
De
idability of invariant validation forparameterized systems ?Pas
al Fontaine and E. Pas
al GribomontUniversity of Li�ege (Belgium)fpfontain,gribomontg�montefiore.ulg.a
.beAbstra
t. The
ontrol part of many
on
urrent and distributed pro-grams redu
es to a set � = fp1; : : : ; png of symmetri
 pro
esses
ontain-ing mainly assignments and tests on Boolean variables. However, the as-signments, the guards and the program invariants
an be�-quanti�ed, sothe
orresponding veri�
ation
onditions also involve �-quanti�
ations.We propose a systemati
 pro
edure allowing the elimination of su
hquanti�
ations for a large
lass of program invariants. At the
ore ofthis pro
edure is a variant of the Herbrand Theorem for many-sorted�rst-order logi
 with equality.1 Introdu
tionAt the heart of
on
urrent software are
ontrol-intensive
on
urrent algorithms,whi
h solve a large
lass of problems, in
luding mutual ex
lusion, termina-tion dete
tion, reliable
ommuni
ation through unreliable
hannels, syn
hronous
ommuni
ation through asyn
hronous
hannels, fault toleran
e, leader ele
tion,Byzantine agreement,
on
urrent reading and writing, and so on. (See e.g. [8,25℄ for many examples, with
omments and formal or informal proofs). Many ofthose systems are
omposed of a parameterized number of identi
al pro
esses ornearly identi
al pro
esses1. Most variables are Booleans or arrays of Booleans,and operations on the remaining variables are elementary. The veri�
ation ofsu
h parameterized
on
urrent systems is the subje
t of many re
ent papers [1,4, 7, 11, 17, 23, 24, 31℄.Requirements of su
h algorithms usually fall in safety properties (\somethingbad never happens") and liveness properties (\something good eventually hap-pens"). It is often possible to view a liveness property as the
onjun
tion ofa safety property and a fairness hypothesis (\progress is made") so, in pra
-ti
e, the veri�
ation of safety properties is the main part of formal methods andtools. The
lassi
al invariant method allows to redu
e the veri�
ation of safetyproperties to the validity problem for �rst-order logi
. It
ould happen that the? This work was funded by a grant of the \Communaut�e fran�
aise de Belgique - Di-re
tion de la re
her
he s
ienti�que - A
tions de re
her
he
on
ert�ees"1 for example a pro
ess
an
ompare its identi�er with the identi�er of another pro
ess.This somewhat breaks symmetry.

formula to be proved belongs to a well known de
idable
lass (for instan
e, Pres-burger arithmeti
), but this is rarely the
ase be
ause Boolean arrays (modeledby uninterpreted predi
ates) are often used in these algorithms, together withinterpreted predi
ates2.Quanti�er-free �rst-order logi
 satis�ability
he
king is de
idable for a verywide range of formulas with non-interpreted and interpreted predi
ates and fun
-tions. Thus de
idability is often rea
hed through quanti�er elimination. We in-trodu
e here a simple quanti�er elimination method for a large
lass of veri�-
ation
onditions. It is based on a many-sorted logi
 with equality variant ofthe Herbrand Theorem whi
h allows to have some kind of �nite model property[12℄ even when some fun
tions (interpreted or not) and interpreted predi
atesare used in formulas. We then give
riteria for veri�
ation
onditions to bene�tfrom this property. Those
riteria allow to eliminate quanti�ers in the proof byinvariant of many rea
tive algorithms, and parti
ularly for parameterized algo-rithms, leading to a powerful invariant validation pro
edure. It allows to redu
ethe invariant validation for a system with a parameterized number of pro
essesto the invariant validation for a system with a known number of pro
esses n0(Theorem 2). Our method
an be seen as an extension of the invariant validationpro
edure presented in [3℄: our approa
h does not restri
t the use of fun
tionsand predi
ates to unary ones, and is not restri
ted to bounded variables.Our implementation has given good results on several algorithms; in parti
-ular, it has been su

essful in proving all veri�
ation
onditions for a parame-terized railroad
rossing system [21℄ used as ben
hmark for STeP, whereas STePitself requires intera
tive veri�
ation for some of them [6℄.We �rst present our variant of the Herbrand Theorem. Next, this variant isused to eliminate the quanti�ers in veri�
ation
onditions from invariant valida-tion of parameterized systems. Last, two examples are presented.2 Herbrand on many-sorted logi
In this se
tion, Theorem 1 and its
ontext is introdu
ed. This theorem willbe used to eliminate quanti�ers in veri�
ation
onditions, whi
h will lead toTheorem 2.A many-sorted �rst-order language (a more
omplete introdu
tion to many-sorted logi

an be found in [13℄) is a tuple L = hT ;V ;F ;P ; r; di su
h that Tis a �nite set of sorts (or types), V is the (�nite) union of disjoint �nite setsV� of variables of sort � , F and P are sets of fun
tion and predi
ate symbols,r (F [P ! N) assigns an arity to ea
h fun
tion and predi
ate symbol, and d(F[P ! T ?) assigns a sort in T r(f)+1 to ea
h fun
tion symbol f 2 F and a sortin T r(p) to ea
h predi
ate symbol p 2 P . Nullary predi
ates are propositions,and nullary fun
tions are
onstants.The sets of � -terms on language L
ontain all variables in V� , and for everyfun
tion symbol f 2 F of sort h�1; : : : �n; �i, f(t1; : : : tn) is a � -term if t1; : : : tnare �1; : : : �n-terms respe
tively. Sort(t) = � if t is a � -term.2 Presburger with (unary) uninterpreted predi
ates is unde
idable [20℄.

An atomi
 formula is either t = t0 where t and t0 are terms of the same sort, ora predi
ate symbol applied to arguments of appropriate sorts. Formulas are built(as usual) from atomi
 formulas,
onne
tors (:, ^, _,), �), and quanti�ers (8,9). The set of all variables used in formula � is noted Vars(�), and Free(�) isthe set of all free variables in �. A formula � is
losed if Free(�) = ;. A formulais � -universally quanti�ed if it is of the form 8x	 with x a variable of type � .A formula is in prenex form if it is of the form Q1x1 : : : Qnxn(�) whereQ1; : : : Qn 2 f9;8g, x1; : : : xn 2 V , and � is quanti�er-free. A formula is inSkolem form if it is in prenex form without existential quanti�er.A (normal) interpretation of a formula on a many-sorted �rst-order languageL = hT ;V ;F ;P ; r; di is a pair I = hD; Ii where{ D assigns a non-empty domain D� (set) to ea
h type � 2 T . Those sets arenot ne
essarily disjoint;{ I assigns an element in D� to ea
h variable of sort � ;{ I assigns a fun
tion D�1 � : : : D�n �! D� to ea
h fun
tion symbol f 2 F ofsort h�1; : : : �n; �i;{ I assigns a fun
tion D�1�: : : D�n �! f>;?g to ea
h predi
ate symbol p 2 Pof sort h�1; : : : �ni;{ the identity is assigned to the equality sign (=).I assigns a value in D� to every � -term t. This value is noted I[t℄. Similarly,interpretation I assigns a value in f>;?g to every formula �, whi
h is notedI[�℄. An interpretation I is a model for formula � if I[�℄ = >. A formula issatis�able if there exists a model for it.Given an interpretation I, the
ongruen
e CI;= = f(ti; t0i) j I [ti℄ = I [t0i℄gis a re
exive, symmetri
 and transitive relation on the set of terms of languageL. This relation is important for the proof of the following theorem.Theorem 1. Given{ a
losed formula S in Skolem form on the language L = hT ;V ;F ;P ; r; di;{ � 2 T su
h that there is no fun
tion symbol f 2 F of sort h�1; : : : �n; �i withn > 0, �1; : : : �n 2 T ;the set H� is the set of
onstant symbols of sort � (H� = f
 2 F j d(
) = �g).If f
 2 F j d(
) = �g = ;, then H� = fag, where a is an arbitrary new
onstantsymbol su
h that a 62 F and a 62 V.For every model I = hD; Ii of S, there is a model I 0 = hD0; I 0i su
h that{ D0� is the quotient of the set H� by
ongruen
e CI;=;{ D0� 0 = D� 0 for every � 0 6= � ;{ I 0[f ℄ = I[f ℄ for every fun
tion symbol f 2 F of sort h�1; : : : �n; � 0i su
h that�1 6= �; : : : �n 6= �; � 0 6= � (n � 0);{ I 0[p℄ = I[p℄ for every fun
tion symbol p 2 P of sort h�1; : : : �ni su
h that�1 6= �; : : : �n 6= � (n � 0).Proof. Interpretation I 0 is built from I:

{ for every
onstant symbol
 of sort � in F , I 0[
℄ is the
lass of
 in D� ;{ for every fun
tion symbol f 2 F of sort h�1; : : : �n; � 0i (n > 0), and everyd01 2 D0�1 ; : : : d0n 2 D0�n , I 0[f ℄(d01; : : : d0n) = I [f ℄(d1; : : : dn) where di = d0i if�i 6= � . If �i = � , di = I(d00i) where d00i is any element of the
lass d0i 2 D� ;{ for every predi
ate symbol p 2 P of sort h�1; : : : �ni, and every elementsd01 2 D0�1 ; : : : d0n 2 D0�n , I 0[p℄(d01; : : : d0n) = I [p℄(d1; : : : dn) where di = d0i if�i 6= � . If �i = � , di = I(d00i) where d00i is any element of the
lass d0i 2 D� .It remains to show that I 0 is a model of S. Let us �rst introdu
e a notation:given an interpretation J = hD; Ji, the interpretation Jx1=d1;:::xn=dn = hD; J 0i(where x1; : : : xn are variables) is su
h that J 0 [xi℄ = di for every xi 2 fx1; : : : xngand J 0 [t℄ = J [t℄ if t 62 fx1; : : : xngFormula S is of the form 8x1 : : :8xn(�). Thus for all elements d01; : : : d0n su
hthat d0i belongs to D0� 0 if xi is a variable of sort � 0, the following equality hold:I 0x1=d01;:::xn=d0n [�℄ = Ix1=d1;:::xn=dn [�℄with di = I [d00i ℄ where d00i is any element of the
lass d0i 2 D0� if xi is of sort � ,di = d0i otherwise.Interpretation I is a model of formula S, that means Ix1=d1;:::xn=dn [�℄ = >for all elements d1; : : : dn where di belongs to D� 0 if xi is a variable of sort � 0. Itfollows that I 0x1=d01;:::xn=d0n [�℄ = > for all elements d01; : : : d0n su
h that d0i belongsto D0� 0 if xi is a variable of sort � 0. So I 0 is a model of S. utThis theorem is not exa
tly an extension of the Herbrand theorem to many-sorted �rst-order logi
. It is stronger than the Herbrand theorem (see for example[14℄ for the standard Herbrand theorem, or [16℄ for a version with equality) inthe sense that the domain does not ne
essarily be
ome in�nite in the presen
eof fun
tions. On the other hand, its restri
tion to one-sorted �rst-order logi
gives ba
k the Herbrand theorem, but restri
ted to the �nite Herbrand universe
ase. Nevertheless this
ase is the most interesting one: having a �nite domainmeans that quanti�er elimination is possible. Consider the simple (unsatis�able)formula 8i8j [f (i) > g (j)℄ ^ g(a) = 3 ^ 9i [f (i) < 4℄ (1)where \<" and \>" are the usual order predi
ates on N�N. Variables i and jand
onstants a and b are of sort � 6= N whereas f and g are fun
tions from � toN. In this
ontext, the pre
eding theorem states that formula (1) is satis�able ifand only if formulaf (a) > g (a) ^ f (a) > g (b) ^ f (b) > g (a) ^f (b) > g (b) ^ g(a) = 3 ^ f (b) < 4is. This last formula belongs to the de
idable
lass of quanti�er-free �rst-orderlogi
 with linear arithmeti
s on N and uninterpreted fun
tion symbols.Corollary 1. A �-universally quanti�ed formula 8x�(x) verifying the
ondi-tions of Theorem 1 is satis�able if and only if the �nite
onjun
tion V
2H� �(
)is.

3 Interpreted predi
ates and fun
tionsA formula
ontaining interpreted predi
ates and fun
tions is satis�able if andonly if it has a model in a restri
ted subset of all interpretations, that is the setwhere interpretations asso
iate a �xed domain to given sorts and a �xed meaningto those interpreted predi
ates and fun
tions. In Theorem 1, both interpretationsI and I 0 asso
iate the same domain to every sort but � , and give the same mean-ing to every predi
ate and fun
tion, provided none of their arguments is of sort � .In other words, Theorem 1 is
ompatible with the use of interpreted predi
atesand fun
tions provided none of their arguments is of sort � . For instan
e, in thepre
eding example (i, j and a are of sort �) the arguments of the order predi
ates(f(i), g(j), . . .) are not of the sort � . Using Theorem 1, interpretation I and I 0are su
h that I[<℄ = I 0[<℄ and I[>℄ = I 0[>℄. And this allows to eliminate thequanti�ers on the sort � in presen
e of interpreted predi
ates with no argumentof sort � .But it is also possible to use order predi
ates on the sort of quanti�ed vari-ables. Let ' be a formula with order predi
ates (\�", . . .) on sort � , and bethe
onjun
tion of the axioms of total order theory, = 8x (x � x)^ 8x8y ((x � y ^ y � x)) x = y)^ 8x8y8z ((x � y ^ y � z)) x � z)^ 8x8y (x � y _ y � x)with variables x; y; z of sort � . An interpretation is a model of ^' if and onlyif it is a model of ' interpreting \�", . . . as the usual order predi
ates on D� .Putting ^ ' in Skolem form does not introdu
e new Skolem fun
tions. The
onditions of Theorem 1 are met for ^ ' if they are met for '. Theorem 1
an be applied also if some
omparisons are made between terms of the sort ofquanti�ed variables 3.4 Quanti�er elimination in invariant validationIn order to verify that the assertion H is an invariant of the transition sys-tem S, one has to validate the Hoare triple fHg�fHg for ea
h transition4 � 2 S.This is �rst redu
ed to �rst-order logi
 proving, using Dijkstra [9℄ weakest pre-
ondition (wp) operator: Hoare tripe fHg�fHg is valid if and only if formulaH) wp[�;H ℄
an be proved. Weakest pre
ondition
al
ulus is easy, provided3 As in [3℄, \+1" and \�1" fun
tions
an sometimes be eliminated without introdu
ingnew Skolem fun
tions, by noti
ing that h = i+1 ! i < h^8j (j � i _ h � j) andh = i� 1 ! [i < h ^ 8j (j � i _ h � j)℄ _ [h < i ^ 8j (h � j _ j � i)℄ :4 An example of transition is (s0[p℄s0[q℄; C �! A; s1[p℄s1[q℄) whi
h allows the pro
essesp and q to go from
ontrol point s0 to
ontrol point s1, exe
uting the statements inA. The system transition
an be exe
uted from a state where formula C (the guard)is ful�lled.

transitions do not
ontain full loops in their statement part. The weakest pre
on-dition module inCaveat a

epts assignments,
onditional statements, sequen
esof statements, and some kind of quanti�ed assignments. This is enough to modelrea
tive algorithms from
oarse to �ne-grained versions.In general, the invariant is a
onjun
tion (H = Vk2K hk) of relatively smallassertions hk. In parameterized systems, these assertions are often quanti�ed overthe (parameterized) set of pro
esses. In order to avoid the appearan
e of Skolemfun
tions when veri�
ation
onditions are put in Skolem form, an assumptionis made about these quanti�ed assertions: they
an be put both in prenex form9?8? (
alled hypothesis form in the following, be
ause this will be the allowedform in the ante
edent of formulas of the form A) B) and in prenex form 8?9?(
alled
on
lusion form in the following, be
ause this will be the allowed form inthe
on
lusion of formulas of the form A) B). In pra
ti
e, two parti
ular
asesof su
h formulas are met frequently:{ formulas in prenex form
ontaining one type of quanti�er;{ formulas
ontaining only monadi
 predi
ates (and no equality)5.There is also an assumption for guards : guards must be formulas in hypothesisform. Guards met in pra
ti
e ful�ll this assumption as they are quanti�er-freeformulas or singly quanti�ed formulas.Taking the pre
eding
onditions on quanti�ers into a

ount, proving formulaH) wp[�;H ℄ (with H = Vk2K hk) redu
es to prove a set of formulas (
alledveri�
ation
onditions) of the form(h1 ^ : : : hk ^G)) Cjwhere G is the guard of �. All formulas h1 : : : hk; G are in hypothesis form.There is one veri�
ation
ondition for ea
h hk (k 2 K). Formula Ck
omes fromhypothesis hk: Ck � wp [A;hk℄, where A is the statement part of �. Ck
an beput in
on
lusion form: indeed, hk
an be put in
on
lusion form, and the weakestpre
ondition operator does not modify the quanti�er stru
ture of a formula, inthe language a

epted by Caveat.The last requirement is about fun
tions: we require that no fun
tion used inthe invariantH , or in the transition system S has the pro
ess set as domain. Thismay seem rather restri
tive, but as rea
tive algorithms mainly use Boolean arrays(modeled by predi
ates, not fun
tions), this requirement remains a

eptable inpra
ti
e.Under those
onditions, Theorem 1
an be used to eliminate the quanti�ers:Theorem 2. If H is a
onjun
tive formula, and � is a transition system witha parameterized number n of pro
esses, where{ all quanti�ed variables in H and in the guard of the transitions of � rangeover the set of pro
esses;5 Indeed every monadi
 formula is logi
ally equivalent to a Boolean
ombination ofSkolem forms with one quanti�er. So every monadi
 formula
an be put in bothhypothesis and
on
lusion forms.

{ every
onjun
t in H
an be put both in hypothesis form (9?8?) and in
on-
lusion form (8?9?);{ every transition guard
an be put in hypothesis form;{ no interpreted predi
ate other than equality and order is used on the set ofpro
esses, neither in H nor in �;{ no fun
tion has the pro
ess set as domain, neither in H nor in �;then H is an invariant of � if and only if H is an invariant of the system �0with at most n0 pro
esses, where n0 is the sum of{ the number of existential quanti�ers in H when put in hypothesis form;{ the maximum number of existential quanti�ers in guards of transitions in �;{ the maximum number of universal quanti�ers in the
onjun
ts of H, whenput in
on
lusion form;{ the number of
onstants in H;{ the maximum number of pro
esses taking part in a transition6.Proof. Indeed from the theorem
onditions, every veri�
ation
ondition is of theform (h1 ^ : : : hk ^G)) Cwhere formulas h1; : : : hk; G are in hypothesis form, and C is in
on
lusion form.When put prenex form, this formula is of the form8x1 : : :8xp9y1 : : :9yq '(x1; : : : xp; y1; : : : yq); (2)where p is the number of existential quanti�ers in h1^ : : : hk^G plus the numberof universal quanti�ers in C. Otherwise stated, p
annot ex
eed the sum of{ the number of existential quanti�ers inH (h1^: : : hk) when put in hypothesisform;{ the maximum number of existential quanti�ers in guards (G) of transitionsin �;{ the maximum number of universal quanti�ers in the
onjun
ts (hk fromwhi
h C is
omputed) of H , when put in
on
lusion form.Formula (2) is provable if and only if formula9x1 : : : 9xp8y1 : : :8yq :'(x1; : : : xp; y1; : : : yq) (3)is unsatis�able or, using Skolemization, if and only if formula8y1 : : :8yq :'(a1; : : : ap; y1; : : : yq) (4)is unsatis�able, where a1; : : : ap are Skolem
onstants, i.e.
onstants whi
h donot appear in '(x1; : : : xp; y1; : : : yq). Using Theorem 1, formula (4) is satis�ableif and only if there is a model with a �nite pro
ess set, whi
h
ontains all pro
ess
onstants in '(a1; : : : ap; y1; : : : yq), in
luding a1; : : : ap. So n0 is the sum of6 usually at most two.

{ p;{ the number of
onstants
oming from H in ';{ the maximum number of
onstants
oming from the transitions through Gand C, whi
h is the maximum number of pro
esses involved at the sametime in a transition. utComment . The satis�ability problem for the S
hn�nkel-Bernays
lass, that is,the
lass of fun
tion-free �rst-order formulas of the form9x1 : : : 9xp8y1 : : :8yq '(x1; : : : xp; y1; : : : yq);has �rst been shown to be de
idable by Bernays and S
hn�nkel without equality[5℄ and by Ramsey with equality [29℄. Theorem 1 extends this de
idable
lassto allow the use of some fun
tions (interpreted or not) and some interpretedpredi
ates.Corollary 2. When
onditions of Theorem 2 are met,
he
king if � preservesthe invariant H is redu
ed to a quanti�er-free �rst-order logi
 satis�ability
he
k-ing problem.The quanti�er-free satis�ability
he
king module [15℄ in Caveat is basedon a modi�ed version of the Nelson-Oppen algorithm [26, 27℄. It a

epts lineararithmeti
, as well as uninterpreted predi
ates and fun
tions. When Theorem2 applies, and when the quanti�er-free formulas use only linear arithmeti
, anduninterpreted predi
ates and fun
tions, the invariant validation problem is de-
idable. This is the
ase for numerous algorithms. In the next se
tion a simpleone is presented.5 Parameterized Burns algorithmIn this well-known simple example only one type of variable is used. Theorem 1thus redu
es to the Herbrand theorem (with equality, without fun
tions). Thissimple example allows to
learly exhibit the underlying fa
t whi
h enables quan-ti�er elimination: a �nite Herbrand universe.Burns algorithm [22℄, [25, p. 294℄ guarantees ex
lusive a

ess to a
riti
alse
tion for a set of n identi
al pro
esses. Ea
h pro
ess p
an be in one of sixdi�erent lo
ation states (i.e. s0. . . s5). A rule expresses the trivial property thatea
h pro
ess is in one and only one state at ea
h time: one and only one variablein s0[p℄,. . . , s5[p℄ is true (for ea
h p). A pro
ess p being in s5 (i.e. s5[p℄ is true)is in the
riti
al se
tion.Twelve transitions are possible between the six states:�s0[p℄;
ag[p℄:=false; s1[p℄��s1[p℄;:S[p; q℄ ^ q < p ^
ag[q℄ ! 8q : S[p; q℄:=false; s0[p℄��s1[p℄;:S[p; q℄ ^ q < p ^ :
ag[q℄ ! S[p; q℄:=true; s1[p℄��s1[p℄; 8q�q < p) S[p; q℄� ! 8q : S[p; q℄:=false; s2[p℄�

�s2[p℄;
ag[p℄:=true; s3[p℄��s3[p℄;:S[p; q℄ ^ q < p ^
ag[q℄ ! 8q : S[p; q℄:=false; s0[p℄��s3[p℄;:S[p; q℄ ^ q < p ^ :
ag[q℄ ! S[p; q℄:=true; s3[p℄��s3[p℄; 8q�q < p) S[p; q℄� ! 8q : S[p; q℄:=false; s4[p℄��s4[p℄;:S[p; q℄ ^ p < q ^
ag[q℄ ! 8q : S[p; q℄:=false; s4[p℄��s4[p℄;:S[p; q℄ ^ p < q ^ :
ag[q℄ ! S[p; q℄:=true; s4[p℄��s4[p℄; 8q�p < q) S[p; q℄� ! 8q : S[p; q℄:=false; s5[p℄��s5[p℄;
ag[p℄:=false; s0[p℄�Mutual ex
lusion is obtained using two waiting rooms (s3 and s4). The �rstone ensures that when a pro
ess p has rea
hed s4, any other pro
ess q withq < p and
ag[q℄ = true (trying to get a

ess to
riti
al se
tion, or in the
riti
al se
tion) has gone through transition s2 ! s3 after p. The se
ond waitingroom guarantees that this pro
ess q (with q < p) will be blo
ked in s4 at leastuntil p resets
ag[p℄ to false. Only the highest pro
ess (the one with the highestidenti�er) will thus get a

ess to
riti
al se
tion7.The algorithm uses one single-writer shared register per pro
ess:
ag[p℄ is setto true by pro
ess p when it wants to a

ess to
riti
al se
tion. Ea
h pro
essp also uses a lo
al array variable S[p℄. This variable is used in three loops (s1,s3, s4). In the loops for pro
ess p the value of the
ag[q℄ variable of the otherpro
esses q is
he
ked (pro
esses q su
h that q < p or q > p). S[p℄ is used to keeptra
k of pro
esses already
he
ked and those whi
h still have to be
he
ked. Thealgorithm makes also extensive use of a total order relation between pro
esses.Formula H =def 8p H1(p) ^ 8p8q [H2(p; q) ^H3(p; q)℄, withH1(p) =def :
ag[p℄) (s0[p℄ _ s1[p℄ _ s2[p℄)H2(p; q) =def s2[p℄) :S[p; q℄H3(p; q) =def �q < p ^
ag[q℄ ^ (s5[p℄ _ s4[p℄ _ (s3[p℄ ^ S[p; q℄)) �) �:s5[q℄ ^ :(s4[q℄ ^ S[q; p℄)�is an invariant. It entails8 the mutual ex
lusion property:8p8q�p 6= q) (:s5[p℄ _ :s5[q℄)�:Every
ondition is met for Theorem 2 to be used. Indeed:{ no fun
tion (at all) is used;{ every guard is in hypothesis form. In fa
t, every guard is at most on
e quan-ti�ed;7 A

ess to
riti
al se
tion will be easier for pro
esses with high identi�ers. This algo-rithm does not guarantee high-level-fairness.8 together with the rule whi
h expresses the fa
t that ea
h pro
ess is in one and onlyone state at a time.

{ the invariant is a
onjun
tion of formulas whi
h are in both hypothesis and
on
lusion form, as they are universally quanti�ed;{ the only interpreted predi
ates are equality and order; obje
ts
omparedbelong to a �nite, but parameterized, domain: the set of pro
esses.From Theorem 2, if H is an invariant of this algorithm for n0 = 4 pro
esses thenH will be an invariant of this algorithm for any number of pro
esses.Let's see how this work for a given veri�
ation
ondition: if H is an in-variant, it is preserved by every transition, and in parti
ular, by transition�1!2 from s1 to s2. Hoare triple fHg�1!2fHg must be provable, so must befHg�1!2f8p H1(p)g, fHg�1!2f8p8q H2(p; q)g and fHg�1!2f8p8q H3(p; q)g.In parti
ular, from fHg�1!2f8p8qH2(p; q)g
omes the veri�
ation
ondition' =def (h1 ^ h2 ^ h3 ^ g1 ^ g2 ^ l1 ^ l2 ^ l3 ^ l4 ^ l5)) Cwith{ h1 =def 8p H1(p){ h2 =def 8p8q H2(p; q){ h3 =def 8p8q H3(p; q){ g1 =def s1[p℄{ g2 =def 8q�q < p) S[p; q℄�{ l1 =def 8p�s0[p℄) :(s1[p℄ _ s2[p℄ _ s3[p℄ _ s4[p℄ _ s5[p℄)�{ l2 =def 8p�s1[p℄) :(s2[p℄ _ s3[p℄ _ s4[p℄ _ s5[p℄)�{ l3 =def 8p�s2[p℄) :(s3[p℄ _ s4[p℄ _ s5[p℄)�{ l4 =def 8p�s3[p℄) :(s4[p℄ _ s5[p℄)�{ l5 =def 8p�s4[p℄) :s5[p℄�{ C =def 8s8r�(s 6= p) s2[s℄)) :(s 6= p ^ S[s; r℄)�Hypotheses h1;2;3
ome from the invariant, g1;2 from the transition guards9. For-mulas l1;:::5 state that ea
h pro
ess is in one and only one state. The
on
lusionC is the result of applying the weakest pre
ondition operator, i. e.,C � wp [8q : S[p; q℄:=false; s1[p℄ := false; s2[p℄ := true;8p8q H2(p; q)℄Every formula from h1 to l5 is in hypothesis form, and C is in
on
lusion form.The Herbrand universe for the negation of this veri�
ation
ondition
ontainsfour elements (p, q, and the new
onstants
oming from the Skolemization of C).Every universal quanti�er in hypotheses will then give rise to four instan
es, fora total of 61 hypotheses10.Caveat took 5 se
onds on a Pentium 1 GHz, to generate and verify 40veri�
ation
onditions. This in
ludes the time to verify that the invariant entailsthe mutual ex
lusion property, and also that the invariant is made true by initial
onditions.9 g1
omes from the origin of the transition. Transition (l1; C �! A; l2) with origin l1and destination l2
an be written as transition ((C^l1) �! A; l1 := false; l2 := true).10 ea
h formula h1, g2, l1:::5 generates four instan
es, whereas formulas h2 and h3generate 16 instan
es. The 61st hypothesis is g1.

6 Generalized Railroad CrossingThe Generalized Railroad Crossing ben
hmark [21℄ uses predi
ates and fun
tionsfrom arithmeti
. It gives a general idea of what Theorem 1 allows to deal with.A
ontroller operates on a gate of a railroad
rossing prote
ting N parallelrailroad tra
ks. The gate must be down whenever a train takes the interse
tion,so that the interse
ting road is
losed. Ea
h of the N trains
an be in threedi�erent regions: in the interse
tion (I), in the se
tion pre
eding the interse
tion(P), or anywhere else (not here). The array variable \trains" re
ords the positionof ea
h train: trains[i℄
an be one of the three values I; P; not here. The gate
anbe in four states: the value of variable \gate"
an be down; up; going down orgoing up, with obvious meanings. The system should verify the safety property,whi
h expresses the fa
t that the gate must be down when any of the N trainsis passing the interse
tion:8i (trains[i℄ = I) gate = down) :The gate takes some time to go from the state \up" to \down". This timemust not ex
eed \gateRiseTime". Similarly the time to go from the \down" tothe \up" states must not ex
eed \gateDownTime". Trains getting in P wouldtake a minimum time \minTimeToI" and a maximum time \maxTimeToI" to getto the interse
tion. It is the
ontroller job to know when to lower the gate, andwhen to raise it. Initially, the gate is up, and no train is either in the interse
tionor in the se
tion pre
eding the interse
tion.The system transitions are given on Figure 1. The �rst three transitionsmodel the position
hanges of the train i. The two following ones express the
ontroller de
ision to lower or raise the gate. The next two mean the gate rea
hesthe up or down states. The last one models the time
ow.Only two transition guards are not quanti�er-free. But they
an easily be putin prenex form with a single quanti�er. Fun
tions are used (trains, �rstEnter,lastEnter, s
hedTime, +) but they do not range over the pro
ess set. All require-ments are thus met for Theorem 2 to be used, as long as the invariants to be
he
ked also verify the requirements about quanti�ers.Figure 2 shows several invarian
e properties of the system. Together with thesafety property, they give an invariant for the system. As the safety property isone
onjun
t of the invariant, it is trivially entailed by the invariant. In orderto validate the invariant, it is ne
essary to take into a

ount the
onstraintson
onstants (Figure 3) as well as the progress axioms11 (Figure 4). They aresupplementary hypotheses to be put in the veri�
ation
onditions.In the whole proof, only two properties (or guards) are existentially quan-ti�ed, properties are at most on
e quanti�ed, and at most one train take partin a transition. From Theorem 2, if the invariant (whi
h guarantees that thealgorithm is safe) is preserved for four trains, the algorithm will be safe for anynumber of trains.11 For example, progress axiom P1 states that the train does not stay inde�nitely inse
tion P before going in I.

�trains[i℄ = not here �! begintrains[i℄ := P ;�rstEnter[i℄ := T +minTimeToI;lastEnter[i℄ := T +maxTimeToI;s
hedTime[i℄ := T +
onMinI;trainHere[i℄ := trueend��trains[i℄ = P ^ T � �rstEnter[i℄ �! trains[i℄ := I��trains[i℄ = I �! begin trains[i℄ := not here; trainHere[i℄ := false end�� (gate = up _ gate = going up) ^ gstatus = up^ 9i (trainHere[i℄ ^ s
hedTime[i℄ � T +
down + �)�! begingate = going down;lastDown := T + gateDownTime;gstatus := downend�� (gate = down _ gate = going down) ^ gstatus = down^8i (trainHere[i℄) s
hedTime[i℄ > T +
down +
up +
arPassingTime)�! begingate := going up;lastUp := T + gateRiseTime;gstatus := upend ��gate = going up �! gate := up��gate = going down �! gate := down��T := T + "�Fig. 1. The transitions modeling the General Railroad Crossing system

T1 =def 8i �T < �rstEnter[i℄) trains[i℄ 6= I�T2 =def 8i �trains[i℄ = P)(�rstEnter[i℄ � T +minTimeToI ^ T � lastEnter[i℄^ lastEnter[i℄ � �rstEnter[i℄ = maxTimeToI�minTimeToI)�C1 =def gstatus = up) 8i �trainHere[i℄) T < s
hedTime[i℄ �
down�GC1 =def gstatus = down � (gate = goingDown _ gate = down)GC2 =def gstatus = down) lastDown � T + gateDownTimeGC3 =def gstatus = up) 8i �trainHere[i℄) lastDown < s
hedTime[i℄�TC1 =def 8i �trainHere[i℄ � trains[i℄ 6= notHere�TC2 =def 8i �trainHere[i℄) s
hedTime[i℄ < �rstEnter[i℄�Fig. 2. Invarian
e properties
AC1 =
down <
onMinIACT1 =
onMinI < minTimeToIAGC1 = gateDownTime <
downAGC2 = gateRiseTime <
upFig. 3. Constraints on
onstants

G1 =def gate = goingDown) T � lastDownG2 =def gate = goingUp) T � lastUpP1 =def 8i (trains[i℄ = P) T � lastEnter[i℄)P2 =def gstatus = up) 8i �trainHere[i℄) T < s
hedTime[i℄ �
down�P3 =def gstatus = down)9i �trainHere[i℄ ^ s
hedTime[i℄ � T +
up +
arPassingTime +
down�Fig. 4. Progress axioms

Caveat took 87 se
onds to generate and verify the 221 veri�
ation
onditionsne
essary to prove the safety property.7 Con
lusions and future workThe invariant validation pro
ess often has an intera
tive part as well as an au-tomati
 part [6, 30℄. This intera
tive aspe
t (even if it is often easy) makes theproof pro
ess longer and tedious. This work is one step further to make the proofby invariants more appli
able, either as a method by itself, or as an element ofan automati
 veri�
ation pro
ess.The veri�
ation
onditions obtained in the
ontext of veri�
ation of parame-terized algorithm are often quanti�ed over the set of pro
esses.We have presentedhere a quanti�er elimination pro
edure based on an enhan
ed Herbrand Theo-rem, an adaptation of the
lassi
al Herbrand Theorem to many-sorted logi
 withequality. This quanti�er elimination pro
edure is suitable for a large
lass of veri-�
ation
onditions in
luding formulas
oming from veri�
ation of parameterizedsystems. It has been su

essfully applied to the invariant validation for severalalgorithms in
luded the bakery algorithm (with or without bounded ti
kets), arailroad
rossing system, Burns, Dijkstra, Ri
art & Agrawala, Szymanski. . . Asthe quanti�er-free validity problem is usually de
idable, this quanti�er elimina-tion pro
edure is a key to automati
 validation of invariants.With bigger algorithms, instantiation itself may be
ome a problem. Findingsimple and e�e
tive heuristi
s to sele
tively instantiate formulas is also in our
on
ern. A rigorous hypothesis sele
tion and elimination method has alreadybeen found in the pure propositional
ase [19℄, and the results are promising.We plan to adapt it to the present framework.Referen
es1. P. A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling global
ondi-tions in parametrized system veri�
ation. In Computer Aided Veri�
ation Confer-en
e, volume 1633 of Le
ture Notes in Computer S
ien
e, pages 134{145. Springer-Verlag, July 1999.2. K. R. Apt and D. C. Kozen. Limits for automati
 veri�
ation of �nite-state
on-
urrent systems. Information Pro
essing Letters, 22(6):307{309, May 1986.3. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zu
k. Parameterized veri�
ation withautomati
ally
omputed indu
tive assertions. In Computer Aided Veri�
ation, vol-ume 2102 of Le
ture Notes in Computer S
ien
e, pages 221{234. Springer-Verlag,July 2001.4. K. Baukus, Y. Lakhne
h, and K. Stahl. Veri�
ation of Parameterized Proto
ols.Journal of Universal Computer S
ien
e, 7(2):141{158, Feb. 2001.5. P. Bernays and M. S
hn�nkel. Zum ents
heidungsproblem der mathematis
henlogik. Math. Annalen, 99:342{372, 1928.6. N. S. Bj�rner, Z. Manna, H. B. Sipma, and T. E. Uribe. Dedu
tive veri�
ation ofreal-time systems using STeP. TCS: Theoreti
al Computer S
ien
e, 253, 2001.

7. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
he
king. InComputer Aided Veri�
ation, volume 1855 of Le
ture Notes in Computer S
ien
e,pages 403{418. Springer-Verlag, July 2000.8. K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, Reading,Massa
husetts, 1988.9. E. W. Dijkstra. A Dis
ipline of Programming. Prenti
e-Hall, 1976.10. B. Dreben and W. D. Goldfarb. The De
ision Problem: Solvable Classes of Quan-ti�
ational Formulas. Addison-Wesley, Reading, Massa
husetts, 1979.11. E. A. Emerson and K. S. Namjoshi. Automati
 veri�
ation of parameterized syn-
hronous systems. In Computer Aided Veri�
ation, volume 1102, pages 87{98.Springer-Verlag, July 1996.12. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspe
tives in Mathemati
alLogi
. Springer-Verlag, Berlin, 1995.13. H. B. Enderton. A Mathemati
al Introdu
tion to Logi
. A
ademi
 Press, In
.,Orlando, Florida, 1972.14. M. Fitting. First-Order Logi
 and Automated Theorem Proving. Springer-Verlag,Berlin, 1990.15. P. Fontaine and E. P. Gribomont. Using BDDs with
ombinations of theories.In Logi
 for Programming, Arti�
ial Intelligen
e, and Reasoning, volume 2514 ofLe
ture Notes in Computer S
ien
e. Springer, 2002.16. J. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using equa-tional matings and rigid E{uni�
ation. Journal of the ACM, 39(2):377{429, Apr.1992.17. S. M. German and A. P. Sistla. Reasoning about systems with many pro
esses.Journal of the ACM, 39(3):675{735, July 1992.18. S. Graf and H. Sa��di. Verifying invariants using theorem proving. In ComputerAided Veri�
ation, volume 1102 of Le
ture Notes in Computer S
ien
e, pages 196{207. Springer Verlag, 1996.19. E. P. Gribomont. Simpli�
ation of boolean veri�
ation
onditions. Theoreti
alComputer S
ien
e, 239(1):165{185, May 2000.20. J. Y. Halpern. Presburger arithmeti
 with unary predi
ates is �11
omplete. TheJournal of Symboli
 Logi
, 56(2):637{642, June 1991.21. C. Heitmeyer and N. A. Lyn
h. The generalized railroad
rossing | a
ase studyin formal veri�
ation of real-time systems. In Pro
eedings 15th IEEE Real-TimeSystems Symposium, San Juan, Puerto Ri
o, pages 120{131, De
. 1994.22. H. E. Jensen and N. A. Lyn
h. A proof of burns n-pro
ess mutual ex
lusion algo-rithm using abstra
tion. In Tools and Algorithms for Constru
tion and Analysisof Systems, volume 1384 of Le
ture Notes in Computer S
ien
e, pages 409{423.Springer-Verlag, Mar. 1998.23. Y. Kesten, O. Maler, M. Mar
us, A. Pnueli, and E. Shahar. Symboli
 model
he
king with ri
h assertional languages. In Computer Aided Veri�
ation, volume1254 of Le
ture Notes in Computer S
ien
e, pages 424{435. Springer-Verlag, 1997.24. R. P. Kurshan and K. M
Millan. A stru
tural indu
tion theorem for pro
esses. InPrin
iples of Distributed Computing, pages 239{248. ACM Press, Aug. 1989.25. N. Lyn
h. Distributed Algorithms. Morgan Kaufmann, San Fran
is
o, CS, 1996.26. G. C. Ne
ula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,O
t. 1998. Available as Te
hni
al Report CMU-CS-98-154.27. G. Nelson and D. C. Oppen. Simpli�
ations by
ooperating de
ision pro
edures.ACM Transa
tions on Programming Languages and Systems, 1(2):245{257, O
t.1979.

28. A. Pnueli, S. Ruah, and L. D. Zu
k. Automati
 dedu
tive veri�
ation with invisibleinvariants. In Tools and Algorithms for the Constru
tion and Analysis of Systems,Le
ture Notes in Computer S
ien
e, pages 82{97, 2001.29. F. Ramsey. On a Problem of Formal Logi
. Pro
eedings of the London Mathemati
alSo
iety, 30:264{286, 1930.30. N. Shankar. Veri�
ation of Real-Time Systems Using PVS. In Computer AidedVeri�
ation, volume 697 of Le
ture Notes in Computer S
ien
e, pages 280{291.Springer-Verlag, June 1993.31. P. Wolper and V. Lovinfosse. Verifying properties of large sets of pro
esses withnetwork invariants. In Automati
 Veri�
ation Methods for Finite State Systems,volume 407 of Le
ture Notes in Computer S
ien
e, pages 68{80. Springer-Verlag,June 1989.

