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Abstract

A crucial step in the assertional verification of concurrent programs is deciding whether some sets of
literals are satisfiable or not. In this context, the Nelson-Oppen combination scheme is often used.
This scheme combines decision procedures for two disjoint theories into a decision procedure for the
union of these theories. However, the standard version of the Nelson-Oppen technique tackles only
one-sorted, stably infinite first-order theories. The scheme has previously been adapted to a many-
sorted framework [10], and to handle non-stably infinite theories [9]. Those two enhancements were
presented independently. We propose a unifying version in the continuity of both previous ones,
which further relaxes the stably infinite requirement. Notably, some non-stably infinite theories
can now be combined with the theory of arrays. Also, the combination scheme is presented here
using a semantic notion of theory, allowing to handle non-first order theories.
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The Nelson-Oppen combination framework [6] aims at creating a decision
procedure for the union of two theories on disjoint languages, from the decision
procedures for the quantifier-free fragment in each theory. For instance the
set of literals

L = {x ≤ y, y ≤ x + f(x), P (h(x) − h(y)), ¬P (0), f(x) = 0}

contains uninterpreted predicates and functions augmented with linear arith-
metic on integer. The combination scheme provides a decision procedure for
such sets of literals, from a decision procedure for uninterpreted predicates
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and functions (i.e., the empty first-order theory) and a decision procedure for
linear arithmetic. This is possible because languages are disjoint, the only
shared symbols being the equality and variables.

The Nelson-Oppen combination scheme is usually presented as a combina-
tion scheme for first-order theories. However, adopting a more semantic view
allows to avoid the delicate problem of dealing with, for instance, “theories”
admitting only arbitrary large finite models 4 by precisely selecting the mod-
els of the “theory” one wants to consider. An I-theory is an arbitrary set of
interpretations on the considered language. For example, considering linear
arithmetic on integers, the I-theory will be the set of all interpretations corre-
sponding to the single structure assigning set � to the domain, and their usual
meaning to symbols +, −, ≤, 0, 1. . . We present here a combination scheme
for I-theories. As first-order theories can be expressed as I-theories, 5 this can
be seen as a generalization of the usual first-order Nelson-Oppen combination
scheme. A Shostak’s combination scheme with a similar notion of generalized
theory has already been presented in [4].

In a verification context, it is natural to express verification conditions in a
many-sorted framework [3]. Very recently, the Nelson-Oppen method has been
reformulated and proved correct in an order-sorted framework [10]. To simplify
the presentation, we will rather work in a basic many-sorted framework, with
disjoint sorts (i.e., without subsorts).

Traditionally it is required for the theories in a combination to be stably
infinite. This means using the combination scheme is problematic with some
common theories (notably those having only finite models). In the philosophy
of [9], it will be shown that — in a many-sorted framework — non-stably
infinite theories combine easily with some very useful theories (notably the
empty theory, and the theories of arrays).

1 Preliminaries

A many-sorted first-order language is a tuple L = 〈S,V,F ,P, r, d〉 such that
S is a countable non-empty set of sorts (or types), V is the (countable) union
of disjoint countable sets Vτ of variables of sort τ , F is a countably infinite
set of function symbols, P is a countably infinite set of predicate symbols, r

assigns an arity to each function symbol in F and each predicate symbol in
P, and d assigns a sort in Sr(f)+1 to each function symbol f ∈ F and a sort in
Sr(p) to each predicate symbol p ∈ P. Nullary predicates are propositions, and

4 A first-order theory admitting arbitrary large finite models also has infinite models.
5 The I-theory corresponding to a first-order theory is just the set of the models of the
first-order theory.
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nullary functions are constants. A subset of L is a many-sorted language such
that the sets of sorts, variables, function and predicate symbols are subsets of
the corresponding sets of L.

It is assumed symbols are not overloaded. That is, a given function or
predicate cannot be assigned to different sorts. It is however handy to use
the same symbol with arguments of different sorts. In that case it suffices to
consider that such symbols are implicitly “decorated” with their sort decla-
ration. One example is the equality symbol “=”, which is decorated into one
symbol for every sort. Terms, atoms (atomic formulas), literals, and formulas
of a many-sorted language are defined in the usual way.

An interpretation of a formula in a many-sorted first-order language L is
a pair I = 〈D, I〉 where D assigns a non-empty domain Dτ to each sort τ ∈ S
and I assigns a meaning to each variable, function, and predicate symbol. As
usual, the identity is assigned to the equality symbol. An interpretation I
assigns a value I[t] in Dτ to every term t of sort τ . Similarly, interpretation
I assigns a value I[ϕ] in {�,⊥} to every formula ϕ. An interpretation I is
a model for formula ϕ if I[ϕ] = �. It is noted I � ϕ. A restriction of an
interpretation I in language L to a subset of L is the interpretation equal to
I for every domain, function symbol, predicate symbol in the subset of L.

A first-order theory is a set of axioms, which defines a set of interpretations,
i.e., the models of the first-order theory. A natural extension is to consider
I-theories: an I-theory is an arbitrary set of interpretations in a given many-
sorted language. The I-theory corresponding to a first-order theory is the set
of the models of the first-order theory. An I-theory may leave some predicates
and functions uninterpreted. A predicate p of sort 〈τ1, . . . τn〉 (a function f of
sort 〈τ1, . . . τn, τ〉) is uninterpreted in an I-theory T if for every interpretation
I = 〈D, I〉 ∈ T , and for every predicate q (resp. function g) of suitable
sort there is an interpretation I ′ ∈ T such that I ′ is the same as I except
that I ′[p] = q (resp. I ′[f ] = g). It is assumed that variables are always
left uninterpreted in any I-theory, with a meaning similar to uninterpreted
constants. Given an I-theory T , a formula ϕ is T -satisfiable if it has a model
in T . Two I-theories are disjoint if their languages are disjoint. Disjoint
languages are languages with disjoint sets of functions (and constants) and
predicates (though the equality symbol is shared).

Formulas including predicates and functions of two disjoint I-theories are
written in the union of the disjoint languages. The union of the disjoint
languages L1 = 〈S1,V1,F1,P1, r1, d1〉 and L2 = 〈S2,V2,F2,P2, r2, d2〉 is the
many-sorted language L = 〈S1 ∪ S2,V1 ∪ V2,F1 ∪ F2,P1 ∪ P2, r, d〉, where r

is the function equal to r1 when its argument is in the domain of r1, otherwise
it is equal to r2. Function d is defined similarly.

P. Fontaine, P. Gribomont / Electronic Notes in Theoretical Computer Science 125 (2005) 37–51 39



An I-theory T in the union L of disjoint languages L1 and L2 can be seen as
the union of two disjoint I-theories: the restrictions Ti of T to each language
Li, i.e., the set of all restrictions to Li of interpretations in T . However, it is
more convenient to define the union of I-theories as:

Definition 1.1 The union T of I-theories T1 and T2 in disjoint languages
L1 and L2 is the set of all interpretations I such that interpretations Ii =
〈Di, Ii〉 ∈ Ti exist for i = 1, 2, with Ii being the restriction to Li of I.

In this definition the restriction to L1 of T is not necessarily T1. Indeed,
if for a common sort τ in L1 and L2, an interpretation I1 from T1 assigns
to τ a domain which is never assigned by any interpretation in T2, then no
interpretation in T will have I1 as a restriction.

Notice that if T1 and T2 are the set of models of first-order theories T1 and
T2, the union of I-theories T1 and T2 is the set of models of the (first-order)
theory corresponding to the set of axioms T1 ∪T2. Our definitions for I-theory
and union of I-theories extend the classical definitions of theory and union of
theories but are not in contradiction with them.

As the combining method we propose applies to the general notion of
I-theories introduced earlier, it is necessary to encapsulate the “combinable
property” in a new notion. Combining two decision procedures for disjoint I-
theories will require that, for each common sort, at least one of the I-theories
is flexible:

Definition 1.2 An I-theory T in a many-sorted language L is flexible on
sort τ if τ is not a sort of L, or if for any interpretation I = 〈D, I〉 in T , any
interpretation I ′ = 〈D′, I ′〉 such that

• the sets Dτ and D′

τ have the same cardinality, and Dτ ′ = D′

τ ′ for any τ ′ �= τ .
Function b defines a bijection from set Dτ to D′

τ , and is the identity on Dτ ′

for any τ ′ �= τ ;

• for any variable x, I ′[x] = b(I[x]);

• for any function symbol f ∈ F , I ′[f ](b(d1), . . . b(dn)) = b (I[f ](d1, . . . dn));

• for any predicate symbol p ∈ P, I ′[p](b(d1), . . . b(dn)) ≡ I[p](d1, . . . dn);

also belongs to T .

Intuitively it means terms are assigned elements in the domain modulo a
permutation. It allows to extend the use of the classic combination scheme
to I-theories which do not necessarily correspond to first-order theories. As
only one I-theory is needed to be flexible, the requirement is directly satisfied
if one of the two I-theories corresponds to a first-order theory:
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Theorem 1.3 If I-theory T is the set of models of a first-order theory in a
given language L, then T is flexible on every sort.

When combining more than two I-theories, it may seem the “flexible require-
ment” will impose all but one I-theory in the combination to correspond to
first-order theories. Fortunately that is not the case. The following theorem
shows that no restriction occurs if any two individual non-flexible I-theories
have different sorts:

Theorem 1.4 Let T be the union of the disjoint I-theories T1 and T2. If T1

and T2 are flexible on τ , then T is flexible on τ .

The set L of literals in the little example at the beginning of this chapter
is unsatisfiable, and so is L1 ∪ L2, with

L1 = {x ≤ y, y ≤ x + v1, v1 = 0, v2 = v3 − v4, v5 = 0}

L2 = {P (v2) ,¬P (v5) , v1 = f (x) , v3 = h (x) , v4 = h (y) }.

But every literal in Li (i = 1, 2) contains functions (and constants) and pred-
icates from only one I-theory. Every literal in L1 is in the language of arith-
metic, whereas every literal in L2 is in the language of uninterpreted predicates
and functions. The shared symbols are variables only (and equality). The sets
L1 and L2 are built from L simply by introducing new variables. A pair of sets
of literals (L1, L2) is a separation of the finite set of literals L in the union of
disjoint languages L1 and L2, if: first, L is T -satisfiable if and only if L1 ∪L2

is T -satisfiable; second, Li is a finite set of literals in language Li, for i = 1, 2.
The only shared symbols are variable symbols (and equality). In fact, given
two languages and a set of literals in the union of those languages, a separation
can always be built, using variable abstraction.

Given a partition C of the finite set of variables {x1, . . . xn}, the arrange-
ment induced by C is the set of all equalities between variables of the same
sort in the same class of C, and of all inequalities between two variables of the
same sort in two distinct classes of C. For instance, the arrangement of the
three variables of the same sort x1, x2, x3 induced by partition {{x1, x2}, {x3}}
is {x1 = x2, x1 �= x3, x2 �= x3}. In fact the last inequality is not essential: the
set of literals {x1 = x2, x1 �= x3} is logically equivalent to the preceding ar-
rangement.

2 Cooperation of decision procedures

The following theorem provides the abstract basis for the combination proce-
dure. With further requirements on the I-theories, it will allow to combine two
decision procedures for disjoint languages into one for the union of languages:
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Theorem 2.1 Let I-theory T in language L be the union of I-theories T1 and
T2 in disjoint languages L1 and L2. For each sort, either T1 or T2 is flexible.
Let L be a set of literals on L, and let (L1, L2) be a separation of L according
to L1 and L2. Let V be the set of common variables in L1 and L2.

Assume 6 that for every domain τ in Li and every term t of sort τ used in
L2−i there is an equality x = t ∈ L2−i where x is a variable in V ′.

The set of literals L is T -satisfiable if and only if there exists an arrange-
ment A of V ∪ V ′ and Ti-models Ii of A ∪ Li for i = 1, 2 such that, for any
common sort τ in L1 and L2, the domains associated to τ in I1 and I2 have
the same cardinality. In that case A∪ L1 ∪ L2 is T -satisfiable.

Proof. The proof can be found in appendix A. �

The classical way of solving the cardinality constraints like those in The-
orem 6 is to consider only stably infinite theories. In a many-sorted context,
it means both theories should be stably infinite with respect to the set of
common sorts.

Definition 2.2 An I-theory T in a many-sorted language L is stably infinite
with respect to a set of sorts S if every T -satisfiable ground set of literals L

on L has a T -model assigning a domain of cardinality ℵ0 for every sort τ ∈ S

used in L.

Many useful I-theories are stably infinite: the I-theory of linear arithmetic
on integer, I-theories corresponding to the first-order theories of arrays [8] or
lists [7], etc. Also observe that, when talking about I-theories which are sets
of models of first-order theories, the Löwenheim-Skolem Theorem 7 allows to
relax the condition on domain cardinality in this definition: the cardinalities
should be greater or equal to ℵ0. But this remains a very strong requirement.
Notably it prevents to combine I-theories with only finite domains.

We will rather adopt a pragmatic view, and study two I-theories in par-
ticular. Compatible I-theories are I-theories requiring no “cardinality clause”
in Theorem 6:

Definition 2.3 Two disjoint I-theories T1 and T2 in many-sorted languages
L1 and L2 are compatible if for every separation (L1, L2) and arrangement A
such that

• V is the set of common symbols in L1 and L2;

6 Every separation can be transformed into a separation verifying this condition.
7 A formulation of Löwenheim-Skolem Theorem for many-sorted first-order logic may be
found in [10].
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• for every sort τ in Li and every term t of sort τ used in L2−i there is an
equality x = t ∈ L2−i where x is a variable in V ′;

• A is an arrangement of V ∪ V ′;

• A ∪ Li is Ti-satisfiable for i = 1, 2,

then there are Ti-models Ii of A ∪ Li for i = 1, 2 such that I1 and I2 assign
sets with the same cardinality for every common sort.

If two I-theories are stably infinite with respect to the set of common sorts then
they are compatible. But this is not a necessary condition: many I-theories
are not stably infinite, but are compatible with some other I-theories.

Assume that T1 and T2 are compatible disjoint I-theories such that, for
each sort, at least one of them is flexible. Then there is a satisfiability deci-
sion procedure for sets of literals in the language of their union if there are
satisfiability decision procedures for sets of literals in the language of each I-
theory. Indeed, L1 ∪ L2 is unsatisfiable in the union if, for every arrangement
A, A∪Li is unsatisfiable for i = 1 or i = 2. In theory, the decision procedure
can be, first, to compute the separation, and second, to check every arrange-
ment of the suitable set of variables together with each part of the separation.
The original set is unsatisfiable, if and only if no arrangement has been found
to be satisfiable with both parts of the separation.

Given a set of variables V , there are as many arrangements as partitions
for V (at least in a one-sorted logic). The number of partitions, also known
as Bell numbers (see for example [5]), grows exponentially with respect to the
size of |V |. In practice, checking every arrangement is not feasible, even for a
small number of variables. 8 A more practical way for decision procedures to
cooperate is by exchanging (disjunctions of) equalities. 9

In Theorem 6, the set of variables on which the arrangement is built is
larger than the set of shared variables, usually used in the Nelson-Oppen
method. This is necessary for the combination with non-stably infinite I-
theories, for instance, I-theories having only finite domains. A similar solution
was also used in [11], to combine the theory of sets with a theory for the
elements, even if this last theory is not stably infinite.

Combining decision procedures for a finite number of I-theories not only
requires those I-theories to have a decision procedure. Some I-theories in
the combination should be flexible on some sorts in such a way that for any
two I-theories in the combination, at least one is flexible for each (common)
sort. This requirement is not very restricting, as first-order I-theories are

8 There are more than four million arrangements of 12 variables.
9 The justification is similar to the one presented in [2].
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flexible on every sort (Theorem 1.3). The requirement on domain cardinality
is more restricting: the I-theories that are to be combined together should
be compatible. Unfortunately, there is no simple and practical criteria (other
than stable infiniteness) to find if I-theories are compatible. However, some
common I-theories have nice properties regarding compatibility.

3 The empty theory

The empty first-order theory in a language L defines the I-theory in which
every constant, predicate, and function is uninterpreted, and no constraints
are put on the domains. This I-theory will be referred to as the uninterpreted
I-theory. It is certainly the simplest one, but it is nonetheless important as it
allows uninterpreted predicates and functions to be added to the language of
a decidable I-theory.

The uninterpreted I-theory has an optimal behaviour in a combination
framework. Classically, only its stable infiniteness is exploited as all theories
considered are assumed to be stably infinite. However, it was also noticed in
[9] that it has the required properties to be combined not only with stably
infinite theories but also with every first-order theory. Here, we show that it
can be combined with any I-theory, corresponding to a first-order theory or
not. The deep reason for this is encapsulated in this lemma:

Lemma 3.1 Let T be the uninterpreted I-theory in a many-sorted language
L, and L be a set of literals on L. If I = 〈D, I〉 ∈ T is a model of L, then
there is a model I ′ = 〈D′, I ′〉 ∈ T of L such that, for any sort τ and any
cardinality κ ≥ |Dτ |, |D

′

τ | = κ and |D′

τ ′| = |Dτ ′ | for every τ ′ �= τ .

A corollary of preceding Lemma is the stable infiniteness of the uninter-
preted I-theory:

Theorem 3.2 The uninterpreted I-theory in a language L is stably infinite
on every set of sorts of L.

Proof. Assume L is a satisfiable finite set of literals in L. There is an inter-
pretation I = 〈D, I〉 of L such that Dτ is finite for every sort τ of L. Using
Lemma 3.1 on each sort successively, it is possible to build from I a model I ′

assigning to every sort a domain of cardinality ℵ0. �

As a consequence, the uninterpreted I-theory is compatible with every stably
infinite I-theory. But a much stronger result can be deduced from Lemma 3.1:

Theorem 3.3 The uninterpreted I-theory in a language L is compatible with
every I-theory.
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Proof. Assume T1 is the uninterpreted I-theory in language L1 and T2 is any
I-theory in language L2 disjoint from L1. Let (L1, L2) and A be a separation
and an arrangement verifying the conditions of Definition 2.3.

For every common sort τ of L1 and L2, the arrangement A defines a
partition of variables of sort τ : two variables of sort τ are in the same class if
and only if they are assigned the same value by a model of A. This partition
contains a given number kτ of classes. The models Ii of A ∪ Li attribute to
each common sort τ a domain Di,τ such that |Di,τ | ≥ kτ . Furthermore, if
A∪L1 is satisfiable, then it has a model I1 which attributes to each common
sort τ a domain D1,τ such that |D1,τ | = kτ .

Using Lemma 3.1 on each common sort successively, it is possible to build
from I1 a model I ′

1 assigning to every sort a domain of the same cardinality
as interpretation I2. �

Given any decidable I-theory T in language L, adding any finite number of
uninterpreted functions, predicates, or constants keeps the I-theory decidable,
for sets of literals in the resulting language.

4 The theory of arrays

The first-order theory of arrays is one of the most popular theories used in
combination schemes. A survey of results and history about it can be found
in [5,8]. The satisfiability problem for sets of literals in the language of a
theory of arrays is decidable. In [8] the occurrences of “write” are eliminated
and every atom read(a, ·) is translated to an application of an uninterpreted
function associated to a, and finally congruence closure is used. In [1] it
is proven that the superposition calculus is a satisfiability procedure for the
(one-sorted) theory of arrays.

The theory contains “read-over-write” axioms:

∀a∀i∀e [read (write (a, i, e) , i) = e]

∀a∀i∀j∀e [i �= j ⇒ read (write (a, i, e) , j) = read (a, j)]

and an extensionality axiom:

∀a∀b [∀i read (a, i) = read (b, i) ⇒ a = b] .

There are obviously three possible sorts: indices (i, j), arrays (a, b), and
elements (e). But some sorts may be merged. It is natural and conservative
to consider that the sort of arrays is disjoint from the sorts of elements and
indices. 10 However, in numerous practical cases, it may be interesting to

10 Nevertheless elements in a theory of arrays can be arrays. But their language should be
disjoint. For instance, read1, write1 and read2, write2.
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merge sorts for indices and elements. Two theories should be thus considered:
the two-sorted theory, and the three-sorted theory.

The I-theory corresponding to the first-order theory of arrays is not com-
patible with every I-theory like the uninterpreted I-theory is. However, very
positive results hold about the compatibility with the I-theory of arrays,
thanks to the following lemma:

Lemma 4.1 Let T be a two-sorted or three-sorted I-theory of arrays in lan-
guage L and L be a set of literals on L. If I = 〈D, I〉 ∈ T is a model of L,
then there is a model I ′ = 〈D′, I ′〉 ∈ T of L such that, for sort τ of values
(or indices) and any cardinality κ ≥ |Dτ |, |D′

τ | = κ. If T is a three-sorted
I-theory and τ ′ is the sort of indices (resp. values), then |D′

τ ′| = |Dτ ′|.

Proof. The proof can be found in appendix B. �

The stable-infiniteness is a direct consequence of preceding lemma:

Theorem 4.2 The two-sorted (three-sorted) I-theory of arrays in language L
is stably infinite on every set of sorts.

It is often required to use the I-theory of arrays with a finite domain for
elements or indices. Its stable-infiniteness is of no help in those cases. To
guarantee that it is still possible to combine the I-theory of arrays with non-
stably infinite theories, it is further required that no inequality is used on the
array sort. This can be achieved by replacing, in the separation part in the
language of arrays, every inequality t1 �= t2 where t1 and t2 are array terms
by read(t1, i) �= read(t2, i) where i is a new index variable. As a consequence,
new variables may have to be introduced in the set V ′ to verify conditions of
Theorem 6.

Theorem 4.3 The two-sorted and three-sorted I-theories of arrays are com-
patible with any I-theory in a language L, if the sort of arrays is not a sort of
L, as long as no inequality is used on the array sort.

Proof. Assume T1 is the two-sorted I-theory of arrays in language L1 and
T2 is any I-theory in language L2 disjoint from L1. Let (L1, L2) and A be a
separation and an arrangement verifying the conditions of Definition 2.3.

For every common sort τ of L1 and L2, the arrangement A defines a
partition of variables of sort τ : two variables of sort τ are in the same class if
and only if they are assigned the same value by a model of A. This partition
contains a given number kτ of classes. The models Ii of A ∪ Li attribute to
each common sort τ a domain Di,τ such that |Di,τ | ≥ kτ . As opposed to the
empty theory, it is not direct to guarantee that, if A∪L1 is satisfiable, then it
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has a model I1 (in the array I-theory) which attributes to each common sort
τ a domain D1,τ such that |D1,τ | = kτ .

Consider the two-sorted theory. Every term of the common sort τ used
in L1 is equal to a term used in A. Assume d ∈ D1,τ is associated to no
term used in A. Let I ′

1 be the same as I1 except that its domain for sort τ ,
D′

1,τ is D1,τ \ {d}, and I ′

1[read(a, i)] = I1[read(a, i)] if I1[read(a, i)] �= d, or d′

otherwise, where d′ is an element of D′

1,τ chosen once and for all. Interpretation
I ′

1 is still a model of every literal in L1, and of both “read-over-write” axioms,
as those axioms are only universally quantified. If formula ∀i read (a, i) =
read (b, i) ⇒ a = b is made false by I ′

1 for elements a and b of the array
domain in I ′

1, then read (a, i) = read (b, i) for every i. It is possible to build
I ′′

1 from I ′

1 such that only one representative of all such elements is kept.
Interpretation I ′′

1 still makes true both “read-over-write” axioms, and also the
extensionality axiom. Assuming no inequality is used on the array sort in L1,
I ′′

1 is also a model of every literal in L1.

The same argument can be applied in the three-sorted case, for both ele-
ments and indices. Thus, if A ∪ L1 is T1-satisfiable, it has a model I1 ∈ T1

which attributes to each common sort τ a domain D1,τ such that |D1,τ | = kτ .
Using Lemma 4.1 it is thus possible to build a model I1 assigning to every
common sort a domain of the same cardinality as interpretation I2. �

Notice that previous theorem does not mean the I-theory of arrays is not
compatible if the array sort is a common sort. It only states that if the array
sort is a common sort, then the other I-theory must have a nice property to
guarantee they are compatible. For instance, the array sort can be the sort of
elements for another array I-theory. Also, the I-theory of arrays is compatible
with the uninterpreted I-theory, even if both languages contain the sort of
arrays.

5 Conclusion

This new presentation of the Nelson-Oppen combination scheme enhances the
classical scheme in two aspects. First, it handles I-theories, i.e., arbitrary sets
of interpretations, not necessarily corresponding to first-order theories. This
improvement allows to deal directly, for instance, with the linear arithmetic I-
theories for �, �, with the arithmetic I-theory on �, or with I-theories having
only finite domains of unbounded size, used, for example in proof obligations
issued in the context of verification of parameterized systems. Any quantifier-
free decidable first-order language with interpreted functions and predicates
corresponds to an I-theory which perfectly describes it.

An I-theory having only finite domains of unbounded size is essentially non-
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stably infinite. The second improvement in this presentation is the combina-
tion of non-stably infinite I-theories, following [9]. The many-sorted framework
allows to combine in practice non-stably infinite I-theories with the I-theory
corresponding to the empty theory, and with the (I-)theory of arrays.

As for the classical Nelson-Oppen framework, this framework for combining
two I-theories can be applied to any number of I-theories, as long as they can
be added one by one in the combination. A combination provides a decision
procedure for the union of two I-theories, which is itself an I-theory. For
instance, to deal with arrays containing lists of elements in � with some linear
arithmetic on the sort of elements, the I-theory of lists can be combined with
the I-theory for linear arithmetic on �, thanks to the stable-infiniteness of
both I-theories, and the obtained I-theory can be combined with the I-theory
of arrays, using the good behaviour of the I-theory of arrays for combinations.
Also, a three-sorted I-theory of arrays with functions read1 and write1 may
have elements being arrays from another disjoint two-sorted I-theory of arrays
with functions read2 and write2, if the only common sort is the sort of elements
of for the first I-theory, i.e., the sort of arrays of the second one.

A limitation of this combination scheme is connected to the strict many-
sorted framework. For instance, it does not allow to consider lists of elements
which are either naturals or lists of naturals. Also, it remains to identify all
cases where V ′ can be safely ignored in Theorem 6. Identifying more theories
with nice compatibility properties is another issue for future research.

We would like to thank the anonymous reviewers for their comments.
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A Proof of Theorem 6

The condition is necessary. Let I ∈ T be a model of L. By definition of
separation, there is a model I ′ ∈ T of L1∪L2. This interpretation I ′ perfectly
defines an arrangement A of V ∪ V ′, and I ′ is a model of A∪L1 ∪L2, and so
of A∪ Li.

Assume now interpretation Ii ∈ Ti makes true A ∪ Li for i = 1, 2. Inter-
pretation Ii defines a partition Ci of all terms used in A ∪ Li such that two
terms a and b are in the same class if and only if Ii � a = b. Consider c1 ∈ C1

and c2 ∈ C2, then c1 ∩ c2 ⊂ V ∪ V ′. But A perfectly defines which elements
of V ∪ V ′ are in the same class. It is thus easy to make partitions C1 and C2

coincide on classes containing a same element. Let C be a partition of terms
in partitions C1 and C2 such that

• if c1 ∈ C1 and c2 ∈ C2 then c1 ∪ c2 ∈ C if and only if c1 ∩ c2 is non empty;

• for every ci ∈ Ci there exists c ∈ C such that ci ⊂ c. In other words, every
class of Ci is fully contained in one class of C;

• if ci �= c′i ∈ Ci, and if c, c′ ∈ C are such that ci ⊂ c and c′i ⊂ c′ then c �= c′.

Partition C will allow to build an interpretation I from I1 and I2 such that
I � A ∪ L1 ∪ L2.

First, let’s define the domains for I. For every sort τ in language L, at least
T1 or T2 is flexible. It can thus be assumed I1 and I2 assign the same domain
to every common sort. I naturally assigns this domain for every common sort,
whereas it assigns the domain assigned by Ii for every sort which is only in
language Li.

Second, as for every sort τ in language L, at least T1 or T2 is flexible, I1

and I2 can be assumed to associate the same element to every variable in
V ∩ V ′.

Every class c of C contains elements of the same sort. If this is a common
sort to both I-theories then c ∩ (V ∪ V ′) �= ∅, and for every term t in c,
I[t] = I1[t] = I2[t]. If it is not, then every term t ∈ c belongs to one language
Li, and I[t] = Ii[t]. �

B Proof of Lemma 4.1

First assume T is the three-sorted I-theory and τ is the sort of values; τ ′ is the
sort of indices and σ the sort of arrays. Let ∆ be a set such that |∆∪Dτ | = κ,
and such that ∆∩Dτ ′ = ∆∩Dσ = ∅. The interpretation I ′ = 〈D′, I ′〉 is built
from interpretation I:

• D′

τ = Dτ ∪ ∆, D′

τ ′ = Dτ ′;
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• for any constant a, I ′[a] = I[a];

• for any variable x, I ′[x] = I[x];

• if v ∈ Dτ , i ∈ Dτ ′ and a ∈ Dσ then I ′[read](a, i) = I[read](a, i) and
I ′[write](a, i, v) = I[write](a, i, v).

This suffices to make I ′ a model of L, but it is not yet perfectly defined, and
not yet a model of T . For every element a in Dσ, there is an element a′ in
D′

σ \Dσ corresponding to an array similar to a but such that a finite number
of elements have been replaced by elements of ∆. More formally:

{write(a, i, v), write(write(a, i, v), i′, v′), . . .} ∈ D′

σ \ Dσ

for {v, v′, . . .} ⊂ D′

τ \ Dτ and {i, i′, . . .} ⊂ Dτ ′ . Special care must be taken to
verify the extensionality and read-over-write axioms. Functions “read” and
“write” are extended in the natural way.

The two-sorted case, and the three-sorted case when τ is the sort of indices
are similar. Also notice that, if κ ≤ ℵ0, |Dτ | ≤ ℵ0, |Dτ ′| ≤ ℵ0, and |Dσ| ≤ ℵ0,
then |D′

σ| ≤ ℵ0. �
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