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Abstract

Purpose: The aim of this study was to assess the potential of pre-treatment cell kinetic parameters to predict outcome in head and neck

cancer patients treated by conventional radiotherapy.

Materials and methods: Data from 11 different centers were pooled. Inclusion criteria were such that the patients received radiotherapy

alone, and that the radiotherapy was given in an overall time of at least 6 weeks with a dose of at least 60 Gy. All patients received a tracer

dose of either iododeoxyuridine (IdUrd) or bromodeoxyuridine (BrdUrd) intravenously prior to treatment and a tumor biopsy was taken

several hours later. The cell kinetic parameters labeling index (LI), DNA synthesis time (Ts) and potential doubling time (Tpot) were

subsequently calculated from ¯ow cytometry data, obtained on the biopsies using antibodies against I/BrdUrd incorporated into DNA. Each

center carried out their own ¯ow cytometry analysis.

Results: From the 11 centers, a total of 476 patients conforming to the inclusion criteria were analyzed. Median values for overall time and

total dose were 49 days and 69 Gy, respectively. Fifty one percent of patients had local recurrences and 53% patients had died, the majority

from their disease. Median follow-up was 20 months; being 30 months for surviving patients. Multivariate analysis revealed that T-stage,

maximum tumor diameter, differentiation grade, N-stage, tumor localization and overall time correlated with locoregional control, in

decreasing order of signi®cance. For the cell kinetic parameters, univariate analysis showed that only LI was signi®cantly associated

with local control (P � 0:02), with higher values correlating with a worse outcome. Ts showed some evidence that patients with longer

values did worse, but this was not signi®cant (P � 0:06). Tpot showed no trend (P � 0:8). When assessing survival in a univariate analysis,

neither LI nor Tpot associated with outcome (P � 0:4, 0.4, respectively). Surprisingly, Ts did correlate with survival, with longer values

being worse (P � 0:02). In the multivariate analysis of local control, LI lost its signi®cance (P � 0:16).
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Conclusions: The only pretreatment kinetic parameter for which some evidence was found for an association with local control (the best

end-point for testing the present hypothesis) was LI, not Tpot, and this evidence disappeared in a multivariate analysis. It therefore appears

that pretreatment cell kinetic measurements carried out using ¯ow cytometry, only provide a relatively weak predictor of outcome after

radiotherapy in head and neck cancer. q 1999 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The analysis of causes of radiation failure in retrospective

series of patients with head and neck cancer and cervix

cancer, suggests a loss of local control as the overall treat-

ment time increases for the same total dose [1,4,22,33,

45,53]. This is attributed to tumor cell proliferation during

fractionated radiotherapy. As longer treatment times lead to

loss of local control, it has been suggested that shorter treat-

ment times could lead to an increase in local control. For

this reason, accelerated treatment regimens have and are

being designed [28,30,32,35,38,41]. However, these treat-

ments cause severe acute reactions. Due to this, lower total

doses are sometimes given. Slowly proliferating tumors

may therefore do worse when treated with accelerated sche-

dules compared with conventional schedules. In addition, it

is not desirable to subject all patients to the intense acute

reactions of the accelerated schedules. It would thus be

useful to predict which tumors could show rapid prolifera-

tion during treatment and would be likely to bene®t from

accelerated radiotherapy.

The median potential doubling times (Tpot), determined

in tumors before treatment, seem to be similar to the average

values of effective doubling times (Teff) which actually take

place during treatment as a response to therapy-induced cell

depletion. The cell birth rate and therefore, the potential

doubling time (Tpot), can be calculated knowing the label-

ing index (LI; proportion cells incorporating the DNA

precursor) and Ts (the DNA synthesis time). Tpot is de®ned

as the time within which the cell population of a tumor

would double if there were no cell loss [42]. The hypothesis

is thus that Tpot measured before treatment may correlate

with Teff during treatment.

With the development of antibodies to DNA-incorporated

thymidine analogues iodo- and bromo-deoxyuridine, ¯ow

cytometry could be used to more rapidly and more quanti-

tatively assess proliferation [15,16,23]. An added advantage

is that these methods could be applied after in vivo labeling

of the patient with the analogue, avoiding potential in vitro

artifacts. Several studies have employed such methods to

assess the predictive value of pre-treatment cell kinetic

parameters after radiotherapy [2,3,5,6,11,14,31,34,43,

47,54]. Results have been variable, some showing positive

association with outcome [3,5,14,47,54], and some not

[11,18,31,34,43]. Almost all the studies have included rela-

tively few patients, limiting their power.

The aim of the present study was to combine the data

from many of these trials, in order to better assess the

value of cell kinetic measurements by increasing the statis-

tical power of the analysis. The majority of reported studies

had been carried out in head and neck cancer and many for

radiotherapy alone. This paper reports on the pooled cell

kinetic data of head and neck cancer patients treated with

conventional radiotherapy from 11 centers in Europe (one

Egyptian trial was included although the measurements

were carried out in The Netherlands).

2. Materials and methods

Data on a total of 476 patients from 11 centers were

initially submitted for this analysis (Table 1). Inclusion

criteria were, no neoadjuvant chemotherapy, overall treat-

ment time longer than 39 days, total dose at least 60 Gy, and

the interval between IdUrd injection and biopsy at least 4 h.

The latter were excluded on the grounds that Ts would

probably be underestimated using the RM analysis origin-

ally proposed by Begg et al. [7]. All patients were primarily

irradiated for squamous cell carcinomas of the head and

neck with treatment schedules lasting at least 6 weeks (39

days). Median age was 59 years and sex ratio (male/female)

was 8:2. For subsequent analysis, primary tumors were clas-

si®ed into four groups: oral cavity (n � 128), oropharynx

(n � 211), larynx (n � 86) and others (n � 50). Other

tumors were nasopharynx, parotid, lip, hypopharnyx poster-

ior wall, piriform sinus, postcricoid area and unspeci®ed.

The tumor characteristics are summarized in Table 2.

Most patients had an advanced stage (T3, T4 and/or N2,

N3 tumors) at diagnosis (n � 330). The majority, i.e. 343

tumors (80%), were well to moderately differentiated. Infor-

mation on tumor size was available in 236 patients. The

median diameter of the primary tumor was 40 mm (range:

7±80 mm).

Before the start of radiotherapy, iododeoxyuridine

(IdUrd) or bromodeoxyuridine (BrdUrd) in a tracer dose

was injected intravenously and a biopsy from the primary

tumor was taken several hours later. Biopsies were ®xed in

ethanol, subsequently digested, stained for IdUrd/BrdUrd

uptake and DNA content and the suspensions acquired on

the ¯ow cytometer according to standard procedures.

Measurements were done in 9 laboratories. There was no

single center serving as a reference laboratory for quality

control and measurement checks.

The DNA index of the tumor was calculated by measur-

ing the position of the tumor G1 peak relative to the diploid

G0/G1 peak. To determine the length of the S-phase (Ts),
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the simple relative movement method (RM) based on the

average position of the labeled cells between G1 and G2 was

used [7]. Brie¯y, the analysis was done by placing compu-

ter-drawn windows around the different populations and

assuming that the RM was 0.5 at time 0. The mean red

¯uorescence (DNA content) of the labeled cells relative to

the red ¯uorescence values for G1 and G2 was ®rst deter-

mined. Ts could then be calculated knowing the time

between IdUrd administration and taking the specimen, t.

The two equations used for calculating Ts were: (1): RM

� (FL 2 FG1)/(FG2 2 FG1) and (2): Ts � 0.5 t /(RM 2
0.5); where FL is the mean red ¯uorescence of IdUrd/

BrdUrd labeled cells and FG1, FG2 are the mean red ¯uor-

escence positions of the G1 and G2 cells, respectively. The

labeling index (LI) was determined as the percentage of

green labeled cells (B/IdUrd content), after correcting for

the labeled cells which had divided. The potential doubling

time (Tpot) was calculated as the ratio Ts / LI, assuming that

the age distribution factor, lambda, was unity [42]. No qual-

ity control procedures, i.e. retrospective check of ¯ow cyto-

metry dot plots, were carried out in the present study. As an

indirect measure of quality, the CV of the ®rst tumor popu-

lation and the presence of a separate G1 peak were

requested on the forms.

Two separate forms were sent to the participating centers.

On the ®rst form, data on patient characteristics (initials,

center, age, sex), tumor characteristics (TNM, histology

and maximum tumor diameter), radiotherapy speci®cations

(dose, fraction size, number of fractions per day, reasons for

interruptions, overall treatment time), cell kinetics (time

between injection of B/IdUrd and biopsy, Ts, LI and

Tpot) and limited follow up information (local control,

distant metastasis, date of last follow up, death) were

requested. On an additional form, more detailed information

on treatment and follow up (complete remission in treat-

ment ®eld, addition of neoadjuvant chemotherapy and

salvage surgery) as well as more information on the quality

of the ¯ow cytometry data (CV of the ®rst tumor population

and presence of a separate tumor G1 population) were

requested.

Patients were irradiated to a total dose of 60±88 Gy

in fractions of 1.1 (one patient) to 3 Gy (one patient) per

fraction, although the vast majority of the patients were

treated with 2 Gy fractions (499, 86.3%). To study the in¯u-

ence of dose on outcome, the normalized total dose para-

meter was used, which corrects for fractionation size

employing the linear-quadratic formalism using an alpha/

beta ratio of 10 Gy, according to the equation:

NTD � D 1 1 d=10� �=1:2 �1�
where D is the total dose of the fractionation schedule and d

is the dose per fraction. This equation calculates the dose

equivalent of a schedule in 2 Gy fractions.
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Table 1

Participants in the study

Centera Kinetic

measurement

laboratory

Participants

UmeaÊ University,

UmeaÈ, Sweden

Northwood

UmeaÊ

B. Zackrisson

H. Gustafsson

R. Stenling

Centre Hospitalier Univ.

Ladois, Lausanne, Switzerland

(data management for trial

NCI T92-005)

Northwood

BesancËon

Lausanne

P. Coucke

N. Paschoud

Danish Cancer Society,

Aarhus, Denmark

Aarhus M. Hoyer

J. Overgaard

North Italian Study Group,

Varese, Italy

Pavia P. Antognoni

A. Richetti

M. Bignardi

G. Rampello

L.F. Cazzaniga

M. Danova

Institut Gustave Roussy,

Villejuif, France

Northwood

IGR

J. Bourhis

EORTC (trial 22851) Amsterdam J.C. Horiot

H. Bartelink

National Institute for Cancer

Research, Genoa, Italy

Genoa R. Corvo

W. Giaretti

NCI, Cairo, Egypt Amsterdam H. Awwad

T. Shouman

Institut Curie, Paris, France Paris IC Z. Maciorowski

T. Jouffroy

Algemeines Krankenhaus der

Stadt Wien, Vienna, Austria

Northwood W. Dobrowski

AZU, Utrecht, The Netherlands Utrecht H. Struikmans

D. Rutgers

1 Some centers carried out individual studies, while others coordinated

multicenter trials (Cairo, EORTC, Lausanne, Varese).

Table 2

Tumor characteristics

N0 N1 N2 N3 Median

tumor

diameter

(range 7±

80 mm)

Oral cavity T1 7 1 1 0 16

T2 31 5 4 2 31

T3 14 10 9 1 52

T4 14 13 8 6 47

Oropharynx T1 9 2 0 2 19

T2 30 19 19 3 33

T3 30 18 16 10 45

T4 15 10 21 6 45

Larynx T1 11 2 2 0 14

T2 22 0 0 0 21

T3 18 7 3 2 32

T4 15 2 3 0 36

Others T1 1 0 0 1 ±

T2 4 2 4 1 33

T3 4 5 2 12 56

T4 6 3 5 0 52



The overall treatment time varied between 6 and 11

weeks. Ninety patients had signi®cant interruptions (6±27

days) due to acute toxicity.

Local failure was de®ned as either (a) progression in the

irradiated area or (b) the presence of viable tumor cells in

the specimen from salvage surgery or (c) death due to tumor

without registered complete remission and without the

presence of tumor outside the irradiated volume. Time of

local failure was measured from the start of radiotherapy

until time of progression (a), salvage surgery (b) or start of

radiotherapy (c). All patients without local failure were

censored at the last date of follow-up.

Information on salvage surgery was available in 299

cases; 51 patients (17%) underwent salvage surgery after

radiotherapy. Information on the resection specimen was

recorded and in 12 of these no viable tumor was present.

For subsequent analyses, these patients were regarded as

locally controlled by radiotherapy.

2.1. Statistical methods

A stepwise procedure using Proportional Hazard regres-

sion analysis was used to identify prognostic factors with

respect to local failure. In the ®rst stage, only patient and

tumor characteristics (excluding LI, Ts and Tpot) were

considered for inclusion. In the second stage treatment

factors (including center) were added and ®nally the prog-

nostic value of LI, Ts and Tpot was tested, after controlling

for the confounding variables resulting from the ®rst two

stages. The upper limit for the P-value in order to be

included as a confounding variable was 0.15.

In all analyses, interval and ordinal variables were

considered to be linearly related to log(hazard). However,

linearity of each variable was tested at each step and if non-

linearity was present the P-value of linear plus non-linear

effects was used to decide on inclusion or not.

For variables with missing values, a dummy variable was

created. The missing values themselves were replaced by a

®xed value within the range of the original variable. When-

ever the modi®ed variable was included in the model, the

proportional hazard-analysis was strati®ed according to this

missing value indicator.

At each step, the assumption of proportional hazards was

tested by plotting the weighted Schoenfeld residuals against

time. Log-cumulative hazard plots were also made, adjusted

for the other variables as covariates in the model. If these

plots suggested a deviation from the proportionality

assumption, this was investigated further by ®tting a time-

dependent model, using a linear variable ln(time) interac-

tion.

These checks were always performed for new variables to

be entered in the model. If this was judged to be a major

prognostic variable, the same was done for the variables

already in the model. If these checks shed doubt about the

proportionality assumption, then in the next steps, these

variables were used as strati®cation variables rather than

as covariates. Only when testing the variables themselves

they were used as covariates.

As marked differences between centers existed regarding

the distribution of the cell kinetic parameters (ANOVA: LI

P , 0:01, Ts P , 0:01 and Tpot P , 0:01), these para-

meters were analyzed by strati®cation per center (Table

3). In a second step, as the difference in variance between

centers for LI and Tpot (P , 0:001) was statistically signif-

icant, these parameters were also standardized using center-

speci®c mean and SD values. The standardized parameters

then have a mean of 0 and an SD of 1 within each center.

These standardized values were subsequently used in a

second multivariate analysis.

All P-values were calculated from the proportional

hazard based Wald statistic. P-values were adjusted for

multiple comparisons only where explicitly stated. In

those cases, this was done using the procedure of Hommel.

Lifetable calculations were done using the product limit

method of Kaplan and Meier.

3. Results

3.1. Proliferation characteristics

The ¯ow cytometry parameters are summarized in Table

4. One hundred and ninety-four tumors (46.9%) were

diploid and 220 were aneuploid (53.1%); in 62 cases infor-

mation on ploidy was missing. The median DNA index

was 1.38 (range 0.85±2.9). The present data con®rm that

head and neck tumors are a relatively rapidly proliferating

group of tumors with a median Tpot of 5.1 days (range

0.8±72.9 days). The median Tpot for the diploid tumors

was 6.3 days, and for the aneuploid tumors, it was 4.1

days. The median LI was 8.85% (range 0.6±47.7%), the

median for the diploid tumors being 6% while it was

12.7% for the aneuploid tumors. The median Ts was 10.7

h (range 4.4±45.7 h), and was longer in the aneuploid

subgroup (12.4 h) compared with the diploid subgroup

(10.0 h). The more rapid apparent proliferation rate of

aneuploid tumors is probably an artifact related to the abil-
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Table 3

Cell kinetic parameters per center

Center N LI (%) Ts (h) Tpot (days)

1 45 8.6(2.1±28.0) 9.8 (6.0±30.0) 4.9 (2.1±20.8)

2 59 12.6 (2.2±22.1) 11.5 (6.3±33.2) 4.6 (1.44±14.5)

3 72 8.7 (2.6±29.9) 12.2 (7.0±39.1) 6.0 (1.7±29.2)

4 61 9.7 (0.8±24.0) 15.4 (7.7±25.9) 5.6 (1.4±70.4)

5 64 7.1 (0.8±47.7) 8.4 (4.4±21.0) 4.6 (0.8±72.9)

6 31 7.0 (1.8±38.1) 9.7 (6.1±45.7) 5.0 (1.8±19.0)

7 62 6.6 (0.6±23.8) 8.3 (5.3±23.8) 4.7 (1.2±44.4)

8 32 8.0 (1.0±12.4) 15.0 (7.5±21.0) 7.4 (5.2±17.5)

9 16 10.9 (1.4±17.1) 6.6 (4.6±14.2) 3.0 (1.6±22.5)

10 15 16.3 (7.0±39.7) 11.3 (7.6±16.3) 3.1 (0.9±5.0)

11 19 13.9 (2.8±26.2) 11.4 (5.5±20.7) 4.7 (1.4±18.1)



ity to distinguish normal and malignant cells (see Section

4). There was a statistically signi®cant difference in cell

kinetic parameters between the different centers (ANOVA,

P , 0:001 for the three cell kinetic parameters: LI, Ts and

Tpot).

We also analyzed whether there was an association

between the cell kinetic parameters, primary tumor site

and differentiation grade. Site categories were oral cavity,

oropharynx, larynx and `others'. No signi®cant differences

were found for these site categories for LI (P � 0:27), Ts

(P � 0:57) or Tpot (P � 0:10). For differentiation grade, LI

showed the biggest differences between categories, but not

in a linear manner: mean LI values were 8.1% (`well'), 9.0%

(`moderate') and 7.4% (`poor'), giving a non-signi®cant for

the association (P � 0:081). Ts and Tpot showed no signif-

icant trends with grade (P-values 0.58 and 0.16, respec-

tively).

In 319 tumors information on the CV of the ®rst tumor

peak was available. The CV varied between 1.6 and 15.1%

with a median CV of 5%. In 289 (89%) of the 319 tumors in

which this information was recorded, a separate labeled

population at the G1 position was present, indicating that

the I/BrdUrd-injection time was longer than TG2M, increas-

ing the accuracy of Ts estimations.

3.2. Locoregional control and survival

A complete regression after radiotherapy was observed

in 244 of the 413 patients on whom this information was

registered. Fifty one percent of the patients (n � 240)

failed locally, and 11% (n � 52) suffered from distant

metastases. The median follow up for the whole group

was 20 months. Two hundred and ®fty patients died after

a median follow up of 12 months, 80% of them of their

disease. At 60 months, the locoregional control after radio-

therapy was 41.4% (SE 2.4%). The more advanced the

primary tumor, the worse local control (P , 0:0001). N-

stage also predicted for local control (P � 0:0019).

Anaplastic and poorly differentiated tumors had a signi®-

cantly better local control than moderately and well-differ-

entiated tumors (P � 0:042) (Fig. 1). Fig. 1 shows

locoregional control as a function of site of the primary

tumor. Larynx tumors showed a signi®cantly better local

control than oropharynx and oral cavity tumors

(P , 0:0001). Tumor size was also signi®cantly associated

with local control, small tumors doing much better than

large tumors (P � 0:0005, Fig. 1).

Locoregional control was not found to be in¯uenced by

ploidy (P � 0:31). For representation in the ®gures, cell

kinetic parameters (Tpot, LI and Ts) were divided into

quartiles. For the statistical analysis, however, the cell

kinetic parameters were analyzed as continuous variables.

LI was signi®cantly associated with local control

(P � 0:033), with tumors having a low LI ( , 5%) doing

signi®cantly better than tumors with a high LI ( . 15%)

(Fig. 2). Tpot was not signi®cantly associated with locor-

egional control (P � 0:8, Fig. 2) and there was some

evidence for tumors with a short Ts having a better locor-

egional control (P � 0:057, Fig. 2).

We also attempted to de®ne an `excellent' group from the

kinetic point of view. This included tumors which were

aneuploid, had good DNA histograms (de®ned as CVs of

the tumor G1 peak # 8%), a LI $ 1.5% and a Ts # 30 h.

This excluded measurements with very low labeling, since

both LI and Ts estimations would be unreliable. In this

`excellent' group of 134 patients, P-values for local control

in the univariate analysis were no more signi®cant than for

the whole patient group: 0.19 for LI, 0.38 for Ts and 0.51 for

Tpot.

Overall survival at 60 months was 33.4% (SE 3.1%).
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Table 4

Cell kinetic parameters

Ploidy N LI (%)a Ts (h)a Tpot (days)a

Aneuploid 220 12.7 (1.2±39.7) 12.4 (5.6±45.7) 4.1 (0.9±72.9)

Diploid 194 6.0 (0.8±47.7) 10.0 (4.4±21.6) 6.3 (0.8±70.4)

Site

Oral cavity 128 8.4 (0.8±28.0) 10.3 (5.5±39.1) 5.1 (1.3±72.9)

Oropharynx 211 8.5 (0.6±39.7) 10.9 (4.4±45.7) 5.6 (1.2±44.4)

Larynx 87 10.5 (0.8±47.7) 11.0 (4.6±25.9) 4.1 (0.8±70.4)

Others 50 10.3 (1.8±34.8) 10.8 (5.6±22.6) 4.7 (0.9±22.5)

T-stage

T1 39 9.5 (1.4±47.7) 9.8 (4.6±32.1) 6.4 (0.8±22.5)

T2 146 9.6 (0.8±25.8) 11.5 (5.3±33.2) 6.7 (1.3±70.4)

T3 162 10.4 (0.6±38.1) 12.5 (5.5±45.7) 6.6 (1.4±44.4)

T4 129 10.7 (0.8±39.7) 11.9 (4.4±39.1) 6.9 (0.9±72.9)

Grade

Well diff. 222 9.9 (0.6±39.7) 11.7 (6.0±25.9) 6.4 (0.9±44.4)

Mod. diff. 168 10.8 (0.8±47.7) 11.8 (5.3±39.1) 6.7 (0.8±72.9)

Poorly diff./anapl. 86 9.6 (0.8±38.1) 12.2 (4.4±45.7) 7.8 (1.4±70.4)

a Values are the median with the ranges in parentheses



Overall survival was signi®cantly associated with T stage

(P �, 0:0001), N stage (P �, 0:0001), site of the primary

tumor (P � 0:0071) and tumor size (P � 0:0002), but not

with differentiation grade (P � 0:34).
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Fig. 1. Local control as a function of differentiation grade (upper), site of primary (middle) and maximum tumor diameter (lower). All three parameters showed

signi®cant differences in a univariate analysis as assessed by log rank trend. The data show that anaplastic tumors do better than well differentiated tumors (best

vs. worst), larynx does better than oral cavity, and larger tumors do worse. Number of events/total numbers per group for grade were: 88/175 well, 94/167

moderate, 29/79 poor, 1/7 anaplastic. For site: 76/128 oral cavity, 99/211 oropharynx, 30/86 larynx, 26/50 others. For diameter: 8=34 , 20 mm, 44/98 21±40

mm, 29/51 41±50 mm, 36=48 . 50 mm.



Overall survival was not in¯uenced by either LI

(P � 0:42) or Tpot (P � 0:43). Unexpectedly, a short Ts

was signi®cantly associated with a better overall survival

(P � 0:016).
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Fig. 2. The in¯uence of the three cell kinetic parameters on local control: LI (upper), Ts (middle), Tpot (lower). Only LI showed a statistically signi®cant

association with local control in a univariate analysis, with low LI tumors associated with a more favorable outcome. Number of events/total numbers per group

for labeling index were: 41=104 , 5%, 80/159 5±10%, 54/116 10±15%, 56=96 $ 15%. For Ts: 71=147 , 9 h, 44/101 9±11 h, 32/71 11±13 h, 84=156 $ 13 h.

For Tpot: 51=100 , 3 days, 70/132 3±5 days, 49/106 5±7 days, 61=137 $ 7 days.



3.3. Multivariate analysis

In a multivariate analysis, the in¯uence on locoregional

control of age, sex, localization of the primary tumor, T-

stage, N-stage, maximum tumor diameter, differentiation

grade, ploidy, center, overall treatment time, NTD (normal-

ized total dose; fractionation schedule correction calculated

using and a /b value of 10 Gy), LI, Ts and Tpot were tested.

Only differentiation grade (P , 0:0001), maximum tumor

diameter (P � 0:0004), T stage (P � 0:0007), localization

of the primary tumor (P � 0:005), overall treatment time

(P � 0:04) and N-stage (P � 0:02) satis®ed our inclusion

criterion (P , 0:15), (Table 5). After controlling for these

factors, none of the cell kinetic parameters (LI, Ts or Tpot)

were found to be independent predictors of local failure

(Table 6).

Since signi®cant differences were found between the

centers, not only in mean cell kinetic values, but also in

their variance (Table 3, and see Section 2), a second multi-

variate analysis was carried out with strati®cation per

center. However, this lead to the same conclusions as with

non-strati®ed data, with P-values of 0.26 for LI, 0.45 for Ts

and 0.67 for Tpot (Table 6). The signi®cant differences in

variance of the parameters justi®ed a procedure in which the

multivariate analysis was performed with the standardized

values for LI, Ts and Tpot, in which parameter values are

expressed as number of standard deviations away from the

mean for each center. With this analysis, Ts turned out to be

the most signi®cant cell kinetic parameter for predicting

local control after conventional radiotherapy, although

borderline (Table 6).

4. Discussion

The question of interest here, was whether repopulation

rates during radiotherapy could be predicted before the

start of therapy, using ¯ow cytometry and in vivo labeling

with thymidine analogs. The underlying assumption is that

rapid repopulation during radiotherapy can limit cure.

Values for effective repopulation doubling times (Teff)

during the latter part of radiotherapy in head and neck

tumors, calculated from retrospective clinical data, are of

the order of 4±5 days [20,21,53]. These are in good agree-

ment with Tpot values measured in other series

[2,6,11,14,31,34,44,48,49,54], leading to the hypothesis

that Tpot may indeed be a predictor of Teff [19], and was

the stimulus for carrying out several of the studies contribut-

ing to the present analysis. The combined results of 11

studies presented here, however, do not support this hypoth-

esis.

This multicenter analysis does not support the idea that

the potential doubling time, Tpot, can predict repopulation

during radiotherapy. However, one cannot conclude from

these data that proliferation or repopulation are not impor-

tant in determining outcome. Retrospective analyses of head

and neck tumor data show that longer overall times require

the use of higher doses to achieve the same level of local

control [1,21,45,53]. These data are subject to bias [10,17]

and should be interpreted with some caution. However,

more recent data from randomized trials of accelerated frac-

tionation [29,41], DAHANCA study of six versus ®ve frac-

tions per week [37]; Polish study of seven versus ®ve

fractions per week [36], all support this idea by clearly

showing the value of shortening the overall treatment
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Table 5

Hazard ratio's for the multivariate analysis of local control

Variable Category/units Hazard

ratio

95%

Con®dence

interval

Patient/tumor

Age Per 10 years 0.99 0.88±1.10

Sex Male 1

Female 0.84 0.60±1.18

Tumor site Oral cavity 1

Oropharynx 0.57 0.41±0.78

Larynx 0.59 0.38±0.93

Other 0.68 0.42±1.11

T-stage Per stage 1.34 1.13±1.57

N-stage Per stage 1.17 1.02±1.34

Max. diameter Per cm 1.31 1.13±1.51

Grade Well 1

Moderately 1.21 0.87±1.68

Poorly/anaplastic 0.51 0.33±0.80

Ploidy Diploid 1

Aneuploid 1.10 0.83±1.46

Treatment

Center Genova 1

EORTC 1.80 0.81±3.98

Lausanne 1.55 0.79±3.03

Aarhus 1.41 0.76±2.61

Umea 1.32 0.76±2.31

Cairo 1.03 0.51±2.08

G. Roussy 1.55 0.66±3.66

Varese 1.67 0.70±4.00

Utrecht 1.11 0.33±3.72

Curie 1.91 0.77±4.72

Vienna 0.99 0.48±2.04

Overall time Per week 1.17 1.01±1.36

Dose Per 10 gray 1.23 0.74±2.03

Cell kinetics

LI Per 10 percent 1.16 0.95±1.41

Ts Per 10 h 1.09 0.86±1.38

Tpot Per 10 days 0.96 0.77±1.20

Table 6

P-values for cell kinetic parameters for strati®ed and standardized data

against local control

Strati®ed per center Standardized per center

LI 0.26 0.63

Ts 0.45 0.045

Tpot 0.67 0.40



time, even at the expense of reducing the total dose [41].

These results strongly suggest, although do not prove, that

repopulation is an important factor determining outcome.

There are several problems with pooling data as we have

done here. There can be marked differences between centers

in the distribution of tumor and patient characteristics (such

as tumor site, grade and stage), treatment policies, radiother-

apy procedures and ¯ow cytometry procedures. Signi®cant

differences in average values and variances for the cell

kinetic parameters between centers were indeed found. For

this reason, we also analyzed the data by treating the center as

a confounding variable, leading to both strati®ed and stan-

dardized analyses. This did not alter the basic conclusions

that none of the cell kinetic parameters was a strong predic-

tor, although it reversed the relative importance of Ts and LI

(in favor of Ts). Taking into account that nine P-values were

calculated for the kinetic parameters in the multivariate

analyses, the P-value of 0.045 should not be taken as

evidence for a prognostic value of Ts. It should also be

noted that the patient group as a whole for this study was

fairly typical for head and neck tumor patients submitted

for radiotherapy: the majority were male, most tumors

were advanced, the majority were oropharynx tumors,

followed by oral cavity and larynx. The overall locoregional

control and survival results were also consistent with

published studies. In addition, the multivariate analysis of

this group con®rmed T-stage, tumor diameter, differentiation

grade and localization of the primary tumor as signi®cant and

strong prognostic indicators. Any lack of association with

outcome is therefore, unlikely to be due to an unusual distri-

bution of patients.

The ¯ow cytometry data are also consistent with

previously published data [2,3,5,9,11,14,18,31,34,43,44,

48,49,54]. Just over half the patients were reported as

having aneuploid tumors, and the aneuploid tumors had

faster kinetics (higher LI, shorter Tpot) than the diploid

tumors, as reported in other studies [5,8,9,11,14,31,34,

47,49,54]. The latter is probably due to being able to

partially distinguish tumor and normal cells on the basis

of their DNA content, which is not possible in diploid

tumors. The slower observed kinetics in diploid tumors is

then likely to be artifactual, due to the inclusion of slowly or

non-proliferating stromal cells. We therefore also analyzed

the aneuploid tumors only, and included two quality control

criteria for the ¯ow cytometry: good labeling and reliable

DNA histograms. However, this did not increase the signif-

icance of the relationship with outcome for either LI or

Tpot. Some centers advocate measuring Tpot by combining

Ts measured ¯ow cytometrically with LI measured im-

munohistochemically (IHC) [9,31], or adding a tumor-

associated marker, such as cytokeratin to ¯ow cytometri-

cally distinguish malignant and stromal cells [26]. The

IHC approach also avoids the contaminating stroma

problem, since only tumor cells, recognized morphologi-

cally, are counted. These modi®cations were not possible

with the present analysis, however, since the majority of

centers only carried out two-color ¯ow cytometry measure-

ments. Such an approach would make the kinetic estimates

more reliable for diploid tumors, although values for aneu-

ploid tumors are unlikely to change substantially [9,31].

Since the aneuploid-only analysis did not improve associa-

tions with outcome, there remains doubt as to whether a

combined ¯ow/immunohistochemistry or cytokeratin-type

approach would improve these predictors.

The reason why Tpot fails as a predictor of repopulation

in a univariate analysis whereas LI (partially) succeeds is

not clear. It indicates that combining Ts with LI destroys

the association with outcome. This could occur if high LI

values were signi®cantly associated with long Ts values,

leaving Tpot relatively unchanged. In the present data set,

Ts was signi®cantly correlated with LI (r � 0:24,

P , 0:001). This correlation may have partially contribu-

ted to the poor performance of Tpot. One possible expla-

nation is technical, i.e. in setting windows around the

labeled cell population in the ¯ow cytometry data, too

high a window would reduce the LI and at the same time

reduce the estimated Ts, due to the shape of the labeled

cloud of cells in the cytogram [25]. A second trivial expla-

nation, is that the longer the S phase the more cells will be

in S, i.e. giving a higher LI. This assumes, however, that

the growth fraction, also a determinant of LI, does not vary

markedly between tumors. A third possible explanation for

the different performances of LI and Tpot as predictors, is

that LI and Ts are totally independent predictors of

outcome (high LI bad, long Ts bad) for different reasons.

For example, a high LI may re¯ect fast repopulation and a

long Ts may be correlated with radioresistance. Cells are

often the most radioresistant in late S, and so a longer S

phase may be coupled with a greater fraction of cells in a

relatively resistant phase. These are simply speculations,

however. It is noteworthy that Ts was the only parameter

that was associated with overall survival (long Ts, worse

survival). LI, which was signi®cantly associated with local

control, lost its signi®cance for survival whereas Ts did

not, suggesting that Ts may indicate something other

than simple cell kinetic behavior. An alternative explana-

tion, which cannot be excluded without further studies, is

that this is simply a chance occurrence.

The lack of local control prediction by Tpot is at odds

with some of the individual studies, which have contributed

to this analysis. The study of Corvo et al. [13,14] showed a

signi®cant association of Tpot with local control, as did

early reports of EORTC trial 22851 [5] and the Gustave

Roussy trial [12]. The latter lost its signi®cance with longer

follow-up, however, as did the EORTC trial. This could not

be fully explained by insuf®cient follow-up in earlier

reports, such that long Tpot tumors had yet to recur (Begg

et al., in preparation). The reason for a progressive loss of

signi®cance with longer follow-up, and the addition of more

patients to the studies is therefore not clear. The median

follow-up for patients in the pooled material presented

here was 20 months, and almost 30 months for surviving
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patients, which should be long enough to assess the value of

these predictors with reasonable certainty.

The problems and potential artifacts associated with pool-

ing data from different centers should not be underestimated

[46]. At least three reports in the literature indicate that

comparing absolute values of kinetic parameters between

two laboratories, even when analyzing identical material,

is a hazardous procedure leading to signi®cant inter-labora-

tory differences [25,50,51]. Ts appears to be particularly

prone to inter-laboratory and inter-observer variability. In

the present study, nine different measurement centers

contributed data. Ideally, one center should receive and

measure all material, eliminating inter-laboratory bias, but

this was impossible here since it is a retrospective analysis.

An additional factor inherent in all such biopsy-based

analyses, is intra-tumoral heterogeneity, which limits the

accuracy of all kinetic estimates [8,24,27,39,40,52]. These

considerations should encourage caution in interpretation of

the results, and it is possible that the non-signi®cance of the

kinetic parameters as predictors could be due in part to inter-

laboratory variation.

In conclusion, the data from this multicenter analysis do

not support the use of Tpot as a predictor of outcome after

radiotherapy, although inter-laboratory variation may have

contributed to the lack of signi®cance. Using non-standar-

dized data, a high LI was weakly associated with worse

local control in univariate analysis and a long Ts was asso-

ciated with worse overall survival. Clinical data strongly

suggest that long overall treatment times are detrimental

to cure, and so, if this is indeed due to repopulation, better,

more robust predictors of repopulation need to be found, or

more accurate and reproducible ways to measure the current

predictors. In addition, repopulation rate is only one of

many factors contributing to outcome after radiotherapy

and so any cell kinetic parameter should ideally be

combined with other biological and clinical parameters, in

order to provide an accurate prediction to guide the radio-

therapist how to optimize treatment for the individual.

References

[1] Amdur RJ, Parsons JT, Mendenhall WM, Million RR, Cassisi NJ.

Split-course versus continuous-course irradiation in the postoperative

setting for squamous cell carcinoma of the head and neck. Int. J.

Radiat. Oncol. Biol. Phys. 1989;17:279±285.

[2] Antognoni P, Bignardi M, Cazzaniga LF, et al. Accelerated radiation

therapy for locally advanced squamous cell carcinomas of the oral

cavity and oropharynx selected according to tumor cell kinetics ± a

phase II multicenter study. Int. J. Radiat. Oncol. Biol. Phys.

1996;36:1137±1145.

[3] Awwad HK, Khafagy Y, Barsoum M, et al. Accelerated versus

conventional fractionation in the postoperative irradiation of locally

advanced head and neck cancer: in¯uence of tumour proliferation.

Radiother. Oncol. 1992;25:261±266.

[4] Barton MB, Keane TJ, Gadalla T, Maki E. The effect of treatment

time and treatment interruption on tumour control following radical

radiotherapy of laryngeal. Radiother. Oncol. 1992;23:137±143.

[5] Begg AC, Ho¯and I, Moonen L, et al. The predictive value of cell

kinetic measurements in a European trial of accelerated fractionation

in advanced head and neck tumors: an interim report. Int. J. Radiat.

Oncol. Biol. Phys. 1990;19:1449±1453.

[6] Begg AC, Ho¯and I, van Glabbeke M, Horiot JC. Predictive value of

potential doubling time for radiotherapy of head and neck tumor

patients: results from the EORTC cooperative trial 22851. Semin.

Rad. Oncol. 1992;1:22±25.

[7] Begg AC, McNally NJ, Shrieve DC, Karcher H. A method to measure

the duration of DNA synthesis and the potential doubling time from a

single sample. Cytometry 1985;6:620±626.

[8] Begg AC, Moonen L, Ho¯and I, Dessing M, Bartelink H. Human

tumour cell kinetics using a monoclonal antibody against iododeox-

yuridine: intratumour sampling variations. Radiother. Oncol.

1988;11:337±347.

[9] Bennett MH, Wilson GD, Dische S, et al. Tumour proliferation

assessed by combined histological and ¯ow cytometric analysis:

implications for therapy in squamous cell carcinoma in the head

and neck. Br. J. Cancer 1992;65:870±878.

[10] Bentzen SM, Thames HD. Clinical evidence for tumor clonogen

regeneration: interpretations of the data. Radiother. Oncol.

1991;22:161±166.

[11] Bourhis J, Dendale R, Hill C, et al. Potential doubling time and

clinical outcome in head and neck squamous cell carcinoma treated

with 70 Gy in 7 weeks. Int. J. Radiat. Oncol. Biol. Phys. 1996;35:471±

476.

[12] Bourhis J, Wilson G, Wibault P, et al. In vivo measurement of the

potential doubling time by ¯ow cytometry in oropharyngeal cancer

treated by conventional radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.

1993;26:793±799.

[13] Corvo R, Giaretti W, Sanguineti G, et al. Potential doubling time in

head and neck tumors treated by primary radiotherapy: preliminary

evidence for a prognostic signi®cance in local control. Int. J. Radiat.

Oncol. Biol. Phys. 1993;27:1165±1172.

[14] Corvo R, Giaretti W, Sanguineti G, et al. In vivo cell kinetics in head

and neck squamous cell carcinomas predicts local control and helps

guide radiotherapy regimen. J. Clin. Oncol. 1995;13:1843±1850.

[15] Dean PN, Dolbeare F, Gratzner H, Rice GC, Gray JW. Cell-cycle

analysis using a monoclonal antibody to BrdUrd. Cell Tissue Kinet.

1984;17:427±436.

[16] Dolbeare F, Gratzner H, Pallavicini MG, Gray JW. Flow cytometric

measurement of total DNA content and incorporated bromodeoxyur-

idine. Proc. Natl. Acad. Sci. USA 1983;80:5573±5577.

[17] Dubben HH. No clinical evidence for the in¯uence of overall treat-

ment time on TCD50 of head and neck tumours. Radiother. Oncol.

1992;25:142±143.

[18] Eschwege F, Bourhis J, Girinski T, et al. Predictive assays of radiation

response in patients with head and neck squamous cell carcinoma: a

review of the Institute Gustave Roussy experience. Int. J. Radiat.

Oncol. Biol. Phys. 1997;39:849±853.

[19] Fowler JF. Rapid repopulation in radiotherapy: a debate on mechan-

ism. The phantom of tumor treatment±continually rapid proliferation

unmasked. Radiother. Oncol. 1991;22:156±158.

[20] Fowler JF, Chappell R. Local control versus dose or overall time:

from coef®cients to percentages. Br. J. Radiol. 1994;67:1108±1112.

[21] Fowler JF, Lindstrom MJ. Loss of local control with prolongation in

radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1992;23:457±467.

[22] Fyles A, Keane TJ, Barton M, Simm J. The effect of treatment dura-

tion in the local control of cervix cancer. Radiother. Oncol.

1992;25:273±279.

[23] Gratzner HG. Monoclonal antibody to 5-bromo- and 5-iododeoxyur-

idine: a new reagent for detection of DNA replication. Science

1982;21:474±475.

[24] Haustermans K, Fowler J, Geboes K, Christiaens MR, Lerut A,

Vanderschueren E. Relationship between potential doubling time

(T-pot), labeling index and duration of DNA synthesis in 60 esopha-

geal and 35 breast tumors: is it worthwhile to measure T-pot? Radio-

ther. Oncol. 1998;4:157±167.

A.C. Begg et al. / Radiotherapy and Oncology 50 (1999) 13±2322



[25] Haustermans K, Ho¯and I, Pottie G, Ramaekers M, Begg AC. Can

measurements of potential doubling time (Tpot) be compared

between laboratories? A quality control study Cytometry

1995;19:154±163.

[26] Haustermans K, Ho¯and I, Ramaekers M, et al. Enrichment of tumor

cells for cell kinetic analysis in human tumor biopsies using cytoker-

atin gating. Radiother. Oncol. 1996;41:237±248.

[27] Haustermans K, Vanuytsel L, Geboes K, et al. In vivo cell kinetic

measurements in human oesophageal cancer: what can be learned

from multiple biopsies? Eur. J. Cancer 1994;30A:1787±1791.

[28] Horiot JC, Begg AC, Le Fur R, et al. Present status of EORTC trials of

hyperfractionated and accelerated radiotherapy on head and neck

carcinoma. Recent Results Cancer Res. 1994;134:111±119.

[29] Horiot JC, Bontemps P, Vandenbogaert W, et al. Accelerated fractio-

nation (AF) compared to conventional fractionation (CF) improves

loco-regional control in the radiotherapy of advanced head and neck

cancers: results of the EORTC 22851 randomized trial. Radiother.

Oncol. 1997;44:111±121.

[30] Horiot JC, LeFlur R, Schraub S, et al. Status of the experience of the

EORTC Cooperative Group of Radiotherapy with hyperfractionated

and accelerated radiotherapy. Semin. Rad. Oncol. 1992;2:34±37.

[31] Hoyer M, Jorgensen K, Bundgaard T, et al. Lack of predictive value

of potential doubling time and iododeoxyuridine labelling index in

radiotherapy of squamous cell carcinoma of the head and neck.

Radiother. Oncol. 1998;46:147±155.

[32] Knee R, Fields RS, Peters LJ. Concomitant boost radiotherapy for

advanced squamous cell carcinoma of the head and neck. Radiother.

Oncol. 1985;4:1±7.

[33] Lee WR, Marcus Jr. RB, Sombeck MD, et al. Radiotherapy alone for

carcinoma of the vagina: the importance of overall treatment time. Int.

J. Radiat. Oncol. Biol. Phys. 1994;29:983±988.

[34] Lochrin CA, Wilson GD, McNally NJ, Dische S, Saunders MI. Tumor

cell kinetics, local tumor control, and accelerated radiotherapy: a

preliminary report. Int. J. Radiat. Oncol. Biol. Phys. 1992;24:87±91.

[35] Maciejewski B, Skladowski K, Pilecki B, et al. Randomized clinical

trial on accelerated 7 days per week fractionation in radiotherapy for

head and neck cancer. Preliminary report on acute toxicity. Radiother.

Oncol. 1996;40:137±145.

[36] Maciejewski B, Skladowski K, Tarawski R, Zajusz A. Is the 7-day

accelerated treatment better than conventional 5-day irradiation of

head and neck cancers? In: Kogelnik HD, Sedlmayer F, editors.

Progress in radio-oncology VI, Bologna: Editore, 1998. pp. 753.

[37] Overgaard J, Hansen HS, Overgaard M, et al. Importance of overall

treatment time of radiotherapy in head and neck carcinoma. Experi-

ence from the Danish head and neck cancer study. In: Kogelnik HD,

Sedlmayer F, et al., editors. Progress in radio-oncology VI, Bologna:

Monduzzi Editore, 1998. pp. 743.

[38] Peters LJ, Ang KK, Thames HD. Accelerated fractionation in the

radiation treatment of head and neck cancer. A critical comparison

of different strategies. Acta Oncol. 1988;2:185±194.

[39] Rew DA, Campbell ID, Taylor I, Wilson GD. Proliferation indices of

invasive breast carcinomas after in vivo 5-bromo-2'-deoxyuridine

labelling: a ¯ow cytometric study of 75 tumours. Br. J. Surg.

1992;7:335±339.

[40] Rew DA, Wilson GD, Taylor I, Weaver PC. Proliferation character-

istics of human colorectal carcinomas measured in vivo. Br. J. Surg.

1991;7:60±66.

[41] Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M.

Continuous hyperfractionated accelerated radiotherapy (CHART)

versus conventional radiotherapy in non-small-cell lung cancer: a

randomized multicentre trial. CHART Steering Committee. Lancet

1997;35:161±165.

[42] Steel GG. Growth kinetics of tumours. Oxford: Oxford University

Press, 1977.

[43] Struikmans H, Rutgers DH, Hordijk GJ, Slootweg PJ, van der Tweel I,

Battermann JJ. Prognostic signi®cance of cell proliferation markers

and DNA-ploidy in head and neck tumors. Int. J. Radiat. Oncol. Biol.

Phys. 1998;4:27±34.

[44] Struikmans H, Rutgers DH, Hordijk GJ, Slootweg PJ, van der Tweel I,

Battermann JJ. Interrelationships of DNA-ploidy and cell prolifera-

tion markers with T-stage and N-stage in primary laryngeal tumors.

Int. J. Radiat. Oncol. Biol. Phys. 1998;4:303±308.

[45] Taylor JM, Withers HR, Mendenhall WM. Dose-time considerations

of head and neck squamous cell carcinomas treated with irradiation.

Radiother. Oncol. 1990;1:95±102.

[46] Terry NH, Peters LJ. The predictive value of tumor-cell kinetic para-

meters in radiotherapy: considerations regarding data production and

analysis. J. Clin. Oncol. 1995;13:1833±1836.

[47] Tsang RW, Fyles AW, Kirkbride P. Proliferation measurements with

¯ow cytometry Tpot in cancer of the uterine cervix: correlation

between two laboratories and preliminary clinical results. Int. J.

Radiat. Oncol. Biol. Phys. 1995;32:1319±1329.

[48] Wilson GD. Assessment of human tumour proliferation using bromo-

deoxyuridine ± current status. Acta Oncol. 1991;3:903±910.

[49] Wilson GD, Dische S, Saunders MI. Studies with bromodeoxyuridine

in head and neck cancer and accelerated radiotherapy. Radiother.

Oncol. 1995;36:189±197.

[50] Wilson GD, Paschoud N, Pavy JJ, et al. Reproducibility of measure-

ments of potential doubling time of tumour cells in the multi-centre

NCI protocol T92-0045. Br. J. Cancer 1999;79:323±332.

[51] Wilson MS, West CM, Wilson GD, Roberts SA, James RD, Scho®eld

PF. An assessment of the reliability and reproducibility of measure-

ment of potential doubling times (Tpot) in human colorectal cancers.

Br. J. Cancer 1993;6:754±759.

[52] Wilson MS, West CM, Wilson GD, Roberts SA, James RD, Scho®eld

PF. Intra-tumoral heterogeneity of tumour potential doubling times

(Tpot) in colorectal cancer. Br. J. Cancer 1993;6:501±506.

[53] Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated

tumor clonogen repopulation during radiotherapy. Acta Oncol.

1988;2:131±146.

[54] Zackrisson B, Gustafsson H, Stenling R, Flygare P, Wilson GD.

Predictive value of potential doubling time in head and neck cancer

patients treated by conventional radiotherapy. Int. J. Radiat. Oncol.

Biol. Phys. 1997;3:677±683.

A.C. Begg et al. / Radiotherapy and Oncology 50 (1999) 13±23 23


