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We propose a collinear factorization formula for the associated production of one

particle and a Drell-Yan pair in hadronic collisions. It is shown that additional

collinear singularities appearing in the next-to-leading order calculations that can

not be factorized into parton and fragmentation functions are systematically renor-

malized by introducing fracture functions. Next-to-leading order coefficient functions

for cross-sections double differential in the fractional energy of the identified hadron

and lepton pair invariant mass are presented.
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I. INTRODUCTION

The description of particle production in hadronic collisions is interesting and challenging

in many aspects. Perturbation theory can be applied whenever a sufficiently hard scale

characterizes the scattering process. The comparison of early LHC charged particle spectra

with next-to-leading order perturbative QCD predictions [1] shows that the theory offers

a rather good description of data at sufficiently high hadronic transverse momentum,

of the order of a few GeV. For inelastic scattering processes at even lower transverse

momentum, the theoretical description in terms of perturbative QCD breaks down since

both the coupling and partonic matrix elements diverge as the transverse momenta of

final state parton vanish. In this paper we will study the semi-inclusive version of the

Drell-Yan process, H1 + H2 → H + γ∗ + X , in which one particle is tagged in the final
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state together with the Drell-Yan pair. In such a process the high invariant mass of the

lepton pair, Q2, constitutes the perturbative trigger which guarantees the applicability of

perturbative QCD. The detected hadron H could then be used, without any phase space

restriction, as a local probe to investigate particle production mechanisms. The evaluation

of O(αs) corrections shows that there exists a class of collinear singularities escaping the

usual renormalization procedure which amounts to reabsorb collinear divergences into

a redefinition of bare parton and fragmentation functions. Such singularities are likely

to appear in every fixed order calculation in the same kinematical limits spoiling the

convergence of the perturbative series. We therefore show how to improve the theoretical

description providing a generalized procedure for the factorization of such additional

collinear singularities. Most important, the latter is the same as the one proposed in

Deep Inelastic Scattering [2] where the same collinear singularities pattern is also found,

confirming the universality of the collinear radiation between different hard processes.

The latter will make use the concept of fracture functions and the renormalization

group equations associated with them [3]. In a pure parton model approach, these

non-perturbative distributions effectively describe the hadronization of the spectators

system in hadron-induced reactions. We will demonstrate that the transverse-momentum

integrated cross-section is finite and valid for all transverse momentum of the detected

hadron, without any restriction imposed by the singular behaviour of matrix elements.

We further note that this process is the single-particle counterpart of electroweak-boson

plus jets associated production [4], presently calculated at nex-to-leading order accuracy

with up to three jets in the final state [5]. One virtue of jet requirement is that it indeed

avoids the introduction of fragmentation functions to model the final state, which are

instead one of the basic ingredients entering our formalism. At variance with our case,

however, jet reconstructions at very low transverse momentum starts to be challenging [6]

and it makes difficult the study of this interesting portion of the produced particle spectrum.

In Ref. [7] a first attempt was made to study the associated radiation in Drell-Yan type

process with the aid of the concept of extended fracture functions [8]. The collinear factor-

ization formula was then studied in Ref. [9] where we were mainly concerned with the study

of hard diffractive processes in hadronic collisions. The latter are a special case of associated

production in which the tagged hadron is a proton at very low transverse momentum and
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almost the energy of the incoming proton. In this paper we consider the production of

a generic hadron and report all the coefficient functions for the cross-sections differen-

tial in the invariant mass of the lepton pair and fractional momentum of the detected hadron.

The outline of this paper is as follows. In Section II we set the notation and briefly review

the factorization of collinear singularities in the inclusive Drell-Yan process. In Section III

we evaluate the O(αs) contributions to the cross-section in which the hadron is produced by

the fragmentation of a final state parton. In Section IV we define the parton model cross-

section for the associated production of one particle and a Drell-Yan pair in term of fracture

functions and evaluate the corresponding O(αs) corrections. In Section V we present the

finite cross sections in terms of renormalized fracture functions, distribution functions and

fragmentation functions. The paper closes with a summary and some conclusions. Technical

details and explicit formulas are collected in the appendix.

II. INCLUSIVE DRELL-YAN PROCESS

In this section we briefly review the factorization of collinear singularities for the inclusive

Drell-Yan process, which will be then properly generalized when dealing with the associated

production case. Consider therefore the collision of two hadrons H1 and H2 of momenta P1

and P2, respectively:

H1(P1) +H2(P2) → γ∗(q) +X , (1)

where γ∗ stands for the virtual photon of invariant mass Q2 ≫ Λ2
QCD and X for the un-

observed part of the final state. The dilepton pair detected in the final state is the decay

product of a virtual photon γ∗ created, to lowest order, by the annihilation of a quark and

an antiquark with momenta p1 = x1P1 and p2 = x2P2, respectively, and both assumed to

be collinear to their parent hadron. The corresponding differential cross-section threfore is

given by [10]

dσ(τ)

dQ2
= σ0

∫ 1

τ

dx1

x1

∫ 1

τ

x1

dx2

x2

∑

q

e2q

[
f [1]
q (x1)f

[2]
q̄ (x2) + (q ↔ q̄)

]
δ(1− w) . (2)

The puntiform cross-section is denoted by σ0 = 4πα2
em
/9ShQ

2. The hadronic centre of mass

energy is denoted by Sh = (P1 + P2)
2 and the relevant ratio τ is defined by τ = Q2/Sh.

To zeroth order in αs, the partonic sub-process squared energy ŝ = (p1 + p2)
2 is fixed to
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be s = x1x2Sh = Q2, from which the constraint w = τ/x1x2 = 1 follows. The flavour

sum runs on quarks only. The puntiform cross-sections σ0 is weighted by the convolution

over parton distributions, f
[1]
q and f

[2]
q̄ , evaluated at fractional momenta x1 and x2. The

integration limits are fixed by momentum conservation. We further assign to each parton

distribution function an index n = [1, 2] denoting the hadron from which the quark (or

antiquark) has been extracted. Calculations are performed in dimensional regularization

with space-time dimension set to n = 4 − 2ǫ. Following Ref. [11], the cross-section for the

partonic sub-process q(p1) + q̄(p2) → γ∗(q) is given by

dσqq̄(w,Q
2)

dQ2
= δ(1− w) . (3)

It defines the normalization of the partonic Drell Yan cross section and corresponds to

multiplying all matrix elements by a factor 2Nc/(1 − ǫ), Nc being the number of colours.

The latter factor is already absorbed in the puntiform cross-section σ0 in parton model

formula, eq. (2). The evaluation on next-to-leading corrections is performed by computing

the relavant real emissions and virtual diagrams. We refer to reader to Ref. [11] for the

explicit expressions of matrix elements and further calculational details. Both real and

virtual terms develop poles in ǫ−2 which mutually cancel when these contributions are added

so that one finally obtains

dσ(τ)

dQ2
= σ0

∫ 1

τ

dx1

x1

∫ 1

τ

x1

dx2

x2

∑

q

e2q

{
(4)

[
f [1]
q (x1)f

[2]
q̄ (x2) + (q ↔ q̄)

][
δ(1− w)− 2

ǫ

αs

2π
Pqq(w) c0 +

αs

2π
C̃qq̄(w)

]
+

+
[(
f [1]
g (x1)f

[2]
q̄ (x2) + f [1]

q (x1)f
[2]
g (x2)

)
+ (q ↔ q̄)

]
·

·
[
− 1

ǫ

αs

2π
Pqg(w) c0 +

αs

2π
C̃qg(w)

]}
.

In the previous equation collinear singularities appear as poles in ǫ−1 multiplying the leading

order [12] splitting functions Pij(w). The adimensional factor c0 appearing in eq. (4) reads

c0 =
(4πµ2

R

Q2

)ǫ Γ(1− ǫ)

Γ(1− 2ǫ)
(5)

where µ2
R indicates the renormalization scale. The subtraction of singular terms in the

partonic cross-sections is performed by absorbing the collinear divergences into bare parton

distributions, which in the MS scheme amounts to the following redefinition:

fi(x) =

∫ 1

x

du

u

[
δijδ(1− u) +

1

ǫ

αs

2π

Γ(1− ǫ)

Γ(1− 2ǫ)

(4πµ2
R

µ2
F

)ǫ
Pij(u)

]
fj

(x
u
, µ2

F

)
. (6)
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The renormalized distributions do depend on the scale, µ2
F , at which the factorization is

performed, and their variation with respect to it gives governed by DGLAP evolution equa-

tions [12]. Inserting eq. (6) into eq. (4) one can explicitely check that collinear singularities,

proportional to poles in ǫ, do cancel. The finite result reads:

dσ(τ)

dQ2
= σ0

∫ 1

τ

dx1

x1

∫ 1

τ

x1

dx2

x2

∑

q

e2q

{
(7)

[
f [1]
q (x1, µ

2
F )f

[2]
q̄ (x2, µ

2
F ) + (q ↔ q̄)

][
δ(1− w) +

αs

2π
Cqq̄(w, µ

2
F/Q

2)
]
+

[(
f [1]
g (x1, µ

2
F )f

[2]
q̄ (x2, µ

2
F ) + f [1]

q (x1, µ
2
F )f

[2]
g (x2, µ

2
F )
)
+ (q ↔ q̄)

]αs

2π
Cqg(w, µ

2
F/Q

2)

}
.

The infrared-finite coefficient functions C̃ij(w) and Cij(w), defined in the MS scheme, are

reported in appendix A. In phenomenological applications it is costumary to set µ2
F = Q2 in

eq. (7). This choice removes large logarithms of the ratio µ2
F/Q

2 appearing in the coefficient

functions. At the same time, the evaluation of parton distributions at a scale µ2
F = Q2

accounts for the resummation of such logarithms via DGLAP evolution equations.

III. ASSOCIATED PRODUCTION

In the present and next section we consider the next-to-simple generalization of reaction in

eq. (1), namely the associated production of a Drell-Yan pair and an identified hadron H of

momentum h:

H1(P1) +H2(P2) → γ∗(q) +H(h) +X . (8)

In particular we will evaluate O(αs) corrections to the cross-section double differential in

the invariant mass Q2 of the lepton pair and the fractional energy of the identified hadron

H , defined in analogy with e+e− annihilation process:

z =
2h · (P1 + P2)

(P1 + P2)2
=

2EH√
Sh

. (9)

The last equality in the previous equations holds in the hadronic centre of mass frame. In

this frame z is the proportional to the detected hadron energy, EH , scaled down by the

beam energy,
√
Sh/2. In this section we consider the O(αs) production mechanism in which

the observed hadron H is given by the fragmentation of a, real, final state parton and

address such contribution as central. We label the momenta in the partonic sub-process as
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FIG. 1: One of the diagrams contributing to eq. (10). The observed hadron H is produced by the

fragmentation of the final state parton l.

i(p1) + j(p2) → l(k) + γ∗(q), where k and q are the four-momenta of the outgoing parton

and virtual photon, respectively. In general such a correction is expected in the form [13]

dσC(τ, z, Q2)

dQ2dz
∝
∑

ijl

∫
dx1

x1

∫
dx2

x2

∫
dρ

ρ
fi(x1)fj(x2)D

H
l (z/ρ)

dσ̂ij→lγ∗

dQ2dρ
, (10)

where ρ = 2El/
√
Sh is the fractional energy of the outgoing parton evaluated in the hadronic

center of mass frame and it is the partonic analogue of the hadronic z. The sum runs

over all possible partonic sub-processes and the partonic cross-sections are indicated with

dσ̂ij→lγ∗

. With respect to eq. (2), eq. (10) does contain an additional convolution on the

fractional energy ρ of the final state parton weighted by the fragmentation functions DH
l .

The latter gives the probability that a parton with fractional energy ρ fragments into the

observed hadron H with fractional energy z. One of the diagrams contributing to eq. (10)

is depicted in Fig. (1). We found useful to rewrite the convolution formula as a function

of y = (1 − cos θ)/2, where θ is its angle between the parton l and the hadron H1 in the

hadronic center of mass frame. Within these definitions the parton-level invariants û and t̂

in the matrix elements can be rewritten in this frame as

t̂ = (p1 − k)2 = − ŝ (1− w)
x1 y

x1y + x2(1− y)
, (11)

û = (p2 − k)2 = − ŝ (1− w)
x2 (1− y)

x1y + x2(1− y)
,

where ŝ = (p1 + p2)
2 and w = τ/(x1x2). The phase space reads:

dPS(2) =
1

8π

(4π
Q2

)ǫ (
x1x2 − τ

)1−2ǫ (
x1y + x2(1− y)

)2ǫ−2 τ ǫ

Γ(1− ǫ)
dy y−ǫ (1− y)−ǫ . (12)
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The angular variable y and the fractional energy ρ of the emitted parton are not independent

and constrained by:

ρ(y) =
x1x2 − τ

x1y + x2(1− y)
. (13)

The available phase space must take into account that there should be enough energy for the

production both of the hadron H and the virtual photon γ∗. This phase space constraints

will appear in the convolution limits in eq. (10). In order to obtain them, we notice that

the parent parton of the observed hadron is required to have a fractional energy ρ ≥ z > 0.

Applying this last constraint to eq. (13), one is able to determine the boundaries r1 and r2

in the x1 and x2 convolutions integrals. They are both z and y dependent and read

r1(τ, z; y) =
τ + z(1− y)

1− zy
,

r2(τ, z; y) =
τ + x1zy

x1 − z(1 − y)
. (14)

The O(αs) corrections in the central region therefore reads

dσC(τ)

dQ2dz
= σ0

∫ 1

0

dy

∫ 1

r1

dx1

x1

∫ 1

r2

dx2

x2

∑

q

e2q

{
(15)

[
f [1]
q (x1) f

[2]
q̄ (x2) + (q ↔ q̄)

]
DH

g (z/ρ)
[
− 1

ρ

αs

2π

c0
ǫ
P̂qq(w)[δ(y) + δ(1− y)] +

αs

2π
K̃qq̄(y)

]
+

f [1]
g (x1)

[
f
[2]
q̄ (x2)D

H
q̄ (z/ρ) + (q ↔ q̄)

][
− 1

ρ

αs

2π

c0
ǫ
P̂qg(w)δ(y) +

αs

2π
K̃qg(y)

]
+

f [2]
g (x2)

[
f
[1]
q̄ (x1)D

H
q̄ (z/ρ) + (q ↔ q̄)

][
− 1

ρ

αs

2π

c0
ǫ
P̂qg(w)δ(1− y) +

αs

2π
K̃qg(1− y)

]}
,

where ρ = ρ(y) via eq. (13) and we used the shorthand K̃ij(y) for K̃ij(y, x1, x2, w). The

expressions for infrared finite coefficients K̃ij are collected in appendix A. Eq. (15) displays

two disjoint singular limits for y → 0 and y → 1. In order to expose the collinear singularites

we have performed an ǫ-expansion on the angular variable y:

(1− y)−1−ǫ ≃ −1

ǫ
δ(1− y) +

( 1

1− y

)
+[0,1]

− ǫ
( ln(1− y)

1− y

)
+[0,1]

+O(ǫ2) , (16)

y−1−ǫ ≃ −1

ǫ
δ(y) +

(1
y

)
+[0,1]

− ǫ
( ln y

y

)
+[0,1]

+O(ǫ2) . (17)

The unregularized splitting functions P̂ij appearing in eq. (15) are given by [14]

P̂qq(w) = CF
1 + w2

1− w
, P̂qg(w) = TR[w

2 + (1− w)2] , (18)

with CF = 4/3 and TR = 1/2. We wish to conclude this section by noting that the collinear

divergences appearing in eq. (15) do correspond to configurations in which the parent parton
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of the observed hadron is collinear to the incoming parton. Such divergences at vaninish-

ing transverse momentum escape, as shown already in the context of Semi-Inclusive Deep

Inelastic Scattering [2], any factorization in terms of renormalized parton distributions and

fragmentation functions. While for many practical applications they are regularized intro-

ducing an arbitrary cut-off on the produced hadron transverse momentum, configurations

which give rise to these divergences will be present at every order in perturbative calcu-

lations. Fracture functions together with their own renormalization group equations can

be shown to provide the correct tool to perform the resummation to all orders of large

logarithmic contributions coming from the factorization of such collinear singularities.

IV. CORRECTIONS IN THE TARGET REGION

To lowest order in the QCD coupling no hadron can be produced in the final state since

QCD radiation is absent. In this case we assume that hadron production is described by

fracture functions M
H/H1

i (x1, z) and M
H/H2

j (x2, z). These non-perturbative distributions

give the conditional probability of finding a parton i(j) of fractional momemntum x1(x2) in

the incoming hadron H1(H2) while an hadron H , with fractional momentum z, is detected

in the final state [3]. In a pure parton model approach they describe hadron production

in the target fragmentation region of H1 or H2. The latter regions, denoted by RT1
and

RT2
, respectively, can be defined as θ = 0 and θ = π, where θ is the angle between H and

H1 defined in the centre of mass frame. Fracture function were originally introduced to

describe hadron production in the Deep Inelastic Scattering target fragmentation region. A

renormalization group evolution equations were derivered [3] with the aid of Jet Calculus

technique [14]. Subsequently the soft and collinear factorization of these distributions in

Semi-Inclusive DIS was proven respectively in Refs. [15, 16]. A complete one loop calculation

was presented in Ref. [2], confirming the factorization conjecture first formulated in Ref. [3].

We emphasize that by virtue of the factorization theorem, fracture functions are univeral

distributions, at least in the context of Semi-Inclusive DIS. In hadronic collisions however

such a proof does not exist and counter example to it have been given in the context of

diffractive production in Ref. [15]. The main motivation for using fracture functions in

the present context is that, as we shall prove in the following sections, they allow us to

systematically factorize collinear divergences occuring in the evaluation of the partonic cross-
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FIG. 2: Pictorial representation of the parton model formula in eq. (19). The hadron H is non-

perturbatively produced by a fracture functions.

sections. Given these assumptions, we now present the parton-model formula, depicted in

Fig. (2), for the associated production case:

dσH(τ)

dQ2dz
= (19)

σ0

∫ 1−z

τ

dx1

x1

∫ 1

τ

x1

dx2

x2

∑

q

e2q

[
M [1]

q (x1, z)f
[2]
q̄ (x2) +M

[1]
q̄ (x1, z)f

[2]
q (x2)

]
δ(1− w) +

σ0

∫ 1

τ

1−z

dx1

x1

∫ 1−z

τ

x1

dx2

x2

∑

q

e2q

[
M [2]

q (x2, z)f
[1]
q̄ (x1) +M

[2]
q̄ (x2, z)f

[1]
q (x1)

]
δ(1− w) .

The integration limits of convolution integrals in both lines of eq. (19) are given by mo-

mentum conservation:

1− z ≥ x1x2 ≥ τ and x1 + z ≤ 1 in RT1
, (20)

1− z ≥ x1x2 ≥ τ and x2 + z ≤ 1 in RT2
. (21)

Phase space integrations are asymmetric since each fracture function selects its own frag-

mentation region. To uniform the notation, we exchange the superscript H/H1 (H/H2) for

[1] ([2]) which proves to be useful for the bookkeeping of the various contributions. Fracture

functions in eq. (19) are normalized according to the constraint

∑

H

∫
dz

dσH(τ)

dQ2dz
=

dσ(τ)

dQ2
. (22)

The above constraint must me fullfilled irrespective to the order of the perturbative calcu-

lations. It is interesting to note that for the inclusive Drell-Yan cross-sections appearing on
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the right hand side of eq. (22), the factorization theorem guarantees that the corresponding

cross-sections can be described by universal parton distributions functions. On the left hand

side of eq. (22), we have instead no guarantee that fracture functions eventually extracted

from Deep Inelastic Scattering can be succesfully used in hadronic collisions. Eq. (19) is

therefore both a factorization and a cross-section conjecture for the process under exami-

nation. In the remainder of this section we consider the evaluation of O(αs) corrections to

the parton model formula, eq. (19). We address it as target contributions to distinguish

them from the one evaluated in Sec. III. As already stated, when the final state hadron is

observed in RT1
or RT2

, we assume that it has been non-perturbatively produced from a

fracture functions. Final state partons occurring in O(αs) corrections to eq. (19) must be

therefore integrated over phase space and virtual corrections added. A diagram contributing

to eq. (23) is depicted in Fig. (3). The calculation closely follows the one already presented

in Sec. II for the inclusive Drell-Yan process upon the exchange of a parton distributions

with a fracture functions and taking into account momentum conservation in integrations

limits. We therefore just quote the final result, valid up to O(αs):

dσT (τ)

dQ2dz
= σ0

∫ 1−z

τ

dx1

x1

∫ 1

τ

x1

dx2

x2

∑

q

e2q

{
(23)

[
M [1]

q (x1, z)f
[2]
q̄ (x2) + (q ↔ q̄)

][
δ(1− w)− 2

ǫ

αs

2π
Pqq(w) c0 +

αs

2π
C̃qq̄(w)

]
+

[(
M [1]

g (x1, z)f
[2]
q̄ (x2) +M [1]

q (x1, z)f
[2]
g (x2)

)
+ (q ↔ q̄)

]
·

·
[
− 1

ǫ

αs

2π
Pqg(w) c0 +

αs

2π
C̃qg(w)

]}
+

+σ0

∫ 1

τ

1−z

dx1

x1

∫ 1−z

τ

x1

dx2

x2

∑

q

e2q

{

[
M [2]

q (x2, z)f
[1]
q̄ (x1) + (q ↔ q̄)

][
δ(1− w)− 2

ǫ

αs

2π
Pqq(w) c0 +

αs

2π
C̃qq̄(w)

]
+

[(
M [2]

g (x2, z)f
[1]
q̄ (x1) +M [2]

q (x2, z)f
[1]
g (x1)

)
+ (q ↔ q̄)

]
·

·
[
− 1

ǫ

αs

2π
Pqg(w) c0 +

αs

2π
C̃qg(w)

]}
.

Comparing eq. (4) with eq. (23) reveals that in target fragmentation region the structure of

collinear singularities is the same as in the inclusive Drell-Yan case, as expected. The main

change is just a restriction on phase space integrals since the production of the Drell-Yan

pair of a given invariant mass Q2 must be, by energy-momentum conservation, compatible
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FIG. 3: Example of O(αs) real corrections contributing to eq. (23). The hadron H is non pertur-

batively produced by a fracture function.

with the observation of a hadron in the final state with fractional momentum z.

V. FINITE CROSS-SECTIONS AT NLO

In this section we will describe the collinear factorization procedure which must be applied in

order to get infrared finite results for the cross-section under examination. We have already

noted, by comparing eq. (4) and eq. (23), that the structure of collinear singularities in the

target fragmentation region is identical to the one found in the inclusive Drell-Yan case.

We may expect that renormalized fracture functions are defined in a way similar to that of

renormalized parton densities in eq. (6). As it was firstly obtained in the original analysis

of Ref. [3] and confirmed in the one loop calculation of Ref. [2], the renormalized fracture

functions obey a somewhat more involved subtraction with respect to parton distributions.

In the MS scheme the redefinition of bare fracture functions reads:

M
H/H1

i (x, z) =

∫ 1

x/(1−z)

du

u

[
δijδ(1−u)+

1

ǫ

αs

2π

Γ(1− ǫ)

Γ(1− 2ǫ)

(4πµ2
R

µ2
F

)ǫ
Pij(u)

]
M

H/H1

j

(x
u
, z, µ2

F

)
+

+

∫ x/(x+z)

x

du

u

1

1− u

u

x

1

ǫ

αs

2π

Γ(1− ǫ)

Γ(1− 2ǫ)

(4πµ2
R

µ2
F

)ǫ
P̂ij(u) fj/H1

(x
u

)
DH

l

( zu

x(1 − u)

)
, (24)

where in our notation P̂ij(u) = P̂(l)i←j(u). The first term on r.h.s of eq. (24) has the same

subtraction structure as for parton distribution, eq. (6). The singularity is due to collinear

radiation accompaining the active parton, while the hadron in the final state is non perturba-

tively produced by the fracture functions itself. In the second term of eq. (24) the singularity
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is due configurations in which the parent parton of the observed hadron is collinear to the

incoming parton. The factorization procedure is accounted for by substituting in eq. (23) the

bare fracture and distributions functions by their renormalized version in eq. (6) and eq. (24).

Renormalized parton distributions and fracture functions homogeneous terms do cancel all

singularities present in eq. (23). The additional singularities in eq. (15) are cancelled by the

combination of parton distributions and fracture functions inhomogeneous renormalization

terms. The final result, up to order O(αs), is obtained adding the the various contributions:

dσH(τ)

dQ2dz
=

dσH,T (τ)

dQ2dz
+

dσH,C(τ)

dQ2dz
= σ0

∑

q

e2q

{
(25)

∫ 1−z

τ

dx1

x1

∫ 1

τ

x1

dx2

x2

{[
M [1]

q (x1, z, µ
2
F )f

[2]
q̄ (x2, µ

2
F ) + (q ↔ q̄)

][
δ(1− w) +

αs

2π
Cqq̄

(
w,

µ2
F

Q2

)]
+

[(
M [1]

g (x1, z, µ
2
F )f

[2]
q̄ (x2, µ

2
F ) +M [1]

q (x1, z, µ
2
F )f

[2]
g (x2, µ

2
F )
)
+ (q ↔ q̄)

]αs

2π
Cqg

(
w,

µ2
F

Q2

)}
+

∫ 1

τ

1−z

dx1

x1

∫ 1−z

τ

x1

dx2

x2

{[
M [2]

q (x2, z, µ
2
F )f

[1]
q̄ (x1, µ

2
F ) + (q ↔ q̄)

][
δ(1− w) +

αs

2π
Cqq̄

(
w,

µ2
F

Q2

)]
+

[(
M [2]

g (x2, z, µ
2
F )f

[1]
q̄ (x1, µ

2
F ) +M [2]

q (x2, z, µ
2
F )f

[1]
g (x1, µ

2
F )
)
+ (q ↔ q̄)

]αs

2π
Cqg

(
w,

µ2
F

Q2

)}
+

∫ 1

0

dy

∫ 1

r1

dx1

x1

∫ 1

r2

dx2

x2

{[
f [1]
q (x1, µ

2
F ) f

[2]
q̄ (x2, µ

2
F ) + (q ↔ q̄)

]
DH

g

(
z/ρ, µ2

F

)αs

2π
Kqq̄

(
y,

µ2
F

Q2

)
+

f [1]
g (x1, µ

2
F )
[
f
[2]
q̄ (x2, µ

2
F )D

H
q̄

(
z/ρ, µ2

F

)
+ (q ↔ q̄)

] αs

2π
Kqg

(
y,

µ2
F

Q2

)
+

f [2]
g (x2, µ

2
F )
[
f
[1]
q̄ (x1, µ

2
F )D

H
q̄

(
z/ρ, µ2

F

)
+ (q ↔ q̄)

] αs

2π
Kqg

(
1− y,

µ2
F

Q2

)}}
.

We have used the shorthand Kij(y, µ
2
F/Q

2) for Kij(y, x1, x2, w, µ
2
F/Q

2). The explicit form of

the finite coefficient functionsKqq̄ andKqg is reported in appendix A. In the last three lines of

eq. (25) we let depend parton distributions and fragmentation functions on the factorization

scale since this replacement induces subleading corrections to the current accuracy.

VI. SUMMARY AND CONCLUSIONS

In this paper we have calculated the O(αs) corrections to the associated production of one

particle and a Drell-Yan pair. Additional collinear singularities found in the perturbative

calculations do correspond to configurations in which the parent parton of the observed

hadron is collinear to the incoming parton. These singularities can, to O(αs), be consistently
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absorbed into renormalized fracture functions and resummed to all orders by using the

evolution equation given in Refs. [2, 3]. With this technique, the presented cross-sections

does not require any cut in the transverse momentum of the observed particle, while a

perturbative treatment is guarantee by the presence of high invariant mass dilepton pair.

Quite imprtantly, the factorization of collinear singularities in the present context makes

use of the collinear subtraction structure already defined in the context of Deep Inelastic

Scattering. Despite the fact the the full results make use of fracture functions and threfore a

phenomenological modelling of the latter would be eventually required, the advatages reside

in that fracture functions embodies the correct scale dependence through their own evolution

equations.

Appendix A: Finite coefficients

In this Appendix we present the results for the finite coefficient which appear in the

previous sections. The plus distribution are defined in the usual way:

∫ 1

0

dw
h(w)

(1− w)+[0,1]

≡
∫ 1

0

dw
h(w)− h(1)

1− w
. (A1)

The subtraction point is underlined. The coefficient functions in the target fragmentation

region do coincide with the one found in the inclusive case and read:

Cqq̄

(
w,

µ2
F

Q2

)
= −2Pqq(w) ln

µ2
F

Q2
+ C̃qq̄(w) ,

Cqg

(
w,

µ2
F

Q2

)
= −Pqg(w) ln

µ2
F

Q2
+ C̃qg(w) , (A2)

where the scale independent coefficients C̃ij are given by:

C̃qq̄(w) = CF

[
4(1 + w2)

(
ln(1− w)

1− w

)

+[0,1]

− 2
1 + w2

1− w
lnw +

(2
3
π2 − 8

)
δ(1− w)

]
,

C̃qg(w) = TR

[
(
w2 + (1− w)2

)
ln

(1− w)2

w
+

1

2
+ 3w − 7

2
w2

]
. (A3)

The polynomial term in Cqg is slightly different from the one reported in Ref. [11] because

an additional term (1 − ǫ)−1 is provided for matrix elements with a gluon in the initial

state. This accounts for the correct gluon polarization in n-dimensions and it affects only
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the polynomial terms in the coefficient function. For the central term the subtraction is

performed on the angular variable y. The plus distributions in eq. (16) are defined by:

∫ 1

0

dy
h(y)

(1− y)+[0,1]

≡
∫ 1

0

dy
h(y)− h(1)

1− y
, (A4)

∫ 1

0

dy
h(y)

(y)+[0,1]

≡
∫ 1

0

dy
h(y)− h(0)

y
, (A5)

where h(y) is a smooth test function. The coefficients Kij read:

Kqq̄

(
y, x1, x2, τ,

µ2
F

Q2

)
=K̃qq̄(y, x1, x2, τ) +

−δ(y)P̂qq(w)
x2

x1x2 − τ
ln

µ2
F

Q2
− δ(1− y)P̂qq(w)

x1

x1x2 − τ
ln

µ2
F

Q2
;

Kqg

(
y, x1, x2, τ,

µ2
F

Q2

)
=K̃qg(y, x1, x2, τ)− δ(y)

x2

x1x2 − τ
P̂qg(w) ln

µ2
F

Q2
. (A6)

By defining b(x1, x2, y) = x1y + x2(1 − y) and a = x1x2 − τ , the scale-independent K̃ij

coefficients read:

K̃qq̄(y, x1, x2, τ)=CF

{
1

b

(
x2

x1
(1− y) +

2τb2

a2

)
1

y+[0,1]

+
1

b

(
x1

x2
y +

2τb2

a2

)
1

(1− y)+[0,1]

+

+ δ(y)

[
1

x1

− 1 + w2

1− w

x2

a
ln

x2
2τ

a2

]
+ δ(1− y)

[
1

x2

− 1 + w2

1− w

x1

a
ln

x2
1τ

a2

]}
;

K̃qg

(
y, x1, x2, τ)=TR

{(
x2

a
− 2(1− y)τ

bx2
1

)
1

y+[0,1]

+
ay

x2b2
+

+δ(y)
x2

a

[
1−

[
w2 + (1− w)2

](
ln

τx2
2

a2
+ 1

)]}
. (A7)

The coefficient function Kgq can be obtained by exchanging x1 ↔ x2 and y ↔ 1 − y in

the expressions for Kqg. In Kqq̄ one can note the appearance of poles in (1 − w)−1, where

w = τ/(x1x2). In this limit only soft parton emissions are allowed. This limit however is

outside the integration region specified in the central contribution to the final result, eq. (25),

due to the requirement z > 0 embodied in the specific form of the integration boundaries r1

and r2 in eqs. (14).
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