up the numerical calculations. This strategy can be generalized outside the
framework of this thesis.
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2.2 Bean critical state in samples with an arbitrary cross section and an
infinite height

As a first step toward a 3D model of the magnetic properties of drilled bulk HTS, we neglect demag-
netization effects and focus on superconducting samples that are infinitely long. Figure 2.2 shows,
(a), a sample with a rectangular cross section, and, (b), a sample with a semi-infinite cross section
containing a circular hole of radius R located at a distance D from the border. The cross section lies
in the x —y plane. We further assume that the applied magnetic field, H,, is oriented along the z-axis
and is uniform. Its amplitude is such that H.; < H; < Hep. We further assume strong pinning and
neglect the surface barrier effects. Under these assumptions, the distribution of the magnetic field in
the sample cross section is described by the Bean model [38], which reads

dH, 0 .
P = { ) (2.1)

where J. is constant, while £ represents the distance traveled by the flux front to reach a given point,
P.

Let us illustrate the procedure to determine the distance £ with the help of the two examples shown
in Figure 2.2. For reaching a point P; located inside the rectangular cross section, the flux front
may come from one of the four outer boundaries. Four values for the distances £ are possible,
L =dy, d» d3, or dy. How can we determine which one corresponds to the distance traveled by the
flux front to reach the point P; 7 To answer this question, we rely upon an observation made by
Campbell and Evetts [11] regarding the motion of flux fronts in samples with an infinite height within
the framework of the critical state. As the external field is increased from 0 to a finite value H,, the
flux front nucleates along the external borders. The flux front propagates toward the non-penetrated
regions at a uniform speed, so that the magnetic flux moves in the direction perpendicular to the front
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Figure 2.2: Sketch of an infinitely long sample with (a) a rectangular cross section, and (b) a semi-infinite
cross section drilled by a single hole of radius R located at a distance D from the border. In sample
(a), four paths (with distance dy, da, d3 and d,) are available for the flux front to reach point
Py. In sample (b), the flux front can reach the point P, by following two paths: directly from the
border, with a path length ds, or via the hole, which acts as a radial source, yielding a path length
ds .



2.2. BEAN MODEL IN SAMPLES WITH AN INFINITE HEIGHT 55

(represented by a solid arrow in Figure 2.2). Hence, the points along the flux front are located at a
fixed length £ = H,/J. from the border. When the sample is fully penetrated the flux front does not
propagate anymore. As a result, the point P is first reached by the part of the flux front coming from
the closest border. The distance £ that has to be incorporated into Eq. 2.1 is the shortest one among
all the available paths, i.e. £ = d;.

When a point P is at an equal traveling distance for two or more penetration paths, it belongs to a
discontinuity line, or d-line. A discontinuity line separates two regions that are first penetrated by two
different parts of the flux front. In a rectangular cross section, these lines correspond to the bisections
of the edges of the cross section.

In the sample having a hole in Figure 2.2-(b), let us consider a point P, located at a distance ds > D.
For reaching it, the flux front can travel along two paths: it can reach P, directly from the border,
with a path length ds, or via the hole which acts as a radial source of magnetic field [11], with a
total path length ds. As for the point P; in the rectangular cross section, we assume that the flux
front travels along the shortest path. In samples of infinite height, the magnetic field, and hence the
magnetic flux density, inside a hole is constant and equals to its value in the superconductor, at the
border of the hole.

The magnetic field, H = H,, at a given point P in an arbitrary cross section can then be calculated
by determining the length, £, of the shortest path that reaches P and by evaluating

H=H,— J.4. (2.2)

In practice, we build a rectangular meshing grid on the sample cross section which is uniform along
the x- and y-directions, with respective grid sizes of A, and A, along both axis. We calculate the
magnetic field H; at all the points P; of the grid with the help of Eq. (2.2). The magnetization of the
sample is then given by

1 1 .
M o= < HdS—HE,Ng;HiAXAy (2.3)
where S is the sample cross section. This model is referred in this manuscript to as the numerical

Bean model.

In order to validate our numerical approach for solving the critical state, we consider a sample with an
infinite height and a rectangular cross section of length 2a and width a. It corresponds to a classical
geometry in which the critical state has already been discussed and solved in Ref. [155, 156]. The
distribution of the current stream lines in the sample cross section obtained with the numerical Bean
model described here above is reproduced in Figure 2.3-(a). The current stream lines are similar to
the lines of constant magnetic field [11], and hence to the lines of constant perpendicular distance
from the border. As a result, they can be viewed as the successive positions of the flux front that
penetrates the sample from the borders toward the centre. The current lines are parallel to the closest
border, and thus exhibits a rectangular shape with wedges aligned on the discontinuity lines where the
current abruptly changes its direction. These points are aligned along four discontinuity lines that are
represented by grey lines in Figure 2.3-(a).

The magnetization curve of the rectangular sample with an infinite height and calculated with Eq. (2.3)
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Figure 2.3: (a)- Current stream lines in a rectangular sample with an infinite height calculated with the
numerical model dedicated for solving the critical state in samples of infinite height and arbitrary
cross section. The cross section has a length 2a and a width a. The applied magnetic field is such
that the sample is fully penetrated, H, < H*. The discontinuity lines are represented by grey lines.
(b)- Magnetization curve of the rectangular sample. The magnetization and the applied field are
given in units of H*.

is reproduced in Figure 2.3-(b), where the penetration field H* is given by H* = J.a/2. The grid size
is taken as Ay = A, = a/50. We notice that the magnetization under large fields is equal to the
remnant magnetization. In particular, the width of the magnetization loop is

AM = 0.84H*. (2.4)

In a rectangular cross section with dimensions a x b (a < b), the analytical expression for the width
of the magnetization loop is given by

AM = (1—3—‘2) H*. (2.5)

In the situation where b = 2a, one gets AM = 5/6H*. This value is consistent with that obtained
with the numerical model.

2.3 Finite-element method for the modelling of HTS

The second step toward the 3D model of the magnetic properties of drilled HTS consists in introducing
the E(J) power law (1.25) in the model of samples with an infinite height. The power law yields an
analytical relationship between the electric field and the current density, so as to be incorporated
directly in the Maxwell equations and solved with classical resolution scheme, such as finite-element,
finite-difference or Green methods.

In this thesis, we use the finite-element method for the reasons discussed in Section 2.1. Within the
FEM framework, the approximate solution of a problem is chosen among linear combinations of basis
functions so as to minimize the residual of the differential equations of the problem — that is the
weak solution. The basis functions are constructed on the meshing grid, that is defined for a specific
geometry, such that they only have a non-zero value on few elements of the grid.
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2.3.1 Equations describing the magnetic field penetration in HTS samples

The description of the magnetic field penetration in HTS is based on the magneto-quasistatic approx-
imation of the Maxwell equations [157],

VxE = -B
VxH = (2.6)
vV-B = 0.

The lower critical field, Hc1, is neglected against the applied field, so that the material follows the
constitutive law, B = ugH. We introduce the vector potential A and the scalar potential ¢, through

V. B=0 = B=Bgs+B.(t)e,=VxA+VxA,, (2.7)

. OA OA,
_ - _ 2.8)
VXxE=-B = E at at Vo, (2.8)

where the magnetic flux density is split into two contributions: the uniform applied magnetic flux
density, Ba(t) e,, which points along the z-axis, and the reaction magnetic flux density, Bseif, which is
produced by the currents induced in the HTS sample. In cylindrical coordinates, the vector potential
corresponding to the uniform applied magnetic flux density is given by A; = —r/2 Ba,(t)eg. Note
that our method is not limited to the particular type of uniform exciting field pointing along the
z-direction. For being used with other forms of applied fields, B,(t) and A, need to be modified
accordingly. The choice of the gauge used for the definition of the vector potential is linked to the
practical implementation of the FEM, and will be discussed in the Section 2.3.2.

Introducing the potentials A and ¢ allows one to reduce the magneto-quasistatic Maxwell equations
to the only Ampere’s law that reads

VxVxA-puo(A ¢)(—A-A,-V¢) = 0, (2.9)

where the electrical conductivity ¢ is calculated from the power law (1.25), as

Je 1-n .

o(E) = Eg/”(‘ED " (2.10)

Je o 1=n o

=o(A ¢) = Ci/n (|—A—A,—V¢|) " . (2.11)
c

In order to solve Eq. (2.9), together with the constitutive laws B = poH and J = ¢(E)E, A and ®
must be defined on the contour ' of the working domain Q. Two types of boundary conditions are
available:

1. Dirichlet conditions, or essential conditions, that specifies the values of the unknowns on .
2. Neumann conditions, or natural conditions, that specifies the values of the normal derivative of

the unknowns along I".

Moreover, the system also requires an initial condition on the unknowns. Note that there are no
boundary conditions that are imposed on the hole surface since the equations are also solved inside
the volume of the hole (or surface in a 2D model) that is assumed to have a negligible conductivity



CHAPTER 2. METHODS FOR MODELLING THE MAGNETIC PROPERTIES OF BULK HTS

o
S¢)

o with respect to that of the HTS. The continuity conditions at the superconductor/hole interface
are guaranteed by choosing an appropriate basis of interpolating functions for the unknowns. This
particular point is further detailed in Section 2.3.2.

Given appropriate boundary and gauge conditions, Eq. (2.9) is sufficient to describe the electromag-
netic behaviour of HTS in the A-¢ formulation [146, 158, 159]. Conversely to an analytical method
in which the Ampere’s law (2.9) is solved for every locations in the domain under consideration, the
FEM is based on solving globally that equation in the domain, such that the obtained solution con-
verges on average to the exact solution, but not locally. This weak solution is said to converge to the
exact solution in terms of a minimization of the Galerkin residual of the equation. The residual of the
Ampere’s equation is defined as

R=VxVxA+puo(A ¢)(A+A,+Ve). (2.12)

The Galerkin residual minimization method consists in approximating A and ¢ in terms of a linear
combination of basis functions, A; and ¢;, that are known a priori,

M N
A=) aA and ¢=> b, (2.13)
i=1 j=1

where M and N are linked to the meshing elements and are detailed in Section 2.3.2. The basis
functions have a compact support — they have a non-zero value only in small volume (or surface)
surrounding a meshing element (hence the term finite-element) — and satisfy the Dirichlet boundary
conditions on the external contour of the domain, I'.

Then, for a given set of basis functions, the residual of Eq (2.9) is projected in the basis defined by A;
and V¢; and it is minimized in the sense of Galerkin theory when it is orthogonal to that basis, that is

/{VXVXA—,U,OO'(A,(I)) (-A-A,—V§)}-Aid* = 0 forall A (2.14)
Q

/ {(VxVxA-po(A¢)(~A-A,~Ve)} Ved®> = 0 forall ¢, (2.15)
Q

where A and ¢ are given by Eq. (2.13). These are the weak forms of the Ampere’s equation (2.9).
Note that there are M + N independent equations for M + N unknown coefficients. The system is
thus well determined.

For the sake of convenience, let us introduce the following notations for the volume and surface

integrals
(u,v) = /Q u(r)v(r)d®r and <uv>= /r u(r)v(r)dC, (2.16)
and let us consider the following Green identities [160] for reducing the order of Eqs. (2.14)-(2.15)
(u,Vv)+(V-u,v) = <v,n-u> (2.17)
(uVxv)—(Vxuv) = <uxnv>, (2.18)
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where u and v, as well as their first derivatives with respect to the three spatial coordinates x,y,z
have an Euclidean norm whose square is integrable in the compact 2 delimited by the contour C.

With the help of Egs.(2.17)-(2.18), the second order derivative terms appearing in Eqgs. (2.14)-(2.15)
are integrated by parts,

(VXA V xA)— <Bgexn A >+puo (c(A+A,+Ve),A;) = 0, (2.19)

(oA, V) + (0A,, V) + (6V, V) + <n-J ¢ > (2.20)

I
o

where o = o (A, ¢). Note that Eq. (2.20) corresponds to the weak form of V-J =0 [161]. The weak
forms defined by Egs. (2.19)-(2.20) only includes first order derivatives, such that piecewise linear
functions may be used as basis functions for A and ¢.

In order to deduce this weak formulation, no assumption on the dimension of the working domain
Q was made. It means that Eqgs. (2.19)-(2.20) are valid in a 2D as well as in a 3D geometry. The
differences between 2D and 3D models appear when implementing these equations in the numerical

solver.

In the A-¢ formulation, as described here above, only the Ampere's equation is solved weakly in the
domain Q (in the sense of minimizing the Galerkin residual). The Faraday's equation, V x E = —B,
and V- B = 0 are verified everywhere in the domain Q2. Consequently, in an A-¢ formulation, the
magnetic flux density and the electric field are said to be strongly known, unlike the magnetic field
and the current density that are weakly solved. That is the reason why we use the A-¢ formulation
in this thesis. It yields a divergence-free magnetic flux density, which is the quantity that is directly

available in experiment.

Other FEM formulations of the Maxwell equations can be also used for modelling the properties of
HTS. They differ in the electromagnetic quantities (E, B, H or J) that are strongly solved. For
instance, the T-® formulation is often used for calculating the current in HTS wires or tapes since it
offers a strong knowledge of the current density and can be coupled easily with circuit equations [148,
149]. Similarly, H-field formulation also yields a strong knowledge of the current density [162]. A
formulation with the diffusion equation for the electric field [163] is rather convenient for a strong
knowledge of the magnetic field. Each of the available formulations has its pros and cons and the
choice of a particular formulation mainly depends on the type of quantities intended to be strongly
known from the simulations, and on the availability of these formulations in the solver adopted for
implementing the FEM.

2.3.2 Implementation and computation of the finite element model

We describe in this section the practical implementation of the system of coupled equations defined
by Egs. (2.19)-(2.20). This implementation is performed using the open source environment of
GetDP [152, 153, 154]. GetDP (General Environment for the Treatment of Discrete Problems)
is a freeware realized by P.Dular and C.Geuzaine in the framework of an academic research in the
Department of Electrical Engineering and Computer Sciences (Montefiore Institute) of the University
of Liege.
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Definition of the geometry and of the meshing

In order to describe the geometry of the working domain, one must distinguish between the two-
dimensional and the three-dimensional models.

In the 2D model, a sample with an infinite height and an arbitrary cross section is considered. Equa-
tions (2.19)-(2.20) are not only solved in the superconducting material, but also in the surrounding
environment which is assumed to behave almost as vacuum, with B = pgH and o9 = 10710 S/m.
The non-zero value of the conductivity is required for numerical convergence in the case of domains
with multiple connexity [161]. Note that it is possible to check a posteriori that the conductivity of
the surrounding environment is indeed negligible with respect to that of the superconducting material
when penetrated by a magnetic field, 0g < o(A, ¢). The surrounding environment extends up to in-
finity where the boundary conditions are imposed. The implementation of infinite boundary conditions
can be done in one of two ways. A first possibility is to draw a circle with a radius that is much larger
than the characteristic size of the sample cross section and whose perimeter is used for imposing the
boundary conditions. This procedure drastically increases the amount of meshing elements and thus
the size of the matrices to be treated. In order to deal with a finite number of meshing elements
while extending the meshing to infinity, a Jacobian transformation can be used to send the outer
contour of a circular shell to infinity [164]. The shell has an inner radius that is slightly larger than the
characteristic size of the sample (typically twice). The boundary conditions defined on the external
contour mathematically correspond to those imposed at infinity.

In the 3D model, samples of arbitrary shapes can be treated?. These are also surrounding by an
almost vacuum environment, with a magnetic permeability po and a conductivity og. Similarly to the
2D model, a spherical shell is constructed around the sample, with a radius which is almost twice as
large as the characteristic size of the sample, and its outer surface is sent to infinity by a Jacobian
transformation [164]. Moreover when the sample exhibits a symmetry on both sides of its median
plane — as it is the case for all the samples that are simulated in the manuscript —, only half of the
geometry is represented in order to reduce the size of the meshing. In this case, the median plane
serves as an external surface where appropriate boundary conditions (such as the perpendicularity of
B) are imposed in order to account for the symmetry of the sample.

The geometry of the problem is defined using a dedicated software Gmsh [165, 166], which is a 3D
meshing generator. The structure is constructed using basic geometric elements (lines or circle arcs);
the surfaces and the volumes are defined on that basis. The definition of the geometry includes the
superconducting structure and the surrounding air environment. The meshing is built automatically
from the geometry definition. We use triangle (2D) or tetrahedric (3D) meshing elements. The
characteristic size of the meshing elements is defined on each basic geometrical elements.

Examples of working domains for the 2D FEM (a) and the 3D FEM (b) models are represented in
Figure 2.4. A superconducting hollow cylinder, or a tube, with an infinite height, together with the

2While it can be used with arbitrary geometries, one has to be aware that the 3D model does not take into account
the effects associated with components of the current that are parallel to the applied magnetic field. When the symmetry
of the geometry does not ensure a perpendicularity between the current and the magnetic field, results must be discussed
with great care.
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(a) 2D geometry - infinite height cylinder (b) 3D geometry - finite height cylinder
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Figure 2.4: (a)- Definition of the 2D geometry for the simulation of a superconducting tube with an infinite
height. The circular shell used for the infinite transformation is also indicated. The boundary
conditions are imposed on the external circumference. (b)- Definition of the 3D geometry for the
simulation of a superconducting tube (left) and a superconducting drilled cylinder (right) with a
finite height. The spherical shell for imposing the boundary conditions at infinity is also indicated.
For symmetry reasons, only half of the cylinder is represented.

surrounding environment and the circular shell for the boundary conditions are shown for the 2D model.
The examples of 3D geometries consist of a superconducting tube and of a drilled superconducting
cylinder. The spherical shell and the median plane are also represented.

The size of the meshing is a key parameter for the calculation time. It is moreover limited by the
amount of RAM memory available on a single processor. The numerical algorithms that are used for
solving the equations with GetDP are still not available in parallel environment. The calculations have
to be performed on a single processor, with its own physical memory. On a personal computer with 2Gb
of memory, the maximum number of meshing nodes that can be treated is approximatively 200 000
for the problem defined by Egs. (2.19)-(2.20). By using the computer cluster NIC3 of the Service
Général d’Informatique (SEGI) from the University of Liege, the maximum size of RAM can reach up
to 32 Gb on a single processor, which allows one for treating much more nodes but also increases
drastically the calculation time. The switch toward a parallel environment for solving the problem with
GetDP will probably reduce the calculation time and allow for dealing with larger meshings.

Basis function

Within the framework of FEM, the solutions A and ¢ of Egs. (2.19)-(2.20) are approximated in terms
of a linear combination of basis functions A; and ¢;. The basis functions A; are vectorial fields, and
the functions ¢; are scalar fields.

The electric potential is represented by a sum of first-order nodal functions. The functions are defined
piecewise. They are equal to 1 on a single node of the meshing, linearly decreases to 0 in the elements
adjacent to the node and is set to 0 in the other meshing elements. The coefficient b; associated with
the node function in (2.13) corresponds to the value of the unknown electric potential on a meshing
node. Such a choice of basis functions ensures the continuity of ¢ from elements to elements. A
typical node function is represented in Figure 2.5-(a).
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Figure 2.5: (a)- Node function corresponding to the central node of the meshing partition. (b)- Vectorial
edge function corresponding to one of the edge of the meshing element. For clarity, the function
is only represented on the edges of the meshing element.

The functional space for the vector potential is composed of vectorial edge functions of the first order.
These functions are defined on a triangle element of the meshing grid such that the line integral of
their tangential component is equal to 1 along a given edge C; and 0 along the other edges C; and
Ck. A schematic representation of an edge function is shown in Figure 2.5-(b). The vector field is
orthogonal to two edges and varies linearly inside the element (not shown for clarity). There exists
three edge functions per triangle elements.

The coefficient a; corresponding to the edge function appearing in Eq. (2.13) thus corresponds to the
value of the line integral of the unknown vector potential along C;, that is

a = /A-de. (2.21)
c

i

The line integral of the vector potential around a meshing element 9C defined by the edges C;, C; and

}{A-dl = /A-dé—l—/A-dé—!—/ A-di. (2.22)
ac Ci Cj Ck

J

Ck is thus given by

Using Eq. (2.21), one obtains
f A-dl = a,-+aj+ak. (2.23)
ac

The edge functions ensure the continuity of the line integral of A along an edge between elements
sharing that same edge. As a result, the continuity of the normal component of the magnetic flux
density B through the surface of adjacent elements is ensured.

Gauge conditions

In order to be univocally defined, the vector potential A needs to be restricted to a given gauge. To
this aim, we use a spanning tree technique [167, 168]. It consists in making the vector potential
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Figure 2.6: Example of a tree used in the spanning tree technique and constructed on an arbitrary meshing.

orthogonal to a set of vector w whose field lines are not closed. In order to define w, a tree is built on
the edges of the meshing. The tree is a set A of edges which connects all the nodes of the meshing
without forming closed contours. In a meshing with N points, there are N — 1 edges in the tree. A
pair of nodes can only be connected by a single way on the tree. The vector set based on the edges
of the tree A has no closed field lines and is referred to as w. Hence, the gauge condition reads

Aw =0 i=1.. ,N-1 (2.24)

where w; is a unit vector parallel to a mesh of the tree (see Figure 2.6). Associated to the edge
functions that are already perpendicular to some edges, as defined in the above paragraph, the spanning
tree technique simply consists in forcing some coefficients a; to vanish when their related edge functions
A, is not already perpendicular to the edge of the tree, so as to decrease the total number of unknown
coefficients.

Operation

The weak formulations of the differential equation governing the magnetic field penetration in the
cylinder are solved weakly by minimizing the residual obtained with a series of chosen basis functions.
For each projection on the basis functions, the weak equation (2.12) is reduced to a non-linear scalar
equation for the unknown coefficients a; and b;.

Since the applied magnetic field varies with time, we use a step-by-step temporal resolution with a
backward Euler scheme, which has a good stability and a high convergence rate even with very large
time steps [169]. The convergence and the stability of this method have already been demonstrated
in the context of HTS in the case of a E-formulation [163]. In our formulation, the implicit resolution
required at each step generates a system of equations which are non-linear, because of the conductivity
law of Eq. (1.25). This non-linearity is treated with a fixed point iteration technique [170], which
consists in updating at each iteration step the value of the unknowns appearing in the non-linear
terms of Eqgs. (2.19)-(2.20) with the solution found at the previous iteration. The as-obtained linear
system of equations yields a matrix that has to be inverted. The matrix is composed of a very large
number of elements among which only a few have a non zero value (sparse matrix). Therefore we
use in GetDP the GMRES iterative solver that is very efficient for inverting such matrices [171]. The
non-linear loop is run until the relative difference between two consecutive solutions, e,, is smaller

than a predefined criterion, whose value is discussed in Section 2.4.

Contrary to a Newton-Raphson scheme, the fixed point iteration does not require the calculation of
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Figure 2.7: Fixed point iteration loop used for the time resolution of the FEM formulation.

the Jacobian of the functions (2.19)-(2.20), which may lead to modify the power law conductivity
o(E) because of infinite derivatives when E = 0 [172]. While the Newton-Raphson scheme might lead
to a faster convergence, the implementation of the fixed point method is much easier and does not
require an excessive number of iterations (on average, there are approximately 10 non-linear iterations

per time step).

Figure 2.7 represents the sequence of operations to be executed during a given time step. Let us
assume that the solution (A, ¢) is known at time t — At. At the beginning of the time step t, this
solution is used for updating o(A, ¢) and the resulting linear system is then solved with the GMRES
iterative solver. The solution of this linear system is then used for updating o(A, ¢). The new linear
system is solved again, until the convergence criteria of the fixed-point iteration loop is fulfilled. The
solution (A, ¢) is then used for the next time-step.

2.3.3 FEM with a single time-step iteration for applied fields varying with a constant sweep

rate

To our knowledge, in the FEM for the modelling of HTS properties that have been suggested so
far [146, 147, 148, 149, 150, 151], the computation time-step At was chosen much smaller than
the timescale characterizing the simulated external excitation. Such a choice can however be largely
improved in the case of an excitation varying linearly with time by using a single time-step. Qur
argumentation is two-fold. First, from the point of view of the physics involved, one knows that
the diffusion of vortices is strongly reduced as the pinning becomes stronger or the temperature
fluctuations become weaker. Thus, for large critical exponents n, the motion of vortices can only be
induced by applying an external flux variation, so that the time behaviour of the magnetic response is
expected to be mainly dictated by the excitation sweep rate, not by creep effects. The second part
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of our argumentation stems from the numerics involved. The time-differential equation (2.19) that is
solved with the backward Euler scheme [169] has a generic form that reads du/0t = g(u) where u is
a function of A. With this method, the temporal derivative at time t is approximated at first-order,
yielding the implicit equation

Uy — Ut At

At

Such a scheme has been shown to yield a truncature error proportional to the second time derivative,
e = 0%u/0t? At + O(At?) [169]. Again, in the limit of large n and with an external field applied as
a ramp, we expect the second time derivative of the magnetic response to be small, as the timescale

= g(ut). (2.25)

of that response is dictated by that of the excitation, which varies here linearly with time. These
arguments suggest that larger At can be used, and in the extreme case, a single time-step might be
used.

In the following of this chapter, we will only concentrate on linearly varying excitation and we will
compare two different choices for the time integration of the field from instant zero to a predetermined
instant, t1: in the first choice, the integration is carried out in a succession of small time steps of
duration At < ty; in the second choice, the equations are iterated in a single time-step, with At = t;.
These two choices will be compared in a number of situations in order to validate the single time-step
approach.

2.4 Validation of the 2D FEM model using a single time-step iteration

We first apply the 2D FEM for calculating the Bean critical state in a HTS tube (inner radius b and
outer radius a) subjected to an axial field varying linearly with time, in the limit of infinite height.
This is a geometry for which the current density flows in the cross section plane and is everywhere
perpendicular to the local magnetic field. Analytical solutions are known in such a geometry, from
the Bean model (2.1). The goal of this section is to compare the results obtained with the two-
dimensional FEM to an analytical solution in order to validate our approach and to asses the interest
of the single time-step iteration.

According to Eq. (2.1), the magnetic flux density in a tube of infinite height subjected to a uniform
applied field is linearly decaying along the tube radius in the superconducting wall of thickness w = a—b,
and remains uniform in the non-superconducting regions. In particular, the magnetic flux density in

the tube is given by

Baean(r) = { B, — uoJc(a—r) b<r<a, (2.26)
B, — uoJe(a— b) 0<r<hb.
In practice, in order to compare the magnetic flux profile obtained with the Bean critical state model
to that obtained with the E(J) power law, we assume a large value of n, n = 100, and a linearly varying
applied flux density, with a sweep rate equal to B, € [1 mT/s, 100 mT/s], as already discussed in
Ref. [173].

We now consider the critical state of a superconducting tube of infinite height. The tube has an

external radius a = 10 mm and an internal radius b =5 mm. The critical current density is assumed
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to be independent of the magnetic field, and is equal to J. = 2 10° A/m2. The critical state is
simulated with the 2D FEM model and compared to the analytical solutions of the Bean model. The
E(J) power law is considered with n = 100 and E. = 107* V/m. The external field is applied
with a constant sweep rate, B, = 10 mT/s. The penetration field of the tube H,, is given by
Hp = Jo(b—a) = 10° A/m, which corresponds to a flux density, uoH, = 125.6 mT.

In Figure 2.8-(a), the magnetic field profile is plotted along the diameter of the tube for an external
induction B, = 10, 50, 100, 150, and 200 mT. FEM simulations are run with different choices
of time-steps: dashed lines show the results of simulations with multiple small time-steps At =1 s,
stopping at either t; = 1, 5, 10, 15 and 20 s; solid lines show results from single time-step simulations,
where At = ty is fixed to either 1, 5, 10, 15, or 20 s. The choice of the the end criterion for the
fixed point iterative loop is empirically fixed at e, = 5.1072 for the multiple time-steps simulation
and e, = 2.1073 for the single time-step method, so as to obtain a solution that has reached its
asymptotic value at the end of the loop.

It can be observed that in each case the profile of the magnetic field in the superconductor is linear.

It closely follows the result of the Bean model. To further quantify the results, we define the average

deviation from the Bean model as

1 [@

AB = >3 |BFEm — Bgeanldr, (2.27)
—a

where Bpgy stands for the FEM results. Figure 2.8-(b) shows the average deviation in the FEM

method using a single time-step (filled circles) and in that using multiple time-steps (open squares).

Both methods produce almost the same deviation as long as the magnetic field has not fully penetrated

the wall of the tube, or for B, < B, = 125.6 mT. For B, > B, the deviation obtained with the

multiple time-step approach first increases abruptly and then has a value around 3 mT. The single time-

step method, on the other hand, leads to a deviation which peaks at about 2.5 mT at B, = 130 mT

and then decreases at larger fields to be less than 2 mT at B, = 200 mT.
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Figure 2.8: (a) Profile of the magnetic flux density along the tube diameter, as calculated with the FEM with a
single time-step (solid lines) and with multiple time-steps, At = 1 s, (dashed lines). The exponent
n is equal to 100 so as to approach the critical state. The magnetic flux density is applied with a
constant sweep rate of 10 mT/s. The profiles are shown for B, =10, 50, 100, 150, and 200 mT.
(b) Average deviation AB from the Bean model, as a function of B,, for the single time-step
method (filled circles) and for the multiple time-step method (open squares).
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Overall, the single time-step method, as well as the multiple time-step one, give a solution which is
close to the Bean prediction, with a relative difference that stays below 5%. However, the single
time-step result is computed in a relatively short calculation time with respect to a multiple time-step
method. For example, the 20 single time-step simulations of Figure 2.8-(b) take less than half a day
on a dual-core 2.8 GHz processor with 2 Gb of memory, whereas the multiple time-step approach with
At =1 s and t; = 20 s takes almost 3 days on the same computer.

2.5 Validation of the 3D FEM model using a single time-step iteration

2.5.1 Magnetic flux profile in a HTS tube with a large critical exponent

We now turn to the case of a superconducting tube of finite height subjected to a uniform axial
field. The tube has an external radius of 10 mm, an internal radius of 5 mm, and a height of 8 mm
(see Figure 2.9). The external field is applied with a constant rate B, = 10 mT /s and raises up to

2 = 200 mT. Here again, we assume n = 100. The critical current density, J. and the critical
electric field, E., have the same values as for the tube with an infinite height.

Even if the tube geometry may be solved with a 2D axisymmetric model, the FEM approach is carried
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Figure 2.9: Sketch of the HTS tube (outer radius 10 mm, inner radius 5 mm, and height 8 mm) and magnetic
flux profiles along the axis (a), a diameter in the top surface (b) and in the median plane (c), as
represented by the arrows. The arrows indicate different scan directions for plotting the magnetic
flux profile. The external field is applied with a constant sweep rate of B, =10 mT/s, and raises
up to B, =200 mT. The flux penetration problem is either solved with the FEM single time-step
method (grey solid lines and At = 20 s), or with Brandt’s method with multiple time-steps (black
dashed lines and At = 5 10~ s), both assuming n =100.
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Figure 2.10: Magnetic flux density calculated at the centre (median plane - black - or top surface - grey -)
of a HTS tube with the FEM single time-step method (circles) and with the Green's function
method (dashed lines and At = 5 10~* s). The external field is applied with a ramp of constant
rate B, = 10 mT/s and increases up to 200 mT. FEM single time-step method are shown for
different choices of the time-step: At = 1,...,20 s. The inset shows the location where the
magnetic flux density is calculated.

on a 3D mesh with a single time-step method (At = 20 s), so as to validate the method. Only
half of the tube is meshed, and vanishing conditions on the tangential component of B are imposed
in the median plane. The FEM results are compared with those of the Green's function method of
Brandt [126, 174] (see Appendix A for details). The time-step used for the Brandt's algorithm is fixed
at 5 x 107* s to ensure convergence.

The z-component of the magnetic flux density is probed along three different directions [see Figure 2.9:
(a), the tube axis, (b), a diameter at the top surface, and (c), a diameter on the median plane]. Solid
lines show the FEM results and dashed lines show those obtained with Brandt's method. It can be
observed that solid lines exhibit step-like features, whereas dashed lines are smoother. This difference
can be traced back to the low meshing density adopted in the FEM method. Even though only half
of the tube is meshed in 3D, the maximum number of available nodes with 6 Gb RAM (200 000) is
still too small® to obtain a smooth curve after linear interpolation, unlike in Brandt's method.

Despite this observed difference, one can see that the results of both methods are in good agreement.
In particular, on the linescan along direction (c) (Figure 2.9-(c)), we observe a magnetic flux density
on the outer wall of the tube that is slightly larger than B, = 200 mT. This is caused by the
demagnetizing field, which was absent in the results obtained with samples of infinite height. Inside
the superconducting wall, the magnetic flux density decreases linearly; in the central part of the tube,
it remains at a low level, but exhibits variations due again to the demagnetizing field.

Figure 2.10 shows the z-component of the magnetic flux density calculated at the centre of the
cylinder, Beentre, in the median plane (black) and on the top surface (grey), as a function of the

3In a parallel computing environment, the 3D meshing could be more refined.
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external field B,. The dashed lines show the results of the Green's function approach. Circles show
the FEM results in a single time-step approach, with different choices of the time-step ranging between
At =1 s and 20 s. Here again, the agreement between both methods is excellent, demonstrating the
relevance of a single time-step iteration in a FEM approach.

The total calculation time for obtaining the results of Figure 2.10 is larger for the 3D FEM method
than for Brandt's method, because a 3D meshing is used for the FEM and a 2D axisymmetric meshing
is used for Brandt's method. However, we remind the reader that the purpose of this section was
to evaluate the accuracy of the 3D FEM in a case where comparisons could be made with existing
methods, while keeping the method explicitly in a 3D geometry. We could of course optimize the
FEM code for this particular case by considering an axisymmetric 2D meshing.

2.5.2 Domain of validity of the single time-step method

We have seen in Sections 2.4-2.5 that the FEM method with a single time-step produces accurate
results in the large n limit (n = 100). The purpose of this subsection is to analyze the accuracy of the
method at lower n-values and establish its sensitivity to the sweep rate of the external field. Mastering
these two factors is essential to make comparisons with experiments.

We estimate the error of the FEM single time-step method on the basis of the magnetic field produced
at the centre of the tube with a finite height (the tube considered in the previous subsection), either
in its median plane or on its top surface. The external field is ramped with a fixed rate B, up to
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Figure 2.11: Difference between the magnetic flux density at the centre of the HTS tube, as calculated by
the FEM single time-step method and the Green's function method (with multiple time steps
At =5 107% s) either in the median plane (black lines) or on the top surface (grey lines). The
magnetic field is applied as a ramp with a sweep rate of 1 mT/s (circles), 10 mT/s (squares),
and 100 mT/s (triangles). The applied magnetic flux density is ramped up to B, =200 mT. The
exponent n varies from 5 to 100.
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B, = 200 mT. The error is then evaluated as the absolute difference between the results of the
single time-step FEM and the Brandt’'s method. Figure 2.11 shows the error (in %) as a function of
the exponent n, varying from 5 to 100, and the sweep rate B,, taken as 1 mT/s (circles), 10 mT/s
(squares), or 100 mT /s (triangles).

In the large n limit (n = 100), the error remains small — below 2 % (resp. 3 %) in the median plane
(resp. on the surfcae) — and is fairly independent of the sweep rate. This limit practically corresponds
to the critical state, which is uniquely determined by the external conditions and is independent of
the magnetic history of the sample, i.e. the sweep rate of the external field in this case. Provided
convergence is guaranteed, the FEM approach should thus produce the critical state solution. The
discrepancy between the situations in the median plane and on the surface is attributed to the non-
uniform meshing used in the FEM simulations which has a smaller characteristic length close to the
median plane than on the top surface. The opposite limit of low n-values shows a much larger
sensitivity to the sweep rate and a larger spread in the error. Here, these results should be considered
as qualitative only, as the Green's function method itself has an error that grows in this limit, so that
our estimate of the FEM error becomes questionable in this regime. For intermediate values of n, the
error remains low and weakly sensitive to the sweep rate: e.g., for the experimentally relevant value
for melt-textured YBCO at 77 K, n = 20 [50], the error is below 4 %. This demonstrates that the
single time-step method is useful for simulating the magnetization of HTS with finite n-values.

2.6 Summary of Chapter 2

This chapter introduces three different numerical models that are used in this thesis for calculating
the magnetic field penetration in drilled samples. These models are of increasing complexity. The
simplest one, based on the Bean model, neglects the flux creep and the effects associated with the
finite height of the samples. Both finite-element models (two-dimensional and three-dimensional)
incorporate flux creep in the form of an E — J power law; the 2D model neglects the finite height
effects, while the 3D model takes them into account. The calculation load required by each model
is obviously proportional to its complexity. The Bean model is solved in few minutes in MatLab and
the FEM models in few hours within the GetDP environment. However, when considering the finite-
element method, we propose for large values of n (n > 20) and for linearly varying applied fields to
use the properties of a slow magnetic diffusion inside the HTS to reduce the number of time steps.
In particular, the penetration of a linearly increasing applied field can be calculated with only a single
time-step. Such a technique may also be applied for calculating the trapped flux: during the first step,
the applied magnetic flux density is increased with a constant sweep rate to a maximum value, it then
decreases to zero with the same sweep rate during the second step.



Influence of the holes and of their arrangement on the
magnetic properties of bulk HTS

Since it removes superconducting materials, drilling holes in bulk HTS samples may alters their mag-
netic properties. In this chapter, we study how and by how much the magnetic properties are affected
by the presence of the holes, with the help of both numerical modelling and experiments!.

The modification of the magnetic properties incurred in drilled samples have already been considered
in the framework of other studies. These ones have reported that drilling holes in a bulk cylinder
reduces its bulk magnetization, provided its critical current density remains unchanged [89, 90]. The
drilled cylinder exhibits a lower magnetization than that of the plain cylinder. Although the main
consequences of drilling holes on the magnetic properties have been described in these papers, they
do not thoroughly reviewed, to our knowledge, the mechanisms that are responsible for the observed
magnetization drops. Understanding, for instance, the influence of the relative position of the holes in
a two-hole sample would bring essential informations regarding the optimal arrangement when several

holes are arranged on a given lattice in the sample.

The aim of this chapter is to provide an exhaustive study of the magnetic properties of drilled samples,
with modelling and experimental results. We first consider samples consisting of a semi-infinite plane
having a single boundary and an infinite height. Such a geometry allows one to understand the effects
of the holes on the current stream lines, without dealing with the more delicate effects associated with
the edges of the cross section and with the finite height. Then, we review the magnetic properties
of semi-infinite samples containing several holes and discuss the possibility of maximizing the trapped

LPart of the materials presented in this chapter are published in G P Lousberg et al, accepted for publication in J.
Phys.: Conf. Ser. (2009) [82], in G P Lousberg et al, Supercond. Sci. Technol., 21, 025010 (2008) [133], and in G P
Lousberg et al, Supercond. Sci. Technol., 22, 055005 (2009) [134].
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magnetic flux in samples where several holes arranged on a optimal lattice. Various regular hole
patterns are detailed in samples with an infinite height and a semi-infinite or a circular cross section.
Then, samples with a finite height are considered. The influence of the demagnetizing effects is
discussed in cylindrical samples.

In samples with an infinite height, the magnetic field distribution is calculated with both the numerical
Bean model described in Section 2.2 and the FEM described in Section 2.3. FEM simulations with
a critical exponent of, (i), n = 100 (strong pinning) and, (ii), n = 25 (typical value for YBCO) are
compared to the numerical Bean model in order to, (i), validate the FEM simulations in the limit
of strong pinning n = 100, and, (ii), study whether the value of the critical exponent modifies the
predictions obtained in the limit of a very strong pinning. Conversely, the samples with a finite height
can only be treated with FEM simulations. The results obtained with FEM in samples with an infinite
height are therefore used as a reference so as to assess the effects associated with the finite height
of the sample.

In the last part of this chapter, we demonstrate with an experiment carried on parallelepipedic drilled
samples that the trapped magnetic flux depends on the hole lattice and that it is possible to maximize
it with a proper arrangement of holes. These conclusions are supported by results from the numerical
models.

Three particular magnetic quantities are considered in this chapter for evaluating the magnetic prop-
erties of the samples: (i) the magnetization of a given sample that is subjected in the zero field cooled
state to an applied field, H,, (ii), the remnant magnetization that is obtained when the same sample
is initially magnetized above twice its penetration field before the applied field returns to zero, and
(iii), the maximum trapped flux density in a given cross section. For samples with a finite-size cross
section, both magnetizations (i) and (ii) actually have the same magnitude (they have opposite signs,
however), provided that the critical current density is assumed to be field-independent and that the
applied field in situation (i) is larger than twice the penetration field. Such equivalence cannot be
found for samples with a semi-infinite cross section, as they are never fully penetrated.

3.1 Samples of infinite height with a single hole

3.1.1 Preliminary case : a sample with a slab hole

To get a first grasp of typical magnetic flux profiles in drilled samples, we first consider a semi-infinite
plane of infinite height drilled by a slab hole. This particular geometry is represented in Figure 3.1-(a).
The cross section lies in the x—y plane and the sample is infinitely extended along the z-direction. The
slab hole has a width 2R in the x-direction and is infinitely extended along the y and z directions. The
sample is subjected to a uniform applied field parallel to the z-axis. The dashed line at the distance
a from the external border indicates the spatial domain in which the magnetization is calculated.

Applying the Bean model to that sample with a constant critical current density J. and subjected to
a uniform applied field is straightforward. The magnetic field decays linearly from the external border
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(a) Semi-infinite sample with a slab hole (b) Semi-infinite sample with no hole
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Figure 3.1: Magnetic field distribution in a semi-infinite superconducting plane, with (a) and without (b) a slab
hole. The distribution is calculated with the Bean model. The hatched surface area represents the
magnetization for the region extending from the border to the dashed line located at a distance a
from the border.

with a slope J, penetrates the hole, where it remains constant along the thickness 2R, and finally
decreases linearly with the coordinate x. For comparison, the situation in a sample with no slab hole
is depicted in Figure 3.1-(b). One directly observes that the effect of the slab hole is to increase the
penetration length £yepth. as Laepth,1 > Ldepth,0- As a result, the magnetization of the drilled sample,
My, defined here as M; = l/afoa Hdx — H,, is smaller than that of the plain sample, Mgy. The
presence of the slab hole thus induces a magnetization drop.

This simplified model shows that the flux front tends to penetrate further the sample with a hole,
since the magnetic field does not decay inside the hole. The magnetization of the drilled sample is
consequently reduced (in absolute value).

Note that this particular hole geometry is highly idealized and is discussed here for didactical purposes.
It is discussed in this paragraph for teaching purposes. Apart from this exception, this thesis only
focuses on circular holes. The circular hole geometry is the most feasible in terms of machining and
reproducibility. Other hole geometries could also be considered, but their practical realization would
be very difficult or even impossible.

3.1.2 Sample with a circular hole

We now turn to the situation of a sample with a semi-infinite cross section drilled by a single circular
hole of radius R centered at a distance D from the border. The sample is moreover assumed to have
a uniform and field-independent critical current density J.. Again, the sample, initially in the ZFC
condition, is subjected to a magnetic field H, oriented perpendicular to the cross section. In this
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geometry, the field distribution is two-dimensional, i.e. it varies inside the cross section, but remains
constant along the vertical coordinate z.

Current lines

The critical state in the one-hole sample is first calculated with the help of the numerical Bean model.
Following the main principles of that algorithm described in Section 2.2, the magnetic field can reach
a given point by two distinct penetration routes, (i) either directly from the external border, or (ii) via
the hole that acts as a radial source of magnetic field. Two regions may be identified: one for which
the direct penetration from the border has the shortest path, and one for which the radial penetration
via the hole has the shortest path. Hence, the boundary between these regions is characterized by the
equality of path lengths,

x = D+r—-2R, (3.1)

where x is a cartesian coordinate along an axis that is perpendicular to the external boundary and r is
the distance from the hole centre to the point where we determine the path lengths (see Figure 3.2).
We thus find that the boundary defined in Eq. (3.1) is the locus of points for which the difference
between the distance to the external boundary and that to the hole centre is equal to a constant,
D —2R. This locus is a parabola whose vertex is located at (x, y) = (D — R, 0), whose directrix runs
along x = D — 2R, and whose focus lies at (0, D). In cartesian cooordinates, the parabola equation
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Figure 3.2: Simulated current lines (or constant magnetic field lines) in a sample with a semi-infinite cross
section and a single hole. The calculation is based on the numerical Bean model. The hole has
a radius R =0.05 and is located at a distance D =0.2 from the border. Here, the unit length
corresponds to the length of one of the segments of the dashed contour. The applied magnetic
field is such that the penetration depth is given as £qepth =0.6.
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It is plotted as a thick line in Figure 3.2 for the case of a hole of radius R = 0.05 located at a distance
D = 0.2 from the border. Note that the unit length corresponds to the length of one of the sides of
the square delimited by the dashed grey lines; all the distances are normalized to this length.

Equation (3.2) also characterizes the current discontinuity line. As explained in Chapter 2, the current
stream lines can be constructed from the contour lines of constant magnetic field, i.e. lines for which
the shortest penetration length from the border is constant. These lines follow straight segments
outside the parabola, where the distance to the border is the shortest, and arcs of circle inside the
parabola, where the penetration path through the hole is the shortest. The current lines abruptly
change their direction on the parabola. Figure 3.2 shows the current lines obtained when the field is
applied in the zero field cooled state and is raised to a finite H,. In the particular case shown, the
applied field corresponds to a penetration length £gepen = 0.6. In particular, the current density is
effectively tangent to the hole border.

Magnetization of the one-hole sample and influence of the hole radius

Due to the symmetry of the problem the magnetization of the one-hole sample of Figure 3.2 is defined
as

1 1
M = —/BdeHa:—BfHa (3.3)
oS Js Lo

with S = 1 is the cross section of a square of unit length, and B is the average value of the vertical
component of the magnetic flux density, B, in that cross section.

The relative magnetization drop incurred by the drilled sample is then given by

AM  |Mo — M| (3.4)
Mo | Mol

where M, is the magnetization of the one-hole sample and My is that of a sample having the same
dimensions and critical current density and containing no hole. The calculations are carried over
a square of unit side length. In the particular case considered here, the applied field is given as
Hy = Jclgepth = 0.6 Jo. These choices guarantee that the flux does not extend further than x = 1 in

the influence region of the hole.

In the one-hole sample, the magnetization can be calculated either numerically, with the numerical
Bean model and with the 2D FEM, or analytically. The analytical calculations, that are only affordable
in the specific case of the one-hole sample, are based on the distribution of the magnetic field inside
and outside the parabola of Eq. (3.2) that reads

{ B = Bs— toJcx = poJc(Laepth — X),  outside the parabola (3.5)

B = Bi—pode(D—=R)—=po(r = R) = pode(Lgepth — r — D+ 2R), inside.
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Figure 3.3: (a) Sketch of the current line in a sample with a semi-infinite cross section drilled by a hole of
radius R and located at a distance D from the border. (b) Geometrical representation of the
surface where we calculate the magnetic flux for the magnetization difference AM.

In order to calculate analytically the magnetization drop, the magnetization difference AM is decom-
posed as

Mo — My = i (B* — (B® + B9)) (3.6)

where B2b:¢ are respectively the average magnetic flux evaluated in the grey areas represented in
Figure 3.3-(b). The three contributions are
1 Laepth 2v/Rx—Dx+R?
B? = = B(x)dydx, (3.7)
S D—R J—2v/Rx—Dx+R?

where B(x) = poJc(Ldepth — X).

1 2n rR
Bb = g/o A IJ/OJc(edepth - (D - R))rdrd@, (3'8)

TR?
= IJ'OJCT (edepth - (D-R)), (3.9)

2 Omax I'max ™ I'parabola
B — 5{/0 /R B(r)rdrd9+/ /R B(r)rdrde}, (3.10)

where B(r) = poJc(Laepth —r—D+2R). The integrals in the right side are carried in polar coordinates,

and

with the origin fixed at the centre of the hole. In these coordinates, the parabola equation is given as

2R
I'parabola 1—cosd’ (3.11)
The flux front intersects the parabola at an angle 6,2« that is defined by
2R
- 3.12
I'max 1— C0S O ( )

with

Imax = Ldepth — D+ 2R. (3.13)
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Figure 3.4: Magnetization drop in a sample with one hole and a semi-infinite cross section, as a function of
the hole radius. The sample geometry is represented in Figure 3.2. The sample is limited to a unit
surface for the calculation of the magnetization. The applied magnetic field is H, =0.6 J.. The
magnetization is calculated analytically (solid line in (a)), with the numerical Bean model (open
squares in (a)) and with the 2D FEM - n =100 (open squares in (b)) - and - n =25 (filled circles

in (b)).

Carrying the angular integrals (3.10), we arrive at

2 J I'max
B = “SO < {/ Omax(Laepth — F — D + 2R)rdr (3.14)
R
I'parabola )
+Mo/ (T — Omax) (Ldepth fr7D+2R)rdr} (3.15)
R

where 0oy = arctan {21/R(Laepth — D + R)/(Ldepth — D) }. The integral over r is computed numer-
ically.

A series expansion around R = 0 of AM = |My — M| yields
AM woJe (32\/— o
— = == \/R3(Lgeptn — D)2 + O(R?) ) | 3.16)
‘MO‘ ‘MO|5 9 ( depth ) ( ) (
R \3/2 R \5/2
0.97 ( > +0 ( ) ) (3.17)
Zdepth Zdepth

This is not a trivial result! One could have naively expected that the magnetization drop roughly

scales either as the area of the hole, AM  R?, or as the area of the region delimited by the parabola,
AM x v/R. From Eqs. (3.16), we conclude that an intermediate situation occurs, with AM x R3/?.
Note that the magnetization drop does not depend on the critical current density.

The calculated magnetization drop is compared to the results provided by the numerical methods.
Figure 3.4-(a) shows the relative magnetization drop, AM/|My|, as a function of the hole radius
R (the analytical result is shown with solid lines, the numerical Bean model is plotted with square
symbols). The analytical results and those obtained with the numerical Bean model are in perfect
agreement. Figure 3.4-(b) also shows the magnetization drops obtained with the 2D FEM method,
with n =100 (black open squares) and n = 25 (grey filled circles) in the same sample.

For the FEM methods, the semi-infinite sample is approximated by a squared section taken out from
a larger rectangular sample of infinite height. One of the borders of the section coincides with the
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external border of the rectangular sample, and the current density flows parallel to that external
border in the section when there is no hole inside. All the distances are normalized to the length of
the squared section. The applied magnetic field H, = 0.6 J. is such that the flux front lies in this
squared section. The magnetic field distribution is calculated with the single time-step method and
B,=1 mT /s. Moreover, the critical current density is assumed to be field-independent and is equal to
Je=210" A/mz. Note however that the relative magnetization drop is expected to be independent
on the value of J., provided that J. is constant and uniform in the sample, as calculated above.

We observe that the calculated drops by FEM are coherent with Egs. (3.17). The 2D FEM method
in the strong pinning limit (n = 100) provides magnetization drops that are slightly smaller than
those obtained analytically or with the numerical Bean model. That difference is attributed to the
unavoidable error associated to the finite-element method.

However, the comparison of the FEM calculations with n = 100 and n = 25 tends to show that the
larger is the flux creep, the larger seems the magnetization drop. Given the numerical errors affecting
both results, this latter conclusion must be handled carefully.

While not shown here, the behaviour of the current density in the vicinity of a discontinuity line is
also different when the E — J model is taken into account. Actually, for finite values of n, the current
density may have different values around J., unlike in the critical state model where it is only 0 or J.
As a result, the sharp bend of the current density observed across the discontinuity lines within the
framework of the critical state is smoother with finite values of n. The current density is no longer
strictly discontinuous with finite values of n, but the variations of the current direction still remains
very sharp when n = 25.

3.2 Samples with an infinite height and several holes

3.2.1 Samples with two holes

As a second step, we consider a sample with a semi-infinite cross section and two holes. Both holes
have the same radius R = 0.05 and are separated by a constant distance d = 0.2. The first hole is
placed at a distance D = 0.2 from the border. Again, the semi-infinite surface is limited to a square
whose edges have a unit length. We vary the angular separation 6 between the holes and study the
interactions between the regions of influence of the holes; their interaction should depend on whether
the centre of the second hole lies inside or outside the parabolic influence region of the first hole. We
work in polar coordinate and take the origin at the centre of the first hole. The coordinates of the
second hole are given by (r,8) with r = d. The discontinuity line produced by the first hole has the
equation

2R P,
I'parabola = 1_sng (3.18)

Thus, the centre of the second hole lies on the parabola when r,5ap012 = 0.2, and hence when
0 = 30°.
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Figure 3.5: Simulation (numerical Bean model) of the current lines in a sample with a semi-infinite cross
section and with two holes. The holes have a radius R =0.05. The unit length corresponds to
the side of the square delimited by the dashed lines. The first hole is located at D =0.2 from
the border. The separation distance between the holes is constant, d =0.2. The second hole is
located at 0 =10° (1), 6 =30° (2), 6 =60° (3) and 6 =90° (4). The thick lines represent the
discontinuity lines.

Figure 3.5 shows the current lines for four different angular positions 6 calculated with the numerical
Bean model. For 8 = 10°, the centre of the second hole is located outside the influence region of the
first hole. A new discontinuity parabola appears around the second hole. The two parabolic curves
merge between the holes and form a common discontinuity line. This last line corresponds to the locus
of points for which the difference between the distances to each hole centre is equal to a constant;
the discontinuity line is therefore a branch of a hyperbola. When 6 increases further, the second hole
is pushed away from the border and, for 6 = 30°, enters the influence region of the first hole. Again,
each hole produces a parabolic discontinuity line and both lines merge into a branch of hyperbola. As
the second hole goes deeper in the region of influence of the first one, the hyperbola opens up. The
surface of the combined region of influence of the holes increases with 6 and reaches a maximum for
6 =190°.

We evaluate the magnetization drop induced by the second hole as
AM My — Mb|
| My | M|

where M is the magnetization for the sample with hole 1 only, and M5 is that for the sample with

(3.19)

holes 1 and 2. We can evaluate this expression either by following the numerical methods exposed
in Chapter 2, or with analytical calculations. However, analytical calculations rapidly become tedious
when several holes are involved; we will thus restrict ourselves to numerical results from now on. The
magnetization drop is plotted in Figure 3.6 as a function of the relative angular position of the holes. It
is calculated either with the numerical Bean model (a) or with the 2D finite-element methods (b) with
n=100and n =25 B,=1mT/s, and Jo =2 107 A/m>. All numerical results show similar trends.

For small 8, the magnetization drop decays as the angle is increased. This result follows from the fact
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Figure 3.6: Magnetization drop in a sample with two holes and a semi-infinite cross section, as a function
of the relative angular position of the holes. It is calculated (a) with the numerical Bean model
and (b) with the 2D FEM with n =100 (open squares) and with n =25 (filled grey circles). The
angular positions (1), (2), (3) and (4) correspond to the situations in Figure 3.5. See text for
geometrical details.

that the second hole is pushed away from the border as 6 increases; the hole is thus penetrated by a
lower magnetic flux and its effect is reduced. By contrast, for large angles, AM/|Mji| increases with
6 because the influence region of the second hole becomes larger. Hence, the optimal position of the
centre of the second hole is right on the discontinuity line of the first hole: the magnetization drop is
minimum for 6 = 6,pt = 30°. Although the results are not shown, we have also studied the situation
with a fixed relative angular position and a variable separation distance and found similar conclusions.

We should notice that the results obtained with the numerical Bean model are smoother than those
obtained with FEM. It is attributed to the numerical errors affecting the FEM results. Moreover, the
influence of the critical exponent is negligible in the conclusions drawn for this analysis. The use of
the numerical Bean model is therefore particularly recommended in these very simple cases.

Some insight on these results can be gained by examining how the flux penetrates the system. The
flux front near the second hole is sketched in Figure 3.7 for 6 = 6o, = 30° (a), 6 < Oopt (b), and
6 > Bopt (). We can observe that the flux front reaches the second hole tangentially in all cases.
However, for 6 = Opt, the flux front is tangent to the second hole simultaneously in the region inside

(@o= ev:)pt (b) 6 < eopt (€) 6> eopt
Flux front
olg’/z
&
T bfb
&
T x
Hole 1 l|< =

Figure 3.7: Sketch of the flux front tangent to hole 2 for angular positions 6 = 0,p¢ (a), 6 < 6op: (b), and
0 > Oopt (c). The dashed parts are the remnant flux front in the influence region of the second
hole.
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the discontinuity parabola produced by the first hole (circular front) and in the region outside the
parabola (straight front). The simultaneous penetration from the two regions appears to be necessary
for reducing the effects of the second hole on the magnetization of the sample.

3.2.2 Samples with three holes

We now turn to adding a third hole to the optimized two-hole pattern of Figure 3.7-(a), where the
first hole is again located at D = 0.2 away from the external border and the centre of the second
hole lies on the discontinuity parabola of the first one, at a distance d = 0.2. The three holes have
a radius R = 0.05. The third hole is located at a constant distance d = 0.2 from the second hole.
Adding a third hole reduces again the magnetization of the sample. The magnetization drop, when
H; = 0.6 Jc is now given by

AM My — M|

My~ [Ma]
where M> is the magnetization of a sample containing only the first two holes, and M3 is the magne-
tization for a sample containing three holes.

Figure 3.8 shows the magnetization drop, AM/|M,|, as a function of the angular position of the third
hole; the inset shows the configuration of the holes. The magnetization drop is calculated either (a)
with the numerical Bean model or (b) with the 2D FEM with n = 100 (open squares) and n = 25
(filled circles); the other parameters for the FEM are similar to those used in Section 3.2.1. Again,
the different models show similar behaviours for the magnetization drop. The centre of the third
hole can be located in three different regions: region A, a region that is not affected by holes 1 and
2, and regions B and C, that respectively correspond to the influence regions of hole 2 and hole 1.

, decays
because the distance of hole 3 from the border decreases (such a behaviour was already observed
with the two-holes pattern). The magnetization drop is minimum when the centre of hole 3 lies on
the discontinuity parabola of the hole 2, separating regions A and B. If 8 increases further, hole 3
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= s
= 0.04 = 0.04}F a
= ;” FEM-2D-n=25
s =) ]
g 0.03 g 0.03 | g
° ©
5 S ]
g 002 8 ooz} i
K] ki
§ % ,D D % J
= = Q.

0.01 g | 0.01 EM 2D n= 1oo ]

L L s b L L L L L
0 20 40 60 80 100 120 140 160 180 0 100 120 140 160 180
Relative Angular position of the third hole (degrees) Relative Angular posmon of the third hole (degrees)

Figure 3.8: Magnetization drop in a sample with three holes and a semi-infinite cross section, as a function of
the relative angular position between the second and the third hole. It is calculated by the three
methods of Figure 3.6. The first hole has a radius R =0.05 and is located at a distance D =0.2
from the border. See text for details of the geometry
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enters region B, and AM/|M,| increases again, to reach a maximum when the centre of hole 3 reaches
the remnant parabola of hole 1 (this line does not appear as a discontinuity line in the current line
distribution). Then, AM/| M| decreases until hole 3 reaches the boundary between regions B and C
(this discontinuity line is a hyperbola). As it continues through region C, AM/|M,| increases again.
We can thus conclude that the magnetization drop is minimized each time the centre of the hole
is located on a discontinuity line. Note however that the values of AM/|Ms| on a minimum are not
equal; the lowest value of AM/|Mjs| is achieved when hole 3 is placed on the boundary between regions
A and B.

3.3 Influence of the types of lattice in samples of infinite height

3.3.1 Samples with a semi-infinite cross section

The analysis of samples containing two or three holes reveals that the relative position between the
holes is an important factor that affects the magnetic properties of the drilled samples. When several
holes are drilled, they are usually arranged on a regular pattern. In such samples, the relative position
between these holes depends on the type of pattern that is chosen.

Therefore, we apply the results of the previous sections to construct a lattice containing many holes.
Let us first compare the magnetization for two lattices. The first lattice is a square lattice, where a
line of equidistant holes (separated by a distance d) parallel to the external boundary is reproduced
periodically every distance d in the direction perpendicular to the border. The second lattice is obtained
from the square lattice by shifting every other row by half the length of a unit cell, leading to a
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Figure 3.9: Magnetization drop (as compared to a sample with the same geometry and without holes), as a
function of the hole radius in a sample with a semi-infinite cross section (limited to a square of
unit length) with two different lattice configurations. The drop is calculated with the numerical
Bean model (a) and with the 2D FEM with n =25 (b). The open circle symbols correspond to
a square lattice with a lattice constant d =0.2 and the filled square symbols refer to a centered
rectangular lattice with the same lattice constant. The insets show the lattices. The number of
holes for a given radius is the same in each lattice. The applied magnetic field is H, =0.6 J.. The
centered rectangular lattice produces the largest magnetization.
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particular realization of a centered rectangular lattice. The two lattices are represented in the insets
of Figure 3.9-(a). Since we are working with semi-infinite cross sections, we work in a square of unit
length, which we arbitrarily choose to contain five rows of holes. The holes have a common radius,
R, and the lattice constant is fixed at d = 0.2. Note that the hole density is equal in both lattices.

The magnetization drop is defined as

AM _ [Mo = M| (3.21)
Mo | Mol

where M is the magnetization of the sample and My stands for the magnetization for a sample with
the same geometry and Jc but without holes. The applied field is chosen to be H, = 0.6 J. so that
the flux front stays within the square of unit length. AM/|Mjg| is plotted as a function of the hole
radius in Figure 3.9. Whether the calculations are carried out with the numerical Bean model or with
the 2D FEM (n = 25), we find that the centered rectangular lattice produces a smaller magnetization
drop than the square lattice. Although not shown, we checked that this result is independent of
the hole separation distance d. This result naturally follows from the conclusions of the previous
sections: in the centered rectangular lattice, the holes are located on the discontinuity parabola of the
neighbouring holes and the magnetization is maximized (in absolute value).

3.3.2 Samples with a circular cross section

Consider next infinitely long samples with a circular cross section. These samples have a geometry
which is more realistic for bulk HTS applications. Moreover, calculations on infinitely long geometries
describe well the magnetic properties in the median plane of a cylinder with a finite height, provided
its height h is large with respect to its diameter D [126, 174].

We found earlier that in a centered rectangular lattice, the holes were placed on the discontinuity lines
of the neighbouring holes. This placement helped increasing the magnetization. However, this result
is not necessarily valid in circular cross sections, because of the flux front geometry. The flux front
is now circular, and as the flux penetrates the sample, the critical currents flow around concentric
circular trajectories. Such a geometry is not compatible with the symmetry imposed by a centered
rectangular lattice. The current lines in a circular sample with a centered rectangular hole pattern are
represented in Figure 3.10-(a). One can observe for instance that the hole indicated by the arrow is
not located on a discontinuity line.

We can construct another lattice, that uses the circular shape of current lines, and place the holes
on discontinuity lines. Figure 3.10-(b) shows such a realization, which we name a “polar triangular
lattice” . The holes are positioned on concentric layers separated by a distance d. Inside each layer,
the holes have a common angular separation. Furthermore, the holes are shifted every other layer by
half their angular separation. This ensures that the holes are located on discontinuity lines.

By comparison with the square lattice, one could also define a polar square lattice where the hole
angular position is not shifted from one layer to the next. The polar square lattice, the polar triangular
lattice, the square lattice and the centered rectangular lattice are represented in a sample with a
circular cross section in Figure 3.10-(c).



84 CHAPTER 3. EFFECT OF THE HOLES ON THE MAGNETIC PROPERTIES OF BULK HTS

(a) Centered rectangular lattice (c) Polar square lattice Polar triangular lattice

5

I

LsJjeNe)

Y00

Begs,

Cylinder center

Square lattice

532

Figure 3.10: (a) Simulation of the current lines in a sample with a circular cross section and a centered
rectangular hole lattice. The arrow indicates a hole which is not located on a discontinuity line.
(b) Simulation of the current lines in a sample with a circular cross section and a polar triangular
hole lattice. (c) Lattice patterns under consideration in samples with a circular cross section.

The four lattices of Figure 3.10-(c) are incorporated into a cylinder of infinite height and having a
diameter of 20 mm. The lattice parameters are chosen in a such way that the total diameter of the
holes is kept constant, so as to fix the total surface of heat exchange. The square and the centered
rectangular lattices contain each 24 holes with a radius of 1 mm. The polar lattices contain two layers
of 10 holes with a radius of 1 mm and a central layer with 10 holes with a radius of 0.4 mm. The four
samples are represented in Figure 3.11-(a). The trapped magnetizations M are calculated in each
sample with the numerical Bean model and with the 2D FEM in two time-steps (n = 25): one for
increasing the applied flux density to B, = 2uoJea =~ 503 mT at B, = 1 mT/s, and another one for
decreasing the applied field to O with the same sweep rate. These results are compared to the trapped
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Figure 3.11: (a) Drilled samples of infinite height with a circular cross section and holes arranged in four
different lattices. See text for geometrical details. (b)- Magnetization drop in the drilled samples
(with respect to a plain one), as calculated with the numerical Bean model (black) and with the
2D FEM with n = 25 (grey).
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magnetization Mgy of a sample having the same diameter and containing no hole; the corresponding
magnetization drops are shown in Figure 3.11-(b). We find that the sample with the polar triangular
hole lattice, which aligns holes of each layer on the discontinuity lines produced by the previous layers,
has the smallest magnetization drop, and hence the highest trapped flux.

Although not shown here, the FEM calculations with n = 100 yield magnetization drops that differ at
maximum by 1% from those obtained with n = 25.

3.3.3 Influence of a field-dependent critical current density

Hitherto, the critical current density in the superconductor has been assumed to be uniform and
field-independent. We now consider the case of a field-dependent J. in order to know whether the
conclusions of the previous paragraph are modified.

We consider four drilled samples similar to those of Figure 3.11-(a). The critical current density is
assumed to depend on the magnetic flux density according to the Kim's law [40],

JCO

Je(B) = TTB/B,’

(3.22)
where B is the flux density for which J. is half of its initial value at zero field, J.q. Bj usually depends
strongly on the material properties. In Bi-based bulk superconductors, it is usually low and the critical
current density varies strongly around the maximum trapped flux density of the sample. In YBCO, B;
is often larger than in Bi-based samples and the variations of the current density are smaller in the
trapped flux profile. Both situations are investigated in this paragraph. We consider three values of
Bi. Large variations of the critical current density in the flux profile are obtained with By = 0.258,,
where B, is the penetration field of the plain sample, B, = pgJca. Conversely, small variations are
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Figure 3.12: (a)-Dependence of the critical current density on the magnetic flux density, according to the
Kim’s law with By = 0.25B,, By = 0.5B, and By = 2B,. The penetration field corresponds to
that of a plain sample of circular cross section having the same dimensions as those of Figure 3.11,
B, =251 mT. (b)- Magnetization drop in the drilled samples of Figure 3.11 calculated with the
field-dependent critical current density presented in (a).
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simulated with By = 2B, and an intermediate situation is considered with By = 0.5B8,. These three
situations are represented in Figure 3.12-(a) where the critical current density is plotted as a function
of the magnetic flux density.

The calculations of the flux profile in the samples with the three different field-dependences of the
critical current density are carried out with the 2D FEM (n = 25, Joo = 2 107 A/m?). Note that
it would have been also possible to use the numerical Bean model, but a complete modification of
the code would have been mandatory, while it was not required with the FEM code. Figure 3.12-
(b) shows the calculated magnetization drops (with respect to that of a plain sample having the
same dimensions and critical current density) in the four lattices of Figure 3.11-(a) and with the
three different dependences. It is observed that the polar triangular always yields the smallest drop,
independent of the type of field-dependences.

Moreover, the values of the magnetization drops vary with By. In a given sample, the constant critical
current density (see Figure 3.11-(b)) produces the largest drop, this drop is smaller when the flux
profile exhibits large variations of the critical current density (B; = 0.25B,). When the holes are
drilled in the superconductor, the maximum trapped flux density is reduced as compared to that of
the plain sample. On the other hand, in the case of a field-dependent J., this reduction of Bmax is
accompanied by an increase of the critical current density with respect to its value in the plain sample.
That explains the smaller drops observed in drilled samples with a large field-dependence of the critical
current density.

3.4 Influence of the demagnetizing effects

The samples of infinite height considered in Sections 3.1-3.3 allow one to readily assess the effects
of the holes on the magnetic properties, but they do not accurately reproduce the more realistic
situation of typical drilled samples whose height L is of the order of the diameter D [76, 77, 78, 82].
In particular, the distribution of the magnetic flux density in the median plane is not close to that of a
sample with an infinite height when L ~ D; the demagnetizing effects cannot be neglected anymore in
such samples [126, 174]. In order to study the influence of the demagnetizing effects, we consider in
this section 3D FEM calculations of the magnetic properties of drilled cylinders having a finite height.

3.4.1 Cylindrical samples of finite height with one hole

We first concentrate on a sample containing a single hole, as represented in Figure 3.13-(a). The
cylinder has a radius of 10 mm and a height of 8 mm. The centre of the single hole is located at 2.5 mm
from the border and has a radius of 1.5 mm. The sample is assumed to have a field-independent critical
current density, J. = 2.107 A/mQ, and a critical exponent of n = 25. We consider that the sample is
subjected to a uniform applied flux density of 300 mT. The magnetic field distribution is solved with
the single time step 3D FEM, with B, = 1 mT/s. The magnetic field distribution along the sample
diameter crossing the centre of the hole is reproduced in the median plane and on the top surface
respectively in Figure 3.13-(b) and (c). The magnetic field distribution along that same diameter in
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Figure 3.13: (a)- Cylindrical sample with one hole (half of the sample is represented). See text for the
geometrical details. The arrows show the diameters on which the flux profiles (b) and (c) are
represented. (b)- Magnetic flux profile along arrow (b) in the median plane of the sample that
is subjected to a uniform applied flux density of B, =300 mT (black line). The profile in a plain
sample having the same dimensions and J. is reproduced with a grey line. (c)- Magnetic flux
profile along arrow (c) at the top surface of the drilled (black line) and plain (grey line) samples.

a sample having the same dimensions and no hole is also reproduced as a reference, with grey lines.

Starting from r = 10 mm and as far as we have not reached the hole (r > 9 mm), the magnetic flux
profile in the median plane of the one-hole sample is similar to that of the sample with no hole, no
matter it is in the median plane or on the top surface. In particular, we observe that the magnetic flux
density at the sample outer edge is larger than the applied field. There is a flux concentration due to
the return lines of the demagnetizing field that are oriented outside the superconductor in the same
direction as the applied field. In the hole, the magnetic field is no longer uniform, contrarily to what
happens in samples with an infinite height. It increases as one gets closer to the sample centre. We
believe that it is a consequence of the return lines of the demagnetizing field that cross the hole. The
presence of the hole induces a shift between both flux profiles in the superconductor when r < 6 mm.
Moreover, the spatial variations of B are larger in the one-hole sample than in the plain one. The
magnetic flux profile in the one-hole sample no longer reaches its minimum value at the sample centre,
but at r &~ —1 mm. For r < —1 mm, the profile is similar in both samples.

Note that the minimal value of the magnetic flux density in the median plane of the plain sample
iS Bmin &= 165 mT. That value in the plain sample is larger than the estimate based on the Bean
critical state applied to a plain sample with an infinite height and the same cross section, Bpmin =
B, — poJdor =49 mT. The difference between the Bean model's estimate and the calculated By, in
the sample with a finite height is attributed to the finite value of n and to the demagnetizing effects
that reduce the spatial variations of the magnetic flux density with respect to those of a sample of
infinite height. Moreover, since the hole offers it a return path, the demagnetizing field less affects
the spatial variations in the one-hole sample for —1 < r < 6 mm.
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3.4.2  Cylindrical samples of finite height with several holes

As observed in Figure 3.13, the return lines of the demagnetizing field play a crucial role in the magnetic
flux profile in samples of finite height whose radius is larger or approximately equal to their height. It
is responsible for the flux concentration at the sample outer edges, for the non-uniform field inside
the holes, and for the smaller spatial variations of the magnetic field with respect to those found in a
sample of infinite height. However, these effects do not necessarily lead to reconsider the conclusions
on the influence of the hole arrangement in drilled sample of infinite height.

Actually, let us consider the four lattice types of Figure 3.11-(a) and let us incorporate them in
cylindrical samples with a radius of 10 mm and a height of 8 mm. These drilled samples are shown
in Figure 3.14-(a). The trapped magnetic flux density in the drilled samples is calculated with the 3D
FEM in two time-steps, with the same parameters as in Section 3.3. The obtained flux profile along
the diameter in the top cross section [see black arrow in Figure 3.14-(a)] is represented in Figure 3.14-
(b). The dashed curve corresponds to the trapped flux profile in a cylinder having the same dimensions
and material parameters, but containing no hole. The flux profiles exhibit steps, resulting from the
number of meshing elements used in 3D simulations, as was already observed in Section 2.5. It can
be observed that the maximum trapped magnetic flux density is smaller in the drilled samples than in
the plain one.

Table 3.1 lists the values of the maximum trapped magnetic flux density in the top cross section and
in the median plane, as well as the results obtained with the 2D-FEM (with the same parameters)
for infinite drilled cylinders having the same cross sections. The drops of trapped flux with respect to
those of the plain sample are also indicated. In all cases, the maximum trapped magnetic flux density
is obtained with a polar triangular lattice, with a value higher by ~ 40% with respect to that obtained
in a centered rectangular lattice. This result is almost independent of the cross section where it is
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Figure 3.14: (a)- Four drilled cylinders (radius 10 mm, height 8 mm). The hole patterns are similar to those
of Figure 3.11-(a). (b) - Trapped magnetic flux profile along the cylinder diameter, as calculated
with the FEM two time-steps method, with a sweep rate of 10 mT/s and n =25. The profile
is represented in the top cross section of the cylinder. The dashed line corresponds to the flux
profile in a cylinder without holes, also calculated with the FEM two time-step method.
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Bmax 3D - Top 3D - Centre 2D
No hole 112.9 mT 176.6 mT 225.8 mT
Polar triangular lattice 70.05 mT 37.9% 1127 mT 362% 1379 mT 38.9%
Polar squared lattice 63.6 mT  43.7% 97.7mT 447% 1209 mT 46.4%
Square lattice 56.7mT 498% 878 mT  503% 1108 mT 50.9%
Centered rectangular lattice 50.6 mT 552% 764 mT  56.7% 101 mT 553%

Table 3.1: Maximum trapped magnetic flux density in cylinders of finite height, as calculated in the top cross
section (3D - top) and in the median plane (3D - centre), and in cylinders of infinite height obtained
with the 2D FEM.

calculated and agrees with the theoretical predictions based on the Bean model. The demagnetizing
effects only affect the values of the maximum trapped flux density. They are found to be smaller in
the finite height samples than in the cylinders of infinite height with the same hole lattice, whereas
the relative drops of maximum trapped flux are of similar magnitudes.

The above results are based on the comparison of a plain sample and a drilled sample that have the
same critical current density. In other words, we only assess the modifications of the current stream
lines induced by the presence of the holes, by considering that the current density remains unchanged.
However, in practical situations, it is important to remind oneself that the first advantage of drilling
holes is to be able to increase the oxygen content in the sample, and hence to increase the critical
current density. The overall consequence of drilling holes thus results from a compromise between
the increase of critical current density and the magnetization drop induced by the modification of the
current stream lines and by the loss of superconducting material. While in this section we have only
considered the second factor, the first factor has been experimentally shown to be dominant [6, 83].

3.5 Measurements of the magnetization drop resulting from the drilling of a

pattern of artificial holes

In Section 3.4, we show with modelling arguments that the hole arrangement is a key parameter for
reducing the magnetization drop inherent to the drilling of holesin a HTS bulk sample. \We now present
and discuss, on the basis of the above modelling results, an experiment which aims at assessing the
influence of the hole pattern on the magnetic properties of the drilled samples. For this purpose, we
perform Hall probe mapping measurements on drilled and plain samples and the experimental results
are then compared to the numerical results obtained with the three models presented in Chapter 2:
(1), the numerical Bean model, (2), the 2D FEM model with a finite value of n, and (3), the 3D FEM
model.
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3.5.1 Sample preparation

In most cases considered so far [9, 10, 61, 76, 77, 78, 79, 83, 84, 85], drilled samples were obtained
from Y211-preform where the holes had been arranged before the synthesis of the Y123 phase. This
approach makes the assessment of the different hole arrangements difficult, since the critical current
densities may differ appreciably from one sample to another even though they are processed similarly.
We thus follow a different approach and consider bulk YBCO samples that are drilled after their
synthesis. This technique allows us to compare the trapped magnetic flux in every sample before and
after drilling the holes. Provided the microstructure of the sample has not been affected by the drilling
process, one can make the reasonable assumption that the critical current density is unchanged and
consider the sole effect of the modification of the current stream lines on the magnetic properties of
the sample.

The plain samples are extracted from a top-seeded melt-grown YBCO bulk cylinder that was synthe-
sized at CRISMAT (Caen, France). The cylinder has a diameter of 22 mm and a height of 16 mm.
With the help of a wire saw, two rectangular samples are cut out as sketched in Figure 3.15. The
resulting samples have a length of 8.6 mm, a width of 6.6 mm, and a height of 4 mm.

In each sample, six holes with diameter 1 mm are drilled along the c-axis. To prevent the supercon-
ducting ceramics from breaking during the drilling process, an ultrasonic drilling machine is used. In
order to avoid effects associated with the finite side lengths of the samples, the six holes are made
in the trapezoidal sector delimited by the grey dashed lines shown on Figure 3.15. For each sample,
this sector lies in the rectangular cross section and is delimited by one long edge of the cross section,
a segment of its longest median, and two lines which start at the corners with a 45 degree angle.
This choice is motivated by the critical state configuration found in a non-drilled sample of similar
dimensions subjected to a magnetic field applied along the c-axis. In this case, the two boundaries
at 45 degrees are placed where the current stream lines change abruptly their direction, whereas
they flow parallel to the long edge within the trapezoidal sector (these boundaries are discontinuity
lines) [155, 156]. Thus, the holes are drilled in a sector where the current lines are initially parallel
to one another, a situation which is close to that considered in the previous theoretical models of

(1) Cut of two rectangular samples out of a bulk cylinder (2) Drilling of two different hole patterns
c-axis Samel OO OO 4 m
1‘6 mm
Sample Il [~
,,,,I 1.4 mm

Figure 3.15: (1)- Extraction of two rectangular YBCO samples out of a cylindrical one, with the help of a
wire saw. (2)- Sketch of the hole patterns drilled in the samples and pictures of the samples
after the drilling process.
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Sections 3.1-3.3.

For each sample, two series of holes (containing 4 and 2 holes, respectively) are made along parallel
lines. The hole separation along a line is 1.6 mm and the lines are separated by 1.4 mm. The two
holes on the second line can be arranged in two different ways: (1) either they are aligned with the
holes of the first line and form the beginning of a rectangular lattice, or (Il), the holes are shifted
with respect to those of the first line by half a separation (0.8 mm) and start forming a centered
rectangular lattice. In this latter case, the centres of the holes of the second line are in fact placed
on the discontinuity lines associated with the holes of the first line. A picture of the two samples
obtained after the drilling process is shown in Figure 3.15-(2).

3.5.2 Measurements

The trapped magnetic flux density above the sample surface is measured in a Hall probe mapping
experiment, by moving a miniature probe fixed to a motor-driven xy micro-positioning stage over
the sample surface [9, 61]. The Hall probe is sensitive to the component of the local field which is
perpendicular to the surface. Its active area is 0.05 x 0.05 mm? and its distance from the sample
surface is 0.5 mm. The Hall probe is moved across the top surface with a step size of 0.5 mm in x
and y directions. In addition, we also measure the maximum trapped magnetic flux density directly

Sample | Sample Il
(a) before drilling

Magnetic flux density (mT)

Magnetic flux density (mT)

(b) after drilling

Magnetic flux density (mT)

Magnetic flux density (mT)

Figure 3.16: Distribution of the trapped magnetic flux density at ~0.5 mm above the sample surface of Sample
I and Sample II, before (a) and after (b) drilling the holes.
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on the surface. We bring the Hall probe in close contact with the sample and move it slightly around

the sample centre until the maximum reading is found.

The samples are magnetized with a field-cooling process during which the samples, initially at room
temperature, are immersed in liquid nitrogen in a uniform magnetic flux density of 300 mT created
by a large copper coil. The field-cooling process lasts 5 min, and the characterization of the trapped
field starts 15 min after the applied magnetic field has been switched off, so that magnetic relaxation
effects are negligible.

The distribution of the trapped magnetic flux density 0.5 mm above the top surface of Sample | —
left panels — and Sample || — right panels — are shown in Figure 3.16, respectively before drilling,
(a), and after drilling, (b). In Sample I, the trapped magnetic flux density has a single maximum at
B{Tr‘aa;ped ~ 40 mT before drilling; after drilling, the maximum field drops to Bt”r“:;ped ~ 25 mT. In

Sample I, a larger maximum trapped flux density is found before drilling, with B35 &~ 130 mT; it

reduces to B{?aa;ped ~ 100 mT after drilling. The relative drop of the maximum trapped flux density is
found to be the largest in Sample I. It can also be observed that, in addition to reducing the trapped

flux, holes also modify its distribution with the largest effects near the maximum.

3.5.3 Discussion

The measured drops of trapped flux in the drilled samples are compared to the simulation results.
The same set of parameters are used for drilled and plain samples. They are fixed as follows. First,
the critical current density is assumed to be uniform and field-independent. Its value is chosen such
that model (3) — 3D FEM — reproduces well the value of the maximum trapped flux density that is
measured on the top surface of each plain sample. This gives J. = 4.1 107 A/m2 for Sample | and
J. =8.8107 A/m? for Sample Il. Second, for the E — J power law in models (2) and (3), the critical
exponent n is taken as n & 25, a typical value for YBCO bulk samples [175].

Unlike the experiments where the samples are magnetized with a field-cooling process, the simulations
reproduce a zero field-cooling process, and hence require a maximum applied field larger than that
used in the experiments. In order to fully magnetize the samples, even those with an infinite height,
the maximum value of the applied magnetic flux density is chosen at 1 T and the sweep rate is equal to
1 mT/s. Let us first compare the distributions of the trapped flux measured above the surface of the
drilled samples with that calculated with the 3D FEM model. Figure 3.17 shows the measured trapped
flux distribution at 0.5 mm above the surface in the bottom panels and the numerical predictions in
the top panels, for each sample. Note that in the experimental results, the holes cannot be resolved
because of the distance between the Hall probe and the surface of the samples. In Sample I, the
simulated distribution of the trapped flux is symmetric, with a maximum trapped flux density occuring
at the centre of the cross section. This distribution deviates from the experimental mapping (bottom
left panel), where the maximum trapped field is found to be slightly shifted to the left of the centre.
The agreement between the calculated and the measured distributions is much better for Sample |I,
where the maximum of the trapped flux is found to be shifted to the right of the centre in both the
experimental mapping and the simulated distribution.
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Figure 3.17: Two-dimensional trapped magnetic flux distributions at ~0.5 mm above the sample surface of
the drilled samples | and Il. The top panels correspond to the simulation results with the 3D-FEM
model and the bottom panels to the measurements.

The measurement of the trapped flux distribution at a finite distance above the sample surface can
be affected by a systematic error in the distance between the Hall probe and the sample surface
that cannot be reproduced accurately in simulations. It is thus interesting to compare the maximum
trapped flux densities when the probe is in contact with the sample. Table 3.2 reports the simulated
and the measured maximum trapped flux density in samples | and Il, before and after drilling.

The maximum trapped flux density is simulated in the median plane of the samples with models (1),

Table 3.2: Comparison of the maximum trapped magnetic flux density in samples | and 1l

Sample | Median plane Top surface
Rectangular lattice Bean model FEM -2D FEM -3D | FEM - 3D Measurement
Before drilling 169 mT 137 mT 95 mT 61 mT 60 mT
After drilling 126 mT 104 mT 75 mT 46 mT 33.7mT

Relative drop 25% 24% 21% 25% 44%
Sample 11 Median plane Top surface

Centered rectangular lattice Bean model FEM -2D FEM-3D | FEM - 3D Measurement
Before drilling 358 mT 310 mT 244 mT 154 mT 155 mT
After drilling 291 mT 253 mT 207 mT 130 mT 120.7 mT
Relative drop 19% 18% 15% 16% 22%
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Sample |

Top surface

Bottom surface

Figure 3.18: Micrographs of the bottom and top surfaces of Sample | and I after the drilling of the holes.

(2) and (3) and on the surface with model (3). It is found that the maximum trapped flux density is in
each case the largest with the Bean model, the flux creep and geometrical effects bringing additional
drops of trapped flux. Further, although the drops in magnetic flux density are of different magnitudes
in each model, the relative drops calculated by these models are found to be nearly equal, about 23 %
for Sample | and 17% for Sample II. These results indicate that the centered rectangular lattice is
the configuration with the smallest drop in the trapped flux, as was already found in samples with
different cross sections in Section 3.3-3.4.

Experimentally, the measured maximum magnetic flux density is found to drop by 44% in Sample |, and
by 22% in Sample Il. On the one hand, the smallest relative drop that is observed in Sample Il is well
reproduced by simulations, which confirms the previous theoretical results discussed in Sections 3.3
and 3.4. It should be noted that the simple 2D models, while not absolutely suitable for samples under
consideration in this study, already yield a reasonable estimate of the relative drop that is measured at
the surface of Sample Il. For Sample |, on the other hand, the numerical simulations fail in describing
the large measured drop.

Given the discrepancy between theory and experiment for Sample |, the large observed magnetic field
drop cannot be only due to a reorganisation of the current lines after drilling. Presumably, drilling holes
has also affected the microstructure of the sample. Figure 3.18 shows optical microscope pictures
of top and bottom surfaces of samples | and Il after drilling. The arrows (a) and (b) show a crack
between two neighbouring holes in Sample |. This crack is found on both surfaces and has probably be
produced during drilling. Its position is consistent with the shift to the left observed in the maximum
of the field distribution in Figure 3.17. By contrast, Sample Il presents a crack on one of its sides
(arrow (c)) but not on the other, so that the drilling process appears to have preserved most the
microstructure of this sample.
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3.6 Summary of Chapter 3

In this chapter, the magnetization drop induced by the removal of superconducting material in drilled
samples is studied numerically, with the models described in Chapter 2, and experimentally. Different

hole arrangements are considered.

We first focus on the modelling of the magnetization of drilled samples and compare the drilled samples
to plain ones having the same dimensions and critical current density. We show that discontinuity
lines are attached to a single hole and take the form of parabola in the case of a one-hole sample
with an infinite height and a semi-infinite cross section. In that geometry, the dependence of the
hole radius on the magnetization drop of the drilled sample of infinite height is calculated analytically,
with the numerical Bean model, and with the 2D FEM model. The results given by each of the
methods are consistent and indicate that the loss in magnetization scales neither with the surface of
the hole (oc R?), nor with the surface of its parabolic region of influence (x v/R), but as a surface of
intermediate size, that is as R3/2. In samples with two and three holes, one must resort to simulations
in order to calculate the magnetization drop. They demonstrate that the holes should always be
located on discontinuity lines of their direct neighbours so as to maximize the magnetization.

When several holes are drilled in a bulk sample, the optimal lattice arrangement is the one that aligns
the holes on the discontinuity lines. It depends on the sample cross section: we obtain the largest
magnetization with a centered rectangular hole lattice in samples with a semi-infinite cross section,
and with a polar triangular lattice in samples with a circular cross section. The demagnetizing effects
associated with the short length samples do not modify that conclusion.

Then, the modelling results are confronted to experiments. To this aim, we consider two synthesized
plain samples with the same dimensions and made six holes in each, according to two different ar-
rangements. In Sample |, the holes are placed on a rectangular lattice, and in Sample II, they form a
centered rectangular lattice. The measurement of the trapped flux density above the sample surfaces
shows that the drilled samples trap a smaller magnetic flux than a sample with no hole. Sample Il with
the centered rectangular lattice exhibits the smallest relative drop of the maximum trapped magnetic
flux, as expected from modelling results. The experiment demonstrates that the hole arrangement is
a key parameter for optimizing the trapped magnetic flux density in drilled samples.






A novel experimental technique for characterizing the
penetration of the magnetic field in drilled samples

The magnetic characterization of bulk (RE)BCO samples is essential for the prediction of their be-
haviour and efficiency when used in specific devices, such as those introduced in Chapter 11. Magnetic
characterization methods for bulk superconducting samples can be divided in two categories: (i) vol-
ume measurements, i.e. probing a magnetic response that is averaged over the volume of the sample,
or (ii) surface measurements, i.e. measuring the distribution of the magnetic field at the surface of
the sample. The first category of methods includes DC magnetization measurements [178, 179] and
AC susceptometry [9, 180, 181, 182]. The second category involves measuring the distribution of the
magnetic field above the surface of the material, either by scanning a miniature Hall sensor over the
sample surface [183, 184], or by using an array of (fixed) Hall sensors [185]. In these experiments,
the samples are either subjected to a uniform applied magnetic field, for flux penetration characteriza-
tion, or permanently magnetized, for trapped flux measurements. Variants also consist in using a small
permanent magnet that magnetizes the sample locally during the scanning process (the so-called mag-
netoscan technique [186, 187, 188]), or scanning the surface with a miniature coil system generating
an AC magnetic field and detecting the local inductive response [189]. The magnetic signal obtained in
surface measurements can be then used to estimate physical quantities of practical interest, e.g. the
critical current density [178, 179, 190, 191] or the levitation forces [192]. Since melt-processed ma-
terials may also contain numerous defects that impede the current flow (cracks, subgrain boundaries,
oxygen deficient regions, ...), the measurements are also of prime importance to assess the sample
homogeneity, to locate cracks or multiple superconducting grains and their deleterious influence on
the material performances [186, 192, 193].

LPart of the materials presented in this chapter are published in G P Lousberg et al, Supercond. Sci. Technol., 22,
125026 (2009) [176], and in G P Lousberg et al, Supercond. Sci. Technol., 22, 045009 (2009) [177].
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The drilled structures offer an alternative method for characterizing the magnetic properties of bulk
HTS that is based on a local probing of the magnetic flux variations with coils inserted inside the
holes. The method combines the advantages of the volume and surface measurements. In particular,
it allows one to gather pieces of information on the local penetration in the bulk of the sample, which
are not available with classical techniques.

In order to use this novel experimental technique, magnetic flux variations have to be induced in
the samples. An efficient way of producing a time-varying magnetic field surrounding the sample
is to deliver an AC current through a copper coil. The resulting AC magnetic field has a single
frequency component, and the induced voltage in the microcoil can be measured accurately with a
lock-in amplifier [194, 195]. The microcoil technique combined with an AC field may potentially be
very effective in assessing both the extrinsic superconducting properties of the sample and the effects
of the microstructure of the material, for instance by studying the diffusion of a low-frequency AC
magnetic-field.

However, the novel method is not restricted to AC excitations, it may also be used with pulsed
magnetic fields for instance, in view of characterizing the penetration of the magnetic pulse in the
bulk of the sample. This topic is nowadays of prime importance, mainly because the pulsed-field
activation appears to be the most efficient method for an in situ magnetization of bulk trapped field
magnets. However, because of the fast motion of vortices it induces, this activation method involves
intricate mechanisms for flux diffusion. In order to better grasp the flux motion and optimize the
resulting trapped flux, many experiments aim at characterizing the pulse diffusion in the sample via
surface measurements. They involve either (i) the acquisition of the waveform B(t) during the pulse
with Hall probes glued on the surface of the sample [196, 197, 198], or (ii) a Hall probe mapping
realized after the application of the pulse [198, 199, 200]. However, none of these methods is able to
provide direct information on the flux penetration and/or trapping in the bulk of the superconductor.

Interpreting the results from a pulsed field experiment is still a delicate task that must be handled
with care. It is important to clearly distinguish the particular effects associated with the pulsed-
field activation, e.g. the flux jumps or the temperature rise, from the peculiarities inherent to the
experimental technique, e.g. calibration issue or microcoil positioning in the present case. The results
obtained with AC fields help us to better understand these effects related to the experimental method.

The purpose of this chapter is two-fold: (1) describe the microcoil technique and discuss the details
of its implementation and (2) present the results of the measurements of the magnetic field threading
the holes of a drilled sample subjected to either an AC magnetic field or a pulsed magnetic field. Two
drilled samples are used for the experiments. The results are correlated with DC Hall probe scans on
the surfaces of the samples.

4.1 Description of the method

The magnetic field in drilled melt-textured samples is probed inside the holes with the help of microcoils,
made of a single layer of 10 turns of fine insulated copper wire (¢ = 50 wm) tightly wound on an
insulating Teflon cylinder with a diameter of 0.5 mm. An example of a single microcoil is shown
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Teflon holder

Micro-coil

Figure 4.1: One of the microcoil inserted in the holes of the drilled YBCO sample. The coil consists of 10

turns of insulated copper wire with a diameter of 50 um. The wire is wound on an insulating
cylinder whose diameter is 0.5 mm.

in Figure 4.1. Since the electromotive force (emf) appearing across each coil probes the magnetic

flux variations averaged over the coil volume, we use a number of turns (10) that is small enough

to ensure a good spatial resolution, while yielding a measurable signal. The microcoils are either

positioned symmetrically with respect to the median plane of the sample (centre coil), or placed at

less than 1 mm from the top or bottom surfaces of the sample (surface coil). In order to reduce

the number of insertion steps of the microcoils inside the holes, both surface and centre coils may be

wound on the same Teflon holder.

The wires connecting the microcoils to the measuring devices are finely twisted together in order to

reduce a spurious inductive pick-up. The emf of the microcoils is measured either:

(1)

(2)

by both (i) a SR560 low-noise preamplifier followed by a TDS 2012B digitizing oscilloscope in
order to record its waveform and (ii) a Perkin EImer 7260 lock-in amplifier in order to characterize
its fundamental harmonic. The latter technique can only be used with AC magnetic field. The
lock-in amplifier requires a stable reference signal. In commercial systems as well as those
reported in the literature [178, 201, 202], it is a common practice to take as a reference the
voltage drop across a precision resistor placed in series with the magnet coil. In the present
case, however, this procedure cannot be used because the low-value resistor (< 1 Q) required
to sustain the high AC currents would exhibit a small (but finite) reactance, giving rise to a
parasitic phase-lag. In our experiment, the reference signal is the emf across a reference coil
whose position is discussed later; this emf is phase shifted by exactly 90° with the applied AC
magnetic field.

by a data acquisition card (National Instruments CompactDAQ - NI9215) working at a high
sampling rate (100 kHz). The low level of the induced emf's imposes us to use instrumentation
amplifiers (INA 128 - gain of 10 000 and bandwidth of 10kHz) in front of the acquisition card.
Such a system is able to record simultaneously the signal coming from 16 different microcoils,
while the first technique allows us to only measure a single microcoil at a time. This automatic
acquisition procedure can be used either with AC magnetic fields or with pulsed fields.
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Laminated iron core

Figure 4.2: Photograph of the AC electromagnet used for the measurement of the magnetic field inside the
holes of a drilled sample subjected to an AC magnetic field whose amplitude reaches up to 130 mT.

Whatever is the type of excitation, the sample is immersed in liquid nitrogen (T = 77 K) and the
cooling procedure is always performed in zero field. Once cooled, the sample is subjected to a uniform
AC or pulsed magnetic field, applied parallel to its c-axis (i.e. parallel to the axis of the holes). The
inductive emf appearing across each microcoil is recorded to determine the magnetic flux density
threading the corresponding hole.

4.1.1 Setup for the measurements with AC magnetic fields

In order to record a measurable electromotive force in most holes, the amplitude of the AC magnetic
fields must be sufficiently large, so as to penetrate at least the peripheral holes of the sample. To this
aim, we build a specifically designed experimental set-up with which we can generate AC magnetic
fields with an amplitude larger than 100 mT. Several home-made systems use an air coil for generating
AC fields with an amplitude up to 100 mT [203, 204, 205, 206, 207]. In our experiment, we use an
iron-core electromagnet in order to generate magnetic fields with an amplitude larger than 100 mT.
Three 1000-turns coils are wound around a 'C-shape’ laminated core, consisting of a stack of Si-
doped thin iron sheets (0.3 mm thickness) which are isolated from one another in order to reduce
eddy currents [208]. The core has a cross section of 7 cm x 8 cm. The sample holder is inserted in
a pyrex cryogenic vessel placed in the air gap of the electromagnet (width of 2.4 cm). The large size
of the core cross section guarantees an excellent homogeneity of the applied magnetic field over the
sample volume. In our system, the field inhomogeneity over the volume of the sample was measured
to be less than 1 %. A picture of the electromagnet is shown in Figure 4.2. A 50-turn coil that is
used as reference for the lock-in amplifier is wound around the iron core.

The windings are realized on a Plexiglas structure with a varnish insulated cooper wire having a diameter
of 1.8 mm. Capacitors are placed in series with the coils in order to compensate their inductance (the
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Figure 4.3: Magnetic flux density (RMS value) measured by a Hall probe located in the air gap of the elec-
tromagnet with no HTS sample as a function of the frequency of the input signal.

inductance of the electromagnet is measured to be L ~ 5 H). The AC current is delivered to the
coils via a 3200W audio amplifier (Crown XTI 2000). A voltage source (HP 33120A) provides a low
frequency signal with a constant amplitude of 2 V — RMS?. The audio amplifier rises up that voltage
to ~ 80V. Due to the non-linearity of the RLC circuit, preliminary tests have shown that, instead of
varying the amplitude of the applied field, tuning the frequency is recommended in order to guarantee
a smooth control of the amplitude of the applied field. In fact, the variation of the frequency modifies
the impedance of the RLC circuit and, hence, the current flowing in the coils. A variation of frequency
from 21 Hz to 27 Hz induces a variation of the magnetic flux density in the air gap ranging from
30 mT to 130 mT, as measured by a Hall probe placed in the air gap in the absence of the sample.
The measured flux density is reproduced in Figure 4.3.

Prior to every measurement sequence, a calibration procedure of the microcoils is performed at room
temperature: the microcoils are positioned in the holes, the sample is placed in the cryogenic vessel
inside the air gap of the electromagnet, and is subjected to a known magnetic field (RMS value B,
frequency 1) while keeping the sample in the non-superconducting state. The RMS value of the emf
of the coil (N turns), V = 2wNfBA, is recorded to determine the effective cross section A of each
microcoil. The effective cross section is found to match the geometric cross section of the Teflon
holder within 80 %. The difference can be attributed to the finite diameter of the wire and to a slight
tilting of the winding with respect to the applied field. The effective cross section determined from the
calibration procedure is then used to convert the measured emf at 77 K into a magnetic flux density.

4.1.2 Setup for the measurements with pulsed magnetic fields

The measurements involving pulsed fields are carried out at the high magnetic field facilities of the
“Laboratoire National des Champs Magnétiques Intenses” (LNCMI) on the Toulouse site (France).

2Except when explicitly stated, the AC quantities are expressed in RMS values.
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Figure 4.4: Photograph of the experimental chamber used for pulsed field experiments. Indicated on this

picture are: the liquid helium cryostat containing the sample, the 32 BNC cables connecting the
microcoils to the instrumentation amplifier, the NI CompactDAQ acquisition card, the temperature
controller and the lock-in amplifier for measuring the Hall probe signal.

A picture of the experimental chamber is shown in Figure 4.4. Pulsed fields with an amplitude of 3 T,
a rising time of 60 ms, and a duration of 370 ms were applied to the sample, initially cooled down to
77 K in the absence of magnetic field.

The pulse of magnetic field is generated by a fast discharge current flowing through a copper coil
placed in the liquid helium cryostat. The current is produced by the discharge of a bench of capacitors
(470 mF) initially loaded at 1 kV. The shape of the magnetic pulse is determined with a Hall sensor
(Arepoc LHP-MU) placed in the experimental chamber inside the cryostat in the absence of the
sample. The pulse is represented in Figure 4.5-(a). It starts with a sharp increase of the magnetic
flux density B, at a rate of dB/dt ~ 100 T/s. The magnetic field then reaches a maximum after
60 ms, decays, and vanishes at t* = 370 ms when the electric circuit is open.

The sample is inserted in the cryostat with the help of a glass fiber rod terminated by a sample
holder (also in glass fiber). The temperature of the sample (77 K) is monitored by a LakeShore 340

temperature controller.

16 microcoil holders are inserted at the same time in the holes belonging to a quarter of a drilled
sample, as represented in Figure 4.5-(b). Each holder contains two microcoils consisting each of 10
turns of 50 um of isolated copper wire, yielding a coil height of 1 mm. For each hole, one coil is
placed in the median plane of the sample — the centre coil — ; the other coil is put close to the
sample surface — the surface coil —3.

3During the measurement campaign, we had not been able to change the position of the microcoils. After the first
series of pulses during which the position of the microcoils remained unchanged, the sample holder pulled away from the
rod and all the twisted wires connecting the coils to the head of the rod were broken. It was then impossible to repair
the setup before the end of the allocated time slot for our measurements. Note however that measurements with an
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Figure 4.5 (a)- Applied magnetic pulse, as measured by a Hall probe in the cryostat containing no HTS sample.

(b)- Schematic illustration of the drilled sample considered for the experiments involving a pulsed-

field. The 16 holes (grey) where the magnetic flux density is measured are highlighted. The coil

holders, containing each two microcoils (a centre coil and a surface coil), are also represented in

five peripheral holes.

In order to measure the pulse of applied magnetic field, a coil with 100 turns of 150 um diameter
wire is placed on the main rod at 1 cm above the sample holder, where the magnetic influence of the
sample can be neglected. A temperature sensor (Cernox probe) and a Hall probe (Arepoc LHP-MU)
are also placed against the sample surface (as in Figure 4.5-(b)). These three additional signals are
acquired simultaneously with the microcoil signals at 100 kHz. The Hall probe signal is measured
using a lock-in amplifier in order to increase the sensitivity. The reference signal is delivered by the
lock-in and serves as the current input for the Hall probe.

The microcoils and the reference coil are calibrated by applying a magnetic pulse with the sample in
its normal state (T = 100 K). The coil pick-up signals are then acquired simultaneously with the
Hall probe signal during the application of the pulse; the Hall probe is used as a reference for the
calibration.

4.2 Drilled bulk superconducting samples used for the experiments

Two drilled samples are considered in this chapter. The first sample, sample A, is only characterized
in the case of an AC magnetic field excitation. The second sample, sample B, is used both with AC
and pulsed magnetic field excitations.

AC magnetic field excitation performed on the same drilled sample showed that this particular quarter of the sample is
representative of the full sample.
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Figure 4.6: Photograph of the YBCO drilled Sample A. The white line delimits the quarter of the sample
under consideration in this chapter.

4.2.1 Sample A

Sample A consists of a YBay;CuzO7_g4 drilled cylinder containing 68 artificially patterned holes. It was
produced at CRISMAT (Caen, France) by the top-seeded melt-textured growth process from a drilled
preform. The details of the sample preparation can be found in Ref. [9]. The sample has a diameter
of 20 mm and a height of 8 mm. The holes are parallel to the c-axis and are arranged on a regular
square pattern; the macroscopic holes have a diameter of 0.7 mm and are separated by a distance of
~ 1.5 mm. A picture of Sample A is shown in Figure 4.6. The critical current density of the YBCO
material is J. ~ 1000 A/cm2 at T =77 Kand B = 100 mT. In order to reduce the number of
thermal cycles, we have only analyzed the field in the holes belonging to the quarter of the sample
delimited by the white lines.

The magnetic properties of the sample are characterized first with Hall probe scans over both surfaces,
with the method described in Section 3.5.2. In view of comparing the Hall probe mapping with
measurements of the AC magnetic field inside the holes, we measure the penetration of the DC
magnetic field (100 mT) applied after a zero-field cooled process (down to 77 K) and kept constant
during the Hall probe mapping experiment.

The distributions of the c-axis component of the DC magnetic flux density at the top (a) and the
bottom (b) surfaces of the sample are represented in Figure 4.7-(a,b). The dark areas correspond to
low magnetic flux densities while the bright areas are related to a high magnetic flux. Although we
have measured the distributions of the magnetic flux density at the whole top and bottom surfaces,
we only show it above the quarter of the sample where we have performed the measurements of the
magnetic flux inside the holes.

First it can be observed that the Hall probe mapping does not resolve spatially the positions of the
holes. Their positions are superimposed on the mappings for clarity. Second, noticeable differences
appear between the bottom and the top surfaces. Not only the values of the magnetic flux density
differ in magnitude (as commonly observed with top-seeded melt-grown YBCO, see e.g. Ref [184]),
but also the distribution of the magnetic flux density varies between the top and bottom surfaces. In
particular, one can distinguish, at the top surface, a D-shaped shielded area with low magnetic flux
density, whereas the low-field area at the bottom surface exhibits a more regular (circular) shape.
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Figure 4.7: (a,b)- DC magnetic flux density distribution measured in a Hall probe mapping experiment at
0.2 mm above the top (a) and bottom (b) surface of the quarter of the sample under consideration.
The sample is subjected to a DC uniform magnetic flux density of 100 mT during the measurement.
A grid showing the position of the holes is superimposed. (c,d)- Picture of the top (c) and bottom
(d) surface of the quarter of sample acquired with a micrograph taken under polarized light.

The distribution of the magnetic field at both surfaces is different from what would be expected in a
sample without defects [133]. The peculiar distribution observed at both surfaces most likely arises
from cracks, defects or disoriented grains [193, 209]. In order to further characterize the sample,
we have performed optical polarized light micrographs that are reproduced in Figure 4.7-(c.d) for the
quarter of the top (c) and bottom (d) surfaces. These micrographs do not underline the presence
of multiple superconducting grains with different orientations, but indicate the presence of cracks on
the bottom surface (especially at the top right corner and at the bottom of the picture). However,
the micrographs do not clearly point to either cracks or multiple superconducting grains that could
explain the observed distribution of the magnetic flux density. Moreover, it is impossible to know
from such surface characterization techniques (Hall probe mapping and microscopy) whether these
inhomogeneities extend or not inside the bulk of the sample. The signals from coils placed inside the
holes, as reported in the next sections, can then be used to gain further information on the presence

of invisible inhomogeneities in the sample.

4.2.2 Sample B

Sample B is a top-seeded melt-grown single domain of YBa;CuzO7_s, synthesized at CRETA (Grenoble-
France). The sample is a cylinder with a diameter of 16 mm and a thickness of 10 mm. It contains
55 holes that have been drilled before the synthesis of the sample. The diameter of the holes in the
sample after the synthesis is 0.8 mm. A picture of Sample B is shown in Figure 4.8-(a).

The magnetic properties of the sample are first investigated after a field-cooled magnetization at 77 K
in a magnetic flux density of 2 T provided by a superconducting coil. Once permanently magnetized,
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Figure 4.8: (a)- Picture of Sample B. (b)- Hall probe mapping of the trapped magnetic flux density above the
top surface of the drilled sample. The mapping is carried out 20 min after a field-cooling process

at 77 K in a uniform magnetic flux density of 2 T.

a two-dimensional mapping of the trapped magnetic flux density is performed about 20 minutes after
magnetization so as to reduce the effects of magnetic relaxation. The distribution of the trapped
magnetic flux density, B, as measured above the surface, is shown in Figure 4.8-(b). The axisymmetric
trapped flux profile exhibits a single maximum, Bmnax = 190 mT, and does not indicate the presence
of macrocracks on the sample surface, unlike in sample A. Because of the distance between the probe
and the sample surface, the flux distribution is smooth and the holes cannot be identified in the flux
profile. The distribution observed in Figure 4.8-(b) is similar to distributions observed previously in
other drilled samples [61, 76, 85].

4.3 Application to the characterization of the penetration of an AC magnetic
field

4.3.1 Bean model analysis of the magnetic flux in the holes of a sample of infinite height

As an introduction to the measurements of the AC magnetic field inside the holes of a drilled sample,
we consider a very simple model to predict the types of signal expected across the microcoils. To this
aim, we calculate the magnetic field in the holes of a HTS drilled cylinder with an infinite length and
uniform superconducting properties. The calculations are carried out with the help of the numerical
Bean model. One could have also used the finite-element method in order to refine that simple model
by taking into account flux creep and demagnetizing effects. However, the numerical Bean model
applied to a sample of infinite height allows us to already set up the problem of the penetration of an
AC magnetic field in the holes of a drilled sample, from which qualitative conclusions may be drawn.
Besides, FEM requires very long calculation times in order to simulate a complete cycle of the applied
field.

We consider thus an infinitely extended cylinder drilled by a single hole. The cylinder has a radius a, the
hole has a radius R = 0.05 a and its centre is located at a distance d from the border of the cylinder
(see Figure 4.9-(a)) . We assume that the critical current density, J¢, has a constant amplitude in the
sample cross section. The drilled cylinder is subjected to a uniform AC applied magnetic field parallel
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Figure 4.9: (a)- Cross section of a cylinder (radius a) with an infinite height and a single hole (radius R) whose
centre is located at a distance d from the border. (b)- Magnetic flux density as a function of time
inside a hole located at d =0.25 a (black line) and at d =0.85 a (grey line) in a sample containing
a single hole. The applied magnetic flux density of amplitude B, is represented by a dotted line.
The magnetic flux density is calculated in units of uoH,. The calculations are performed with the
numerical Bean model. (c)- Time derivative of the magnetic flux density inside the hole located
at d =0.25 a (black line) and at d =0.85 a (grey line).

to its axis, B,(t), with a pulsation wp.

The critical state of the drilled cylinder with an infinitely long extension is calculated numerically with
the numerical Bean model, as described in Chapter 2. In Figure 4.9-(b), we reproduce the time
evolution of the magnetic flux density inside the hole located at two different positions d = 0.25 a
(black line) and d = 0.85 a (grey line). The applied magnetic flux density is represented by the
dotted line. It has an amplitude B; = puoHp,, where H, is the full penetration field of the plain
sample, H, = pgJca. The corresponding time derivative of the magnetic flux density are reproduced

in Figure 4.9-(c).

The magnetic flux density in the hole exhibits a clipped sinus shape, that saturates at B = Bjipped-
Note that if the amplitude of the applied magnetic flux density is too small for penetrating the hole,
the magnetic flux density inside the hole remains null.

The clipping plateau arises from the bulk pinning in the HTS sample. The high (resp. low) clipping
plateau starts when the applied magnetic field is at its maximum (resp. minimum) value. The constant
magnetic flux density on the clipping plateau is given by

Bclipped =B, — MOJC(d - R)- (4-1)
When the applied magnetic field starts to decrease (resp. increase), the magnetic flux in the sample
is first modified in a shell surrounding the external boundary, while the magnetic flux crossing the rest
of the sample is conserved over time. The modification front then gradually penetrates toward the
sample centre as the applied field continues to decrease (resp. increase). Thus, the magnetic flux
density remains constant in a given hole until the perturbation front reaches this hole, i.e. when the
applied magnetic flux density is such that |B; — B(t)| = 2uoJc(d — R). The magnetic field in the
holes then decreases (resp. increases) with the applied field until the applied field reaches its next

extremum.



108 CHAPTER 4. MEASUREMENT OF THE MAGNETIC FIELD INSIDE THE HOLES

;"- 4.0 [ T T T T T T T
Lo £
8 @ 35 .- .
% > 30f Applied field i
c n 3 4
5 S 25F J
~ -O | i
235 a0} i
= 7 _
o ©°
0B 15F -
T c I ]
29 10} i ]
ag Field in hole located]
£2 st atd=0.85a ]
“6 [ 1 1 1 1 1 1 ]

0.0
00 05 10 15 20 25 30 35 40
Applied magnetic flux density (Ba/poHp)

Figure 4.10: Amplitude of the first harmonic of the magnetic field inside a hole located at a distance d =0.85 a
from the border, as a function of the amplitude of the applied field. The calculations are based

on the numerical Bean model.

The amplitude of the clipping plateau corresponds to the DC magnetic flux density that would be
measured inside the hole if the sample were subjected to a DC magnetic flux density with an amplitude
B,. For a given amplitude of the applied magnetic flux density, the width and the height of the clipping
plateau in a hole only depends on the distance of the hole from the border, d. In a sample containing
several holes, the magnetic flux density inside a given hole exhibits the same shape as in Figure 4.9,
provided the amplitude of the applied magnetic flux density is such that the hole is penetrated.
However, in samples containing several holes, the height and the width of the clipping plateau are no
longer related to only the distance d. The clipping plateau is given by Bgjipped = Ba — moJcf where
£ stands for the total penetration distance for reaching the hole, taking into account the presence of

the other holes.

The time derivatives of the magnetic flux density (represented in Figure 4.9-(c)) contain a succession of
peaks that are separated by steps of zero amplitude corresponding to the clipping plateau in Figure 4.9-

(b).

From the time-derivative of the magnetic flux density in the hole located at a distance d = 0.85 a
from the border, we can calculate the amplitude of the first harmonic of the signal, as measured by the
lock-in amplifier. Figure 4.10 reproduces that amplitude as a function of the amplitude of the applied
field. We clearly observe that the hole is not penetrated when B, < 0.8 ugH,. For B; > 0.8 uoH,,
the amplitude of the first harmonic increases with that of the applied field, with an initial slope larger
than 1 and tends asymptotically to B = B, with a unit slope. Note that the amplitude of the first
harmonic of the magnetic field in the hole never exceeds the applied field.
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4.3.2 Measurements in Sample A

Now that the AC magnetic field penetration in a drilled sample has been introduced with the help of
a simple model, we discuss the results of the microcoil measurements. We start with Sample A.

Time evolution of the emf across the microcoils

The time evolution of the induced emf inside the holes of Sample A is recorded by the digitizing
oscilloscope. Figures 4.11 shows the time evolution of the inductive emf, together with the resulting
magnetic flux densities, as measured by three microcoils inserted inside hole (1), (2), and (3), of
Figure 4.7-(a). These holes are located in a low, intermediate, and high magnetic flux region, respec-
tively. The microcoils are centered in their corresponding hole. The applied magnetic flux density is
120 mT and has a frequency of 24.73 Hz. The upper halves of Figures 4.11 (a), (b) and (c) show the
time evolution of the inductive emf (V4, V4, V4 - solid line) in holes (1), (2) and (3). For the sake of
clarity, the inductive emf's are shown after amplification by the low-noise preamplifier, the gain being
indicated in parentheses. The reference emf (V¢ - dashed lines) corresponds to the inductive emf
across the 50-turn coil wound around the iron core.

Three different waveforms can be distinguished in the holes (1), (2), and (3), respectively.

1. In hole (1) located in a low field region, the inductive emf across the microcoil is a sine wave.
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Figure 4.11: (i) Top half of each graph: emf (i, V5, and Vi - solid line) vs. time as measured with a microcoil
inserted (in the central position) inside hole (1), (2) and (3). respectively (see Figure 4.7-(a)).
The reference emf (dashed line) is at 90° with respect to the sinusoidal applied field (120 mT
at 24.73 Hz). (ii) Bottom half of each graph: magnetic flux density vs. time as obtained by
a numerical integration of the inductive emf inside the holes (By, By and Bs - solid line). The
applied magnetic flux density is shown with a dashed line.
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There is a negligible phase-shift of V4 with respect to the reference signal Vier. The emf in this
case is to be attributed to parasitic emf’s produced by the applied field that cross closed loops
of wires connecting the coil and have a larger amplitude than the signal from the microcoil itself.

2. In hole (2) located in a region of fields with an intermediate amplitude, the inductive emf is
strongly distorted, and exhibits a succession of positive and negative peaks, reminiscent of those
observed with a pick-up coil inserted inside a HTS tube made of polycrystalline Bi-2223 subjected
to an axial AC magnetic field [210].

3. The inductive emf produced by the microcoil inserted inside hole (3), located in a region of
high field, exhibits a weakly distorted sine shape with almost no phase-shift with respect to the

reference emf.

Let us now focus on the magnetic flux density inside the hole. The flux densities are determined by
a numerical integration of the inductive emf's shown in the top panels of Figure 4.11. In practice,
the pick-up voltage is biased by an unavoidable parasitic DC offset arising from the output of the
preamplifier. The offset can be considered as remaining constant during the acquisition time. It is
evaluated as the average value of the induced emf on an integer numbers of periods. The offset is
then subtracted from the raw data.

The bottom panels of Figures 4.11 show the time evolution of the magnetic flux density (By, Ba,
Bs - black line) crossing the median section of the hole. The applied magnetic flux density (Bapps -
dashed line) is also shown for comparison.

One can clearly distinguish three different time dependences which are correlated to the respective
emf waveforms measured inside holes (1), (2), and (3).

1. In hole (1), the magnetic flux density is a sine wave whose amplitude is much smaller than the
applied one (by a factor of ~ 10).

2. The magnetic flux density corresponding to the strongly distorted emf in hole (2) is a clipped
sine wave that lags behind the applied field. Such characteristics are the consequence of strong
pinning in the sample which leads to a hysteresis between the applied field and the local induction
in the hole. Such a behaviour is qualitatively consistent with the Bean model description in
Section 4.3.1.

3. In hole (3), the magnetic flux density is almost sinusoidal and has a larger amplitude than the
applied magnetic flux density (by a factor of = 1.5).

It is emphasized that the signals measured in the other holes, although not discussed in this section,
are similar to those presented in Figure 4.11.

Classification of three different penetration regimes

We now analyze the magnetic flux density inside holes (1), (2) and (3) (as indicated in Figure 4.11)
as a function of the applied magnetic flux density. The applied magnetic flux density varies from 30
to 130 mT. The microcoil is placed in each case as carefully as possible in a central position.
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Figure 4.12: Amplitude of the fundamental harmonic of the magnetic flux density inside hole (1), (2), and (3)
(their position in the sample is reminded in the right panel) as a function of the applied magnetic
flux density varying from 30 to 130 mT. The arrow shows the transition between the shielded
regime and the gradual penetration regime.

Figure 4.12 shows the amplitude of the fundamental harmonic of the magnetic flux density inside the
holes (symbols + solid lines), as a function of the applied magnetic flux density (dashed lines), as
measured by the lock-in amplifier. Quite similarly to the waveform pattern, we can distinguish three
different behaviours (that are further referred to as " penetration regimes”), as a function of the hole
location in the sample:

1. the shielded regime, for which the magnetic flux inside the hole is negligible with respect to the
applied one (attenuated by a factor of &~ 10). The magnetic flux increases almost linearly with
the applied field. Hole (1) is in this regime over the range of applied fields, while hole (2) is in
the shielded regime for the lower fields (black circles). The waveform of the emf in this regime
is similar to what is observed in Figure 4.11-(a).

2. the gradual penetration regime: the hole is penetrated by the magnetic flux, with a density
that is smaller than the applied one and that is not so strongly attenuated than in the shielded
regime. The magnetic flux density in the hole increases almost linearly with the applied one but
with a large slope ( ~ 1.5 mT/mT; the slope is & 10 times larger than in the shielded regime).
The observable kink (see arrow in Figure 4.12) due to the change of slope in hole (2) defines
the transition from the shielded regime to the gradual penetration one (grey circles).

3. the flux concentration regime: the hole is also penetrated by the magnetic flux, but now with
a density that significantly exceeds the applied one (& 1.5 times larger). There is thus a flux
concentration in the hole, as shown in hole (3) (white circles).

In the other holes, the behaviour of the fundamental component of the magnetic flux density as a
function of the applied field was found consistent with the regimes described above.
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Distribution of the penetration regimes of the holes

Based on the observations presented in the above paragraphs, we now determine the penetration
regimes of the holes located in the quarter of sample under consideration (see Figure 4.6) at a given
applied field. An interesting question is to determine how the distribution of the penetration regimes
is modified when the coil is placed in the median plane of the sample and close to the top and bottom
surfaces.

The distribution of the penetration regimes is shown in Figure 4.13 for an applied magnetic flux
density of 100 mT. The microcoils are located close to the top surface in Figure 4.13-(a), in the
centre position in Figure 4.13-(b), and close to the bottom position in Figure 4.13-(c). The black
holes are in the shielded regime, the grey holes in the gradual penetration regime, and the white holes
in the flux concentration regime.

Independent of the vertical position of the coil inside the hole, it is observed that the magnetic field

Micro coils DC Hall probe mapping
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(b) Median plane

(c) Bottom surface

Figure 4.13: (i)- Left panels: distribution of the penetration regimes inside the holes of the quarter of the
sample for an applied magnetic field of B, =100 mT and for microcoils located close to the top
surface (a), symmetrically around the median plane (b), and close to the bottom surface (c).
(ii)- Right panels: distribution of the magnetic flux density at the sample surfaces (d,e) obtained
with the Hall probe mappings discussed in Figure 4.7-(a,b).
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does not penetrate in the same way the holes that are located at a given radial distance from the
border. The holes that are shielded at their top surface or in their centre form a D-shape which is
localized at the right corner of the picture. In a homogeneous sample, one would expect the shielded
holes to lie in a circular region having the same centre as the sample cross section, whose radius
decreases as the applied field increases, until the sample is fully penetrated. The holes outside that
shielded region would be in the gradual penetration regime. In a non-homogeneous sample, as studied
here, the situation is quite different.

The distribution of the penetration regimes of the holes is correlated with the distribution of the
magnetic flux density at the sample surfaces, as shown on the right panels of Figure 4.13. As a
reminder, the Hall probe mapping is performed under an applied 100 mT DC field. In view of a
fair comparison, the distributions of the penetration regimes of the holes are measured under an AC
magnetic field with the same magnitude, equal to 100 mT — RMS.

A comparison of AC and DC measurements brings out three pieces of information. First, from the Hall
probe mapping, we observe that the holes in the shielded regime lie at the surface in a low magnetic
flux density region. In particular, the D-shape of low magnetic field at the top surface corresponds
in the AC measurements to a region of shielded holes. Second, the holes in the gradual penetration
regime (AC experiment) are located in regions of intermediate magnetic flux densities in the surface
(DC experiment). Third, it can be observed that the smooth distribution of the penetration regimes
of the holes close to the bottom surface (AC experiment) is consistent with the distribution of the
magnetic flux at that surface (DC experiment).

This comparison illustrates the interest of probing the field in the bulk. The Hall probe mapping
technique by itself does not bring enough information to infer the penetration pattern in the volume of
the sample. Only the microcoil technique allows one to understand how the magnetic flux penetrates
the bulk of the sample. For instance, Figure 4.13 shows that the field distribution in the median plane
is more similar to the one observed close to the top surface than close to the bottom surface. These
results are related to the detailed microstructure of the bulk of the sample.

The flux concentration regime is not observed in either of the Hall probe mappings. In these experi-
ments, the probe, which measures the vertical component of the magnetic field, is located at a fixed
distance from the surface, in a region where the magnetic field lines that are concentrated inside the
hole are spreading out. The flux concentration can only be observed when the flux is probed inside
the holes. Interestingly, the holes with a flux concentration (especially close to the top surface) sur-
round more efficiently shielded regions. Combined with the fact that such a regime is not predicted
in a sample of infinite height, these observations suggest that the flux concentration results from de-
magnetization effects associated with the microstructure of the sample. Cracks or defects represent
obstacles for the current flow in the sample. These obstacles cause an irregular distribution of the
magnetic flux, with an apparition of shielded regions that are not necessarily located in the centre of
the sample. The return path for the demagnetizing field coming from a given shielded region crosses
the neighbouring holes and the demagnetizing field increases locally the magnetic flux density inside
these holes. Such demagnetizing effects are also responsible for the flux concentration inside natural
or artifical grain boundaries [193, 211].
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4.3.3 Measurements in Sample B
Magnetic flux density inside the holes

We now turn to the description of the magnetic flux density in the holes of Sample B. The measure-
ments of the magnetic flux density in the holes of Sample B subjected to an AC magnetic field are
carried out in the same conditions as those used for Sample A, except that the induced emf's are
recorded simultaneously in 16 holes by the National Instruments acquisition card.

From these measurements, one can observe that the holes of Sample B are also penetrated according
to one of the three aforementioned penetration regimes: the shielded, the gradual penetration or the
flux concentration regime. In particular, when the amplitude of the applied field increases, some holes
cross all these regimes. Figure 4.14 investigates such a situation.

Figure 4.14-(a) shows the amplitude of the first harmonic of the magnetic flux density measured in
the median plane of a particular hole (represented in black on the sketch of the sample) as a function
of the amplitude of the applied field. The emf signals (plotted with the DC offset of the output of
the instrumentation amplifier) at (1) B, = 33 mT, (2) B, = 85 mT, and (3) B, = 130 mT are
reproduced in Figure 4.14-(b), together with the reference emf.
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Figure 4.14: (a)- Amplitude of the first harmonic of the magnetic flux density inside the median plane of a
particular hole (as represented in grey on the sketch of Sample B) as a function of the amplitude
of the applied field. The three penetration regimes are highlighted. (b)- Time signal of the

inductive emf measured across the microcoil, for (1) B, =33 mT, (2) B, =85 mT, and (3)
B, =130 mT.
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For B, < 45 mT, the amplitude of the magnetic flux in the hole is much smaller than that of the
applied field. The emf in the hole is noisy and almost constant. The median plane of this particular
hole is not penetrated by the applied field, it is in the shielded regime. For 45 mT < B, < 110 mT,
the amplitude of the field in the hole increases with the applied field, while remaining smaller than
B,, and the emf time signal consists of a succession of alternating positive and negative peaks that
are associated with the gradual penetration regime. The transition from the shielded to the gradual
penetration regime (when B, = 45 mT) is not clearly defined when only examining the Bj,-vs-B,
curve. In that situation, we recommend to combine the curve analysis to the emf time signal, this

latter one must exhibit a succession of peaks as soon as the holes enter the gradual penetration regime.

For B, > 110 mT, the amplitude of the magnetic flux density in the hole exceeds that of the
applied field, which is the main feature of the flux concentration regime. The emf time signal is still
composed of a succession of main peaks that are separated by intermediate peaks with a smaller
amplitude (preceding the main peak, as indicated by the grey arrows).

Distribution of the penetration regimes

The distribution of the penetration regimes in the median plane and in the top and bottom surfaces
of the holes of Sample B is reproduced in Figure 4.15-(a), for an amplitude of the applied magnetic
flux density of B, =33 mT, B, =85 mT, and B, = 130 mT. Figure 4.15-(b) reproduces the Hall
probe mapping above the top and bottom surfaces of Sample B subjected to a magnetic flux density
that remains fixed at B, = 100 mT during the experiment.
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Figure 4.15: (a)- Penetration regimes in the median plane and on the top and bottom surfaces of the holes
when B, =33 mT, B, =85mT, and B, =130 mT. (b)- Hall probe mappings above the top and
bottom surfaces of Sample B subjected to a DC magnetic flux density of 100 mT.
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At a given applied field, the distribution of the penetration regimes is almost radial. The holes located
close to the sample centre are shielded while the peripheral holes are either in a gradual penetration
or in a flux concentration regime. That situation differs from what is observed in Sample A, where
the holes close to the sample centre are not necessarily shielded. Sample B, as already observed
with Hall probe mapping, exhibits more uniform superconducting properties than Sample A where
macrocracks are observed on the surfaces. The microcoil technique reveals that the uniformity of the
superconducting properties extends up to the median plane in Sample B, a result which could not be
observed with the Hall probe mappings of Figure 4.8 and Figure 4.15-(b).

A further inspection on the distribution of the penetration regimes at both sample surfaces suggests
that the penetration front proceeds lower on the top surface than on the bottom surface. Indeed, the
extent of the circumferential shell in which the holes are penetrated is larger on the bottom surface
than on the top surface. This result is in agreement with the Hall probe mappings of both surfaces
shown in Figure 4.15-(b).

While the distributions of the magnetic flux density and of the penetration regimes are almost regular
in Sample B, several holes are also in the flux concentration regime. These holes are located close to
the sample border, unlike in Sample A where this regime is associated with holes surrounding efficiently
shielded regions. The relative increase of the magnetic flux density in the holes with respect to the
applied field is however smaller than in Sample B. The occurrence of the flux concentration regime is
likely associated with the return field lines of the demagnetizing field. The demagnetizing field may
either originate from the supercurrent flowing around the entire sample, like in Sample B, or from
smaller shielded regions, like in Sample A.

4.4 Application to the characterization of the penetration of a pulsed field

4.4.1 Bean model analysis of the magnetic flux in the holes of a sample of infinite height

Similarly to what is performed to introduce the measurements with the AC magnetic field excitation,
we first consider a sample with an infinite height and a single hole; the sample is subjected to a pulsed
magnetic field and we calculate the magnetic flux density inside that hole as a function of time, with
the help of the numerical Bean model. The sample has a radius a, the hole is located at a distance d
from the border, and has a radius R. The applied magnetic pulse has an amplitude of Bmax = 2uoH,
(where H, is the penetration field of the sample having no hole, H, = J.a) that is reached after
20 ms. The applied field (grey line), together with the magnetic flux density in the hole (black line),
is reproduced as a function of time in Figure 4.16.

At the beginning of the pulse, the external field does not reach the hole. There is no magnetic
flux density in the hole until B, = ugJe(d — R). As soon as that threshold field is reached, the
time evolution of the magnetic field in the hole follows that of the applied field with a negative
offset. In particular, when the applied pulse reaches its maximum value, the magnetic flux in the
hole is maximum and saturates at a constant value, Bs, as it has been already observed with an AC
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Figure 4.16: Magnetic flux density (black line) as a function of time in a hole of radius R located at a distance
d from the border of a cylinder with an infinite height, subjected to a pulse of magnetic field
(grey line).

excitation in Section 4.3.1. The saturation value is given by

Bmax — Bs = poJe(d — R). (4.2)
The magnetic flux density in the hole remains unchanged, until the applied field is such that

Brax — Ba = 2ugJe(d — R). (4.3)

At larger times, the magnetic field evolution in the hole follows that of the applied field. When the
applied pulse is over, there remains a trapped magnetic flux density in the hole, Birapped. Whose value
reads

Btrapped = pode(d — R). (4.4)

From this analysis based on a very simple model, we get a first insight on the shape of the signals
to be expected from the measurements. As is also the case with the AC excitation, the Bean model
analysis will certainly not be able to explain all the measured signals, as for instance demagnetizing
effects have not been taken into account. Unlike in the AC case, it is expected that the flux creep
phenomena will have a non negligible influence on the results since pulse excitations induce much
larger electric fields than those obtained with the low-frequency AC excitation.

4.4.2 Measurements in Sample B

We now address the description of the experimental results obtained with Sample B subjected to a
pulsed magnetic field. We first discuss the time evolution of the magnetic flux density in the median
plane of four given holes. On this basis, we compare the characteristics of the flux front diffusion in
the median plane and on the surface of the sample. We finally compare the trapped magnetic flux
density in the median plane with that on the surface of the sample.
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Time evolution of the magnetic flux density in the hole

We first consider the time evolution of the magnetic flux density in the median plane of the sample,
i.e. for microcoils that are placed at an equal distance from the top and bottom surfaces. Four
representative holes are investigated (cf. Figure 4.17). The magnetic flux density in a given hole
is calculated by integrating the pick-up voltage induced across the microcoils (which is proportional
to dB/dt). In practice, the pick-up voltage is biased by an unavoidable parasitic DC offset arising
from the output of the instrumentation amplifier. The offset can be considered as remaining constant
during the pulse (< 500 ms). To estimate this offset, the acquisition starts 5 ms before the pulse is
applied and the voltages recorded prior to the beginning of the pulse are averaged. The result is then

subtracted from the raw data.

Figure 4.17 shows the time evolution of the magnetic flux density, B(t), in the median plane of the
four representative holes (black and grey lines), together with the applied magnetic pulse (dashed
line). Hole (a) is located at the centre of the sample, hole (b) is located at a half radius from the
centre, and holes (c) and (d) are the closest to the sample outer edge as sketched on the right panel
of Figure 4.17.

The time-dependence of the magnetic flux density in the holes has an overall pulse shape similar to
that of the applied field, but however with a few different features. In hole (a), which joins the centres
of the top and bottom faces, the pulse of flux density is preceded by a time interval during which
B(t) decreases slightly and is negative, i.e. the magnetic field in hole (a) is oriented in the opposite
direction to the applied field. Then, the B(t) pulse is shifted in time with respect to the applied field
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Figure 4.17: Time evolution of the magnetic flux density in the median plane of holes (a), (b), (c). and (d).
The applied magnetic flux density is shown with a dashed line.
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and the magnetic flux density reaches a maximum after the applied field has already started to decay
(see arrow 1 in Figure 4.17). Moreover, when the applied field vanishes, a positive trapped magnetic
flux density remains in the hole.

In hole (b), during a short time-interval preceding the pulse, the magnetic flux density is also negative
and thus oriented in the opposite direction to the applied field. After a time delay that is shorter
than for hole (a), the magnetic flux density in hole (b) increases with the applied field and reaches a
maximum value when the applied field is maximum. Afterwards, it decreases with time and — similarly
to the situation in hole (a) — a positive trapped magnetic flux density is measured in hole (b) at the
end of the pulse.

In holes (c) and (d), located close to the sample edge, the behaviours of the magnetic flux density
during the pulse are similar to each other. As soon as the applied field starts to increase, the magnetic
flux density increases and reaches a maximum that exceeds the applied field (see inset of Figure 4.17).
This behaviour is a reminder of the flux concentration regime observed with the AC excitation and
it is carefully checked not to be due to a calibration artefact. The magnetic flux density in holes (c)
and (d) remains larger than the applied flux density until the applied pulse starts decreasing. Then,
it becomes smaller than the applied flux density. In particular, when the applied pulse vanishes, a
negative trapped magnetic flux density is measured.

The simple Bean model, which is discussed as an introduction to the measurements in Section 4.4.1,
only explains the time signal for hole (b), expect at the very beginning of the pulse. In the other
holes, data clearly show deviations from the Bean picture. The Bean model fails reproducing, (i),
the negative magnetic flux density at the beginning of the pulse in holes (a) and (b), (ii), the time
delay between the maximum of the applied field and that of the field in hole (a), and (iii), the flux
concentration and the negative trapped flux density in holes (c) and (d).

We suggest that these discrepancies may be attributed to demagnetizing effects appearing in short
superconducting samples.

(i) As the magnetic flux starts penetrating the sample from the edges, the magnetic field is found
to be negative in holes (a) and (b). The sample being only partly penetrated, supercurrents flow
in its outer region so as to screen its bulk from the applied magnetic flux. The net negative
induction which is observed in data suggests the occurrence of an overscreening mechanism,
where the induced field exceeds the applied one. Such mechanism results from the demagnetizing
effects that are associated with the geometry of the supercurrent trajectories. Overscreening
has already been observed in flat rings, near their inner edge [212], or in superconducting tubes,
close to the inner wall [126]. In the present case, the overscreening mechanism is likely to be
strengthened by the rather complex trajectories of the supercurrents, which must flow around
the holes.

(i) Right after the applied field has reached its maximum amplitude and starts decreasing, the mag-
netic field in hole (a) keeps increasing. A plausible explanation of this effect can be elaborated by
thinking along the lines of a critical model to which one adds demagnetizing effects. According
to the Bean model, at the instant the applied field starts decreasing, the supercurrents flowing
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Figure 4.18: Magnetic flux density in holes (a), (e), and (d), whose positions are represented on the right

(iii)

panel. The flux density is shown in the median plane (black squares) and on the sample surface
(grey circles), for both the increasing part (top panel) and the decreasing part of the pulse
(bottom panel).

in the outer part of the sample reverse their direction with respect to that of the supercurrents
flowing in the remaining part of the sample. The resulting demagnetizing field through hole (a)
is now oriented in the same direction as the applied field and thus reinforces the flux density in
that hole. As a result, the occurrence of the maximum in the magnetic flux threading hole (a)
is delayed.

During the increasing part of the applied pulse, a flux concentration is observed in holes (c) and
(d). As mentioned above, the demagnetizing field produced in the central hole during that time
is oriented in the direction opposite to the applied field. The returning lines of the demagnetizing
field, however, are oriented in the same direction as the applied field. It is therefore likely that
the periphery of the sample is crossed by the returning lines of that demagnetizing field; in
particular, holes (c) and (d) intercept such lines. Since these lines remain after the applied field
has vanished, the remnant magnetic flux density in the holes located near the lateral surface of
the sample is negative, as indeed observed in Figure 4.17.

In order to study whether the demagnetizing field influences the magnetic flux density in the same

manner on the surface and in the bulk, let us consider three successive holes along a given radial line.

We reproduce in Figure 4.18 the magnetic flux density in the median plane and on the surface of these

holes, namely (a), (e), and (d), at several consecutive times during the pulse. During the increasing

part of the pulse (Figure 4.18 - top panel), the magnetic flux density is larger at the sample periphery

than near the sample centre. The spatial decay of the magnetic flux density along the radial line is

stronger in the median plane than at the sample surface, due to demagnetizing effects. For hole (d),
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which is the closest to the sample edge, we observe a flux concentration in the median plane. This
behaviour is not observed near the surface. Similarly, for hole (a), the magnetic flux density is found
to be negative at the beginning of the pulse in the median plane, whereas it is always positive near
the surface.

As the pulse starts decreasing (Figure 4.18 - bottom panel), the magnetic flux density in the median
plane of the central hole (a) first increases before decreasing, whereas the flux density on the surface
is found to decrease monotonically. Once the applied field vanishes, the trapped flux density in the
centre of the sample is always larger in the median plane than near the surface. Moreover, the spatial
variation of the magnetic flux density along the radial line is also smaller near the surface than in the
median plane, because of the demagnetizing field. In particular, the magnetic flux density is found
negative in the median plane of the peripheral hole, whereas it remains positive at the sample surface.

It is therefore observed that the effects attributed to the demagnetizing field are different on the surface
than in the median plane. Near the surface, the demagnetizing field cause the spatial variations of
B, along the radial line to differ from that in the median plane. In the median plane of the sample,
it is responsible for the effects (i), (ii), and (iii) which were described above. These effects are not
observed on the surface.

Characterization of the diffusion of the flux front in the sample

On the basis of the time evolution of the magnetic flux density in each of the 16 holes, we now
characterize the diffusion of the flux front during the pulse in both the median plane and on the
surface. The flux front is defined as the boundary between the regions that are already penetrated by
the magnetic flux and those that are not. In practice, the characterization of that boundary requires
defining a threshold for the magnetic flux density above which a given location can be considered as
being penetrated. In the following, we consider a given hole as penetrated if

B,

Bin > —, 4.5)
m — 10 ( ]
where B;, stands for the magnetic flux density in the hole and B, is the applied magnetic flux density.
Accordingly, we define for each hole a penetration time, tpen, as the time t = tye, at which Bjp(tpen) =

Ba(tpen)/lo-

The penetration times of holes belonging to two different sample radial lines are shown in Figure 4.19.
The penetration time of a given hole is reported in the median plane and on the surface; the shortest
penetration time is underlined. Along the radial line (1), the flux front first penetrates the peripheral
hole in its median plane (tpen = 5.4 ms) before reaching its surface (tpen = 5.7 ms). In the other
holes along that line, the situation is reversed: the flux penetration first occurs on the surface. Along
the radial line (2), we observe a similar behaviour. The peripheral hole is penetrated in its median
plane first whereas we observe the opposite situation in the other holes.

Two observations may be drawn from the results presented in Figure 4.19:

(1) close to the sample edge, the flux front moves faster in the median plane than on the surface,
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Figure 4.19: Penetration times of the flux front in the median plane and on the surface of 6 holes belonging
to one of the radial lines (1) and (2). For each hole, the shortest penetration time (median plane
or surface) is underlined.

(2) as the flux front moves further toward the sample centre, it proceeds at a higher speed on the
surface than in the bulk.

Figure 4.20-(a) shows a sketch of the flux front at different times in the (r, z) plane, for two situations:
(a) - left panel - a sample with a uniform critical current density flowing along the azimuthal direction,
and (b) - right panel - the sample considered in this paper, on the basis of the above results. The
qualitative description of the flux front diffusion in panel (a) is based on the results of Brandt in
Ref. [135] for a cylindrical sample with the same aspect ratio as that of sample (b). In sample (a),
the flux front systematically moves faster on the surface than in the median plane. By contrast, in
the sample considered in the paper, the flux front proceeds at a faster pace in the median plane for
the largest radial positions, whereas it is faster on the surface for the lowest radial positions.

The properties of the flux front diffusion are closely related to the detailed distribution of the critical
current density in the sample. A large critical current density — a strong pinning — hampers the
penetration of the flux. Thus, Figure 4.20 suggests that the critical current density is not uniform in
the sample. In particular, it has a lower value in the median plane, close to the sample edge where the
flux front moves faster than on the surface. Such non-uniformities in the critical current density may
arise either (i) from intrinsic superconducting properties, J.(r, z) [59, 213], or (ii), from a non-uniform

(a) Homogeneous J. (b) Sample B
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Figure 4.20: Sketch of the diffusion of the flux front in the (r, z) plane of a cylindrical sample, at different
times during the ascending part of the pulse. Two situations are depicted: (a) a sample having
a uniform critical current density, and (b), the sample considered in the present work.
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heat production in the sample and a non-uniform surface heat exchange coefficient, J-(T) [214].

Trapped magnetic flux in the volume of the sample

We now turn to the analysis of the spatial distribution of the trapped field in the median plane and on
the surface of the sample.

Figure 4.21 shows the magnetic flux density in the median plane of the 16 holes considered in this
section, measured shortly after the end of the pulse, t = 500 ms. The holes are represented by a

square tower whose height is proportional to the trapped flux density. The trapped flux density is found

median plane
Btrapped

located further from the centre. It is also observed that the peripheral holes have a negative trapped

to be maximum at the centre of the sample, = 1.2 T, and is smaller in holes that are

flux density in their median plane.

The maximum trapped flux density measured in the median plane of the sample allows us to estimate
an average critical current density, Je. flowing in the sample. If we consider as a first approximation
that the holes are negligible obstacles for the current flow, the trapped magnetic flux density at the
centre of the median plane of a cylinder with a radius R and a height L is given by [183],

R+ R2+L?/4 (4.6)
—_— . .0)

- L
Btrapped,max = MOJCE In L/2
From the field density values of Figure 4.21, we thus find

J.~1510% A/m? (4.7

~l

as a first approximation.
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Figure 4.21: Distribution of the trapped magnetic flux density in the median plane of the holes shortly after
the end of the pulse, at t = 0.5 s.
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However, the neglect of the holes may lead to non-negligible errors, as shown in Chapter 3. Following
the same analysis as that used in Chapter 3, we find that the maximum trapped flux density in the
drilled sample is expected to be about 40 % smaller than that in a sample without holes, assuming
the same uniform critical current density. Taking this corrective factor into account yields

Je ~2510% A/m? (4.8)
as a better estimate.

The trapped magnetic flux density measured on the surface of the hole differs from that measured in the
median plane. At the central hole, we measured Bfr“a';?)‘é% = 545 mT (data shown in Figure 4.18). This

value is smaller than that in the median plane by a factor Btrrr‘:s[‘)ae':j p'a”e/BtSr“ar;%Cez ~1.18/0.545 ~ 2.17.

This value can be compared to elementary models. An analytical expression of the magnetic flux
density along the central axis of the sample has been calculated in the case of a cylindrical sample
without holes, see Ref. [183]. Given a radius, R, and a height, L, and assuming a uniform critical
current density, Jc, the magnetic flux density along the axis of the cylinder is given as

o) = S (s &) (FSE L2

2 z+L/2]|
L R+ VR2+(z—L/2)? (4 ¢
(Zz)m< i )}, ws)

where z denotes the elevation from the centre. According to this relation, for a plain sample (i.e.
containing no holes) with the dimensions of the sample described in Section 4.2.2 (L = 10 mm and
R =8 mm), the ratio between the maximum trapped flux in the median plane and on the surface is
equal to

. B-(0) .
A2 B D) | s (4.10)
Since the holes modify the current stream lines, there is a priori no reason that equation (4.9) remains
valid for a drilled sample. To better understand the influence of the holes on the magnetic induction
along the axis of the sample, we performed a 3D numerical simulation with the finite-element method
described in Chapter 3 and calculated the trapped flux density for the drilled sample considered in this
section. The two-time step method is used, one step for increasing the applied field from 0 to 3 T
at a sweep rate of 10 mT/s and another one for decreasing the applied field from 3 T to 0 at the
same sweep rate. According to our previous estimate for the critical density, Eq. (4.8), we assume
a uniform and field-independent critical current density J. = 2.5 108 A/mQ. The resulting magnetic
flux density is shown as a function of the vertical position from the median plane in Figure 4.22, for
the central hole of the sample. The analytical expression for B,(z), Eq. (4.9), is shown with a dashed
line. It can be seen that the dependence of B,(z) of the drilled sample is very close to that of the
plain sample. In particular, the ratio between the maximum trapped flux in the median plane and on
the surface is found to be equal to = 1.74 in both cases.

This simulated ratio, obtained for a sample with a uniform critical current density, is different from
the ratio measured in our drilled sample (for which we found 2.17). The difference may result from
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Figure 4.22: 3D finite-element simulation of the vertical component of the magnetic flux density as a function
of the vertical coordinate, B,(z), in the central hole of the drilled sample considered in the paper
(filled circles). The analytical expression of B,(z) at the centre of a sample without holes is
shown with a dashed line.

two causes. First, the position of the microcoil inside the hole is not perfectly known and the data is
obtained from an average over the microcoil volume. As a small variation in z close to the surface
of the sample leads to a large change in B(z) (as observed in Figure 4.22), the measured ratio can
easily differ from the simulated one. Second, the sample may exhibit a non-uniform distribution of its
critical current density, such effect was not taken into account in the numerical model.

4.5 Summary of Chapter 4

In this chapter, we present a novel experimental technique for characterizing the magnetic properties
of drilled samples. It is based on the local probing of the time-variations of the magnetic field inside the
holes with microcoils. This microcoil measurement technique is appropriate for a local characterization
of the magnetic properties of drilled samples, in the median plane, and on the surface of the sample as
well. This technique enables us, for the first time, to characterize the flux diffusion in the bulk of the
sample, instead of a few millimeters above its surface as is the case with conventional field mapping
techniques.

Two types of magnetic excitations are investigated in this chapter: a low frequency AC magnetic field
ranging from 30 to 130 mT produced by a bespoke electromagnet, and a magnetic pulse with an
amplitude of 3 T and a duration of few hundreds of ms. The AC magnetic field excitation enables for
an accurate assessment of the microstructure and of the local superconducting properties on the top
and bottom surfaces, as well as in the median plane of drilled samples. During a pulsed-field excitation,
the microcoil technique reveals the local diffusion of the pulse in the bulk and on the surfaces of the
drilled samples.
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Independent of the type of excitations, a simple analysis based on the Bean model applied to a drilled
sample with an infinite height fails in describing particular features that are observed with the microcoil
technique. The results suggest that some holes may serve as a returning path for the demagnetizing
field, yielding a different behaviour from what is predicted by the Bean model, in particular a magnetic
flux density in some holes that is larger than the applied one.

Different results are obtained with each type of excitations:

1. AC magnetic field

For a given amplitude of the AC applied field, three penetration regimes are observed: (i)- the
shielded regime, for which the magnetic flux does not penetrate the hole and its time evolution
exhibits a sine shape of very small amplitude; (ii)- the gradual penetration regime, for which
the magnetic flux density in the hole exhibits a clipped sine shape and the amplitude of its
fundamental harmonic increases linearly with the applied field, the pick-up signal in this case
contains a succession of peaks; (iii)- the flux concentration regime, for which the magnetic flux
density in the hole is larger than the applied one and the pick-up voltage is almost a sine-wave.

The distribution of the penetration regimes is closely related to the magnetic flux density mea-
sured at the surfaces by a DC Hall probe mapping. The local probing of the magnetic flux
density inside the holes brings pieces of information that are impossible to obtain with usual
surface characterization techniques. The analysis of the signals from the coils placed inside the
holes allows one to know how a flux distribution at the surface is modified in the bulk and to
measure the flux concentration appearing in the volume of the sample.

2. Pulsed magnetic field

When the sample is subjected to a pulse of magnetic field, we analyze the time evolution
of the magnetic flux density in the holes (median plane and surface) and we observe that the
demagnetizing effects modify significantly the predictions based on the Bean model. In particular,
during the ascending part of the pulse, they induce a flux concentration inside the holes that
are close to the sample edge and a negative magnetic flux density in the holes near the centre
of the sample. Moreover, when the pulse is over, the trapped magnetic flux density is negative
in the holes that are close to the sample edge whereas it is positive at the centre of the sample.
These effects, generated by the return lines of the demagnetizing field, are found to be stronger
in the median plane than on the surface of the sample.

In order to further characterize the flux diffusion in the sample, we define in each hole the required
time for the external flux to reach this hole. We find that the holes located at the sample edge are
penetrated in their median plane sooner than on their surface, while the opposite is found in the
other holes. These observations may arise from either non-uniform superconducting properties
in the sample or from particular thermal boundary conditions at the surface of the sample.

For the first time, we show experimentally that the trapped flux density is larger in the median
plane than on the surface. This finding is confirmed by modelling results. Moreover, the
measured trapped magnetic flux density in the centre of the median plane of the sample allows
us to directly estimate the critical current density in the volume of the sample. With the help
of numerical modelling, we compare the magnetic flux density in the median plane and on the
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surface of the sample. In particular, we show that the measured ratio between the maximum

trapped flux in the median plane and that on the surface slightly differs from the ratio predicted
by numerical results.






Magnetic properties of drilled samples containing a
ferromagnetic powder in the holes

As already pointed out, creating holes in superconducting samples primarily aims at enhancing the
synthesis of bulk HTS [6]. Soon after the first tests, the drilled structures also proved to be useful to
strengthen other properties of the samples: in particular, the thermal stability [9] and the mechanical
resistance [81, 85] could benefit from the presence of the holes, as the empty space cleared by the
holes improves the thermal exchange with the cryofiuid and allows the sample to be mechanically
reinforced by filling the holes with a resin.

This latter example suggests that the holes may serve as a container for any type of material, provided
they do not strongly alter the cooling of the superconducting material. Keeping that philosophy in
mind, one could look for an appropriate filling material in view of enhancing the magnetic properties of
drilled samples as well. With its tendency to concentrate the field lines inside its volume, a ferromag-
netic material might increase efficiently the bulk magnetization. In particular, it would be interesting
to study whether the magnetization drop, as discussed in Chapter 3, could be reduced or suppressed
by inserting a ferromagnetic material inside the holes of the sample.

The combination of ferromagnetic and HTS materials in view of enhancing the performances of HTS is
not a completely novel concept. Macroscopic hybrid ferromagnetic/superconductor (F/S) structures
have already been considered in various applications. When used for transporting large currents,
HTS tapes can be surrounded by ferromagnetic sheets in order to increase the critical current and
to reduce the AC losses [148, 215, 216, 217, 218, 219]. In shielding applications, the placing of a
hollow ferromagnetic cylinder around a superconducting tube enables one to substantially improve the
shielding properties of each separated structure [220, 221, 222]. Last, an YBCO ring containing a
concentric soft iron yoke has been shown to exhibit a larger and more stable trapped magnetic flux
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density than that obtained with the ring alone [223].

In this chapter, we propose to characterize drilled YBCO samples whose holes are filled with a ferro-
magnetic material. To this aim, we experimentally investigate the modifications of the magnetization
curve and of the trapped flux density induced by the ferromagnetic material, as well as that of the
levitation force between the HTS sample and a permanent magnet. Then, we develop further the
study of these impregnated samples with the help of a numerical modelling that is based on the
three-dimensional finite-element method described in Chapter 2.

5.1 Measurements of the magnetic properties of drilled samples impregnated
with ferromagnetic powder

The study of impregnated samples starts with the description of few experimental results in order to
reveal their main features and their main differences with respect to the non-impregnated samples. It
will help us focusing the numerical study on the main modifications that are relevant for applications.

5.1.1 Dirilled samples and impregnation

The experiments are carried out on two drilled YBa;CuzO7_s bulk high-temperature superconductors
(HTS). These were processed at CRETA (Grenoble, France) by the top-seeded melt-grown technique
in the shape of cylinders with a diameter of 16 mm and a height of 10 mm. Artificial holes are drilled
in the preform, in the direction parallel to the c-axis of the sample. Sample (1) contains 55 holes
with an initial diameter of 1 mm that is reduced to 0.8 mm during the synthesis, and Sample (2)

(a) No Ferro (b)  With ferro filling

Sample (1)

—
o
-~

Sample (2)

Figure 5.1: (a)- Picture of Sample (1) before impregnation. (b)- Picture of Sample (1) after impregnation.
(¢)- Picture of Sample (2) before impregnation. (d)- Picture of Sample (2) after impregnation.
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contains 55 holes with an initial diameter of 0.5 mm that is reduced to 0.35 mm. These samples are
impregnated by filling the holes with a ferromagnetic material.

The ferromagnetic material consists of a powder of stainless steel AISI 410 (Fe/Crys.5) [224] whose
particles have a typical size of 45 um. The use of a powder does not restrict the impregnation method
to specific hole geometries, since the powder adjusts itself to the hole dimensions. During the filling of
the holes, the powder is pressed, so as to reduce the total reluctance of the magnetic circuit crossing
the holes. The powder is maintained in the holes by two polyimide films (Kapton) stuck on both
sample surfaces. Figure 5.1 shows a photograph of Sample (1) and (2) before and after the filling of
the holes with the ferromagnetic powder.

The relative magnetic permeability of the powder is measured at low fields and is found to be equal
to ur = 24 and u, = 28, respectively at T = 300 K and T = 77 K. Details of the experimental
procedure can be found in Appendix B.

5.1.2 Experimental results

Three types of measurements allow one to assess the influence of the ferromagnetic powder on the
magnetic properties of the drilled sample: the characterization of the bulk magnetization, of the
trapped magnetic flux above the surface, and of the levitation force. For each type of measurements,
a comparison is made between the impregnated and the non-impregnated samples.

Measurement of the bulk magnetization

The bulk magnetization of the drilled samples is measured in a Physical Property Measurement System
(PPMS - Quantum Design). Forty turns of 80um-diameter wire are wound around the sample. This
coil is centered around the median plane and extends up to 3 mm off the bottom and top surfaces.
The sample is inserted in the experimental chamber of the PPMS and is cooled down to 77 K in
the absence of magnetic field. Then, a linearly increasing magnetic flux density B, is applied around
the sample, in the direction parallel to its c-axis. It starts from O T and increased to 1.5 T at
a sweep rate of 5 mT/s, and then cycles between —1.5 T and 1.5 T at the same sweep rate. The
induced electromotive force (emf) across the sample coil is recorded by a nanovoltmeter (HP 34420A)
controlled by a GPIB interface. The sample coil is calibrated by running a measurement sequence at
a temperature of 100 K, at which the sample is in the normal state.

The induced emf is integrated numerically in order to obtain the average flux density inside the sample,
< B >. The magnetization of the sample is then given by

uoM =< B > —B,,. (5.1)

During the integration procedure, the constant offset of the voltmeter is carefully subtracted from the
measured data, so that the magnetization curves superimpose on itself after a complete cycle.

The bulk magnetization curves of Sample (1) and (2) with (grey circles) and without (black triangles)
the ferromagnetic powder in the holes are shown in Figure 5.2-(a,b). The magnetization curves form
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Figure 5.2: Volume magnetization as a function of the applied flux density of the non-impregnated (black
triangles) and the impregnated (grey circles) samples (Sample (1) and (2)).

a hysteresis loop. In Sample (1), the impregnation of the holes strongly modifies the hysteresis loop
which undergoes a counter-clockwise rotation of few degrees with respect to its centre (see arrow).
Such a rotation has already been observed when measuring the magnetization curve of a YBCO
ring having an iron yoke in its centre [223]. It arises from the interplay between the ferromagnetic
material and the superconductor that is discussed in more details in the following section. The
magnetization under large fields of Sample (1) is strongly modified after impregnation. In particular,
when B, = 1.5 T, the bulk magnetization of the impregnated sample is reduced by a factor slightly
larger than 2 with respect to that of the non-impregnated sample. The bulk trapped magnetization
(that is when B, = 0 T) remains almost unchanged after the impregnation in Sample (1). In Sample
(2), the magnetization curve of the sample with the ferromagnetic powder is similarly modified, but the
amplitude of the counter-clockwise rotation is smaller than in Sample (1), since the volume proportion
of the ferromagnetic material in Sample (2) (3%) is smaller than in Sample (1) (16%).

Characterization of the trapped magnetic flux

The trapped magnetic flux density above the sample surfaces is characterized in a Hall probe mapping
experiment, with the same experimental procedure as that described in Section 3.5.2.

The distribution of the vertical component of the trapped magnetic flux density above the sample top
and bottom surfaces is reproduced in Figure 5.3-(a,b). Figure 5.3-(a) shows the distribution of the
trapped field above both surfaces of Sample (1), and Figure 5.3-(b) shows its distribution above both
surfaces of Sample (2). The left panels correspond to the mappings of the top and bottom surfaces
of the non-impregnated samples, while the right ones correspond to the samples with a ferromagnetic
filling. As usual with this field mapping technique, the moderate distance between the probe and the
surface does not allow one to resolve the positions of the holes [82, 85, 176, 177].

As observed in Figure 5.3, filling the holes with the ferromagnetic powder leads to modifications of
the trapped flux profiles. When there is no ferromagnetic material inside the holes, Sample (1) and
(2) exhibit an axisymmetric flux profile with a single maximum for both surfaces, indicating that there
is no macrocrack close to the surfaces. In Sample (1), when the holes are filled with the powder, the



~

9.

L.

(a)- Sample (1)

Top Surface

No Ferro With ferro filling

EE0N
AN

QO
A X0

§
o
XX

e
i

R
i ::‘::‘
N
o

Magnetic flux
density (mT)

0 W
0 @ T
s Dﬁ‘anca o er (@

Bottom Surface

With ferro filling

No Ferro

KRN
RN
VAN

Magnetic flux
density (mT)

0
o o
* paaree ™

. MEASUREMENTS OF THE PROPERTIES OF IMPREGNATED SAMPLES

(b)- Sample (2)

Magnetic flux

Magnefic flux
density (mT)

Distgy, 0
™)

No Ferro

g
oSt

No Ferro

0
onc® (o

133

Top Surface

With ferro filling

558
IO

0
10 o)
= e ™

Bottom Surface
With ferro filling

0K

R
S

RRAILEN

N
T
g

Figure 5.3: Hall probe mappings of the trapped flux density after a field-cooled magnetization (B, = 450 mT)
at 0.5 mm above the surface of the non-impregnated (left column) and impregnated (right column)
samples. In each case, the first row corresponds to the top surface, and the second one to the

bottom surface.

maximum trapped flux that is measured at 0.5 mm above the surface is larger while the flux profile
remains almost unchanged. In Sample (2), the impregnation of the holes involves a similar increase of
the maximum trapped flux, but causes the flux distribution to be slightly irregular, with the appearance

of some bumps around the maximum.

In order to further investigate the increase of trapped flux observed in Figure 5.3, we report in Table 5.1

the maximum vertical component of the trapped flux density, Bmax, that is measured when the Hall
probe is brought in contact with the surface. The impregnation of the holes in Sample (1) yields the
largest increase of trapped flux, with a relative increase of ~ 34 % measured on the top surface. By

contrast, the maximum trapped flux density of Sample (2) rises up to ~ 10 %.

Table 5.1: Maximum trapped magnetic flux density on the top and bottom surfaces of Sample (1) and (2)

Sample (1) Sample (2)
No Ferro Ferro No Ferro Ferro
Top Surface 303 mT 406 mT | 209 mT 244 mT
Bottom Surface 282 mT 350 mT | 176 mT 194 mT




134 CHAPTER 5. DRILLED SAMPLES WITH FERROMAGNETIC POWDER IN THE HOLES

Measurement of the levitation force

The levitation force between the drilled sample and a permanent Nb-Fe-B magnet is measured by a
home-made system. It consists of a stand on which is clamped a micrometer screw connected to a
liquid nitrogen container used as a sample holder. A cylindrical permanent magnet is fixed to a heavy
ferromagnetic cylinder resting on a weighing scale. A picture of the experimental setup is shown in
Figure 5.4. When the HTS sample (with a temperature of 77 K) lies above the magnet, a repulsive
(resp. attractive) magnetic force is created between the HTS and the magnet; as a result, the weight
of the magnet is increased (resp. decreased) with respect to its weight when there is no HTS sample
above it.

The drilled sample, connected to the micrometer screw is initially positioned at 1 cm from the per-
manent magnet. The container is then filled with liquid nitrogen. After 5 min, the temperature of
the sample is uniform, T = 77 K, and we start the following measurement sequence: (i) the drilled
sample is brought close to the permanent magnet by turning the screw with a step size of 500 um,
(ii) once the sample container becomes in close contact with the permanent magnet, the sample is
brought back step-by-step to its initial position, and (iii) the sample is again brought close to the
magnet, as in step (i). After each 500 um motion, the apparent weight of the magnet is recorded
and the levitation force is determined.

The levitation force measured above the top surface of Sample (1) is shown in Figure 5.5, which
shows the situations of the non-impregnated holes (a) and of the impregnated ones (b). The three
consecutive steps of the measurement sequence are indicated by arrows. When the distance between
the sample and the magnet is sufficiently small, a repulsive levitation force is measured between the
two materials. The curves corresponding to the steps (ii) and (iii) form a hysteresis loop due to the
pinning of the vortices inside the sample.

The non-impregnated sample is found to produce a larger levitation force than that measured above
the impregnated one. In particular when the sample is close to the magnet, the repulsive levitation
force is larger above the non-impregnated sample than above the impregnated one. This behaviour is
attributed to the attractive force existing between the ferromagnetic material and the magnet, which
reduces the repulsive levitation force. In particular, we observe that the force between the impregnated

Micrometer screw

Liquid nitrogen
h
HTS bat

;

o

Figure 5.4: Picture and schematic illustration of the experimental setup used for measuring the levitation force

between a HTS sample and a permanent magnet.
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Figure 5.5. Levitation force as a function of the distance between the permanent magnet and Sample (1),
either non-impregnated (a) or impregnated (b).

sample and the magnet when they are separated by 10 mm is attractive when the holes are filled with
the ferromagnetic powder.

5.1.3 Summary

Following the experimental results reported above, the effects of the ferromagnetic powder in the holes
may be summarized as follows. The impregnation of the ferromagnetic material in the hole leads to:

(i) a modification of the shape of the magnetization curve of the HTS sample. In particular, a
counter-clockwise rotation of the hysteresis loop is observed;

(i) an increase of the maximum trapped magnetic flux density;

(iii) a decrease (resp. increase) of the repulsive (resp. attractive) levitation force acting between an
HTS sample and a permanent magnet.

The effects (i) and (ii) tend to enhance the magnetic properties of the drilled samples. However, the
third consequence of the impregnation, that is associated to the levitation between the sample and a
magnet, has a harmful character since it reduces the levitation efficiency.

5.2 Modelling of the magnetic properties of impregnated samples

The experimental results presented in Section 5.1.2 enable one to get some insights of the effects of the
ferromagnetic material on the properties of the drilled superconductor, as summarized in Section 5.1.3.
We now proceed a step further in the study of impregnated samples by using modelling and simulations
in order to assess in more details the influence of the ferromagnetic material on the hybrid structure.

In view of stating the problem, we first consider the simple model of a drilled sample with an infinite
height, in the limit of very strong pinning (Bean model). We assume that the powder which is inserted
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Figure 5.6: Trapped flux profile along a diameter of a drilled cylinder of infinite height that is either impregnated
(black line) or not (grey line). The profile is calculated according to the Bean critical state model.

inside the holes is a continuous and homogeneous material, and that the relative magnetic permeability
of the powder, w,, is constant. The symmetry of the sample with infinite height involves that the
magnetic field H has a single non-vanishing component, H;, that is oriented along the vertical direction
in the cross section. At the superconductor/ferromagnetic interface, the Maxwell equations impose
H_, to be continuous. The magnetic field thus remains uniform in the powder where it assumes the
same value as at the edge of the hole. Therefore, the distribution of the trapped magnetic field in the
impregnated sample assumes the same shape as in a non-impregnated one. Now, since B = pou,H,
the flux profile undergoes a discontinuity at the superconductor/powder interfaces. The ratio between
the magnetic flux density in the hole, Bserro, and that in the superconductor at the interface, Bsyper,
is equal to w,. The profile of trapped flux in the superconducting region does not change when the
holes are impregnated, as schematically represented in Figure 5.6.

To sum up, the net effect of filling the holes with the ferromagnetic powder in a sample with an infinite
height is to increase the magnetic flux density in the holes, while its profile inside the superconductor
is not altered. That situation is no longer valid in samples of finite heights, where the demagnetizing
effects induced by the ferromagnetic material are expected to strongly modify the magnetic field
distribution in the superconductor.

In order to model the effects of the ferromagnetic powder in a superconducting sample with a finite
height, we use the 3D finite-element model described in Section 2.3, to which we add a specific mag-
netic constitutive law in order to take into account the ferromagnetic material inside the hole. The
magnetic permeability of the simulation domain Q is defined piecewise and is discontinuous at the su-
perconductor/powder interface. Egs. (2.19)-(2.20) are modified consequently, and the corresponding
weak form of the magneto-quasistatic Maxwell equations reads

1
Hokr

( VxAVXxA)- <BgysxnA >+ (c(A+A,+Ve)A) = 0,

o1
N
~—
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where (a,b) = [ ab d®r and < a, b >= [ ab dC with I being the external surface of the simulation
domain Q.

In practice, the relative magnetic permeability of the soft ferromagnetic powder depends on H, due to
the magnetic saturation. However, incorporating the non-linearity of the ferromagnetic constitutive
law in the 3D finite-element formulation yields very long calculation times. For instance, a non-
linear magnetic permeability has already been successfully integrated in GetDP when modelling F/S
hybrid structures, for the specific case of two-dimensional axisymmetric geometries that we discuss
in Ref. [222]. In such a geometry, the meshing comprises less than 5000 nodes and the treatment
of the non-linearity of the magnetic material requires a calculation time that is 20 times as large as
that required if the material is linear. Such a time cost is not affordable in 3D meshings with over
150000 nodes. From the observations reported in [222], we believe that modelling the ferromagnetic
powder with a field-independent magnetic permeability brings already very valuable results from which
generic conclusions can be drawn on the behaviour of impregnated samples. In fact, the saturation
of the ferromagnetic material is accompanied with a decrease of its relative magnetic permeability,
since it asymptotically tends to u, = 1 when H — oc. As a first approximation, the effect of the
saturation may be roughly taken into account by considering a uniform magnetic permeability that is
smaller than that measured at low fields. To this aim, three different values of magnetic permeability
are adopted — in a given simulation, a unique value of u, is associated to the ferromagnetic region
—: (i) u, = 20, which is close to the measured permeability of the ferromagnetic powder at low fields
(see Appendix B), (ii) u, = 2, and (iii) u, = 1.5. The last two values of the magnetic permeability
are representative of situations when the powder is saturated.

Note however, that the magnetic flux density in the ferromagnetic powder is a function of the radial
position of the hole, as suggested by the Bean model in Figure 5.6. It implies that the magnetic
permeability of the powder may also depend on the position of the hole. By using a uniform magnetic
permeability, we neglect these variations and consider limiting cases of the magnetic permeability.

Since only slowly varying magnetic fields (dB/dt = 10 mT/s) are considered, effects associated
with eddy currents induced in the ferromagnetic materials are ignored and the conductivity of the
ferromagnetic powder is taken to be 0. Moreover, the magnetic behaviour of the ferromagnetic
powder subjected to a given applied flux density, B, does not depend on the way B, is established
(we neglect the hysteresis of the soft ferromagnetic material). In particular, in the case of a linearly
varying applied field, the simulation of the magnetic properties of the powder subjected to B, may

Table 5.2: Parameters used for the finite-element simulations

Critical exponent n 21
Critical current density  Joo  2.108 A/m?
Critical field E. 1074 V/m
Maximum applied field  Bmax 3T
Sweep rate B, 10 mT/s
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be carried out with an arbitrary number of time steps. When associated to a HTS sample, single
time-step simulations, as discussed in Section 2.3, are thus possible.

We consider the same sample geometry as that of Sample (1), on which the experiments reported in
Section 5.1.2 are carried out. The cylindrical sample has a height of 10 mm and a diameter of 16 mm.
It contains 55 holes with a diameter of 0.8 mm. The material parameters and the applied fields used
in the simulations are summarized in Table 5.2.

5.2.1 Magnetization of impregnated samples

The bulk magnetization of the impregnated samples is calculated with the help of FEM simulations.
The applied field increases linearly with time, from 0 to Bmax, at a sweep rate of B, = 10 mT/s.
The calculated magnetization M of the non-impregnated sample (u, = 1 - black line) and of the
impregnated one, with u, = 1.5 (dark grey line), u, = 2 (grey line), and u, = 20 are plotted as
a function of the applied field B, in Figure 5.7. Each calculated point on the magnetization curve
is obtained with a single time-step FEM simulation. Note that the magnetizations corresponding to
applied fields smaller than 600 mT suffer from bad convergence and are not reproduced in Figure 5.7.

The first part of the magnetization curve of the non-impregnated sample saturates when B, > 800 mT,
and the calculated magnetization slightly fluctuates around a constant value. The small fluctuations
arise from small numerical errors in the simulations. The saturation of the magnetization is expected
from the critical state description of a superconductor sample having a constant critical current density.

In the impregnated samples, the magnetization no longer saturates at a constant value, but rather
increases linearly with the applied field when B; > 800 mT. The slope of the curve is proportional to
the relative permeability of the powder. Figure 5.7 therefore suggests that the magnetization curve of
a drilled sample undergoes a counter-clockwise rotation when the holes are filled with a ferromagnetic
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Figure 5.7: Initial magnetization curve of a drilled sample whose holes are either non-impregnated (black line)
or impregnated with a ferromagnetic powder with u, =1.5 (dark grey line), u, =2 (grey line), and
wr = 20 (soft grey line). The magnetization is calculated with single time-step FEM simulation.
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material. This tendency is consistent with the measured magnetization curve of the impregnated
samples shown in Figure 5.2. The increase of magnetization with the applied field that leads to the
rotation of the magnetization curve results from the interplay between the diamagnetic behaviour of
the superconductor and the ferromagnetic behaviour of the powder. The powder 'attracts’ the flux
lines inside the holes and makes the average flux density in the volume of the sample larger than
that in the non-impregnated sample. The magnetic flux density that is concentrated inside the holes
increases linearly with the applied field, as indicated by the increase of the magnetization with the
applied field.

5.2.2 Trapped flux profile in impregnated samples

The FEM simulations can also be used to calculate the trapped flux of impregnated samples in two
time-steps, one for increasing the applied flux density to B, = 3 T at a sweep rate of 10 mT/s, and
another one for reducing the applied flux density to 0 at the same sweep rate.

The trapped flux profile along a diameter in the median plane of the drilled sample is represented
in Figure 5.8. The relative permeability of the ferromagnetic material is respectively u, = 1 (non
impregnated sample - black lines), u, = 2 (dark grey lines), and u, = 20 (grey lines). The hole
positions are highlighted with a grey background. Note that, when u, = 20, the magnetic flux density
in several holes is in fact out of the range of the left axis.

As already observed in samples with an infinite height, the trapped flux profiles of impregnated samples
exhibit discontinuities at the interface between the superconductor and the ferromagnetic material.
In particular, the ratio between the magnetic flux density at the ferromagnetic side (with a relative
permeability w,) at the interface Bferno, and that at the superconducting side Bgyper is given by
Bterro/ Bsuper = 1. The magnetic flux density in the hole of the impregnated sample is thus larger
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Figure 5.8: Trapped magnetic flux profile along a diameter in the median plane of a drilled sample calculated
with two time-steps FEM simulations. The drilled sample is either non-impregnated (black line)
or impregnated with a ferromagnetic powder of u, =1.5 (dark grey line) and w, =20 (grey line).
The positions of the holes along the diameter are highlighted.
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Figure 5.9: Vertical component of the trapped magnetic flux density as a function of the coordinate z, in a
non-impregnated sample (black line) and in an impregnated sample with u, =1.5 (dark grey line),
w,=2 (grey line), and u, =20 (soft grey line).

than when the holes are not filled by the ferromagnetic powder. The increase of trapped magnetic
flux density is proportional to the relative permeability of the ferromagnetic powder.

However, by contrast to what occurs in a sample with an infinite height, the trapped magnetic flux
profile in the superconductor is reshaped due to the presence of the ferromagnetic material inside the
holes. The slope of the distribution of B between two neighbouring holes is reduced in the impregnated
samples and varies with position®. In particular, the slope is smaller around the sample centre. A similar
modification of the slope of the flux profile induced by the presence of a ferromagnetic material in
the vicinity of the sample has already been observed in hybrid structures consisting of a ferromagnetic
hollow cylinder inserted inside a superconducting tube of larger diameter that are used for magnetic
shielding, as described in Ref. [222]. The profile adjustment is believed to stem from an interplay
between the ferromagnetic material that 'attracts’ the magnetic field lines and the superconducting
material that rather 'traps’ these lines.

Figure 5.8 shows that the maximum trapped flux density is strongly enhanced in the median plane of
the impregnated sample. However, such a large increase has not been observed on the surface with
the Hall probe mapping experiments reported in Section 5.1.2. Let us analyze the trapped flux density
as one gets further from the median plane.

In Figure 5.9, the vertical component of the magnetic flux density in the centre hole of the impreg-
nated sample, B, is plotted as a function of the vertical distance from the median plane, z. The
ferromagnetic material is assumed to be characterized by a constant relative permeability of u, = 1
(non-impregnated sample - black line), u, = 1.5 (dark grey line), u, = 2 (grey line), and u, = 20
(soft grey line).

Yn the non-impregnated sample, the slope is the same between all the nodes because the critical current density is
assumed to be field-independent.
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Table 5.3: Maximum trapped flux density in impregnated and non-impregnated samples

Plain sample Drilled sample Impregnated sample

wr=15 pu =2 p =20

Median plane 16T 1.1T 16T 21T 9T
Top surface 085 T 061T 07T 077 T 134T
500 um above 0.72T 056 T 06T 064T 107T

While the magnetic flux density remains almost constant (and equal to its value calculated in the
median plane) in the volume of the ferromagnetic material, it decays as one comes closer to the
surface, suddenly drops above the sample surface (z > 5 mm), and is close to the value of the non-
impregnated sample. The drop increases with u,. As a result, the increase of trapped flux measured on
the surface of the impregnated sample, with respect to that of the non-impregnated one, is lower than
that calculated in the median plane. This explains the discrepancy between the increase of trapped flux
density calculated in the median plane after impregnation, and that measured experimentally above
the surface. The maximum magnetic flux density calculated in the impregnated sample and in the
non-impregnated one are listed in Table 5.3, for fields in the median plane, on the surface (vertical
distance equals to 5 mm), and 0.5 mm above the surface. While the maximum magnetic flux density
in the median plane increases by 45%, 90%, and by a factor 7 when the relative magnetic permeability
is respectively u, = 1.5, u, = 2, and u, = 20, the corresponding increases on the surface drops to
15%, 26%, and to a factor 1.2. A comparison of these calculated increases of maximum trapped flux
density and the measurements indicates us that the ferromagnetic powder should exhibit a relative
permeability that is on average close to u, = 2, since the maximum trapped flux density was measured
to be enhanced by 30% on the surface.

Table 5.3 also shows the maximum magnetic flux density in a sample having the same characteristics
and no hole. In the median plane, we observe that the drop of maximum trapped flux density induced
by the presence of the holes is totally compensated by impregnating the holes with the ferromagnetic
powder, even with a relatively low magnetic permeability of u, = 1.5. On the top surface, the
compensation is obtained for u, > 2. These results suggest that the impregnation of a drilled sample
with a ferromagnetic powder allows one to reduce the inherent drop of trapped flux that is calculated in
Chapter 3. The trapped flux enhancement depends on the value of the relative magnetic permeability
of the ferromagnetic powder used for the impregnation: the largest is u,, the largest is the gain of
trapped flux.

5.2.3 Influence of the volume of impregnated ferromagnetic material

In the above simulation results, only a single sample geometry has been considered. However, in the
experiments reported in Section 5.1.2, two samples having a different hole diameter are used. The
powder impregnation in Sample (2), with the smallest hole diameter, yields smaller modifications of
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Figure 5.10: (a)- Maximum trapped magnetic flux density calculated 500 um above the surface of a non
impregnated sample and an impregnated sample (u, =2). The hole radius is respectively 0.4 mm,
0.5 mm and 0.6 mm. (b)- Relative increase of the trapped magnetization (with respect to that
of a non-impregnated sample) as a function of the hole radius.

the magnetic properties than those obtained with Sample (1). In order to discuss this observation
on the basis of modelling results, we consider three drilled samples with different hole radii®: (i)
r = 0.4 mm — the same sample as that considered in the previous sections —, (ii) r = 0.5 mm, and
(iii) r = 0.6 mm.

The maximum trapped flux density calculated 500 wm above the top surface is reported in Figure 5.10-
(a). The samples are either impregnated (with u, = 2) or not. The relative increase with respect to
a non-impregnated sample is also indicated. Figure 5.10-(b) shows the relative increase of trapped
magnetization in the impregnated samples (with respect to that of the non impregnated ones) as
a function of the hole radius. In both situations, we observe that the increase of trapped flux or
magnetization depends on the volume of ferromagnetic powder inside the holes. The larger is the hole
radius, the larger is that relative increase. Nevertheless, the increase of the hole radius is accompanied
by a decay of the maximum magnetic flux density that is trapped in the sample, since the volume of
superconducting material is reduced.

5.3 Summary of Chapter 5

Throughout this chapter, we discuss the modifications of the magnetic properties of drilled samples
obtained by filling the holes with a ferromagnetic powder. The discussion is based on several exper-
iments and on modelling results obtained with a 3D FEM model. The experimental and simulation
results provide qualitative complementary observations that are in good agreement with each other
(although the non-linearity of the ferromagnetic material is approximated in the model). We put
forward two major advantages to impregnating the holes with a ferromagnetic powder:

1. The magnetization curve of impregnated samples undergoes a counter-clockwise rotation with
respect to that of a non-impregnated sample. The concentration of the flux lines inside the hole

2Note that the modelling of a sample having a smaller radius than r = 0.4 mm (such as Sample (2)) is not affordable
because the size of the meshing exceeds the largest available computer capacity.
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increases the average magnetic flux density in the sample and results in an increase of the bulk

magnetization.

. The trapped flux of impregnated samples is enhanced as compared to that of the non-impregnated

ones. The increase of trapped flux has been shown to be larger in the median plane than on the
sample surface. The gain of maximum trapped flux and on magnetization obtained in impreg-
nated samples could even be used for reducing the inherent magnetization drop resulting from
drilling holes that is discussed in Chapter 3.

We show that the enhancement of the trapping properties of drilled samples by ferromagnetic
powder impregnation depends on the relative permeability of the powder. The larger is the
relative permeability, the larger is the relative increase of trapped magnetization. In practice,
since the magnetization of the ferromagnetic material saturates, it is recommended to choose a
material having the largest relative permeability at low fields. Using such a material allows one
to still get a quite high value of i, when the material is saturated.

Similarly, the effects of the ferromagnetic material on the trapping properties of the drilled
samples are larger when the volume ratio of ferromagnetic material increases. Using holes of
large diameters allows one to get a larger relative increase of maximum trapped flux. However,
there is a compromise to resolve as the samples with large hole diameters are not able to trap
a large magnetic flux. The combination of the results presented in Chapter 3 (influence of the
hole on the magnetization drop) and in this Chapter should help the designer of a trapped flux
magnet to find the optimal hole diameter.






Conclusions and outlook

Drilling holes in bulk superconductors primarily aims at facilitating the oxygen annealing process in
view of obtaining a high oxygen content, as well as a low density of defects. As a result, both the
critical current density and the maximum trapped flux density are enhanced in the sample.

Beside improving the oxygen annealing in bulk samples, the holes are also beneficial for the thermal
stability and the mechanical resistance, as the empty space cleared by the holes improves the thermal
exchange with the cryofluid and allows the sample to be mechanically reinforced by filling the holes
with a resin. However, the holes also modify the magnetic properties of the samples, as they impede
the current stream lines and modify the magnetic flux distribution in the drilled sample with respect
to that of a plain sample.

Drilled samples were already studied at the time we started the research reported in this manuscript.
However, the magnetic properties of these samples were not fully understood. Only few studies
reported the modifications of the trapped magnetic flux induced by the holes [61, 89]. They put
forward the influence of the size and of the number of holes in the sample, but neither described
precisely the modifications of the current stream lines, nor investigated the impact of the mutual
position of the holes. These opened questions triggered our thesis work.

Our dissertation aims at a better understanding of the magnetic properties of drilled samples, by
considering several methods. We follow two main directions: the numerical modelling and the exper-
imental characterization. In both domains, we develop novel and original methods for gaining access
to information that was out of reach with other existing techniques.

The numerical approach to the magnetic properties of drilled samples relies on a home-made algo-
rithm for solving the Bean critical-state model in infinitely extended samples with an arbitrary cross
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section, and on a three-dimensional finite-element method using large time steps in the case of sam-
ples assuming a power law conductivity that are subjected to linearly varying applied fields. For the
experimental characterization, we use classical Hall probe mapping techniques, volume magnetization
measurements, and a novel characterizing method that takes advantage of drilled structures so as to
probe locally the magnetic field inside the holes with the help of microcoils.

The lessons that may be learned from this study appear at two levels: (1) understanding and enhancing
the magnetic properties of drilled samples, and (2) providing indications for an efficient use of the
numerical methods applied to bulk HTS samples.

6.1 On the magnetic properties of drilled samples

6.1.1 Influence of the hole lattice on the magnetic properties

The influence of the hole lattice on the magnetic properties of the samples is investigated numerically,
starting from the simplest situation from which complexity is gradually added, so as to eventually
reproduce the experimental results.

In an infinite sample with a semi-infinite cross section, the presence of a single circular hole placed at
a given distance from the interface causes the current stream lines to be modified in a region located
beyond that hole in the direction of magnetic flux diffusion. This region of influence is delimited by a
parabolic discontinuity line where the direction of the current density changes abruptly, from a region
where it flows parallel to the sample border to a region where it flows along circular lines that are
concentric with the hole. This modification of the current stream lines leads to an increase of the
penetration depth of the applied magnetic flux density in the region of influence of the hole, and
causes a decay of the magnetization of the sample. This drop of magnetization scales neither with
the surface of the hole (oc R?, where R is the hole radius), nor with the surface of its parabolic region
of influence (< V/R), but as a surface of intermediate size, scaling as R3/2.

When two or three holes are involved, the magnetization drop can be minimized by placing the holes
along a discontinuity line of their closest neighbour. This rule remains valid in situations involving
several holes, whether the sample is of finite or infinite height. Independent of the sample cross
section, the arrangement where the holes are placed on the discontinuity lines leads to the smallest
magnetization drop with respect to a plain sample having the same dimension and critical current
density. The best magnetic properties are achieved with a centered rectangular hole lattice for samples
with a rectangular cross section, and with a polar triangular lattice for samples with a circular cross
section.

The influence of the hole lattice on the magnetic properties of drilled samples is investigated experi-
mentally on two parallelepipedic YBCO single domains; each of them is drilled after its synthesis by
6 holes that are arranged on two different lattices. The comparison of the trapped flux profile before
and after the drilling of the holes reveals that the sample with the centered rectangular hole pattern
shows better magnetic properties.
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Although the experimental results are in agreement with those predicted by the theory, they must
be considered with care. These results are based on the assumption that the critical current density
remains unchanged in drilled and plain samples. However, the drilling process routinely takes place
before the synthesis of the single domain so as to facilitate the oxygen annealing step. As a result, the
current density of the drilled samples has been reported in many cases to exceed that of plain samples
synthesized with the same process [6, 84]. Since plain and drilled samples do not have the same J,
our analysis should be completed by a delicate assessment of the increase of critical current density
resulting from the oxygen annealing step. Despite this remark, the results presented in this thesis
on the influence of the hole lattice suggest that the magnetization of drilled samples can however
be enhanced by adopting the optimal hole arrangement corresponding to the geometry of the sample
cross section, whether or not the current density remains constant after the drilling.

6.1.2 Magnetic field inside the holes

Drilled samples offer a unique opportunity to probe locally the magnetic field inside the bulk of the
samples with a non-destructive technique. This novel experimental method consists in inserting sensing
microcoils inside the holes of a drilled sample subjected to a time-varying magnetic field. The objectives
of the method are twofold: (1) to study how the magnetic flux diffuses through the holes, and (2)
to determine whether the local magnetic properties measured on the surface (e.g. by Hall probe
mapping) are indicative of those in the bulk of the sample.

The magnetic field inside the holes is characterized with two types of magnetic excitations: a low
frequency AC field and a pulsed field. The microcoil technique with an AC excitation is used for a
local characterization of the bulk magnetic properties of the sample, whereas the technique with a
pulsed field excitation reveals features associated with the diffusion of a magnetic pulse in the bulk of
the sample.

For an AC applied field of a given amplitude, three regimes of penetration of the magnetic flux inside
the holes are observed: (i)- the shielded regime, for which the magnetic flux does not penetrate the
hole; (ii)- the gradual penetration regime, for which the magnetic flux density in the hole is measurable
and smaller than the applied field; and (iii)- the flux concentration regime, for which the magnetic flux
density in the hole is larger than the applied one. The spatial distribution of these penetration regimes
is directly associated with the microstructure of the sample. In particular, it is in good agreement with
the magnetic properties at the surface, as measured with Hall probe mappings.

The flux concentration regime cannot be predicted with the Bean model analysis in a sample with an
infinite height. It occurs in holes that are located at the periphery of efficiently shielded islands and is
attributed to the demagnetizing field of these particular islands. The holes offer a return path for the
demagnetizing field lines which causes the flux concentration.

Moreover, the characterization of the diffusion of a magnetic pulse inside the holes of a drilled YBCO
sample leads to three observations. First, some holes also act as return paths for the demagnetizing
field and the magnetic flux density measured in their median plane exhibits features (e.g. flux concen-
tration) that are not predicted by models considering infinitely extended samples. Then, holes located
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at the sample edges are found to be penetrated in their median plane sooner than at their surface,
while the opposite is found for the other holes. This behaviour may arise from either non-uniform su-
perconducting properties in the sample or from particular thermal boundary conditions at the surface
of the sample. Finally, the trapped flux density is measured to be larger in the median plane than on
the surface (by a factor of about 2, which depends on the size of the sample), and it allows us to
directly estimate the critical current density in the volume of the sample.

6.1.3 Improvement of the trapped flux with ferromagnetic powder inside the holes

In the same manner as a resin impregnation in the holes reinforces mechanically the drilled samples,
filling the holes with a ferromagnetic powder improves their magnetic properties. Due to its high
magnetic permeability, the ferromagnetic powder modifies the distribution of the trapped magnetic
flux density in the sample. In the median plane, the magnetic flux density is concentrated in the
impregnated holes where it exceeds the flux density in the superconductor by a factor proportional
to the relative permeability of the powder. On the surfaces, the differences between the flux in the
superconducting material and in the ferromagnetic powder are smaller than in the bulk. However, the
trapped flux on the surface of an impregnated sample is measured and calculated to be larger than
that above a drilled sample that is not impregnated.

A modelling of drilled superconductors containing ferromagnetic powder shows that the increase of
trapped flux on the sample surface may even compensate the magnetization drop arising from the
presence of the holes in the sample. Starting from a synthesized sample, the drilling of the holes
reduces its maximum trapped flux, provided the critical current density is not modified by the drilling
process. Filling the holes with ferromagnetic powder may help compensating this drop of trapped flux.
However, since that finding is only based on simulation results, a further experimental investigation
should be carried out in order to confirm it.

6.1.4 General prospects

In previous works related to drilled samples [6, 10, 77, 78], the holes were drilled in the preform without
taking into account the influence of their arrangement on the magnetic properties of the samples.
The chosen hole arrangement has always arisen from a compromise between the need to have small
diameters in order not to impede the growth front and the requirement for a simple regular pattern to
be implemented easily on the drilling machine. The results presented in this thesis show that a third
parameter should be involved when designing the hole array: the holes should be ideally placed so that
they lie on the discontinuity lines of their neighbours.

Since the presence of a hole lattice induces a magnetization drop, the design of the optimal hole lattice
should therefore be focused on finding a balance between the increase of critical current obtained with
the holes drilled in the preform and the diminution of the magnetization induced by the holes with
respect to an ideal sample having the same critical current density and no hole. However, the results
obtained by filling the holes with a ferromagnetic powder suggest that the magnetization drop might
be suppressed in the impregnated samples. In such a beneficial situation, the compromise for the
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design of the hole lattice would be greatly simplified. Further experimental investigations are however
needed to confirm these results.

The hole filling with a ferromagnetic powder has nevertheless to be confronted with the results con-
cerning the thermal stability of the drilled structures that are presented in the thesis of P. Laurent [7].
The question that obviously needs to be raised concerns the influence of the powder on the cooling rate
of the sample. It would be detrimental to reduce the heat exchange with the cryogenic fluid because
of the powder. However, in a non-impregnated sample, the cooling in the holes that results from heat
losses in the sample may induce liquid nitrogen to locally boil and form a gas phase in the holes. The
cooling efficiency might be affected by the presence of this phase. If it were the case, the presence
of the powder would not be so detrimental, provided it exhibits a good thermal conductivity. Filling
the hole with a ferromagnetic powder of good thermal conductivity might thus be an advantageous
solution.

In the present work, we investigate several features associated with drilled samples, but others also
deserve to be considered in a near future. In particular, the study of the thermal stability of the
non-impregnated drilled structure presented in the thesis of P. Laurent [7] could also be extended to
the case of a pulsed-field activation, where it is well known that a large amount of heat is created by
the fast motion of vortices. Our work could serve as a basis for that investigation. A thermal model
could be easily introduced in the 3D FEM simulations so as to predict the maximum temperature rise
in the drilled sample subjected to a given pulse.

Finally, the measurements of the magnetic field inside the holes reveal that the holes are not penetrated
in the same manner. Some specific applications could take advantage of the empty space cleared by
the holes. One could imagine inserting small devices that are sensitive to the magnetic noise in
the shielded holes so as to reduce the perturbation, or using the flux concentration to increase the
magnetic flux applied to the devices.

6.2 On the use of the numerical methods

The study of the magnetic properties of the drilled sample is accompanied by the development of
specific numerical models that allow us to successfully conduct the research. While specifically used
for assessing the magnetic properties of the drilled samples, these methods are not strictly restricted
to this case and possess a wider range of applications.

Moreover, we often consider the specific issue of finding an appropriate numerical method for ob-
taining an answer to a given question. Thanks to the experience gained through this study, several
recommendations may be given with regards to the relevance, advantages and drawbacks of each
method.

Three methods of increasing complexity are considered: the numerical Bean model, a two-dimensional,
and a three-dimensional finite-element method. The choice of a given numerical method depends on
the type of information that is expected from the simulation.

The Bean model is applied with infinite samples of arbitrary cross section where a very strong pinning is
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assumed (the flux creep is neglected). This model is solved very fast, but its implementation depends
on the sample geometry. An adjustment of the numerical code is required each time the cross section
geometry is changed. Even though the demagnetizing effects are neglected, the model provides an
accurate estimate for the relative magnetization drop induced by the presence of holes. When the
sample height is well larger than the width of its cross section, the Bean model even gives a satisfactory
estimate for the local magnetic flux density in the median plane. In the other situations where the
height of the sample is comparable to the width of its cross section, the Bean model analysis could
only provide a first glimpse of the magnetic properties of a HTS sample.

The 2D FEM is used with the same sample geometries as those used with the Bean model, but with
a power law conductivity that takes into account flux creep phenomena. Finite-elements are robust
when dealing with the highly non-linear E — J power law, they can be used for any sample geometry,
and they are relatively easy to implement in existing software environments. The simulations with
the power law conductivity are mandatory as soon as the modelling focuses on the effects related
to the electric field dependence of the current density, such as those associated with the sweep rate
of the applied magnetic flux density or with the temporal decay of the trapped magnetization. 2D
geometries still suffer from the same drawbacks as those observed with the numerical Bean model.
Thus, 2D FEM simulations are recommended when the main interest lies in finding the general trend
of the modifications of the magnetic properties induced by flux creep related phenomena.

In the situations where the cross section does not exhibit an axial symmetry, the resort to 3D FEM
modelling is essential when demagnetizing effects have to be modelled. Such a situation occurs in
particular when one looks for an accurate estimate of the local flux density on the surface and in
the median plane of a drilled sample, or when the effects of a ferromagnetic material in the holes
have to be simulated in that sample. The 3D FEM simulations require large meshing sizes and are
time-consuming.

In order to speed up the 3D simulations so as to be carried out in a reasonable calculation time,
we propose a method with very large time-steps. In the limit of a linearly increasing field from 0 to
Bmax. the flux distribution inside a 3D HTS superconductor is calculated with a single time-step (two
time-steps if the field returns back to zero, so as to simulate the trapped flux distribution). The major
drawbacks of the method are that it cannot be used (i), with a HTS sample subjected to an AC or a
pulsed magnetic field, and (ii), for calculating the decay of the magnetization due to the flux creep.

When recalling the need of accurate simulations, it is important to keep in mind that the accuracy of
the results does not entirely rely on the simulation method. Independent of the method (the numerical
Bean model, the 2D FEM, or the 3D FEM), the agreement with the measurements strongly depends
on the knowledge of the material parameters (mainly the critical current density). When dealing with
HTS bulk melt-textured samples, this may turn out to be a major issue. Besides the fact that the bulk
material may exhibit a polycrystalline behaviour for which it is very difficult to extract the material
parameters, single domains of YBCO may also exhibit a non-uniform distribution of critical current
density that is difficult to simulate.

The 3D numerical method presented in this dissertation fits in line with the current development of
the 3D modelling of HTS [140, 225]. It prepares the ground for a more complete model that would
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incorporate the effects associated with the current parallel to the magnetic field lines. In particular, one
could already use our 3D model to check whether or not the current may have a component parallel
to the magnetic field in drilled structures. It would then be interesting to estimate the magnitude of
the corrections that would be brought by a model taking longitudinal components into account [136].

6.3 General conclusion

In addition to facilitate the oxygen annealing and the thermal stability of the sample, the presence
of holes in bulk HTS suggests several other ways for enhancing the performance of HTS trapped
field magnets. The maximum trapped field in the magnet may be significantly increased thanks to
an optimal hole arrangement and/or an impregnation of the holes with ferromagnetic powder. The
microcoil technique for probing the magnetic field inside the holes provides a better knowledge of the
propagation of a magnetic pulse inside the bulk of the sample, so as to better control the pulsed field
activation of the magnet. The results of this thesis aim at reinforcing the interests of drilled samples
for trapped field magnet applications and are believed to encourage other scientists to proceed with
these structures.






Brandt method for the magnetic field penetration into
hollow cylinders of finite height

In this Appendix, we present a numerical method based on the Green's functions for solving the
magnetic field penetration in superconducting samples with an axial symmetry and whose conductivity
is modelled by an E(J) power law. The method has been developped by E.H. Brandt [135] and the
results obtained with tubular geometries have been validated experimentally by S. Denis [126].

We consider a superconducting cylinder with a finite height and a centered hole, i.e. a superconducting
tube, that is subjected to a magnetic field parallel to its z-axis, B, = B,e, (see Figure A.1). The
cylinder radius is a and its height is h. The inner diameter of the tube is denoted by ri¢.

Because of the axial symmetry, the current is flowing along the azimuthal direction parallel to the

Figure A.1: Sketch of the cylindrical tube of radius a and height h. The inner radius is ri,;. The applied
magnetic field is parallel to the cylinder axis. A point P in the tube is localized by its cylindrical
coordinates (r, 6, z).
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electric field and does not depend on the angular coordinate 6. The current and the electric field are
written as

J=J(r,z)eg and E = E(r,z)ey, (A1)

where ey is the unit vector parallel to the azimuthal direction.

As usual, the magnetic field is split into two contributions: the applied magnetic field B, and the
self-field induced by the currents in the superconductor, Bge/r, which is identically null far from the
sample. The total magnetic field is given by

B(r,z) = Bae;+ Bser. (A.2)

According to symmetry, the self induced magnetic field does not depend on the angular coordinate
and has no azimuthal component, that is

Bseir(r.z) = B/(r.z)e, + B,(r z)e;,. (A.3)

We introduce the vector potential A such that

VXA = Bgy and V-A=0. (A.4)

B../;r = 0 infinitely far from the sample and the vector potential A is assumed to be also identically
null on this region. Again, the axial symmetry implies that A has only an azimuthal component which
does not depend on the angular coordinate,

A = A(r, z)eg. (A5)
The vector potential related to the applied magnetic field assumes the following form in the Coulomb

gauge

VxA, — Be, = Aa:f%Baee.

>
(@)}
~—

Assuming the constitutive law B = ugH (which boils down to neglect Hc1, see [174]), the substitution
of the vector potential into the Ampere's equation, V x H = J, yields

V xB

= V x (Bse; + Bserr)
= V X Bgerf

= VxVxA

= V(V-A)—AA
= —AA

poJ(r. z)eg

_j>
~
—

= ‘AA(r, z) = —uod(r, 2) ‘ (A8
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The elliptic equation (A.8) can be solved using a Green's functions approach. The Green function
corresponding to the Laplacian equation in a three-dimensional geometry with the above boundary
conditions reads

G(ry,r) = —1/(4mrr —ra). (A9)

The solution corresponding to Equation (A.8) is then given by

h/2 o
A(r,z) = *Mo/ / / G(r.0,z,r.6, 2 2)dr'do'dZ (A.10)
Tint h/2

The integral domain is limited to the support of the current density, i.e. the superconducting region.

We project the vector equation (A.10) onto the azimuthal direction eg corresponding to the point
(r,z). For the sake of convenience, we introduce a new variable ¢ = 6 — 6.

h/2 pem _ r'cospJ(r', )
Alr.z) = - dedz'dr’ (A11)
(r.2) Ko /rm: /h/Q/ AT (22 4 12 + 1 — 2rr' cos ) /2 pazdr B

The kernel integral Q(r, z, r'Z"), defined as

2m !
-1 r' cos @
rzr ) = de, A.12)
Qlr.z.r.z) /o 4 (22 417 + 17 — 21 cos )2 ¢ e

can be evaluated numerically for each pairs (r, z, ', ') of points belonging to the grid formed in the
r — z plane of the tube

Substituting (A.12) into (A.11), it yields
h/2
A(r,z) = —uo/ / Q(r.z,r,2)J(r' Z)dZ dr'. (A.13)
Tint
We now introduce the Faraday's law for obtaining a second relationship between A and J
VxE = -B=-Vx(A+A,), (A.14)

and we express it in the form

E(r.z) = —~A(r.z) + gBa. (A.15)

Since, the electric field depends on the current with the non-linear power law

J(r.z, t)\" |
El(rz.t)] = E. (@) , (A.16)
Je
we thus obtain a relationship between A and J. Let us introduce it into Eq. (A.13), it yields
a h/2 ) r
E[J(r,z, t)] = Mo/ Q(r,z,r,2YJ(r 2 t)ydZ'dr' + EBa(t)' (A.17)
fine J —h/2
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In order to have an explicit expression for the time evolution of the current density, we need to invert
this latter equation. For this purpose, Eq. (A.17) is discretized on the two-dimensional grid with
spatial steps Ar and Az, yielding

E[si(t)] = qurAZZQ,ij(t)+gBa(t), (A.18)
J

where indices 7, run over all the points of the two-dimensional grid. By inverting directly this matrix
equation, we get

Ut = 3 jz_o,-;l {ELn] - ZBa(0)}| (A.19)

We obtain therefore an explicit time equation governing the time evolution of the supercurrents in
the superconducting tube. Imposing the initial condition J;|;—q = 0, the current density is numerically
integrated in the time domain using

Jit+At) = Ji(t) + Ji(t)At (A.20)

The choice of the time step is crucial for the convergence of the method. An adaptative time step
procedure is described in Ref [135] and makes the algorithm converge toward a solution that reproduces
well the experimental data.



Characterization of the ferromagnetic powder

The magnetic permeability of the ferromagnetic powder that is used as a filling material for impreg-
nating the drilled samples, as discussed in Chapter 5, is measured with a bespoke setup. A closed
magnetic circuit, consisting of an empty electric cable sheath that is shaped as a torus, with an open-
ing end perpendicular to the torus, is filled with the ferromagnetic powder. The opening end is used
for pressing the powder in the magnetic circuit, so as to prevent from the formation of an air gap.
The magnetic circuit has a total length of £ =20 cm. Two coils are turned around the sheath: one
with N; = 800 turns for inducing an AC magnetic field in the closed magnetic circuit, we will refer to
it as coil 1, and another one, referred as coil 2, with Ny = 100 turns for probing that magnetic field.
Figure B.1 shows (a) a photograph of the permeameter, with the toroidal magnetic core and both
coils and (b) the schematic illustration of that setup.

(a) (b)

Closed magnetic circuit

Section S

Length ¢

Coil 2

Coil 1 Np turns
N; turns Section S
Section S

Figure B.1: (a)- Picture of the closed magnetic circuit made of the ferromagnetic powder inserted via the
opening end in a plastic sheath. Two coils are wound around the sheath. (b)- Schematic illustra-
tion of the magnetic circuit.
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(a) -300 K (b)-77K
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Figure B.2: Time signal of the applied current in the primary coil (black line) and of the pick-up voltage across
the secondary coil (grey line) at 300 K (a), and 77 K (b).

According to Hopkinson's law, coil 1 that carries an AC current with an amplitude / induces a magnetic
flux ¢ in the magnetic core that reads

¢
il = 9. (B.1)

The electromotive force across coil 2, V/, is proportional to the time derivative of the magnetic flux
inside the core. We thus differentiate Equation (B.1) with respect to time,

dl LV

— = —— B.2
! dt ,LLS N2 ( )
The relative magnetic permeability, 4, = /o, is then given by,
Ve
_ B.
Hr oW Ny NoS (B.3)

where w is the pulsation of the excitating current /.

The induced emf across coil 2 is reproduced in Figure B.2 together with the current flowing through
the exciting coil, at a temperature of 300 K (a) and of 77 K (b). The frequency of the excitation is
101 Hz. We extract the relative permeability from these data, and we find that u, = 23 and u, = 28
at T =300 K and T =77 K, respectively.

The magnetic permeabilty of the powder may also be extracted from the measurement of the in-

ductance of the coils. Actually, the inductance L of the coil 1 (or, similarly, of the coil 2) is given

by

NZuS
7

We measure the inductance of coil 1 at 101 Hz, and we find a relative permeability of u, = 25 and
W =28 at T =300 Kand T =77 K, respectively. Both experimental techniques provide matching

L = (B.4)

results.
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