Interannual variability of CO₂ fluxes and yield by a winter wheat crop (Triticum aestivum L.)

Dufranne D.*, Vancutsem F.*, Moureaux C.*, Hoyaux J.*, Bodson B.*, Aubinet M.*

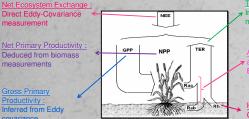
*Unité de Physique des Biosystèmes – FUSAGx, Belgium

*Unité de Phytotechnie des Régions Tempérées – FUSAGx, Belgium

winter on season II caused by an

important development of vegetation

Iune on season II


MAIN OBJECTIVES

Compare two growing seasons in order to identify impact of climatic conditions on :

- ☐ Carbon flows
- ☐ Plant growth
- ☐ Crop productivity

MATERIAL AND METHODS

1- Measurements

Total Ecosystem Respiration:
Inferred from Eddy-Covariance
measurements

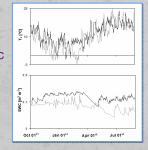
Autotrophic respiration (under and aboveground):

By difference between TER and R

Heterotrophic respiration:
Chamber measurements on root exclusion zones

2- Management and cultivars

On both seasons, the managements were similar and classic for winter wheat crop.


table 1 : Management and cu	ole 1 : Management and cultivar				
	Season I (2004-2005)	Season II (2006-2007)			
Previous crop	Sugar beet	Potato			
Nitrogen fertilization :	201.5 kg N ha-1	194.5 kg N ha ⁻¹			
	4 fractions	3 fractions			
Cultivar	Dekan	Rosario			
Sowing	October 14th	October 13th			
<u>Harvest</u>	August 2 nd	August 5th			

3- Climatic conditions

Differences between seasons :

- Milder winter with only 6 days with average temperature below $0\,^\circ\!\!C$ on season II
- Drought in April and rainy conditions in June on season II
- Drought in May-June on season I

fig. 2: Climatic conditions
(Ta : Air temperature, SWC : Soil

CONCLUSION:

The impact on crop carbon balance of climate conditions was evaluated

-Milder winter induced larger GPP and earlier development stages on season II.

-However, lower NPP and harvest were observed on season II.

-This was due to specific processes that appeared during flag leaf development and grain filling stage.

-This effect cannot be simulated by a simple flux to climate response model.

This excess assimilated carbon was probably stored in the soil.

This also suggests that GPP is not a good predictor of productivity.

RESULTS

fig. 3 : Comparison of carbon fluxes on season I (Grey line) and season II (Dark line)

1- Carbon balance

	Season I	Season II
NEE	-0.63 (0.03)	-0.73 (0.04)
GPP	-1.58 (0.13)	-1.68 (0.12)
TER	0.95 (0.13)	0.95 (0.12)
NPP	-0.88 (0.05)	-0.76 (0.05)

On season II, the crop had assimilated more carbon but productivity was lesser. Why?

2- A greater carbon exchange on season II

Higher air temperature (Ta) and soil water content (SWC) on season II (fig 2) :

- → Higher GPP during winter and spring (fig. 3)
- → Higher annual GPP (fig. 3 and table 2)

3- Crop earliness

On season II, the earlier development was caused by **the milder winter** (fig. 2 and 3).

All stages were earlier, in agreement with GDD model :

Model: 1 leaf at 100 Growth Degree Day, tillering stage starts after 4 leaves (i.e. 400 GDD).

In practice: tillering started at 429 and 429 GDD respectively

TER GPP An earlier development on season II 4- TER and normalized respiration - At the end of winter ,TER were similar (fig 3)

A greater carbon exchange during Lower carbon fluxes in May and

- However as temperature was larger on season II, TER should be larger.
- After temperature normalization :

TER season I > TER season II

Explanation: TER on season I was boosted by previous crop residues (table 3).

table 3: Previous crop residues and carbon				
Previous crop	Sugar beet	Seed potato		
End of vegetation	Sept. 29th	Aug. 6 th		
Harvest	Sept. 29th	Sept. 15 ^h		
Carbon	0.38 kg C m ⁻²	0.07 kg C m ⁻²		

5- NPP and underground biomass

On season II: NEE = NPP at the end of tillering. This is impossible because it would mean a zero heterotrophic respiration.

This could be explained by an underestimation of underground biomass.

6- Productivity

Lower productivity on Season II (table 4), despite a larger GPP, 3 causes :

Dry conditions in April (fig. 2)

Smaller flag leaf
Humid and cloudy conditions during grain filling stage

- → lower assimilation (fig .3)
- → disease development (reduction of green LAI)

table 4. Floductivity		
	Season I	Season II
Yield - Grains (DM)	89.4 qx ha ⁻¹	75.0 qx ha ⁻¹
Yield - Straw (DM)	4.20 t ha-1	3.38 t ha ⁻¹
Grain density	75.5 kg hl ⁻¹	69.9 kg hl ⁻¹
Density	440 ears.m ⁻²	469ears.m ⁻²

Contact person : Delphine Dufranne - Unité de Physique des Biosystèmes – FUSAGx, Belgium, E-mail : dufranne.d@fsagx.ac.be Acknowledgements : Communauté Française de Belgique – CarboEurope-IP, FNRS

