PARAMÈTRES HYDROLOGIQUES ET PHYSICO-CHEMiques DE
SOURCES DE HAute BELGIQUE : ÉBAUCHE D’UNE TYPOLOGIE
RÉGIONALE

François PETIT, Josmeal ARAUJO BONATTO, Benoît BRASSINE, Pierre CLOSkin, Emmanuel ROSEN et Camille EK

Résumé
Des mesures de débits et des analyses physico-chimiques ont été effectuées sur près de quarante sources de Haute Belgique. Sur base des valeurs des pH et des duretés totales, des courbes enveloppes regroupant les eaux des différentes régions naturelles prospectées ont pu être tracées. En ce qui concerne les réserves et les potentialités de certains aquifères, il ressort de ces analyses que certaines sources de Haute Ardenne ont des débits moyens importants et gardent des débits intéressants en période d’étiage. Dans le Condroz, des sources développées sur le Famennien présentent elles aussi des potentialités non négligeables.

Mots-clés
sources, qualité des eaux, réserve aquifère, température des eaux

Abstract
Physico-chemical analyses and flowrate measurements were carried out in approximately forty springs in Belgian Highlands. Several types of water have been defined according to a large number of pH and total hardness measurements, these water types corresponding to natural regions and being related to lithological characteristics. With respect to the water supply potential of some aquifers, some springs in the Belgian Highlands display a significant mean discharge and maintain this flowrate in low water. In Condroz, a region of lower altitude and lower rainfall, certain springs of the Famennian (Upper Devonian) calcareous sandstones also show significant potentialities.

Key Words
springs, water quality, aquifers, water supply, water temperature

INTRODUCTION

A un moment où des problèmes d’approvisionnement en eaux de qualité risquent de se poser de façon aiguë, il nous a paru intéressant de voir les possibilités des aquifères se situant dans d’autres formations géologiques. Rappelons à cet égard que Gulinck (1966) notait qu’il existait en Haute Ardenne, et notamment dans le bassin de la Warche, des sources dont le rendement était loin d’être négligeable.

Près d’une quarantaine de sources ont ainsi fait l’objet d’études hydrologiques et physico-chimiques selon une méthodologie commune; les mesures ont été effectuées à un pas de temps hebdomadaire pendant une année complète au minimum; des campagnes plus intensives ont également été menées, en relation avec des événements hydroclimatologiques particuliers. Ces sources se regroupent schématiquement en quatre régions géographiques distinctes : le Condroz, l’Ardenne condrusienne, la Haute Ardenne et l’Entre-les-Vesdre-et-Meuse. Les paramètres étudiés étaient le débit, la température, le pH, la conductivité, la dureté totale et les nitrates. Les résultats sont présentés de manière synthétique de façon à caractériser ces sources en termes de ressources hydrologiques et de qualité des eaux.

I. SITES D’ÉTUDES

Closkin (1991) a suivi huit sources situées à l’extrémité orientale du Condroz (commune de Spirmon) et en Ardenne condrusienne (Fig. 1a). Ces sources couvrent cinq formations géologiques différentes : trois sont situées sur le Famennien supérieur à dominance de psammites (Assise de Montfort, Fa2b), deux sur l’Emsien à dominance de grès et de poudingue, deux sur des calcairés, respectivement le Givetien et le Viséen (V1b); la
dernière source se trouve à l'émergence d'une couverture sableuse oligocène reposant elle-même sur le Dévonien inférieur.

Araujo (1993) a suivi cinq sources situées dans le bassin de la Lembée (affluent de l'Ourtze, en aval de Bomal, dans la région de Ferrières); ce bassin se situe au contact de l'Ardennse liégeoise et de la banlieue calcaire; la disposition des couches y est toutefois assez complexe étant donné la présence de nombreuses failles.

Quatre sources se trouvent sur des terrains ardennais : deux sur le Siégien inférieur, une sur l'Imtien inférieur et une sur l'Imtien moyen. La cinquième source, située dans la partie aval du bassin, se trouve à la limite entre les calcaires givetiens et frasmiens et disparaît dans une perte (Fig. 1b).

Rosen (1993) a suivi dix sources de Haute Ardenne qui se disposent selon un transect ouest-est, entre Malmedy et la frontière allemande. Étant donné la disposition des couches géologiques, ce transect recoupe les différents étages partant du Cambrien jusqu'à l'Imtien. Les sources étudiées sont ainsi réparties sur cinq formations géologiques différentes (Fig. 1c) : le Cambrien, le Gedinnien, le Siégien (subdivisé en trois assises), l'Imtien et une source située sur le Permien (poudingue de Malmedy).

Brassine (1995) a suivi onze sources situées dans l'En-

III. MÉTHODOLOGIE

Les débits ont été mesurés au moyen de lames déversantes triangulaires à ouverture de 90°. Le débit Q (en m³.s⁻¹) est estimé à partir de la charge h (en m) sur le déversoir au moyen de la relation proposée par Gregory et Walling (1973) :

\[Q = 1,38 \times h^{1.7} \]

L'adéquation de cette relation aux lames installées a été testée en effectuant des jaugeages par empottement (Fig. 2). L'estimation des débits est correcte pour la gamme des valeurs généralement rencontrées (jusqu'à 2,5 L.s⁻¹); pour les débits plus importants, il est plus probable que les lames déversantes ont continué à fonctionner en régime dévoilé, puisque, pour un débit de 6 L.s⁻¹ qui représente le maximum atteint lors des différentes campagnes de mesures, la charge sur le déversoir reste inférieure à 12 cm alors que la hauteur de pelle est de 25 cm.

Dans quelques sources où le site ne se prêtait pas à l'ins-

Figure 1. Localisation des différentes sources étudiées
A par Closkin; B par Araujo; C par Rosen (carte géologique modifiée d'après Vandeven, s.d.); D par Brassine.
tallation d’une lame déversante, des jaugeages par empolement ont été effectués systématiquement.

Les débits ont été mesurés chaque semaine, au cours d’une année hydrologique complète, de sorte que l’on peut avoir une appréciation correcte du débit moyen annuel de ces sources l’année considérée. Mais il faut tenir compte de la représentativité des périodes d’observations et nous ferons donc un commentaire à ce propos lors de l’analyse des résultats.

Par ailleurs, des campagnes plus restreintes (d’une dizaine de jours) ont été effectuées avec des mesures à un pas de temps journalier. Il s’agissait de suivre un événement exceptionnel (réponse des débits à des pluies d’une intensité ou d’une longueur exceptionnellement importantes). Pour chacune des études, au moins deux ou trois campagnes de ce type ont été effectuées. En période de non réalimentation, les coefficients de tarissement ont été calculés selon la loi de Maillot qui se présente sous la forme suivante : \(Q_t = Q_o \ e^{-\alpha t} \), où \(Q_o \) est le débit initial de la période considérée et \(Q_t \) le débit après un temps \(t \), le coefficient \(\alpha \) correspondant au coefficient angulaire de la droite de tarissement. L’importance des réserves aquifères peut être estimée de la sorte. Lorsque des périodes de sécheresse suffisamment longues se sont présentées (plusieurs semaines sans précipitations notoires), les débits ont été mesurés deux à trois fois par semaine, afin d’avoir une bonne estimation de ces courbes de tarissement.

- La température des eaux de source a été mesurée au moyen d’un thermomètre hydrologique dont la précision est de 0,2°C. Les mesures ont été effectuées à proximité immédiate de l’émergence afin d’éviter les échanges de chaleur avec l’air.
- La conductivité a été mesurée au moyen d’un conductimètre électronique de type WTW LFS56. Un facteur de correction fonction de la température a été appliqué à la valeur mesurée afin d’obtenir la conductivité de l’eau pour une température de 25°C.
- Le pH a été mesuré au moyen d’un pH-mètre électronique Hach (modèle ONE 43800-00); la précision de cet appareil est le centième d’unité pH. Avant chaque campagne de mesures, l’appareil subissait un réglage et un étalonnage, en se servant de deux solutions à pH connu et stable.

Des échantillons d’eau ont également été prélevés de façon à effectuer en laboratoire les analyses chimiques suivantes.

- Le dosage du calcium et du magnésium est effectué ensemble par complexométrie. La teneur en calcium est ensuite mesurée seule, également par complexométrie. L’indicateur utilisé pour les titrages des différents ions était, d’une part, des pastilles d’indicateur-tampon Merk 8430 pour l’analyse calcium-magnésium et, d’autre part, du murexide pour l’analyse du calcium seul. Des tests montrent que les eaux ont été titrées à 4 mg CaCO₃/l près, ce qui, dans le cas d’eaux d’une dureté ordinaire dans les cours d’eau souterrains, représente une erreur de l’ordre de 2% (Ek, 1969).

- En ce qui concerne les carbonates, le titrage a été effectué à l’aide d’une solution d’acide chlorhydrique 0,1 N. L’indicateur est dans ce cas remplacé par un pH-mètre qui indique la fin du titrage; l’opération consiste à amener le pH de la solution à environ 4,8 unités pH par titrage à l’aide d’acide chlorhydrique. La lecture réalisée à ce moment permet de voir la quantité de réactif utilisé et donc de déduire la teneur en ions carbonatés. La précision admise est du même ordre que pour la complexométrie (Ek, 1969).

- Le dosage des nitrates a été effectué au moyen d’un spectrophotomètre Hach DREL/5; la précision admise est de 0,5 mg NO₃⁻/1.

III. RÉSULTATS

L’ensemble des résultats est reporté au tableau 1; la numérotation et l’ordre des auteurs adoptés à la figure 1 ont été gardés de façon à pouvoir localiser et caractériser plus facilement chacune des sources, mais nous avons préféré analyser le tableau par paramètre, de façon à pouvoir décider des similitudes éventuelles entre les différentes sources. Enfin, par souci de clarté, nous avons intégré les résultats d’autres études réalisées dans des contextes comparables.

\[\text{Figure 2. Relation entre les débits mesurés par empolement et les débits calculés par la formule des déversoirs triangulaires} \]
<table>
<thead>
<tr>
<th></th>
<th>Amplitude thermique (°C)</th>
<th>Température naturelle (°C)</th>
<th>Altitude (m)</th>
<th>NO₃ (mg/l)</th>
<th>Conductivité totale (µS/cm)</th>
<th>Dureté totale (mg CaCO₃/l)</th>
<th>Coefficient d'énhancement</th>
<th>Q moyen (m³/sec)</th>
<th>Q moyen (ha)</th>
<th>Superficie (ha)</th>
<th>Débit moyen (l/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.131</td>
<td>0.007-0.04</td>
<td>10.2</td>
<td>7,02</td>
<td>1,11</td>
<td>0,012</td>
<td>-</td>
<td>0,133</td>
<td>0,09</td>
<td>1,59</td>
<td>1,99</td>
</tr>
<tr>
<td>F2</td>
<td>0,133</td>
<td>0,05-0,62</td>
<td>10,5</td>
<td>6,96</td>
<td>1,09</td>
<td>0,010</td>
<td>-</td>
<td>0,133</td>
<td>0,09</td>
<td>1,59</td>
<td>1,99</td>
</tr>
<tr>
<td>F3</td>
<td>0,59</td>
<td>0,49</td>
<td>11,5</td>
<td>6,43</td>
<td>4,43</td>
<td>0,036</td>
<td>-</td>
<td>0,590</td>
<td>0,49</td>
<td>11,5</td>
<td>11,5</td>
</tr>
<tr>
<td>E1</td>
<td>0,38</td>
<td>0,008-0,19</td>
<td>16,5</td>
<td>5,89</td>
<td>1,99</td>
<td>0,029</td>
<td>-</td>
<td>0,218</td>
<td>0,08</td>
<td>16,5</td>
<td>16,5</td>
</tr>
<tr>
<td>E2</td>
<td>0,218</td>
<td>0,008-2,3</td>
<td>4,8</td>
<td>6,38</td>
<td>3,78</td>
<td>0,030</td>
<td>-</td>
<td>0,218</td>
<td>0,08</td>
<td>16,5</td>
<td>16,5</td>
</tr>
<tr>
<td>G</td>
<td>0,89</td>
<td>0,14-2,2</td>
<td>7,3</td>
<td>7,75</td>
<td>10,6</td>
<td>0,022</td>
<td>-</td>
<td>0,889</td>
<td>0,14</td>
<td>7,3</td>
<td>7,3</td>
</tr>
<tr>
<td>V</td>
<td>0,105</td>
<td>0,014-0,44</td>
<td>9,3</td>
<td>7,48</td>
<td>10,6</td>
<td>0,010</td>
<td>-</td>
<td>0,105</td>
<td>0,01</td>
<td>9,3</td>
<td>9,3</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>6,11</td>
<td>12,6</td>
<td>3,35</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>2,24</td>
<td>0,50-0,45</td>
<td>26,0</td>
<td>7,44</td>
<td>7,22</td>
<td>0,004</td>
<td>-</td>
<td>2,24</td>
<td>0,50</td>
<td>26,0</td>
<td>26,0</td>
</tr>
<tr>
<td>G2</td>
<td>0,45</td>
<td>0,022-2,34</td>
<td>12,0</td>
<td>5,49</td>
<td>3,24</td>
<td>0,021</td>
<td>-</td>
<td>0,45</td>
<td>0,02</td>
<td>12,0</td>
<td>12,0</td>
</tr>
<tr>
<td>S1</td>
<td>0,55</td>
<td>0,004-1,00</td>
<td>6,6</td>
<td>7,20</td>
<td>6,6</td>
<td>0,028</td>
<td>-</td>
<td>0,55</td>
<td>0,00</td>
<td>6,6</td>
<td>6,6</td>
</tr>
<tr>
<td>S2</td>
<td>0,04</td>
<td>0,001-0,44</td>
<td>6,2</td>
<td>4,79</td>
<td>4,22</td>
<td>0,010</td>
<td>-</td>
<td>0,04</td>
<td>0,01</td>
<td>6,2</td>
<td>6,2</td>
</tr>
<tr>
<td>E1</td>
<td>0,45</td>
<td>0,022-2,34</td>
<td>12,0</td>
<td>5,49</td>
<td>3,24</td>
<td>0,021</td>
<td>-</td>
<td>0,45</td>
<td>0,02</td>
<td>12,0</td>
<td>12,0</td>
</tr>
<tr>
<td>E2</td>
<td>0,065</td>
<td>0,004-1,00</td>
<td>14,0</td>
<td>4,01</td>
<td>14,0</td>
<td>0,030</td>
<td>-</td>
<td>0,065</td>
<td>0,01</td>
<td>14,0</td>
<td>14,0</td>
</tr>
</tbody>
</table>

Tableau 1. Caractéristiques des différentes sources étudiées
(*) bassin forestier entièrement couvert de résineux
(2*) bassin partiellement forestier (généralement plus de la moitié) couvert de résineux
Les chiffres entre parenthèses dans les colonnes dureté totale et nitrate représentent le nombre d'échantillons analysés.
<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>0.21-2.95</th>
<th>4.5</th>
<th>15.8</th>
<th>0.041</th>
<th>5.78</th>
<th>32 (5)</th>
<th>139</th>
<th>2</th>
<th>415</th>
<th>9.7</th>
<th>3.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca1</td>
<td>1.245</td>
<td>0.38-2.79</td>
<td>6.0</td>
<td>17.9</td>
<td>0.015</td>
<td>5.51</td>
<td>28 (5)</td>
<td>140</td>
<td>12</td>
<td>410</td>
<td>8.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Ca2</td>
<td>0.906</td>
<td>0.20-2.86</td>
<td>5.5</td>
<td>14.2</td>
<td>0.012</td>
<td>5.62</td>
<td>23 (5)</td>
<td>121</td>
<td>15</td>
<td>415</td>
<td>9.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Gd*</td>
<td>1.294</td>
<td>0.18-3.25</td>
<td>5.5</td>
<td>20.3</td>
<td>0.024</td>
<td>6.65</td>
<td>13 (5)</td>
<td>39</td>
<td>1</td>
<td>485</td>
<td>8.4</td>
<td>10.0</td>
</tr>
<tr>
<td>Si (*)</td>
<td>1.301</td>
<td>1.12-2.99</td>
<td>5.5</td>
<td>20.4</td>
<td>0.012</td>
<td>5.89</td>
<td>35 (5)</td>
<td>143</td>
<td>19</td>
<td>490</td>
<td>8.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Sm*</td>
<td>2.199</td>
<td>0.4-4.32</td>
<td>8.5</td>
<td>22.4</td>
<td>0.013</td>
<td>6.08</td>
<td>19 (5)</td>
<td>86</td>
<td>6</td>
<td>515</td>
<td>8.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Ss1+</td>
<td>1.500</td>
<td>0.35-3.32</td>
<td>6.0</td>
<td>21.6</td>
<td>0.012</td>
<td>6.15</td>
<td>71 (5)</td>
<td>295</td>
<td>16</td>
<td>593</td>
<td>8.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Ss2 (*)</td>
<td>1.413</td>
<td>0.22-3.51</td>
<td>6.6</td>
<td>18.5</td>
<td>0.016</td>
<td>6.40</td>
<td>26 (5)</td>
<td>129</td>
<td>8</td>
<td>600</td>
<td>7.9</td>
<td>5.4</td>
</tr>
<tr>
<td>E1*</td>
<td>1.473</td>
<td>0.30-4.10</td>
<td>6.0</td>
<td>21.2</td>
<td>0.041</td>
<td>6.12</td>
<td>19 (5)</td>
<td>117</td>
<td>6</td>
<td>595</td>
<td>7.6</td>
<td>1.5</td>
</tr>
<tr>
<td>E2*</td>
<td>1.532</td>
<td>0.20-5.05</td>
<td>6.5</td>
<td>20.4</td>
<td>0.039</td>
<td>6.38</td>
<td>25 (5)</td>
<td>123</td>
<td>13</td>
<td>550</td>
<td>7.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

F1	0.140	0.2-1.99	3.3	3.67	-	7.11	165 (2)	351	18 (2)	170	(9.4)	(1.6)
F2	0.060	0.001-0.94	4.0	1.31	0.041	7.64	284 (10)	518	15 (2)	135	10.4	7.8
F3	0.233	0.1-1.68	16.2	1.25	0.082	6.71	225 (9)	502	58 (4)	205	(9.8)	(4.0)
F4	0.098	0.002-0.44	2.8	3.02	0.012	7.45	263 (10)	517	18 (2)	195	9.8	2.8
F5	0.542	0.6-1.99	6.8	6.94	-	6.95	203 (8)	470	35 (4)	185	(9.7)	(8.6)
F6	0.296	0.002-1.99	9.5	2.69	0.018	7.17	230 (10)	458	29 (2)	175	11.1	6.6
H	0.066	0.0-0.44	3.2	1.81	0.120	6.23	109 (7)	268	35 (4)	265	(7.9)	(6.4)
V	1.358	0.05-5.21	2.0	58.7	0.036	6.91	221 (10)	499	15 (4)	240	8.9	5.4
C1	0.106	0.1-1.27	7.5	1.22	-	6.32	186 (6)	468	70 (4)	250	(7.4)	(5.8)
C2	0.506	0.06-1.54	4.7	9.30	0.016	7.00	282 (10)	658	28 (4)	190	10.1	1.0
C3	0.134	0.04-0.31	4.4	2.67	0.050	7.44	270 (10)	594	22 (2)	200	11.0	6.0
A. Production annuelle, variabilité saisonnière des débits et mode d'alimentation

1. Sources de l'Ardenne condruisienne et du Condroz (Closkin, 1991)

Les sources situées sur le Famennien (F1, F2 et F3) ont un débit particulièrement faible : 1,1 m³.ha⁻¹.j⁻¹ pour les deux premières sources et 4,4 m³.ha⁻¹.j⁻¹ pour la troisième. En terme de lame d'eau éculée annuelle, ceci correspond respectivement à 40 et 160 mm (sans tenir compte des variations de stock de la nappe, mais qui sont relativement peu importantes). En terme de bilan, de telles valeurs sont difficilement compatibles avec les précipitations (de l'ordre de 700 mm sur la période d'observations) et avec l'évapotranspiration réelle qui, pour la Haute Belgique, ne dépasse pas 520 mm (Bultot et Dupriez, 1974; Petit, 1995). La relative faiblesse de F3 résulterait de la présence d'un captage situé en aval de l'émergence, qui explique le tarissement de cette source en période estivale. En ce qui concerne F1 et F2, du fait de leur position générale et de la structure géologique, il est possible que des transferts se produisent, vers une autre source située 500 m plus à l'ouest, vers une altitude nettement inférieure (30 m); en effet, le flanc de l'anticlinal où se trouvent ces deux sources pente vers le sud et des eaux d'infiltration pourraient suivre la direction du pendage.

Lorsqu'on examine la variabilité des débits, on constate que F1 semble avoir un mode d'alimentation superficiel par rapport à F2 même si ces deux sources sont assez proches et à une altitude peu différente. Ce point est confirmé par les valeurs de l'amplitude thermique (respectivement 5,2° et 2,2°C) mais également par la dureté (124 et 191 mg.l⁻¹) et la conductivité (324 et 412 µS). En effet, l'alimentation par une partie plus profonde de la nappe implique que l'eau séjourne plus longuement au contact de la roche en place et qu'elle peut donc se charger en éléments dissous, ce qui augmente la conductivité et la dureté. En ce qui concerne la signification de l'amplitude thermique annuelle des eaux de source, nous en rediscuterons au point C ci-dessous.

La source sur le Givetien a un débit annuel important (10,6 m³.ha⁻¹.j⁻¹), ce qui, en terme de lame d'eau éculée (390 mm), semble peu réaliste vis-à-vis des précipitations et de l'évapotranspiration. Il est donc fort probable qu'il y ait des apports supplémentaires, notamment par des conduits naturels à partir de pertes situées dans le vallon de Beauregard et par transferts souterrains étant donné la nature calcaire des couches et la structure en synclinal s'enserrant vers l'Ouest. A cet égard, Bay (1968) a retrouvé dans la grotte du Monceau (à quelques dizaines de mètres de la source étudiée par Closkin) un lit d'hydrocarbures provenant d'un rejet effectué dans une perte proche de la Roche aux Faucons, c'est-à-dire dans la partie supérieure du vallon de Beauregard. Toutefois, la faible amplitude thermique annuelle (0,6°C) laisse penser que ces apports doivent se réaliser par cheminement lent et non par des transferts rapides qui emprunteraient des conduits souterrains importants et bien individualisés. Par ailleurs, il n'est pas exclu qu'en tête du vallon de Beauregard, des apports proviennent de la nappe située dans les sables oligocènes et percolent lentement dans le manteau superficial composé de dépôts de pente (épais de près de 4 m par endroit) et qui repose sur l’Emissariat. Ceci expliquerait d’ailleurs l’importance des débits de la source sur le Givetien et la faiblesse de la source issue des sables oligocènes (cf. ci-dessous).

- Les sources situées sur l’Emissariat (E1 et E2) ont des rendements assez faibles, respectivement 2 et 3,8 m³.ha⁻¹.j⁻¹, ce qui représente 70 et 140 mm en lame d'eau éculée. La variabilité des débits est plus forte en E2 de même que l'amplitude thermique des eaux, ce qui laisserait penser que l'alimentation y est plus superficielle; son bassin d'alimentation est moins bien individualisé qu'à E1 qui donne lieu à un véritable vallon alors qu'en E2 l'ampithéâtre de source est à peine ébauché.

- La source située sur l’Oligocène a une production très faible (< 1 m³.ha⁻¹.j⁻¹, soit 35 mm en lame d'eau éculée). Il n’est pas exclu qu’une partie de la lame d’eau alimentant cette nappe s’infiltra dans la roche en place sous-jacente et contribue à y créer une nappe aquifère. Rappelons à cet effet que Gulnick (1966) notait que, sur la crête éodévonienne de l’Ardenne condruisienne, les terrains du Dévonien inférieur, qui se présentent en couches forts relevées, favorisent la percolation à travers le réseau de fissures et que les lambeaux sableux tertiaires, qui contiennent des masses gréseuses, augmentent encore la capacité de rétention. Gulnick notait d’ailleurs la présence de plusieurs captages réalisés par des galeries perpendiculaires à la direction générale des bancs. Par ailleurs, comme nous l’avons évoqué ci-dessus, la faiblesse des débits de cette source pourrait résulter d’une vidange partielle de cette nappe vers le vallon de Beauregard.

Concernant les deux derniers types de sources étudiés par Closkin (Emiss et Oligocène), il faut noter les résultats mis en évidence par Spronck et al. (s.d.). Ces auteurs ont effectué des jaugeages dans le réseau du Blanc Gravier (crête éodévonienne du Sart-Tilman) à la fin d’une longue période de sécheresse, considérant que l’on peut ainsi déterminer de manière fiable les valeurs de l’écoulement souterrain. Réduisant les valeurs de débit à la taille du bassin d’alimentation et tenant compte des différences lithologiques, ils proposent deux groupes de valeurs, l’un se rapportant aux terrains sableux (que l’on peut assimiler à l’exutoire de la nappe des sables oligocènes), l’autre aux terrains schisto-gréseux (essentiellement l’Emissariat moyen et supérieur); ces valeurs sont respectivement de 5,64 et 0,5 m³.ha⁻¹.j⁻¹. Toutefois, en traitant des relevés effectués sur une plus longue série
(1963-1970), Spronck (1976) propose, toujours pour la partie supérieure du ruissseau du Blanc Gravier, un débit de 6,51 m³.h⁻¹.j⁻¹ alors qu’en fonction du bilan hydrologique il aurait dû se monter à 385 mm en terme de lame d’eau écoulée, soit à 10.5 m³.h⁻¹.j⁻¹. Par contre, Monjoie (1970) considère que la réserve d’eau accumulée dans les sables du plateau du Sart Tilmann est peu importante et qu’elle est en communication partielle avec la nappe du bed-rock. Cette nappe des sables tertiaires est un aquifère à vidange rapide, le coefficient de tarissement varie de 0,020 à 0,070 j⁻¹ et est d’autant plus élevé que la station de jaugeage est proche de la limite des sables. Une seconde phase de vidange correspondait aux apports de la nappe de fissures du bed-rock (avec des coefficients de tarissement variant de 0,002 à 0,005 j⁻¹).

Ces résultats confirment la faiblesse de la nappe développée dans les sables oligocènes et une certaine capacité des réserves de l’Emsien. Ces dernières apparaissent plus élevées que celles mises en évidence dans nos sources. Ceci est probablement lié au fait que l’Emsien du plateau du Sart Tilmann présente, en certains points, une altération dépassant trois mètres d’épaisseur (Calembert et al., s.d.). Par ailleurs, les sources étudiées par Closkin sont plus éloignées de la faille eifélienne et la roche y est donc probablement moins fissurée.

En ce qui concerne « l’émergence » située sur le Viséen (le Trou Bleu à Chaunxhe), Closkin n’a pu y mesurer les débits, suite à la réalisation d’aménagements divers. Toutefois, au préalable, Renard (1984) avait pu y mener de telles opérations. Il s’agit d’une ressource drainant le vallon de Sprimont selon un axe préférentiel correspondant à l’axe du synclinorium, sans écarter a priori le fait qu’il puisse ne pas être l’excutoire unique de ce vallon. Des marquages colorimétriques effectués par Brifoz (1983) à partir du Trou Renard (la perte principale située 6,6 km en amont, dans le vallon de Sprimont) ont confirmé cette connexion et ont, en outre, permis de voir que la vitesse moyenne de transfert était de 150 m/h, soit de 2 jours à partir de cette perte principale. Par ailleurs, les débits journaliers mesurés pendant une année hydrologique complète (1981-1982) ont permis de déduire un débit moyen annuel se montant à 251,1 l.s⁻¹ (les extrêmes variant entre 105 et 902 l.s⁻¹). Avec une surface du bassin versant estimée à 15,74 km², ceci représente 13,8 m³.h⁻¹, soit 503 mm en lame d’eau écoulée. Renard (1984) a cherché à expliquer cette valeur fort élevée, qui s’écarte sensiblement de la formule du bilan hydrologique qu’il avait tenté d’élaborer, par le fait qu’il y a une non-correspondance entre les limites topographiques et le bassin hydrologique et qu’il existait probablement des transferts avec d’autres bassins (notamment le vallon des Chantoirs). Par ailleurs, en analysant les événements hydroclimatiques, Renard a montré que le temps de réponse moyen était de quatre jours, ce qui est nettement plus élevé que celui mis en évidence par les traçages. Cette relative lenteur de la circulation des eaux souterraines confirmerait l’existence d’un système de nappes et de siphons dans la partie aval du vallon.

2. Sources de l’Ardenne liégeoise (Aranjo, 1993)

Pour ces sources, situées au nord ou à l’ouest de Werbomont, le premier point qui ressort des relevés est le contraste entre la source située sur le calcaire et les quatre sources ardennaises. Ces dernières présentent un caractère saisonnier marqué; trois d’entre elles se sont, en effet, taries complètement dès le début du mois de juin, alors que la période d’observations n’était pas exceptionnellement sèche. En effet, au cours de la période qui englobe ces relevés (septembre 1992 à août 1993), la pluviosité a été de 1.026 mm à la station de Werbomont alors que la normale annuelle y est de 967 mm; on notera cependant un déficit de précipitation de mi-février à mi-mai (93 mm en trois mois).

La source située sur le Givetien a un rendement appréciable (7,4 m³.j⁻¹.h⁻¹, soit 270 mm), d’autant plus qu’on note la présence d’un pompage dans son bassin d’alimentation, qui a pour effet de limiter son débit annuel. Par ailleurs, la conductivité et la dureté sont élevées tandis que l’amplitude thermique annuelle est faible (1,6°C), ce qui laisse penser qu’il s’agit bien d’une émergence et non d’une résurgence.

Les débits des sources ardennaises ont des valeurs comprises entre 3 et 7 m³.j⁻¹.h⁻¹, ce qui est relativement proche des valeurs mises en évidence dans l’Ardenne congolaise. Elles souffrent cependant d’un manque de réserve, ce qui apparaît bien lorsque l’on examine les valeurs des coefficients de tarissement (à proche de 0,030 j⁻¹) et seule la source El (sur l’Emsien inférieur) montre quelques réserves. Le caractère saisonnier de ces sources ressort mal des amplitudes thermiques annuelles, car les mesures de température n’ont pu être réalisées en période estivale du fait de leur tarissement total. Toutefois, si l’on examine les maximums (relevés fin mai) et les minimums (relevés en janvier et février), on voit que les écarts dépassent 3°C et atteignent même 6°C à la source S1, ce qui confirme l’alimentation très superficielle de ces sources.

Finalement, il ressort de ces relevés que les sources ardennaises ont une très faible production, spécialement par rapport à ce que l’on va voir ci-dessous, des étages relativement comparables. Signalons cependant que les sources étudiées dans le bassin de la Lembrèce se trouvent en tête de bassin, en position proche du plateau, et que, par ailleurs, nous avons observé une densité très élevée de sources situées en fond de vallée ou en pied de versant. Il n’est pas exclu qu’une intense fracturation des roches, liée à la proximité - bien connue - de failles importantes, permette une circulation verticale qui expliquerait la présence de ces sources de fond de vallée, d’une part, et la relative pauvreté en réserves des sources sommitiales, d’autre part.
3. Sources de la Haute Ardenne (Rosen, 1993)

Dans la dizaine de sources suivies dans le Massif de Stavelot et sur sa bordure orientale, les valeurs des débits paraissent extrêmement élevées en comparaison de ce qui a été mis en évidence ci-dessus, avec des valeurs moyennes de l’ordre de 15 à 20 m³·j⁻¹·ha⁻¹. Rappelons néanmoins que, dans cette région, la pluviométrie moyenne annuelle atteint 1.300 mm (Dupertz et Sneyers, 1978 ; Bolline et al., 1979) et que, avec une ETR avoisinant 300 mm pour la Haute Ardenne, une lame d’eau écoulée de l’ordre de 600 mm pourrait encore rester compatible. Certe, toute cette lame d’eau écoulée n’est pas nécessairement un écoulément de base sensu stricto et il est fort probable qu’elle comprenne une partie d’écoulément de subsurface ou hypodermique, mais certainement pas un ruissellement de type horizonton (car nous sommes le plus souvent en présence de bassins forestiers) ; néanmoins, il faut bien admettre que ces lames d’eau ont transité à l’exutoire des sources et ont donc été produites par ces dernières, quel que soit le mode d’alimentation.

Il était néanmoins légitime de s’interroger sur de telles valeurs de débit. Aussi, avons nous envisagé les différents postes où une erreur aurait pu se glisser.

- Tout d’abord, Rosen a travaillé sur onze mois, ce qui pourrait affecter le montant de la lame d’eau annuelle écoulée. Mais, même en considérant des débits[maxim] lors du mois manquant (juillet), les valeurs annuelles ne sont pas modifiées que de l’ordre de 5 % et ne peuvent expliquer des débits aussi élevés.

- Il ne s’agit pas d’une erreur de mesure, car Rosen a calibré ses déversoirs en effectuant régulièrement des jaugeages par empotement.

- La superficie du bassin d’alimentation a pu être sous-estimée ; elle a, en effet, été évaluée sur base des limites topographiques qui ne correspondent pas nécessairement à la zone d’alimentation souterraine. Mais de grandes différences sont difficilement explicables, d’autant plus que l’on se trouve dans des terains à faible perméabilité, avec un pendage des couches fort relevé, c’est-à-dire dans des conditions qui se prêtent assez mal à des importants transferts.

- Si on examine la représentativité de la période d’observations qui débute en août 1992 et se termine fin juin 1993, on constate qu’elle n’est pas anormalement arrosée puisqu’en onze mois, 1.023 mm de pluies ont été recueillis à la station de Butgenbach alors que la normale pour les onze mois concernés se monte à 1.145 mm.

Aussi, au vu de ces valeurs qui, en première analyse, peuvent paraître élevées, il était intéressant de situer ces dernières par rapport à des études réalisées dans des contextes régionaux assez similaires.

Ainsi, Schmitt (1995) a également suivi deux sources de la région de Malmédy : l’une (à Heroumont) est située sur le Cambrien, l’autre (à Bévercé) sur la deuxième assise du poudingue de Malmédy. Comme on le sait, cette assise inclut notamment des cailloux calcaires dans un ciment en partie calcaire également et renferme divers phénomènes karstiques (Ozer, 1971). Près de noix mesures de débits par empotement ont été effectuées dans chacune de ces sources pendant sept mois consécutifs (de novembre 1994 à juin 1995) ; les valeurs moyennes, sans avoir la prétention de donner un débit moyen annuel, sont respectivement de 17,2 m³·j⁻¹·ha⁻¹ et de 4,1 m³·j⁻¹·ha⁻¹. Cette dernière valeur montre un débit spécifique faible, ce qui est compréhensible vu le pendage et la nature des couches, une infiltration et des transferts karstiques étant plus que probables. Par contre, la valeur moyenne de la source sur le Cambrien a tendance à confirmer les valeurs avancées par Rosen.

Par ailleurs, Cosan (1976a) a suivi pendant trois années hydrologiques complètes un ruisseau à l’exutoire de la nappe de Regné (Plateau des Tailles) située principalement dans le Salmien inférieur. Selon cet auteur, l’écoulément superficiel sur le bassin est absent et les valeurs de débits moyens annuels mis en évidence permettent d’avoir une estimation de la production de cette nappe. Le module trisannuel, pour des précipitations moyennes annuelles de 980 mm, correspond à 19,0 m³·j⁻¹·ha⁻¹ ; ce qui permettait à cet auteur de conclure que le réservoir d’eaux souterraines du bassin de Regné contient des volumes relativement importants. Le réservoir à perméabilité modérée permet, en outre, d’obtenir en toute saison un écoulement continu avec des débits qui restent appréciables même en période estivale (2,3 m³·j⁻¹·ha⁻¹). Ces valeurs déjà importantes mises en évidence sur le Salmien semblent être encore dépassées, car Monjoie et Cosan (1974) signalent, toujours dans le cadre du Plateau des Tailles, que les nappes sont encore plus importantes dans le Gedinnien (notamment dans les arkosés où il y a une forte fissuration et une altération importante ainsi que dans les quartzites de Petites Tailles). Ceci joint les observations de Mercenier (1973) dans son étude de petits ruisseaux du rebord méridional du plateau des Tailles développés sur le Gedinnien et le Siegenien. Elle a, en effet, montré que le débit moyen annuel atteint entre 13 et 17 m³·j⁻¹·ha⁻¹ (période 1972-1973) et que l’étiage absolu (le débit journalier le plus faible de l’année) se maintient entre 1 et 3,5 m³·j⁻¹·ha⁻¹.

Une distinction est faite entre des coefficients de tarissement propres à l’écoulément souterrain dans la roche en place altérée (α = 0,070) et ceux qui sont propres à l’écoulément souterrain dans le bed-rock compact (α = 0,014).

Les résultats présentés ci-dessus montrent donc que certains aquifères d’Ardenne possèdent des réserves non négligeables et concordent avec les valeurs mises en évidence par Rosen. En période estivale, les sources de Haute Ardenne gardent des performances tout à fait intéressantes, puisqu’elles produisent encore près de 2 m³·j⁻¹·ha⁻¹.
Cette valeur avait d'ailleurs été mise en exergue par Gulineck (1966) qui notait que, dans la région de Waimes, les sources présentaient un potentiel d'exploitation qui devrait être mis en œuvre.

Nous nous garderons cependant de transposer cette conclusion à l'ensemble de l'Ardenne. En effet, au sud de l'Ardenne (bassin de la Rulles en Forêt d'Anlier, développé sur le Siegenien moyen et supérieur), un débit moyen annuel équivalent à 16,6 m³.j. ha⁻¹ a été mesuré pour la période 1973-1980, mais seulement 0,2 m³.j. ha⁻¹ en étangage absolu (Petit, 1983). Cette faible valeur s'explique en partie par le fait que ce débit a été mesuré lors des étages de l'année 1976 qui fut une année exceptionnellement sèche, par le fait également que des captages sont réalisés dans le bassin pour un montant moyen de 0,17 m³.j. ha⁻¹ en période estivale. Ces deux faits mis à part, on se rend néanmoins compte que les réserves y sont nettement moins importantes qu'en Haute Ardenne, ce qui ressort d'ailleurs lorsque l'on examine les valeurs des coefficients de tarissement : α = 0,030 pour la Rulles, contre α ~ 0,015 pour le Plateau des Tailles.

En ce qui concerne la variabilité des débits et les modes d'alimentation des sources étudiées par Rosen, épinglons les faits suivants :

- La source située sur Gedinnen, pourrait, vu son amplitud thermique annuelle marquée (10°C), sembler être une source à alimentation superficielle, ce qui ressort mal du régime de ses débits. Toutefois, étant donné que le type d'émergence diffuse qui caractérise cette source, il n'est pas exclu que les eaux de l'émergence aient dû être mesurées à quelque distance du point d'émergence et qu'elles aient été influencées par la température extérieure.

- Les sources sur le Cambrien ont un comportement différent, bien qu'étant assez proches et à des altitudes comparables. La source Ca2 semble issu d'une nappe plus profonde que Ca1 (respectivement ΔT = 1,8°C contre 6,0°C), mais cette dernière se situe dans des prairies et il n'est pas exclu que les eaux de l'émergence aient été artificiellement collectées par un réseau de drains de subsurface, ce qui a pour effet de permettre une mise en équilibre des eaux avec la température ambiante et donc de suivre les variations saisonnières.

- La source située sur le Permien ne présente pas de caractéristiques de sources « calcaires ». Précisons qu'il s'agit d'une source située à proximité de la limite du Cambrien et qu'elle ne draine donc pas la seconde assise du poudingue de Malmedy (la seule où se trouve du calcaire).

- De façon globale, on note que les sources sur le Cambrien et le Siegenien ont des coefficients de tarissement assez faibles (α variant entre 0,012 et 0,016) confirmant que ces sources bénéficient de réserves non négligeables. Précisons que l'on ne peut pas mettre en cause la valeur de ces coefficients, car ils ont été estimés à partir d'une période de non-alimentation bien marquée et assez longue.

4. Sources de l'Entre-Vesdre-et-Meuse (Brassine, 1995)

Tout d'abord, Brassine a mis en évidence une série de sources à caractère typiquement saisonnier, c'est-à-dire qu'elles ont subi un tarissement complet bien que l'on ne soit pas dans une année exceptionnellement sèche (plus de 900 mm à Evégnée, pour une normale de 883 mm) ; il s'agit des sources F1, F3, F5, H et C1.

- Les sources situées sur la Famennien présentent un étagement et un fonctionnement saisonnier analogues à celui que Clooskin avait mis en évidence, c'est-à-dire un « système couplé » où une source draine la partie superficielle de la nappe et la seconde la partie plus profonde. Pour rappel, ceci ressortait de la variabilité des débits et des températures ainsi que des différences de conductivité et de dureté. Toutefois, dans le cas présent, et spécialement dans le cas de F1 et F2, les sources sont nettement mieux étagées (170 et 135 m) ; la source F1 draine la partie superficielle de la nappe et F2 représente l'émergence de la nappe profonde. Ceci se marque par la variabilité des débits (F1 se tarit complètement, F2 jamais), mais également par la conductivité (respectivement 351 et 518 µS) et la dureté totale (respectivement 165 et 284 mg L⁻¹). Il en est de même pour F3 et F4, bien que la situation et l'étagement y soient moins nets que dans le couple précédent. Ce schéma prévaut également pour le tandem F5 et F6, mais dans une moindre mesure, car ces émergences drainent deux vallons différents bien que voisins. Une preuve supplémentaire de l'alimentation superficielle des sources F3 et F5 est apportée par le fait que la localisation de l'émergence se déplace en fonction de l'état de saturation de la nappe.

- La source située sur le Viséen montre une réponse des débits aux précipitations rapides, ce qui laisse présager que l'on puisse se trouver face à une ressurgence, d'autant plus que l'on observe la présence de dolines à l'amont de la source. Une preuve supplémentaire est apportée par le fait que, si l'on se tient à la délimitation topographique du bassin d'alimentation, on attendrait des productions considérables (près de 60 m³.j. ha⁻¹), incompatibles avec les alimentations puisque, en terme de lame écoulée, on dépasserait alors 2.000 mm par an. Par ailleurs, les fortes variations de débits et l'amplitude thermique importante semblent confirmer ce point. On peut toutefois noter que cette source au débit spécifique très élevé se situe dans les calcaires paléozoïques, tout comme les sources G (sur le Givetien) et V (sur le Viséen) de Clooskin et la source G (Givetien) d'Auroi : toutes ces sources ont un fort débit spécifique. Ce fait pourrait être en relation avec leur localisation dans des calcaires très karstifiés présentant une perméabilité de fissures élevée. L'infiltra-
tion y est si rapide que le ruissellement superficiel et l’évaporation peuvent y être moins importants que sur d’autres roches et contribuer à expliquer une production élevée.
- En ce qui concerne les sources situées sur le Crétacé, une première différence doit être épinglée : C1 (situé dans la formation de Vaals) montre une grande variabilité des débits et une production annuelle assez faible alors que les deux sources (C2 et C3) situées sur la craie montrent une production élevée. Toutefois, étant donné la proximité de ces deux dernières sources, il est étonnant de voir une si grande différence entre ces deux émergences (respectivement 9,3 et 2,7 \(m^3/jh\)). L’analyse des différents paramètres montre cependant qu’il est fort probable que C3 draine la partie supérieure de la nappe : on note, en effet, par rapport à C2, un coefficient de tarissement plus élevé, une amplitude thermique plus marquée, des conductivité et dureté totale plus faibles. Ceci pourrait s’expliquer vu la position des sources, leur altitude et le pendage général des couches.

En ce qui concerne les aquifères dans le pays de Herve, De Smets et al. (1992) notaient que, vers l’est, la craie est remplacée par les sables de Vaals et d’Aix-la-Chapelle comme aquifère prédominant. L’eau dans la craie est très calcaire alors qu’elle est moins minéralisée dans les sables de Vaals et d’Aix-la-Chapelle. Par ailleurs, dans les commentaires de la nouvelle carte géologique, Laloux et al. (1996) notent que la formation cryoxée de Gulpen renferme l’essentiel des ressources en eau du pays de Herve avec une eau fortement minéralisée (Tl = 30 à 40° F ou encore 300 à 400 mg CaCO3/l). Par ailleurs, l’aquifère abrité par les sables d’Aix-la-Chapelle a une eau peu minéralisée et peu agressive, mais il est soumis aux aléas des précipitations.

B. Courbe dureté pH

Nous avons regroupé l’ensemble des sources sur un diagramme dureté/pH tel que Ek (1969, 1976) en avait élabore. Cette façon de procéder présente l’avantage de pouvoir caractériser facilement l’origine des eaux. En effet, Ek avait défini différentes plages que nous avons reportées sur la figure 3. Quelques précisions doivent être apportées à propos des courbes enveloppes de ce diagramme.

Le caractère régional de la différence entre les eaux qui parviennent aux formations karstiques apparaît clairement ; il s’agit des eaux d’origine condrusienne (dureté

Figure 3. Courbes dureté – pH
comprise entre 80 et 240 mg.l⁻¹) et des eaux d’origine ardennaise (dureté comprise entre 30 et 55 mg.l⁻¹). Ceci résulte de la présence de carbonates dans les formations arénacées du Condroz, notamment dans les formations supérieures du Famennien (couches de Montfort et couches d’Évieux) qui affleurent sur la plus grande étendue du Condroz. En revanche, dans l’ensemble des terrains ardennais étudiés dans le cadre du travail de Ek, les carbonates ont un rôle très efficace.

Par ailleurs, les calcaires dévonien et les calcaires dinantiens donnent naissance à des eaux karstiques différentes. Les eaux karstiques qui quittent les calcaires dévonien sont presque toujours sous-saturées en calcaire alors que celles qui quittent les calcaires carbonifères sont toutes saturées ou sur saturées. Une des causes réside dans les différences d’alimentation de ces calcaires, car, étant donné leur disposition respective, les eaux qui quittent les calcaires dévonien ont généralement été alimentées par des eaux douces d’origine ardennaise alors que les eaux issues du Dinantien ont été alimentées par des eaux plus dures provenant du Famennien. Une autre cause est la présence d’abondants réduits de dissolution dans les calcaires tourmaisien, à travers lesquels les eaux percolent très lentement. Enfin, la dissolution étant plus importante dans les calcaires dévonien - car ils sont alimentés par des eaux plus douces - ces derniers fonctionnent alors en conduits plus larges et non filtrants, de telle sorte que les réponses des débits aux précipitations risquent d’y être plus vives.

Il faut toutefois noter que toutes ces particularités sont observées au plus souvent, mais non toujours, car la source dans le Givetien étudiée par Closkin (1991) révèle un transfert lent, et celle de la même formation suivie par Arujo (1993) n’est pas une résurgence alors que la source suivie par Closkin (1991) dans le Viséen est, elle, une résurgence. La différence entre les sources des calcaires givetien et celles des calcaires dinantien, pour générale qu’elle soit, n’est donc pas absolue.

Rappelons par ailleurs, que l’Éodévonien de l’Ardenne compte certaines formations organogènes, bien qu’elles se situent surtout dans la partie occidentale du sud de l’Ardenne. Dans les régions concernées par cette étude, nous pourrions cependant observer les formations calcaires suivantes (Asseilberghs, 1946) :
- dans le Gedimmien, mais surtout dans l’assise de Fooz qui se présente essentiellement en Ardenne condrusienne;
- dans le Siegenien, spécialement dans l’assise moyenne, qui comprend quelques gros bancs calcaires (à l’ouest de La Roche, faciès des Amonines); ils disparaissent cependant au nord de La Roche et le teneur en carbonate devient négligeable à hauteur de Xhoris;
- dans l’Emmien moyen qui comprend également quelques bancs de calcaire gréseux.
C’est donc essentiellement dans cette dernière formation que l’on pourrait éventuellement trouver des traces de carbonates.

Ces précisions étant apportées, l’analyse du positionnement des différentes sources appelle les commentaires suivants.

- Les sources de « base de nappe » du Famennien étudiées par Closkin (F3) et par Brassine (F2, F4 et F6) se retrouvent dans une position proche de celle proposée par Ek tandis que les sources à mode d’alimentation superficielle (F1, F2 de Closkin; F1, F3 et F5 de Brassine) s’en dégagent légèrement.
- Les sources sur le Givetien (Closkin, Arunjo) coïncident avec la zone délimitée par Ek.
- La source sur le Viséen étudiée par Brassine coïncide avec la plages proposées par Ek, mais celle étudiée par Closkin se retrouve légèrement en dehors; rappelons qu’il s’agit du Trou Bleu à Chanzhe qui fonctionne en fait comme une résurgence et qui est soumise à une forte pollution. Son pH moyen est en effet de 7,48 alors que Ek (1969) n’avait pas observé de pH supérieur à 7,35. Il faut dire que, parmi les 43 valeurs de pH observées par Closkin, celles de janvier à mars 1990 et celles des mêmes mois de 1991 sont anormalement élevées (supérieures à 8); ces valeurs se situent dans une période où le lisier est fortement excédentaire dans les étables et les porcheries du bassin. Si l’on admet que ces pH sont liés à la pollution et qu’on les retire du calcul de la moyenne, celle-ci redescend à 7,33, ce qui est absolument dans le fourchettes jadis proposée par Ek. D’autre part, la source étudiée par Closkin dans le Givetien présente du reste, de janvier à mars 1990 comme de janvier à mars 1991, des pH supérieurs à 8 la plupart du temps; là encore, l’épandage de lisier ou d’autres amendements basiques sont probablement à l’origine de ces pH excessifs.

- Les deux sources situées sur la craie (C2 et C3 de Brassine) ont des caractéristiques de saturation assez proches des eaux du Dinantien; il se confirme que la source C1 se trouve en position différente, vu les caractéristiques de l’aquifère sableux; tout comme la source sur le Houiller (étudiée par Brassine) et celle sur l’Oligocène (étudiée par Closkin), cette source se trouve dans une plage présentant des caractéristiques intermédiaires entre les eaux ardennaises, d’une part, et les eaux calcaires et flaminiennes, d’autre part.

- Certaines des sources ardennaises coïncident avec la plage proposée par Ek, mais cette dernière devrait être étendue vers des pH plus faibles que ceux qu’il a observés, tous dans des cours d’eau de la bordure nord de l’Ardenne. Ceci peut s’expliquer par le fait que, dans la délimitation de sa plage, Ek avait pris en compte des eaux ardennaises, mais prélevées à proximité de chanoirs et il est fort probable que ces eaux ardennaises, avant de rejoindre ces chanoirs, aient traversé des étages (le Couvinien notamment) où des calcaires étaient déjà peut-être présents, même en fai-
ble quantité. De plus, il existe de légères différences de compositions lithologiques entre les terrains arden- nais étudiés par Ek (retombée de l’Ardenne au con-
tact de la bande calcaire) et ceux situés en plein cœur
de l’Ardenne où Rosen a fait ses mesures.

Par ailleurs, on note que la dureté des sources situées
sur l’Ensin, le Siegienien et le Gedinnien est aussi faî-
bles que celle des sources développées sur le Cambrien,
démontrant par là que nous sommes bien en dehors des
assises où on aurait pu noter une éventuelle trace de cal-
caire. Tout au plus pouvons-nous constater que les sources
étudiées par Closkin (situées sur l’Ensin de l’Ar-
denne condrusienne) présentent des duretés légèrement
plus importantes. On note cependant quelques différen-
ces dans les pH des sources étudiées par Araujo : il est
inférieur à 5 dans le Siegienien, mais est proche de 5,5
dans l’Ensin. D’autre part, Fabri et Leclercq (1977) et
Leclercq (1984) ont mis en évidence un gradient positif
des pH en Haute Ardenne ; ils ont, en effet, observé que
le pH de l’eau des ruisseaux augmente régulièrement
lorsque l’on passe de terrains situés sur le Cambro-Or-
dovicien à des terrains situés sur l’Ensin, en traversant
successivement le Gedinnien et les trois assises du
Siegienien. Dans son transect, Rosen retrouve certaines
de ces éléments, avec des pH passant globalement de
5,5 à 6,4.

D’autres points de détail méritent d’être évoqués.
- La source sur le Permien étudiée par Rosen présente
des caractéristiques proches des sources développées
sur le Cambrien, ce qui confirme les commentaires
émis au point A, à propos des débits, des réserves et
des amplitudes thermiques. En effet, Ozer (1971) et
Schmitt (1995) ont montré que les sources situées sur la
deuxième assise du poudingue de Malmedy (celle qui contient du calcaire) ont des pH plus basses (va-
riant de 7,5 à 7,9), des conductivités variant de 240 à
340 µS et une dureté totale de 12,0 à 21,0°F (soit 120
to 210 mg CaCO₃/l).
- Par ailleurs, il ne se dégage pas une influence nette de
l’affectation du sol sur l’acidité des eaux. Rosen a suivi
plusieurs sources dont le bassin d’alimentation était
couvert de résineux (Gd, Sm, Ss1, E1, E2) sans que
leur pH soit sensiblement différent des autres
sources. Les deux sources sur le Siegienien (S1 et S2) étu-
diées par Araujo et également couvertes de résineux,
presentent des pH faibles, mais ce n’est pas le cas de
la source E2 également couverte de résineux.

C. Variations des températures

Il est bien connu que la température moyenne annuelle
des eaux de source est représentative de la moyenne
annuelle des températures de la région concernée
(Schoeller, 1962). Par ailleurs, on sait que la tempéra-
ture de l’air diminue en moyenne de 0,5°C par 100 mè-
tres d’élévation, tout en se rappelant qu’interviennent
egalement d’autres facteurs tels que la proximité plus
ou moins grande de la mer, la nature du sol, sa couver-
ture végétale (Sneyers et Vandiepenbeek, 1981).

Disposant de mesures s’étalant d’une altitude de 100 m
pour les stations les plus basses à plus de 600 m en Haute
Ardenne, il était tentant de vérifier le lien entre les tem-
péatures moyennes des eaux de source et la tempéra-
ture moyenne annuelle. Précisons d’emblée que nous
avons été contraints d’écarter les sources où les mesu-
res n’ont pas pu être effectuées sur un cycle annuel com-
plet, ce qui risquait d’influencer la moyenne.

La relation mise en évidence (Fig. 4) est cependant d’être
parfaite (r = 0,82), ce qui se conçoit du fait que les me-
ures portent sur des périodes d’observations différen-
tes, justifiant certains écarts par rapport à la normale, et
que des problèmes d’exposition peuvent également in-
tervenir.

\[y = 10,69 - 0.0045x \]

où y représente la température en degré Celsius et x l’al-
titude en mètre.

Nous avons également reporté à la figure 4 la droite qui
décrit les températures moyennes de l’air mesurées à plus
de 200 stations climatiques (période 1960-1990) à l’al-
titude; cette droite à l’expression suivante (Alexandre et
al., 2000) :

\[y = 10,60 - 0.0053x \]

Ces deux droites sont parallèles et assez proches, mais
les points mesurés dans les sources s’écartent quelque
peu de la droite des températures de l’air; ceci s’expli-
que par le fait que les périodes pendant lesquelles nous
avons travaillé (entre 1990 et 1994) sont systématique-
ment plus chaudes que la période de référence où la
moyenne des températures de l’air a été calculée, fait
qui ressort bien de l’évolution de la température moyenne
annuelle de l’air à la station d’Ucelle (Alexandre et
al., 2000).

Comme il ressort de la figure 4, l’adéquation entre tem-
perature des eaux de source et température moyenne
annuelle de la région avait déjà été mise en évidence en
Lorraine belge, à partir de neuf sources dont les émer-
gences se situaient entre 280 m et 345 m d’altitude (Pe-
tit et Erpicum, 1987).

D’autre part, on considère généralement qu’il existe une
relation entre les variations saisonnières des températu-
res des eaux de sources et leur mode d’alimentation.
Différentes études (Cosar, 1976b; Petit et Erpicum,
1987) ont en effet montré que les sources superficielles
sont sensibles aux variations saisonnières des tempéra-
tures et présentent des amplitudes thermiques assez
Brassine a effectué quatre prélèvements (échelonnés de mi-novembre à début mars) pour six sources et deux prélèvements pour les cinq autres. Ses valeurs sont systématiquement supérieures à celles de Rosen puisqu'elles dépassent régulièrement 25 mg.L\(^{-1}\) et atteignent même 70 mg.L\(^{-1}\). Rappelons que nous sommes ici dans l’Entre-Vesdre-et-Meuse, région plus densément occupée par l’agriculture. Ces différentes sources voient leur bassin d’alimentation affecté à l’herbage et, de plus, il est fort probable que d’autres influences anthropiques interviennent. Toutefois, là où les surfaces sont boisées (F1, F2), les valeurs restent inférieures à 20 mg.L\(^{-1}\). Par ailleurs, les sources à mode d’alimentation superficiel semblent avoir des teneurs en nitrates plus élevées (comparaison entre F3 et F4; valeurs relativement faibles de C2 et C3 vis-à-vis de C1).

CONCLUSION

On peut étendre à l’ensemble des eaux ici étudiées ce que disait Ek (1969, 1976) des eaux des régions karstiques : leur différenciation est avant tout affaire de lithologie et de structure. Les nuances climatiques, dans un périmètre aussi limité que celui de la Haute Belgique, ne déterminent que des différences de second ordre, surtout en ce qui concerne les caractères physiques et chimiques des eaux.

Il ressort de nos observations que l’amplitude thermique saisonnière des eaux de sources est un descripteur relativement faible du mode d’alimentation (profond ou superficiel) des nappes. Dans les calcaires, il se confirme que c’est également un très bon critère pour voir si l’on est en présence d’une simple émergence ou d’une résurgence.

Le diagramme pH/dureté permet de regrouper les eaux en différentes zones qui ont une signification régionale ; les eaux ardenaises se dégagent nettement des autres de même que les eaux condruisennes (sur Famenne). La différence entre les plages occupées par les eaux des calcaires dévoniens et par celles des calcaires dinantiens est moins grande : les deux plages ne sont pas confondues, mais elles se recouvrent en partie, comme le montre la figure 3.

Notre travail apporte également une modeste contribution appliquée à la recherche de ressources en eau. Comme il ressort des études de Closkin et Brassine, les sources sur le Famenne ont une production assez fiable, spécialement en période estivale, à des moments où il est souhaitable de pouvoir bénéficier de certaines réserves aquifères. Mais il convient de nuancer ce point. Leur faible rendement résulterait également du fait que, le plus souvent, ces sources sont, au moins partiellement, déjà exploitées, même si ce n’est qu’à un niveau local. Par ailleurs, dans les sources étudiées, la structure locale n’était peut-être pas la plus favorable à des nappes importantes. Il est fort probable qu’il subsiste encore
des sites productifs en région condruisienne, sur le Famenien, et il serait intéressant d'étendre la prospection à d'autres sites. Les émergences les plus basses dans la topographie présentent plus de garantie en termes d'approvisionnement et de relative constance saisonnière, mais elles sont plus minéralisées ; les sources du Famenien dont les émergences sont les plus élevées et qui drainent la partie superficielle de la nappe sont beaucoup plus fluctuantes, car davantage tributaires des conditions hydroclimatiques. De plus, elles pourraient éventuellement être soumises à des teneurs en nitrates plus importantes.

Certaines sources de Haute Ardenne ont un rendement appréciable, spécialement lorsque l'on examine leur débit d'étage, ce qui les rendra intéressantes en terme de potentialité de captage. Ce fait, déjà mis en évidence sur le Plateau des Tuillees, se confirme ici dans une autre partie du massif de Stavelot. Il serait peut-être utile de prospector d'autres sources en Ardenne, car l'altération semble pouvoir donner lieu à des nappes aquifères non négligeables. Certes, cette altération est très localisée et variable, mais on sait qu'elle se manifeste plus particulièrement sur certains étages et principalement au niveau de la surface d'érosion supérieure (Alexandre, 1976).

BIBLIOGRAPHIE

EK C., 1976. Les phénomènes karstiques. Géomorphologie de la Belgique, Hommage au Prof. P. Macar (A. Pissart,

REMERCIEMENTS

Les auteurs remercien N. Lousberg (technicienne chimiste) et J.L. Genicot (technicien Prime) qui ont effectué un grand nombre d'analyses de laboratoire. La firme Hach a mis gracieusement à notre disposition un appareillage complet, incluant un spectrophotomètre de terrain DREL/5 qui nous a donné toute satisfaction.

NOTES

1Ek, 1969 a même observé une dureté de 318 mg/l dans une source jaillissant du Famenien supérieur, la source du ruisseau de la Préalale.

2Il existe une controverse à propos de cet étage du Givetien dont nous reparlerons au point suivant.

3Cette source jaillit du Gv (Assise de Fromelennes) de l'ancienne carte géologique. Cette formation, essentiellement calcaire, était donc rangée, à l'époque de la première carte géologique, dans le Givetien. Les travaux de Mialeux, Leriche et d'autres géologues amènent à placer cette assise à la base du Frasnien. Mais en 1971, le Conseil Géologique de Belgique remet l'assise de Fromelennes dans le Givetien, suivi en cela par certains auteurs.
PARAMÈTRES HYDROLOGIQUES ET PHYSICO-CHIMIQUES DE HAUTE BELGIQUE : ÉBAUCHES D'UNE TYPOLOGIE RÉGIONALE

Ed.), Laboratoire de Géographie physique de l'Univ. de Liège, 137-157.

VANDEVEN G., (s.d.). Carte géologique des cantons de Malmedy et de St Vith, Service Géologique de Belgique.

Adresse des auteurs :
Département de Géographie physique et Quaternaire
Université de Liège
Allée du 6 août, 2 - Bât. B11
B - 4000 Sart Tilman, LIÈGE