HORATIO

A middle-sized NLP application in Prolog

Archibald Michiels

University of Liege, Liege

1994

Table of Contents

Table of Contents....................... 2
1. Foreword..........ccccvvveeen. 5

2. Introduction...........cccceeenne 9

3. The Lexicon..............cccueee 15
3.1. Use of Macros........... 17

3.2. Double Analysis........... 18
3.3. Verb Classes........... 20

3.4. Raising and Control........... 21
3.5. Multi-Word Units........... 21
3.5.1. Insertion 22

3.5.2. Extraction 23

3.5.3. Proformation 23

3.6. Inflectional Morphology........... 26

4. The Grammar: Interpreting the Lexicon.................

4.1. General Strategy........... 28

Arguments and Modifiers 28

4.2. The S Level........... 32

4.2.1. Declarative Clauses 32

4.2.1.1. Subject / Operator Agreement Rules 35
4.2.1.2. Priority among Person Features 35
4.2.1.3. Passives 36

4.2.1.3.1. Parsing 36

4.2.1.3.2. Generation 38

4.2.1.4. The Assignment of the Subject Role 39
4.2.1.4.1. Control 40

4.2.1.4.1.1. Parsing 40

4.2.1.4.1.2. Generation 41

4.2.1.4.2. Raising 43

4.2.1.4.2.1. Parsing 43

4.2.1.4.2.1.1. Subject-to-Object Raising 43
4.2.1.4.2.1.2. Subject-to-Subject Raising 44
4.2.1.4.2.2. Generation 45

4.2.1.4.2.2.1. Subject-to-Object Raising 45
4.2.1.4.2.2.2. Subject-to-Subject Raising 45
4.2.1.4.3. Extraposition 47

4.2.1.4.3.1. Parsing 47

4.2.1.4.3.2. Generation 48

4.2.2. Non-Declarative Main Clauses 48
4.2.2.1. Yes-No Questions 48

4.2.2.1.1. Parsing 48

4.2.2.1.2. Generation 51

4.2.2.2. WH Questions 52

4.2.2.2.1. Parsing 52

4.2.2.2.2. Generation 54

4.3. The Phrase Level........... 55

4.3.1. Noun Phrases 55

4.3.1.1. Parsing 55

4.3.1.2. Generation 59

4.3.2. Adjective Phrases 60

4.3.3. Prepositional Phrases 62

4.3.4. Verb Phrases 65

4.3.4.1. Parsing 65

4.3.4.1.1. The Auxiliary Group 65

4.3.4.1.2. Coordinated Verb Phrases 67

4.3.4.2. Generation 68

4.3.4.2.1. The Auxiliary Group 69
4.3.4.2.2. The Main Verb 74

4.4. Modifiers........... 76

4.5. Canonical Order and Athematic Arguments.....7.9

5. Semantics............ccvvenee. 82

5.1. GF Level........... 82

5.2. Inheritance........... 84

5.3. Percolation........... 85

5.4. From Semantic to Lexical Classes........... 86
5.5. Performing the Checks........... 87

5.5.1. Sfok 87

5.5.2. Checksem 89

6. Parsing ISSUes..........cccoeeenn... 91

6.1. Dealing with Flexible Word Order........... 91
6.2. Computing Preferences........... 92

6.3. Hard Coordination........... 94

6.4. Long Distance Dependencies........... 99

7. Generation ISSUES..........cccccceeee... 107

7.1. Freezing the Variables in the Parses....107

7.2. The Cycle........... 108

Appendix A. Non-Standard Arity Prolog Predicates................. 116
Execution Control........... 116

String Manipulation........... 116

File Operations........... 117

Appendix B. File Organization and Compilation Diiees.....................

File Organization........... 118

Moratio.cmd 118

Morgen.cmd 119

Arity Prolog Compilation Directives........... 119

Appendix C. Input and Output.................. 121

Input 121

Output 122

Appendix D. Selective Lexicon Downloading.....cum....... 123
Appendix E. Importing Lexical Entries from Ldoce.................. 125
Introduction........... 125

Description of the Liege Ldoce Data Base.....125

Ldoce Data Base Design........... 126

Lemma Data Base: Coword 126

Definition Data Base: Codefi 127

Idiom Data Base: Coidio 128

Example Data Base: Coexam 128

Grammatical Code Data Base: Codcod 129

Believe in Ldoce 130

The Importation Process from Ldoce into Horatiegsicon........... 132
Intransitive Verbs 133

Mono-Transitive Verbs 136

Prepositional Verbs 138

Transitive Phrasal Verbs 141

Verbs Taking an Object and an Object Complement 143
Ditransitive Verbs 147

Verbs Taking an Object and a That-Clause 149

Verbs Taking an Object and a Prepositional Objédt 1
Appendix F. Sample Parses.................... 515

Appendix G. Test Suites........cccccevvvveeen 164

For Analysis........... 164

Designed for Horatio 164

Based on Flickinger et al. 1987 167

For Generation........... 174

Appendix H. Prolog Predicates.................. 178
Index to Prolog Predicates................... 951
References.............ccce.. 198

1. Foreword

There now exist quite a number of book®rolog and even quite a few d?rolog and NLP
(Natural Language Processing). Among the lattefahewing stand outPereira and Shieber 1987
Gazdar and Mellish 1989 Gal et al. 1991, Covington 199and the chapter on natural language in
Walker et al. 1987(by Michael McCord, whose approach is the one fodld here; see al$dcCord
1982 as well asMcCord 1989a, 1989band1990for new developments).

However these books remain at an inicoaty level. More specifically, they discuss oshort
introductory programs. None of them describes anelsghe full code of a medium-sized application.

This is precisely what this book ddesratio (and its generation counterpardrgen) is a middle-
sized application in the field of NLP, more pretyseatural language analygisand generation. The full
source code, with numerous comments, is to be fourtthe disk distributed with the bd@k

No pseudo-code is given. No piece afecis presented in a simplified form. Cited cooeagis
corresponds exactly to the runnable code to bedfaumthe companion disk. This may lead to the neade
feeling somewhat swamped under barely digestibiie cHowever, if he persists in his studyhofatio,
allowing some areas to remain unexplained for deyhie will have mastered not only the generalgfesi
decisions, but also the interactions between thews.components of the grammar and the coding
idioms and mechanisms in full detail. The hard $tep elementary to advanced NLP applications in
Prolog is due to the need for managing the intemastbetween various 'solutions', which are all
beautifully simple when looked at in isolation loligplay the irritating tendency not to mesh withith
neighbours as readily as one would wish.

horatio remains a 'toy' system in that it is oriented talgahe teaching of Prolog for NLP rather
than any real life application. It is geared to plaesing and generation of 'linguistic’ rather thiaal’
sentences (in the senselamita 1991, i.e. sentences made up for the purpose of telstiggistic
hypotheses rather than utterances occurring irabiext).

The emphasis throughout this book igi@mmar writing rather than on the writing of
grammar interpreters or compilers as extensions to standard Prolog. The grammaesanerinterpreted
within the strict top down regime of Prolog; altlghuthey belong to the family alefinite clause
grammars (dcg's), thelcgnotation is not made use of.

This position needs to be explained amggied for. Recently a lot of research has bearege
towards extensions of Prolog for NLP, to be eith&rpreted or compiled into standard Prolog ifdler
alia Definite Clause Grammars(Pereira and Warren 198®xtraposition Grammars (Pereira 1981),
Gapping Grammars (Dahl and Abramson 1984)jslog (Saint-Dizier et al. 1990Restriction
Grammar (Hirschman and Dowding 199@LE (TheCore Language EngineAlshawi et al. 1992).
These extensions aim at enhancing the followingalele properties for NLP systems:

clean separation between the grammar andattseng algorithm;

expressive power of the grammar, leadingdorapact grammar that directly embodies linguistic
generalizations (for instance in the treatmentrgjuistic discontinuities such as the relation eswa
trace and its filler);

automatic construction of the parse tree.

Thedcg notationis clearly a first step in this direction: thedinst need no longer be concerned
with thedifference list technique that takes care of progression in thatiword list. The distinction
between grammar predicates and standard Prologcptesl is emphasized notationally.

However, these extensions to Prologratéfree’. The price to pay is on the one hamdestoss
of control over the parsing process and on theratheh harder debugging. The first point can be
illustrated with reference to thieg notation. Since the progression in the inputiistdded when thécg
grammar is interpreted or compiled into standamd®y; it is no longer possible to specify no pragien
in the input list in the head of the clause. A boégds to be written. Compare:

gap(...,Input,Input).
with
gap(...) --> [I.

This may seem a matter of no great import. Howewbgnhoratio is rewritten indcg notation, a
considerable loss of efficiency is incurred. Paggime increases by about 50% on the standarduést

One of the lessons to be learnt froelBhrotra project is the importance of efficiency for tegtin
and debugging purposes. If the system needs halbanto provide a sentence with a parse, or to
generate a surface form from some deeper représentdne grammar writer will be very wary of
experimenting with alternative approaches. He kakp his test suite as short as possible. He wiilfum
the full test suite after so-called ‘'minimal’, 'selkeeping’ changes to the grammar. He will inwéckd to
attempt to improve efficiency, even if they areroheéntal to the readability of the code. As a reghke
grammar will be brittle, not properly debugged awven harder to debug than if efficiency had been a
primary concern right from the start.

Debugging is known to be hard in Prolmg account of nondeterminism and non-permanent
variable instantiation. It gets much harder whemtwb debugged is not the grammar the linguist has
written but its extended form, i.e. its translatioto standard Prolog. Published documentatiorhen t
extensions to Prolog mentioned above does not sisdebugging facilities. We have preferred to iestr
ourselves to standard Prolog: what is debuggédtkis the grammar as written by the linguist.

Efforts have been made to keep the obleratio reasonably clean and maintainable: no use has
been made of program-modifying predicat@sqert,retract,recorda, ...) and the grammar itself
is devoid of cuts. The whole system relies on stesh@®rolog unification, which is a clean, monotonic
process. Control of execution in the system igitetl to testing whether variables are instantiatethe
point a call is made to a predicate.

Our parsing algorithmtsp-down, left-to-right anddepth-first. This is of course the parsing
algorithm that Prolog itself uses, its 'native'suag algorithm as it were. It is not necessarily thost or
the least efficient: this depends on the natuth@igrammar, and on the inputs it is meant to auicfau.
Well-knownbottom-up parsers (withop down oraclesimplemented by ank predicate) have been
designed in Prolog, for instance tleft-corner parser of Pereira and Shieber 1987 BdP (Matsumoto
et al. 1983).

The programs in this book are writtedrity Prolog El. Use is made of Arity Prolog extensions
to standard Edinburgh Prolog, mainly in the arempéit and output (cf. such predicatesancat
create, open read_line, etc.). The syntax and semantics of these prexficaill be briefly explained in
the body of the text and in comments to the socode, as well as in a short appendix (see Appehdix
p. 116). The reader who wants a full specificatreferred to the Arity Prolog documentation or to
Marcus 1986

It should be made clear thatatio is not "tied" to Arity Prolog. It is easily conudile to
standard Edinburgh Prolog notation, and as a mafttexcthoratio also exists in &ap Prolog version
running on Sun. Arity Prolog has been selected usxd is both reasonably fast and available on PC
platforms (DOS, WINDOWS and OS/2).

2. Introduction

horatio is aparser for a subset of English based odedinite clause grammarbelonging to the
slot grammar framework (cf. the work of Michael McCord and asates; cf. e.g. McCord 1987 a
presentation of the framework in half-tutorial fast). It is written inARITY Prolog (Version 5.1 for
DOS) and runs on 386/486PC undeDOS or OS/2 (for OS/2, version 6 of Arity Prolog has been used)

All parses shown in this book were proetl on anBM Model 70, with 4 Megabytes of core
memory and a 120 Mega hard disk. The operatingsyst DOS 6.0.

On an Intel 486 DX2 PC clone (66 MHz¢ standarthoratio test suitelforsuite, the 156
sentences to be found in Appendix G, p. 164, frdmy failed to "I decided what to tell her | believed
her to like) takes less than 9 minutes real timedr time, notcpu) to parse. The average parsing time
for a sentence in the test suite is therefore athwaé seconds. Parsing here includes writingdthe r
(horsuiteter) and pretty-printed (horsuitset) parses to disk fileh6rsuite.Ist: 159.702 bytes). The
generatohorgenis considerably faster than the parser. Compding linking the grammar to make the
executable fildhoratio.exe (executingmoratio.bat, the DOS counterpart ofioratio.cmd to be found on
page 118) takes less than one minute under DO®® e specified machine.

A first question that we need to taatd@cerns the nature of parsing. Obviously thereadnd
depth of the parses produced is a crucial issusir@ggoes fromagging (the association of form with
grammatical tags reflecting Part of Speee§)) to deep analysis, looking for the semantic irevar
behind different phrasings.

The level chosen here is the one thdeemed to be adequate for the translation fréon/in
English into/from a related language, such as Frelmcterms of depth the type of parse produceunbis
very different from those in th& (Interface Structure) in the EECEurotra project, with which the
author was associatédThe backbone remains syntactic.

In order to give an idea of the typgpafses produced thoratio, we shall look at the parse
returned by the system for the following senteritee workshop is believed to have taken place in the
library | wanted her to go to

It will be seen that the parse is uricmrersial. Any application that needs to rely dmguistic
analysis of the sentences it is confronted with @n application such as machine translationyfoch
template matchingor keyword search however refined, are not good enough) waitlleasthave to be
able to retrieve the information provided by tiwatio parse. | tend to agree with McCord, who writes:
"It also appears reasonable to use syntactic daadBmmbodying some semantic choices, such as word
sense disambiguation) in machine translation systefim McCord 1987, p. 325)

We shall look at the parse in its prgitinted format. Indentation from the left margeflects

depth of embedding: the further we are from thertedrgin, the deeper we are in the postulated tsireic
Items at the same distance from the margin arecsgubto display the same level of embedding.

Here is the parse (other parses cdawe in appendix F, p. 155):

28
clause
pred_arg_mod_structure
prop(vce: passive,asp: none,mod: none,tns: pese
predicate(believe_1,agr(en_passive))
object
clause
pred_arg_mod_structure
prop(vce: active,asp: [perfect],mod: noree,present)
predicate(take_place_1,agr(en_active))
subject
nounphrase
index(_0508)
agr(third,sing)
det(the)
noun(workshop_1,agr(sing))
pp_arg
prepphrase
index(_09EC)
prep(in)
np_arg_of_prep
nounphrase
index(_09F4)
agr(third,sing)
det(the)
noun(library_1,agr(sing))
relative_clause
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: riosepast)
predicate(want_1,agr(finite,pasgsgiirst))
subject
nounphrase
index(_0C28)
agr(first,sing)
ppro(first,sing, 0CAC)
object
clause
pred_arg_mod_structure
prop(vce: active,asp: none,nmamhe,tns: present)
predicate(go_1,agr(infinitive))
subject
nounphrase
index(_OE10)
agr(third,sing)
ppro(third,sing,fem)
pp_arg
prepphrase
index(_1010)
prep(to)
np_arg_of_prep

nounphrase
index(_09F4)
agr(third,_1074)

The first line of the returned parséhispreference(28). In the case of multiple parses, the one
with the highest preference index is to be preterfdie mechanisms used in the computation of the
preference index are discussed on page 92 anaviotio

The parse is best conceived of as afsgause parsegeach headed by a claussader of the
following form:

clause
pred_arg_mod_structure

This means that the parser has found a clausehahd ts going to display its structure in terniste
predicate, thearguments pertaining to that predicate and the clanalifiers, if any (the latter are not
tied to the lexically-determined argument struciopened up by the predicate).

We then have a line devoted to the @ntdgs of the clauseoice (active/passive aspect
(none/perfect/progressiyenodality (none/modal aux andtense(present/pagt Have taken placgields
the followingprop line:

prop(vce: active,asp: [perfect],mod: nore,present)

The predicate has its own property,Imade up of theexeme(with reading number) and of an
agreementstructure Multi-word units are recognized as such, even if their componeid pee not
adjacent to each other in the input string (seedleyant section on page 21). The predicate bne f
wantedis the following:

predicate(want_1,agr(finite,pasggiirst))

The valuesing andfirst (person) are obviously not computed on the basiganited but on the basis of
the surface subjett

We then get the list afguments, in canonicalorder. Unspecified arguments (such as the subject
of believg are left out. The relationships between the fdauses as displayed by the parse are the
following:

clause 1
predicatebelieve
args: subjestspecified
ebi: clausal (clause 2)

clause 2
predicatdake place
args: subjewbrkshop
@pg: in library (index X)
np modifier: réhase (clause 3)

clause 3
predicatavant
args: subjéct:
ebj: clausal (clause 4)

clause 4
predicatego

args: subjette
[pg: to library (index X)

Prepositional phrases and noun phiasasarindex that is used focoindexing In the sample
parse, the missing np governed by the prepositiasm coindexed with the niine library. (index(_09F4))
Such coindexing is crucial for the treatmengapping andlong distance dependencie&ee page 99).

Noun phrases also display an agreestantture. Foher we find the following two lines:

agr(third,sing)
ppro(third,sing,fem)

They indicate that we have a personal pronoun wgesderis femining number singularandperson
third. The agreement structures are part of the infoomahat thehoratio parses keep about surface
structure to make it possible for the generatingen to retrieve the surface forms from the raw Prolog
terms corresponding to the parses.

However, the adequacy of this typeasmg for translation purposes is not proven réagler is
given a program that parses and generates, ndhahganslates; besides, and on a more positites no
the structures arrived at are presumably usabletfar purposes than translation from and intdaed
language.

We claim that the real touchston@anatio is theability to disambiguate between the various
readingsof the lexical items belonging to the string toga@sed. Such reading assignment can be seen a
one of the central tasks of any parsing systemege@mwards high quality translation. But of coutsie
IS not a rigorous test, because there is no wagtade on the number of readings an item has - the
granularity depends on the purposes that are $leé tiexicon in the system, as it does on the Giizke
dictionary and the targeted audience in lexicogicagipractice.

In the last instance the best way lierreader to decide whether he is interested irt adratio
can do is to look at the sample parses and theuést provided, and then at the mechanisms and
strategies put to work in the parser, to assessdbgree of generality and reusability.

We make no claim as to the originatifyhe solutions provided Wyoratio to parsing problems
(although we would be entitled to do so for thatineent of multi-word units and hard coordinatiohs.
has already been stressed, it is the interactitwda® the components that proves the most difftoult
manage in applications that go beyond the 'togesta

It should be noted that the generhtogen provides a minimal check on the parses produced by
horatio. It guarantees that the parses produced keep knoiogmation for generating back the strings
the parser worked on. This minimal ability is calen machine translation, although it is of leserest
for other endeavours, such as the developmennafwaal language front end to a data base.

3. The Lexicon

A main principle dfioratio is that information which belongs the lexicon should belorig the
lexicon. A prime example igame information, i.e. information on the syntactic d&or semantic)
environment a given item can or must fit into. Téxdcal entries themselves contain the relevamhés
they do not refer to information stored elsewh@ensider the entries for ALLOW imoratio:

m_verb(verbtr,allow_1,allow,allow,allow,allows,aMng,
allowed,allowed,allowed,trans,abstract,

[np(oblig,posprec(1,Wnp),object,abstract)])
/* the facts allow the explanation

m_verb(vthat,allow_2,allow,allow,allow,allows,allavg,
allowed,allowed,allowed,trans,human,
[s(oblig,posprec(1,Precs),object)]).

/* she allows that he is godgd

m_verb(vio,allow_3,allow,allow,allow,allows,allowgn
allowed,allowed,allowed,trans,human,
[np(oblig,posprec(2,Wnpl),object,thing),
io(oblig,posprec(1,W2),indirect_object,ram)]).

* the teacher allows the boys money for bodks

m_verb(vinf,allow_4,allow,allow,allow,allows,allowy,
allowed,allowed,allowed,trans,
[np(oblig,posprec(1,Wnp),surf_object,),
np_vp(oblig,to_inf,object)]).

/* they allowed him to teach linguistits

m_verb(vobjadv,allow_5,allow,allow,allow,allows @iing,
allowed,allowed,allowed,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
pp(oblig,posprec(1,Wpp),pp_arg, ,directig)).

I* he allowed the girl into the library/

m_verb(vtrprep,allow_for_1,allow,allow,allow,alloyadiowing,
allowed,allowed,allowed,trans,human,

[pp(oblig,posprec(1,Wpp),pp_arg,_,_,for)]).
/* he allowed for the oversimplificatioris
m_verb(vtrprep,allow_for_1,allow,allow,allow,alloyaiowing,
allowed,allowed,allowed,trans,human,
[string(oblig,posprec(1,0),[for]),
np(oblig,posprec(2,Wnp),object,)]).

I* he allowed for the oversimplificatioris

(the existence of twm ver b clauses for the same reading of ALLOW is explaibelbw, p. 19.)

The arguments appear in a list whidihéslast argument of the predicatever b, which acts as
macro-clause The first argument is the class the predicaterigd to, the second is tlexemevalue -
includingreading number - , positions 3 to 10 take care of inflectionalrptmlogy, position 11 is the
value for the transitivity feature, position 12aisemantic restriction on the deep sulsjeBiach element
of the argument list opens with the value for tpaanality feature - eithemblig(atory) oropt(ional). The
posprecstructure is discussed below, p. 91 - it is useektablish linear precedence. The nature of a
given argument in the lexical predicate's argunfishits of course given by the functor of the sture
(such asstring, np, pp, etc. in the entries for ALLOW). A common featisehat for surface or deey

(grammatical function).

The advantage of putting lexical infatron in the lexicon is obvious: additions, changes
enhancements in the argument structure of lexiealipates (whether individual predicates or whole
classes) do not entail changes in the grammar.

An alleged disadvantage is the siziheflexicon, which very soon grows rather bulkywdeer,
this disadvantage is not a real one because lexteks need not be produced as such by the ihgui
lexicographer; they can result from the expansiomacro-clauses, either within or outside Prolog.
Besides, lexical entries can be imported from ammacreadable dictionary (MRD), as in the impodati
from Idoce (The Longman Dictionary of Contemporary Englishhoratio, discussed in Appendix E.
The task of the linguist or lexicographer is theduced to selecting retrieval criteria and checland
expanding the resulting entries. A string manipatatanguage such as AWK is an ideal tool for
performing the necessary format transformations.

As for consultation, at least for laagas such as English, it is not necessary to luadvhole
lexicon into Prolog. Selective downloading can lgdse achieved by a simple AWK program, such as
getvoc.awk(see Appendix D, page 123).

3.1. Use of Macros

Inhoratio macro-expansionis done in Prolog. Consider amver b clause and one of its
expansion clauses

Macro-clause

m_verb(verbtr,_,allow_1,allow,allow,allow,allowd@king,
allowed,allowed,allowed,trans,abstract,
[np(oblig,posprec(1,Wnp),object,abstract)])

/* the facts allow the explanation */
Expansionfor third person singular present tense inflealdorm

verb([Vs|X],X,Class,[predicate(Lex,agr(finite,
present,sing,third))],
finite,present,sing,thirdsg,Semsubj,Args):-

Thever b clause is responsible for progression in the itiputThe word that is to be read in
must be a third person singular present tense fohis.form is read off the macro-clause, where it
occupies a certain position in the predicate'sraggu list. Theagr functor is filled in thever b clause
and appears as part of the structure that is retiumthe parse tree. Other relevant information is
transferred from the macro-clause to its expandgnsnification (such as for instance the arguntisht
Args).

By having as mamwer b clauses as is warranted by the inflectional pgracassociated with
English verbs we manage to account - in a fairgneenical fashion - for all possible forms for therbs
our lexicon includes.

It is of course possible to generaterttacro-clauses themselves, at least partiallfiadn it is
even possible to import them from a computerizetiahary such akDOCE, once it has been
converted to data base format, as it has beere &fritversity of Liege. The interested reader ismefd to
Appendix E for a full discussion, including the qalete code of thawk programs that take care of the

necessary reformatting operations.

3.2. Double Analysis

Quirk et al. 1985andBresnan 198largue cogently that some English lexical consitbastcan
be parsed in two ways. Such a double analysisdessary to account for the syntactic manipulattbas
these constructions admit of.

A case in point for English is therb+preposition combination, as in LOOK AT. We can
conceive of LOOK AT as a transitive verb like aotier, or we can conceive of it as the verb LOOK
governing a prepositional phrase headed by AT. Baltieally:

1) LOOK AT + NP
2) LOOK +PP (AT)

The following sentences illustrate t@fdhe syntactic manipulations (WH-movement and
passivization) that lead one to postulate the feed double analysis. Others can be founQuirk et
al. 1985andBresnan 1981

1: What are you looking at ?

The man he was looking at ...

The problem has been looked at from every angle
2: The text at which we have been looking for tmag ...

Pulman ilshawi et al. 1992(p. 74) points out that if take advantage oféated as a complex
V only one passive can be derived in the GPSG ma¢atreatment of the passive, becaadeantage
will not be available as an NP node for the meta-toi apply to. Consequently, only the first of the
following two passive S's will be generated:

Kim was taken advantage of.
Advantage was taken of Kim.

This leads Pulman to reject the GPSG treatmenttiguproblem disappears if a double analysis is
provided, evidence for which is precisely the aafaiity of two passives.

It should be noted that the need farldi® analysis of some lexical constructions islmoited to
English. Consider AVOIR L'AIR in French. We needagsign the following two analyses:

1) AVOIR L'AIR + ADJ
2) AVOIR + NP (AIR + ADJ)

on account of the two ways in which agreement eamhbde (either with AIR or with the subject of the
whole phrase AVOIR L'AIR):

Elle a I'air idiote.
Elle a 'air idiot.

Inhoratio the lexicon filelexatio2.ari holds two macro-clauses for prepositional verb$1sas
LOOK AT. The first caters for the analysis in whitte preposition belongs to the prepositional mras
rather than to the verb (analysis 2 in our accodrtgarglist contains a prepositional phrase specified in
terms of the preposition heading it (AT in the caseOOK AT):

m_verb(vtrprep, ,look_at 1,look,look,look,looks kg,
looked,looked,looked,trans,living,
pp(oblig,posprec(1,Wpp),pp_arg,_,_,al).

/* they were looking at her
the girl at whom they had been looking */

The second macro-clause identifies AR @article to be appended immediately to the n§khe
verb LOOK (second argument of the macro-clauseg.arglist opens with a string (AT) and further
contains the np playing the object role:

m_verb(vtrpremartO:at,look_at 1,look,look,look,looks,looking,
looked,looked,looked,trans,living,
[string(oblig,posprec(1,0),[at]),
np(oblig,posprec(2,Wnp),object,]).

/* they were looking at her
whom are they looking at ? */

It should be noted that in bathver b clauses the lexeme value is the sameloak_at_1 We
are dealing with the same lexical item.

In the analysis of sentences suchtey were looking at hebothm ver b clauses will succeed,
and two parses will be returned. Such redundannogti$elt to be a negative feature, as the relatign
between verb and preposition is truly indetermimateuch cases.

Parsing an S suchthe problem was paid attention telies inhoratio on the availability of a
lexical entry for pay attention to in whigttention to is simply a string appended pay, the only
argument being the np inside the to-phrase, améftire the only candidate for the subject rolehim t
passive clause:

m_verb(vtrphrprep,part0:'attention to’,

pay_attention_to_1_a,pay,pay,pay,pays,paying,
paid,paid,paid,trans,human,
[string(oblig,posprec(1,0)attention,to]),
np(oblig,posprec(2,Wnp),object,)]).

On the other hand parsing the othesipagattention was paid to the problgmwill take
advantage of the np node whose head is the attedtion:

m_verb(vobjfreepp,_,pay_attention_1,pay,pay,pa paying,
paid,paid,paid,trans,human,
[np(oblig,posprec(1,Wnmhject,attention),
pp(oblig,posprec(1,Wpp),pp_arg, , ,to)]).

Note that here we have a pp argument governeddppopitionto, which is necessary to account for such
relative clauses @s which he had paid great attention

3.3. Verb Classes

Inhoratio the lexical clauses for verbsi(ver b clauses) have as first argument the class the vert
belongs to. Such a piece of information is used lhandle, useful when we wish to have a quick asg e
way of ascertaining that a given verb is appropriat the operation we want to perform. For inséaric
is very handy to be able to pick out quickdfysing or extraposition verbs, orcopula verbs.

However, we do not use the sharingesb\class as a necessary or sufficient conditiothi® two
verbs to be coordinated in a verb phrase. We shalthat we cannot readily dispense with a double
parsing of the remaining word list, onceaaglist of the first verb, and once agglist of the second (see
the section on hard coordination, p. 94).

The most important part played by teebwclass is to provide an entry point émnsistency
checksandtemplate determinationin a lexicographer's workbench, or in the impaotaprocess of
lexical material from a machine-readable dictionary

3.4. Raising and Control

The treatment of raising and contrdhamatio is based on the distinction betwemnface and
deepgrammatical functions. The main principle is thaubject will go on playing the subject role uatil
potential new subject is found.

| should point out that | disagree wMicCord as to the potential subject status of ticlrect
object. He claims (cMcCord 1987, p. 346) that the slot frame for PROMISE shouldehaniobj slot,
not anobj slot, and that the indirect objeadl§j) cannot play the part of new subject in complenvenb
phrases, whereabj (direct objects) angdobj (prepositional objects) can. Theref@# is able to play
the part of subject of the complement wp fee Maryandto find Mary) in the first two of the following
sentences (becauBdl is obj in the first angobj in the second), but not in the third, wh&i# is iobj:

John wants Bill to see Matry.
John depended on Bill to find Mary.
John promised Bill to see Mary.

| hold PROMISE to be a real exceptimhe marked as such in the lexicon. Compare the
following sentences, which show that PROMISE andTH behave the same wagyntactically:

| promised him to teach linguistics.

| taught him to teach linguistics.

What did | promise him ?

What did | teach him ?

Who did | promise to teach linguistics ?
Who did | teach to teach linguistics ?

| promised it to him.

| taught it to him.

The distinction between the two argutes@annot be captured by syntactic tedim (Who)is
iobj (indirect object) in both cases, but cannot i hew subjectslot (i.e. that of subject for awp to
the right) in the case of PROMISE, whereas it @d(does) in the case of TEACH and other verbs
governing an indirect object.

3.5. Multi-Word Units

Inhoratio multi-word units (mwus) are dealt with according to the degree of morpgichl,
syntactic and lexical frozenness that they exhibit.

Certain pieces of structure develop (@edegree of internal cohesiveness) that go lobwydmat
the grammar predicts, or have meanings (and ofteistations) that are non-compositional with respec
to the grammar being used, or -as is often the- chsplay both these characteristics at one anddhee
time. We call thenmwus.

Mwus illustrate theon-givennessof the lexicon. More than single word units, theg a
theoretical constructs. Their recognition -anddtracture that they are assigned- should resutt tieeir
behaviour in discourse, more precisely from tpeiential for manipulation. The main principle
adhered to imoratio is that mwus should be assigned as little strecisrtheir behaviour warrants. It is
this amount of assigned structure which determihesppropriate techniques to be used for the
recognition of mwus from their manifestation inatiarse. To give just one example: in order to
recognize the mwlIAKE PLACE we look for a morphological form of the veFAKE immediately
followed by thestring P-L-A-C-E; we do not look for an obje®tP whose realization is the noun
PLACE; we do not look for the noUALACE either. Consequently, the entry TdAKE PLACE runs
as follows:

m_verb(vidiomintr,take place_1,take,take,take,tdakig,
took,took,taken,intrans,abstract,

[string(oblig,posprec(1,0),[place]),
pp(oblig,posprec(2,Wpp),pp_arg,_,locatio}),

/* the workshop took place in the university */

Mwus also illustrate tlabitrariness of the grammar-lexis distinction. horatio there is no
linguistically motivated border between syntax &ds. We can choose to say thait clauses(a
Prolog concept) make up the dictionary of the systeut then the terrdictionary is no longer used in a
sense that is relevant to linguistic theory.

In order to assess the degree of intewhesion of mwus we explore three classes of
manipulation:

3.5.1. Insertion

Insertion of material into the lexical unit; comear
PLAY A ROLE ---> PLAY AN important ROLE

SET FIRE TO --->* SET dangerous FIRE TO

This type of insertion (insertion of modifiersaehed to elements belonging to a piece of the mwu
should be distinguished from:

a) interruption of the mwu by foreign material:

he PAID, if | may say so, ATTENTION Ti®e problem
* the match TOOK, if | may say so, PLB@ the library

b) insertion into the mwu of one or several of its argments

he TOOK the problems INTO ACCOUNisertion of the objectie problem'sinto the mwu
TAKE INTO ACCOUNT)
3.5.2. Extraction

Extraction of an element from its pimsitwithin the canonical representation of thedeakunit;
this basic manipulation subsumes all standard fmamations effectingnovementor deletion; compare:

PAY ATTENTION TO ---> attention was paid to every single detail

MAKE A FOOL OF ---> * g fool was made of the new head

3.5.3. Proformation

Replacement of a node in thevu by a suitablgro-form : personal or indefinite pronoun fiiP,
sofor S, do sofor (certain classes ofjP, there for PPsfunctioning as place adjunct, etc. Compare:

PLAY A ROLE --->play it again

PAY ATTENTION TO --->* pay some agaih* don't pay any to him
Inhoratio we distinguish (in a hierarchy frofrozen to open):

a) completely frozen mwus
A standard example is the advB¥AND LARGE .

These mwus have no internal strucfliney should be regarded as objects of sipi@g, with
their various elements bound by @idjacency operator(i.e. white space). In particular, there is no
reason whatsoever for trying to assigpeat of speechto any of the constitutive elements: for example,
BY is not a preposition here (or whatever else fat thatter: it is no more than the sequence ofrkette
B-Y) andLARGE is not an adjective.

b) mwus that allow only inflectional morphology variation (in one or several of their constituents)

Examples ihoratio areTAKE PLACE andSHOOT THE BREEZE, in whichTAKE and
SHOOT can be inflected. Only the complete configuratiares assigned structures. There is no reason to
assign any structure RLACE, which is simply the sequence of lettéx.-A-C-E. It does not behave as
anNP, so is not amNP. It does not behave as a noun, so is not a noerha\Ve already given the entry
for TAKE PLACE. Here is the one for SHOOT THE BRHEZ

m_verb(vidiomintr,part0O:'the breeze’,
shoot_the breeze 1,shoot,shoot,stamits,shooting,
shot,shot,shot,intrans,human,
[string(oblig,posprec(1,0),[the,breeze])]).

¢) mwus which can be interrupted by one or several dheir arguments.

An example ihoratio is TAKE INTO ACCOUNT . TAKE can be inflectedTAKE andINTO
ACCOUNT can be separated by the object ofrtiveu:

he took the problems into account
he took into account the problems that she had seen

(the relevant feature for position of the objedtssveight) Here is the entry for TAKE INTO
ACCOUNT:

m_verb(vobjfixedpp,partl:into account’,
take_into_account_1,take,take,take,takiasg,
took,took,taken,trans,human,
[string(oblig,posprec(1,3),[into,account)),
np(oblig,posprec(1,Wnp),object,)]).

d) collocations these are mwus whose elements are free to belsathe normal (i.e. with respect to a
given grammar) structure assignment predicts. Aamgte inhoratio is TAKE MEASURE , where both

TAKE and the NP whose head is the nMBASURE behave as predicted by the 'normal’ structure
assignment:

VP [V [TAKE] NP [... Head N [MEASURET]]]

The link betweehAKE andMEASURE is collocational, i.e. TAKE is the preferred verb to
express what it expresses here. The implementatisanch a lexical affinity iforatio is achieved
through a feature on the objectT®hKE , namelyimeasure] feature which is assigned to the noun
MEASURE under one of its readings. Such features candsded as hyperspecialised semantic
features, i.e. it is hypothesized that they wilt he needed alongside semantic features, and that
consequently they can share the same slot. The fentf AKE MEASURE looks like this:

m_verb(verbtr, ,take measure_1,take,take,take,takesy,
took,took,taken,trans,human,
[np(oblig,posprec(1,Wnp),object,measure)]).

horatio also has the corresponding entry for the noun MBRE when used in the TAKE
MEASURE collocation:

m_noun(measure_1,measure,measures,[measure],[]).

In connection with the implementatidmowu's it should be noted that when st i sfy (i.e.
match against the input word list) a fixed string, return no parse tree, as the fixed string imded in
the predicate's lexical entry (aslaok_down_on_1)as well as in the predicate's arglist:

satisfy(P0,P1,[],0,Posprec,Rel,Intrel,[],
string(Type,Posprec,String),_,):-
append(String, P1, PO).

TheString appended to the remaining list should yield thpitrist. In the lexical entrny$tring is
alist as in:

[string(oblig,posprec(1,0),[down]),

part of the entry for look down on:

m_verb(vtrphrprep,partO:dowopk _down_on_1look,look,look,looks,looking,
looked,looked,looked,trans,human,
[string(oblig,posprec(1,0),[down]),
pp(oblig,posprec(2,Wpp),pp_arg,_,_,on)]).

/* the teacher looked down on his students */

3.6. Inflectional Morphology

horatio works with a full form dictionary (of course, mérgogical variants can be looked up
-irregular forms- or generated -regular forms-Agpendix E); verbs have nine morphological variants

am first person sing present tense

is third person sing present tense

was first person singular past tense

was third person sing past tense

were second person or plural past tense
are second person or plural present tense
being ING form

been past participle

be infinitive

Note: even BE does not have nine, but eight, disforms; the assignment of nine forms is grammar-
internal.

4. The Grammar: Interpreting the Lexicon

horatio is a lexicon-driven parser. The main task of tregmar component is to interpret the
information contained in the lexical predicateshsd system.

What does interpreting the lexicon attjumean? Consider thaglist for the second reading of
ALLOW, repeated here for convenience:

[s(oblig,posprec(1,Precs),object)]

This argument is interpreted by a ataflas the predicateat i sf y@, which recursively calls the
grammar for the parsing of a sentence (job oikthent ence predicate):

satisfy(P0,P1,Gap,Prefgen,posprec(Pos,4),
Rel,Intrel,[Function,Tree],
s(Type,posprec(Pos,4),Function),
subject(SUBJ,Semsubj),
subject(SUBJ,Semsubj)):-

xsentence(P0,P1,Gap,Pref, Tree,finite,Peksonber,Voice),
Prefgen is Pref + 4.

The same process is used for othemaggtitypes; for instance, to satisfyrgmarg, a call on the
nounphr ase predicate is made; information can be read ofielkecon when necessary, as in this case
information on the function to be filled by the. The argument list is traversed non-determinilitica
The checking of linear precedence is discussedibgdee p.91).

4.1. General Strategy

Arguments and Modifiers

Arguments arelexically determined. They are eithebligatory or optional. In Horatio, each
lexical argbearer (argument bearer) has arglist (argument list) associated with it in the lexictime
arglist is always the last argument of a lexical predicate

Modifiers are not associated with lexical items, but withtagtic classes. They are always
optional.

When aargbearer participates in a syntactic construction, its gdlory arguments must be
satisfied in the construction. Besides, they mpgear in a sequence which satisfiesghrecedence
relation: each argument must satisfy pneecede predicate with respect to the argument which fedo
it in the left to right order of the word list telparsed.

Let us take the example ofaaglist associated with a verb. The ve&ZlODNSIDER can take,
under one of its readings, arglist consisting of an object and an object complement:

m_verb(vcomp,_,consider_2,consider,consider,consoigsiders,
considering,
considered,considered,considered,trans,huma
[hp(oblig,posprec(1,Wnpl),object,),
np(oblig,posprec(2,Wnp2),object_attribute,)]).

/* he considered the claim she made an oversimplibicat

This arglist will be passed on to thedicatear gl i st when the verb phrase which famsider
as main verb is parsed by the predicete bphr ase:

verbphrase(P1,P3,subject(SUBJ,Semsubj),Gap,Pref,

[pred_arg_mod_structure,
prop(vce:V,asp:A,mod:Modality,tnsribe),
VERB,SParse],
Rel,Intrel, Type, Tense,aspect(Aspeabyility,
Number,Person,Voice,nsubject(NSUBJN3e
verb(P1,P2,Class,VERB,Type,Tense,
Number,Person,Semsitgs) ,
arglist(P2,P3,Gap,Status,Pref,Preclist,Rel,
Intrel,Voice,Parse,vp,
Args,Func,subject(SUBJ,Semsubj),
nsubject(NSUBJ,Nsem),
Class),
(nonvar(Aspect); var(Aspect),A = none),
(Aspect =[] , A = none; Aspect \=[],A = Asge,
(nonvar(Modality); var(Modality),Modality = me),
(nonvar(Tense); var(Tense), Tense = present),
(nonvar(Voice), V = Voice; var(Voice),V = aetl),
append([NSUBJ],Parse,AParse),
insort(AParse,SParse).

The predicatar gl i st will call r eog to deal with possible subject changes induced by
passivization and other subject-changing transfoons and then will calsat i sfyl i st with the new,
reorganizedarglist:

arglist(P0,P2,Gaps,ArgOrModFound,

Pref,Posprecl,Rel,

Intrel,Voice,Parse,NpOr\{jst,

Func,subject(SUBJ,Semsubj),

nsubject(NSUBJ,Nsem),

Class):-

reog(Voice,Class,subject(SUBJ,Sen)4dLibf,
nsubject(NSUBJ,NseMi)st,Func),

satisfylist(P0,P2,Gaps,ArgOrModFound,Pref,Posprecl,

Rel,Intrel,Voice,Parse,NpOrVp,Nét,
Func,subject(NSUBJ,Nsem)).

The predicateat i sf yl i st &8 will non-deterministicallypi ck an element out of tharglist
and try to satisfy it by calling the predicatat i sfy; it will then go on to try and satisfy the remaand
of thearglist, making sure that ther ecede relation between the satisfied argument and thnaneder
is satisfied:

satisfylist(P0,P2,Gaps,ArgOrModFound,
Pref,Posprecl,Rel,
Intrel,Voice,Parse,NpOr\{jst,
Func,subject(SUBJ,Sem)):-
append(Gapl,Gap2,Gaps),
pick(List,Elem,Talil),

[* pick® is non-deterministic selection of an element frairst:

List is the list to select from

Elem is the selected element

Tail is List from which the selected element has been deléted *

satisfy(P0,P1,Gapl,Prefl,Posprecl,
Rel,Intrel,Parsel,
Elem,subject(SUBJ,Sem),

subject(NEXTSUBJ,Nsem)),
ArgOrModFound =1,
satisfylist(P1,P2,Gap2,ArgOrModFound,
Pref2,Posprec2,Rel,Intr¥loice,
Parse2,NpOrVp,Talil,
Func,subject(NEXTSUBJ,Nsg),
precede(Posprecl,Posprec2),
accu(Pref,[Prefl,Pref2]),
append([Parsel],Parse2,Parse).

The predicateat i sfy is defined in different ways according to the angut that it is passed.
In the case of CONSIDER, it will be passed two rgmg] the following clause will be triggered:

satisfy(P0,P1,Gap,Pref,posprec(Pos,Prec),Rel,Intrel
[Function,Rest],
np(Type,posprec(Pos,Preg)
Function,Semvp),
subject(SUBJ,Semsubj),
subject([subject,Rest],Semvp)):-

nsubject(Function),
xnounphrase(P0,P1,Gap,index(J),
Prefnp,Prec,Rel,Intrel,
Function,
[Function,Rest],
Number,Person,Sem),
sfok(Semvp,Sem),
Pref is Prefnp + 4.

Sat i sfy calls thexnounphr ase predicate to parse the argument np. It will béedatwice, as
the two elements in therglist are both nps (but they do not fill the same fuorctihe first being the

object, and the second the complement, unless weagisiderations have disturbed the canonical arg
order).

How is the difference betwealnligatory andoptional arguments accounted for? We have seen
thatsat i sfyli st calls itself recursively. When it cannot succeggarsing more of the input, it is

allowed to succeed doing nothing, provided theistrgb longer contains obligatory args, i.e. adl th
remaining args are optional:

satisfylistP0,PQGap,_,0,_,_,_, ,[],List,Func,_):-
allopt(ist).

Al | opt checks that all the args are optional. It doesyslmoking at theiType, which is always
the first member of the functor representing thge(ap, pp, s, etc.):

allopt([Head|Tail]):-

arg(1,Head,opt),
allopt(Tail).

allopt([]).

Modifiers are parsed by the predicatei f i er . The crucial difference is that their parsing does
not affect the arglist:

satisfylist(P0,P2,Gaps,ArgOrModFound,
Pref,Posprecl,Rel,

Intrel,Voice,Parse,NpOr\{jst,
Func,subject(SUBJ,Sem)):-
append(Gapl,Gap2,Gaps),
modifier(P0,P1,NpOrVp,Gapl,
Prefmod,Posprecl,
Rel,Intrel,Parsel,
subject(SUBJ,Sem)),
ArgOrModFound =1,
satisfylist(P1,P2,Gap2,ArgOrModFound,
Preflist,Posprec2,
Rel,Intrel,Voice,
Parse2,NpOr\/st,
Func,subject(SUBJ,Sem)),
precede(Posprecl,Posprec2),
accu(Pref,[Prefmod,Preflist]),
append([Parsel],Parse2,Parse).

The predicateodi fi er will parsemodifier pps for both nps and vps, and will also pairsg-
phrasesanden-phrasesas np modifiers. In the case of pps it will callthexpr epphr ase predicate,
and in the case of ing and en-phrases oxter bphr ase predicate. Here is, for example, the
definition of the predicateodi f i er for the parsing of modifier pps within vps:

modifier(P0,P1yp,Gap,Prefgen,posprec(1,Precpp),
Rel,Intrel, Tree,subject(SUBJ,Sem)):-
xprepphrase(P0,P1,Gap,index(J),npind&«@j,Precpp,
Prepform,Rel,
Intrel,vp_modifier,
Tree,PPsem,PPsemnp),
modppvp(Prepform),
Prefgen is Pref + 2.

4.2. The S Level

At the highest level, we have tier se predicate, with three clauses: onedeclarative
sentences, a second f@s-no questionand a third fowh-questions(imperatives are not covered).
This highest level is the only one at which Breferencevalue is included in the parse tree.

parse(PO,[],[Preference, Tree]):-
xsentence(PO,[],[],Preference, Tree,finitesBrrfNumber,Voice).

Note that the S parsedXsent ence must bdinite and that the whole string must have been
traversed. The first arg aisent ence, PO, is the input word list and the second arg isrémaining
word list to be traversed. It is here set to thegriist (]). The third argument ofsent ence is the gap
specification. It is also set to the empty listnain declarative clause cannot feature any gap.

parse(PO,[],[Preference, Tree]):-
yesnoquestion(PO,[],Preference, Tree).

parse(PO,[],[Preference, Tree]):-
whquestion(PO,[],Preference, Tree).

4.2.1. Declarative Clauses

The main predicate herexsent ence. In horatio a predicate name beginning withxarsuch
as herexsent ence, is used to parse a phrase that can, but needesatt from the coordination of two
phrases of the type indicated by the predicate namm®ut the xxsent ence will take care of both
simple and coordinated S's. In the case of coalihg'sxsent ence will make a call on
c_sent ence and then recursively call itself.

xsentence(PO0,P2,[],Prefs,[Jand_sentence,S1,S2]Fgsan,
Number,Voice):-

inlist(and,PO0),

c_sentence(PO0,[and|P1],[],Prefl,S1,Type,Person,dumb
Voice),

xsentence(P1,P2,[],Pref2,S2,Type,Person2,Numbei&¥)

accu(Prefs,[Prefl,Pref2]).

In the case of a simplex S (non-coat#id main clause)sent ence will simply make a call on
c_sent ence:

xsentence(A,B,C,D,E,F,G,H,l):- c_sentence(A,B,C,B,6,H,)).

c_sent ence parses main clauses that can, but need notabkefll by an adverbial subordinate
clause on either side. Here is the code for a lause preceded by an adverbial subordinate clause:

c_sentence(P0,P2,[],Preftot,[sentence,Adverbs,[S]],

finite,Person,Numbice):-
adverb_sentence(P0,P1,[],Prefsub,Adverbs,finitegtdr,Numberl,Voicel),
sentence(P1,P2,[],Prefmain,S,finite,Person,Numlmecg/,
accu(Preftot,[Prefsub,Prefmain]).

Theadver b_sent ence predicate parses an adverbial subordinate claufading a
subordinator and parsing an S:

adverb_sentence(P0,P2,[],Pref,[SUB,S],finite,Pefdomber,Voice):-
sub(P0,P1,SUB,),
[* subordinating conjunction; last position in angent list is currently unused */
sentence(P1,P2,[],Pref,S,finite,Person,Number,\joice
Finally, & sentencecan have no adverbial subordinate clause, buistarfsa main clause only:
c_sentence(A,B,C,D,E,F,G,H,I):- sentence(A,B,C,B,6,H,I).
We can now look at theent ence predicate itself.
sentence(P0,P2,Gaps,Prefs,[clause,VP], Type,Perdtunviber,\oice):-
append(Gapnp,Gapvp,Gaps),

/* it is more efficient to do the appending of taplists now, because there are cases where we tkiabw
the result of the appending must be the empty/list

[* the subject np */

xnounphrase(P0,P1,Gapnp,index(l),Prefnp,Weight,Rell
Intrell,subject,SUBJ,NumPBersonnp,Semsubjnp) ,

var(Rell),

/* the Rel variables must be uninstantiated; it is the coctjon of an antecedent and a relative clause that
releases, i.aininstantiatestheRel var; see the treatment of relative clauses bgho®9 */

[* Subject-verb agreement */

agree(Personnp,Number,Personvp),

/* the first two arguments aigreecome from the np, the third from the vp */
[* the vp */

/* the parse tree corresponding to the subjecthlincluded in the parse tree returned by the
xverbphrase predicate */

xverbphrase(P1,P2,subject(SUBJ,Semsubjvp),
Gapvp,Prefvp,VP,Rel2,
Intrel2, Type, Tense,aspesféct),Modality,
Number,Personvp,
Voice,
nsubject(NSUBJ,Nsemsubjvp))

[* Nsemsubjvprecords the semantic restriction on the subjetteifverbphrase has been found to be
passive; th&/oice variable is left uninstantiated in the active */

/* nsubject potentially changes the deep subject (passivesmstance); the semantic check (sfok) must
therefore be betweddsemsubjvpand theSemsubjnplist */

var(Rel2),

/* semantic check */
sfok(Nsemsubjvp,Semsubjnp),

[* computing the preference index */
accu(Prefs,[Prefnp,Prefvp,4]).

4.2.1.1. Subject / Operator Agreement Rules

Agreement between the subject np aad/d¢inb phrase is checked by the prediegteee, whose
code is the following:

agree(first,sing,firstsg).
agree(first,plural,other).
agree(second,sing,other).
agree(second,plural,other).
agree(third,sing,thirdsg).
agree(third,plural,other).

The first two arguments come from thbkject np:PersonandNumber. The third argument
comes from the verb phrase. The vditgsg is necessary for the formagas andam of BE; the value
thirdsg is used to capture the agreement featukgasfand of the present tense third person of most
verbs. The valuether is a catchall value.

A call to thegr ee predicate is made at the S level, in the definibbthesent ence predicate,

repeated below with the relevant pieces in bol@typ

sentence(P0,P2,Gaps,Prefs,[clause,VP], Type,Personvp
Number,Voice):-
append(Gapnp,Gapvp,Gaps),
xnounphrase(P0,P1,Gapnp,index(l),Prefnp,Weight,Rell
Intrell,subject,SUBIYmMber,PersonnpSemsubjnp) ,
var(Rell),
agree(Personnp,Number,Personvp),
xverbphrase(P1,P2,subject(SUBJ,Semsubjvp),
Gapvp,Prefvp,VP,Rel2,
Intrel2, Type, Tense,aspect(Aspktdjality,
NumbePersonvp
Voice,
nsubject(NSUBJ,Nsemsubjvp)),
var(Rel2),
sfok(Nsemsubjvp,Semsubjnp),
accu(Prefs,[Prefnp,Prefvp,4]).

4.2.1.2. Priority among Person Features

When dealing with coordinated nps wechi call on th@r i ori t y predicate to determine the
person of the np resulting from the coordinatioor. iRstanceshe and s first person, not third. The code
for thepri ori ty predicate reflects the person hierarchy: firstrasity over second and third, and
second over third:

priority(first,second.,first):- !.
priority(first,third,first):- !.
priority(third,first,first):- !.
priority(second,first,first):- I.
priority(third,second,second):- !.
priority(second,third,second):- !.
priority(X,X,X).

The first two arguments are the persnes of the first and second member of the coatdin;
the third arg is the resulting person value, the associated with the coordination as a whole. Nate
we can use the cut and that we need so many claasasse we need to cater for the two positiorts tha
the winning value can have in the coordination. THs¢ clause deals with the case where the two
coordinated nps share the person value.

The predicater i ori ty is called in the parsing of coordinated nps:

xnounphrase(PO0,P2,[],index(l),Pref,Weight,Rel,Ihtre
Function,
[Function,[and_nounphrase,RestdtRE
pluraRersonSem):-
inlist(and,PO0),
nounphrase(PO,[and|P1],[],_,Prefl,Weightl1,Rel,
Intrel,Function,
[Function,Rest1],
NumberPersonlSem),
xnounphrase(P1,P2,[],_,Pref2,Weight2,Rel,
Intrel,Function,
[Function,Rest2],
NumberPerson2Sem2),

priority(Personl,Person2,Person),
accu(Pref,[Prefl,Pref2]),
accu(Weightaccu,[Weight1,Weight2]),
Weight is (Weightaccu/2)+1.

4.2.1.3. Passives

4.2.1.3.1. Parsing

Passivization induces changes iratiglist associated with the passivized verb: the activgest
is left out of the arglist, or demoted to head blygphrase; one of the other arguments is prontoted
subject.

Inhoratio it is the predicate eog (for reorganization of the arglisf) which takes care of
accounting for these changes, i.e. maintainingelaion between the arglist as expressed in thiede
and the arguments as occurring in the passivizagsel

It should be noted thathoratio the voice value is lefininstantiated when the clause is active,
and set tpassi ve when the clause is passive. Here is the releveftition of ther eog predicate:

reogpassiveClasssubject([SFunc,Rest]Semsubj,List,
nsubject(NSUBJ,Nsem),Nlist,Funi-
pick(List,Elem,Remainder),
Elem =.. Elemlist,

/* tree tolist conversion: each element in taglist is a tree whose root indicates its natug: pp, s,
etc... */

Elemlist = [Nature, Type,Posprec,Func,Nsem|_],
psubject(Func),

[* Func points to a function in the active S that can mmTmwted to subject of passive; this is checked by
psubject */

NSUBJ=[Func,Rest],
[* note that the deep function is preserved inghese tree */
append(Remainder,
[byphrase(opt,posprec(_,3),subject Sdm)],
Nlist).

/* the subject position opened up for the activeyisghds aby-phrase position to be appended to the
remainingarglist */

The code fgysubj ect enumerates the various functions that can fithasubject role in a
passivized S:

psubject(indirect_object).
psubject(object).
psubject(surf_object).

The last one will be used in the payohsuch sentences 8ke is expected to teaahhere the
subject §he results from a promotion to surface subject efriain clause of a surf_objecthey expect

her to teach This surface object results from the promotibthe subject of the embedded clause (via
subject-to-object raising), which is the real (deep), clausal objecste to teach.

Reog is always called in the definition of tla gl i st predicate (passage freaemn gl i st to
sati sfylist), butitis allowed to succeed doing nothing ie tase of active clauses to which neither
raising nor extraposition applies:

reog(Voice,Classubject(SUBJ,Semsubj),List
nsubject(SUBJ,Semsubj),LisfFunc):-
Class \= sraising,
Class \= extrapos,
var(Voice),!.

The code far gl i st includes a call to eog, which, if appropriate, will reassign the subject
and modify the argument list:

arglist(P0,P2,Gaps,ArgOrModFound,
Pref,Posprecl,Rel,
Intrel,Voice,Parse,NpOr\iist,
Funsubject(SUBJ,Semsubj)
nsubject(NSUBJ,Nsem)
Class):-
reog(Voice,Class,subject(SUBJ,Semsubj),List,
nsubject(NSUBJ,Nsem),Nlist,Func)
satisfylist(P0,P2,Gaps,ArgOrModFoufrdf,Posprecl,
Rel,Intrel,Voice,Parse,NpOrMjist,
Funsubject(NSUBJ,Nsem).

4.2.1.3.2. Generation

Passivein generation is the inverse of passive in analysnalysis yields parse trees which
exhibitdeepgrammatical functions, and the surface relationstrbe re-established before the strings
corresponding to the surface phrases can be gedefidie whole reorganization process is in the fiand
of the predicat@r epgen, which adheres to thteansformational cycle (see the section on the cycle on
page 108), andr epgen calls onpassi ve where appropriatd?assi ve has a fair number of clauses
on account of the various geometries of the treisssupposed to work on: they may contain indirect
objects, direct objects, subjects, in various @deaissi ve has a clause for each configuration. It is not
necessary to examine them all here.

First, let us look at the clauseparssi ve which applies when voice &ctive. Obviously
enough, we do not waplassi ve to fail in such cases, but rather to succeeddliyii.e. leaving the tree
untouched:

passive([H1,[pred_arg_mod_structure,prop(aceve,B,C,D)|R1]|R2],
[H1,[pred_arg_mod_structure,prop(acéve,B,C,D)|R1]|R2]):-

second_header(H1),
L

Second_header (H1) is only a check on the environment, namely orcthase header.

As an example of a clausepassi ve that actually does something, let us look at the for
clauses with an indirect object that can be demtmtestibject of the passive clause:

passive([H1,[pred_arg_mod_structure,prop(vce:pas®iC,D),Predl,
[[Subject,],

[object|Robject],
[indirect_object|Rio]|Otherargs]]],

[H1,[pred_arg_mod_structure,prop(vce:passiye,B),Pred1,

[[subject_pass|Rif[object|Robject],

[pp_arg,[prepphrase,index(l),prep(by),[np_arg_of pre,
S]]]|Otherargs]]]):-

subject_active(Subject),
second_header(H1) .

The actual work gets done in the hdatieclause, the body only containing checks @n th
environment, namely a check on the clause headBrgit on the subject of the active clause.

The reorganization work consists in déng the active subject toy-phrasein the passive
clause. The by-phrase is created ap aarg, with preposition BY governing amp_arg_of prep
corresponding to the body of the subject in thevaatlause. The second transformation concerns the
status of the active indirect object. Its bodyas changed, but its function is turnedstabject _passi.e.
subject of a passive S.

Note that we need to take care of Hsavhere thby-phrasehas an np arg that is
uninstantiated, so that we do not generate a surface by-phraseawiempty np inside. The following
clause forgen does the job:

gen([pp_arg,[prepphrase,index(I11),prep(by),

[np_arg_of prep,[nounphrase,indexWARI]]]], [1):-
var(VAR).

The second arg @fen, which houses the generated string, is set hetteetempty list[]).

4.2.1.4. The Assignment of the Subject Role

Control relations (which determine #ssignment of one of the predicate's argumentseto t
subject slot of a nonfinite complement clause, aghn infinitive or ing clause) are computed while
syntactically parsing the S. They are not takenobtihe syntactic component and assigned to semanti
interpretation rules, as they areGhE (seeAlshawi et al. 1992 section 5.3.2yP control phenomena
p. 101 and foll.)

4.2.1.4.1. Control

InHoratio, control takes care of theoindexingof acontrolling argument with the argument it
controls, which is always theubject of a subordinate clause which belongs to the sagiest as the
controller.

In generation, the task consistghnstingthe controlled subject, i.e. depriving it of lexic
material, so that nothing is generated.

4.2.1.4.1.1. Parsing

Consider the case of verbs sucWANT constructed with an np followed by a to-infinitivene
control relation is between the surface object &NV and the subject of the infinitive. In a sentenc
such asThe woman wants the teacher to tedhle teachewill be assigned asinning subjecti (i.e.
subject of any vp further to the right) when ipersed to satisfy the np argument in ainglist of
WANT:

m_verb(vinf, _,want_1,want,want,want,wants,wanting,
wanted,wanted,wanted,trans,living,
[hp(opt,posprec(1,Wnp),subject_inf,)
np_vp(oblig,to_inf,object)]).

The running subject assignment wildioee by thesat i sf y predicate:

satisfy(P0,P1,Gap,Pref,posprec(Pos,Prec),Rel,Intrel
[Function,Rest],
np(Type,posprec(Pos,Prec),
Function,Semvp),
subject(SUBJ,Semsubj)
subject([subject,Rest],Semvp)-
nsubject(Function),
xnounphrase(P0,P1,Gap,index(J),
Prefnp,Prec,Rel,Intrel,
Function,
[Function,Rest],
Number,Person,Sem),
sfok(Semvp,Sem),
Pref is Prefnp + 4.

The firssubject functor in thesat i sfy argument list points to the running subject oregng
and the second to the running subject on exitiegotiocedure. The parse tree returned by the
xnounphr ase is unified with the first argument of the secountject functor, except for the function,
which is set tasubjectin the second subject functor.

Nsubj ect checks that the function is one that can yieldrtinming subject. It is defined by the
following code:

nsubject(subject_inf).
nsubject(subject_ing).
nsubject(surf_subject).
nsubject(object).
nsubject(surf_object).
nsubject(indirect_object).

Now that theunning subject has been set, it can be assigned as subject to-thnitive. This
is done when the to-infinitive argument is satdfiy a call to thesat i sf y predicate:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
[Function,[clause,Tree]],
np_vp(Type,to_inf,Function),
subject([Sfunction, Treesubj],Semsubjl),
subject([Sfunction, Treesubj],Semsyb
xverbphrase(PO,Pdybject([subject, Treesubj],Semsubj2,
Gap,Pref,Tree,Rel,
Intrel,infinitive, Tense,
aspect(Aspect),Modality,
Number,Person,Voice,
nsubject(NSUBJ,Nsem)),
checksem(Nsem,Semsubjl),
Prefgen is Pref + 4.

4.2.1.4.1.2. Generation

In generation, the controlled subjestas to bghosted i.e. deprived of lexical material, so that
it does not appear in the generated string. We seeeral clauses for the predicatent r ol , depending
on the structural positions of the controller ahthe clause with the controlled subject. Let uaraine
the one for controller as first argument and claz@®aining the controlled subject as second:

control([H2,

[pred_arg_mod_structure,Propl,[predicate(Predl,AgiB)],
[[Controller,[nounphrase,index(l),AgrNP|Rest1]],
[H1,[clause,[pred_arg_mod_structure,Prop2,[joatd(Pred,agr(Agr))],
[[Subject,[nounphrase,index(l),AgrNP|Restsubj]]Otherargs]]]]|R1]]],

[H2,[pred_arg_mod_structure,Propl,[predicate(PregiPredl)],
[[Controller,[nounphrase,index(l),AgrNP|Rest1]]
[H1,[clause,
[pred_arg_mod_structure,Propnew?2,[predicate(Pre@dgo)],
[[Subject,[nounphrase,index(l),AgrNP|VAR]]|Otherargs]]]]|R1]]]):-

nonvar(l),

allsubject(Subject),

cv(Predl1,Requires),

second_header(H2),

first_header(H1),

controller(Controller),

nonfinite(Agr),

Prop2 = prop(Voice,Aspect,Mod, Tns),

Propnew?2 = prop(Voice,Aspect,Mod,tns:Requires).

We first check that the indexnstantiated. We do not wantont r ol to be responsible for
instantiation through unification.

This is followed by a series of othkecks on the environment of the rule. We make thatethe
variableSubject refers to a subject function (the codedbll subj ect is given on page 113), and that
theclause headersre as expected (see page 110). We also chedkdhabller points to a function
that can control. The code for tbent r ol | er predicate is the following:

controller(subject).
controller(object).
controller(subject_inf).
controller(subject_pass).
controller(indirect_object).

Thecv clause makes a call on the lexicon (macro clauseer b) and checks that the verb class
is that of a control verb with the help of the poatecvcl ass. The predicatevcl ass also gives the
nature of what will remain from the controlled cdauit will be a vp, andvcl ass indicates whether it
will be gerundive or infinitive . This value returned byvcl ass will come to occupy the position for
the tense value, which does not apply to non-ficlaise. This mechanism is further explained orepag
114.

The last check is on the agreemenufeatf the predicate in the controlled clauseattrot be a
finite clause, as control does not apply to fii@uses (rather pronominalization does).

The ghosting job consists in repladiegtsubj the body of the subject in the parse tree, by
VAR, an uninstantiated variable.

The generator has a clause which eashetghostednps (and other ghosted elements) do not
generate any output. It simply stipulates tnainstantiated variables generate the empty list, and this
empty list disappears in the list appending anitieifang processes which complete generation:

gen(X,[]):- var(X), !.

4.2.1.4.2. Raising

We need to distingui§ubject-to-Object raising andsubject-to-Subjectraising. The first case
is exemplified by the relation between the stiiilglieve John to teach linguistiemd the parse
produced, revealing that the surface object isldep subject of the subordinate clause (something
linearizable a$ believe [John teach linguistics]) The second case is exemplified by the surfaoegst
John seems to teach linguisti@sd its "source" (in transformational terms - rhersetaphorical here,
sincehoratio does not assume the existencérafisformations, but is only interested in revealing
relations): [John teach linguistics] seems

4.2.1.4.2.1. Parsing
4.2.1.4.2.1.1. Subject-to-Object Raising

In the lexicon subject-to-object ragsierbs belong to thei nf class. Consider the entry for
BELIEVE under the relevant reading :

m_verbginf, ,believe_1,believe,believe,believe,believes,bilig
believed,believed,believed,trans,human,
[hp(oblig,posprec(1,Wnp),surf_object,),
np_vp(oblig,to_inf,object)).

I* he believes him to teach linguistics */

When the arglist is satisfied, the sgch asim in the example) will be assignedrf_object as
function. This function is aathematic one, and the np will therefore not appear in e tree, on
account of the following defining clause for thegicatedr op: dr op([surf _obj ect, Rest]).

However, this np will have been madlening subject by thesat i sfy predicate, since
surf_objectis one of the functions acceptedryubj ect : nsubj ect (surf _obj ect).

satisfy(P0,P1,Gap,Pref,posprec(Pos,Prec),Rel,Intrel
[Function,Rest],
np(Type,posprec(Pos,Prec),
Function,Semvp),
subject(SUBJ,Semsubj),
subject([subject,Rest],Semvp)
nsubject(Function),
xnounphrase(P0,P1,Gap,index(J),
Prefnp,Prec,Rel,Intrel,
Function,
[Function,Rest],
Number,Person,Sem),
sfok(Semvp,Sem),
Pref is Prefnp + 4.

When thep_vp construction in the arglist is satisfied, it isSig®ed the running subject as
subject:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
[Function,[clause,Tree]],
np_vp(Type,to_inf,Function),
subject([Sfunction, Treesubj],Semsubjl),
subject([Sfunction, Treesubj],Semsyb)):-
xverbphrase(PO,Psybject([subject, Treesubj],Semsubj2)
Gap,Pref,Tree,Rel,
Intrel,infinitive, Tense,
aspect(Aspect),Modality,
Number,Person,Voice,
nsubject(NSUBJ,Nsem)),
checksem(Nsem,Semsubjl),
Prefgen is Pref + 4.

The function of the whole clause isdreé the lexicon ¢bj ect). We therefore end up with the
clausal object we neetlim to teach, wherehim is assigned subject role.

4.2.1.4.2.1.2. Subject-to-Subject Raising

Subject-to-Subject Raising verbs asgaed thesraising class. Consider the entry fSEEM
under the relevant reading in the lexicon:

m_verbéraising,_,seem_1,seem,seem,seem,seems,seeming,
seemed,seemed,seemed,intrans,
Vp(oblig,subject)).

/* he seems to have taught linguistics */

Thevp structure in the arglist will be satisfied by fledowing defining clause for the predicate
satisfy:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
[Function,[clause,Tree]],
vp(Type,Function),
subject([Sfunction, Treesubj],Sem$ub
subject([Sfunction, Treesubj],Semsyb
xverbphrase(PO,Psybject([subject, Treesubj],Semsubj2)
Gap,Pref,Tree,Rel,
Intrel,infinitive, Tense,
aspect(Aspect),Modality,
Number,Person,Voice,
nsubject(NSUBJ,Semsubj1)),
Prefgen is Pref + 2.

The whole infinitive clause is assigrled subject role (read off the lexical entry). &l&yo the
running subject (in this case the subject of SEEM) is assignesuagect of the infinitive clause. But it
also needs to be made athematic in the higherelaoshat it does not appear as subject in theepeee,
the real subject being clausal. This demotion t®aplished by eog:

reog(Voice,Classubject([subject,Rest],)List,
nsubject([surf_subject,Rest],)List,Func):-
(Class = sraising Class = extrapos),
var(Voice),!.

4.2.1.4.2.2. Generation
4.2.1.4.2.2.1. Subject-to-Object Raising

Subject-to-Objectraising in generation is accomplished by the pegéiar ai si ng. It is
examined in detail in the section on ttyele, where the sentence we follow through the cyctnis
where subject-to-object raising applies, nanddglieve him to have been killethe reader is referred to
page 112 and following.

4.2.1.4.2.2.2. Subject-to-Subject Raising

In generation tern®&ubject-to-Subjectraising, as irwe tend to like studentapplies to
subordinate clauses in subject function. Their guipject is promoted to subject of the main clause,
leaving a subjectless subordinate clause whichbithon-finite (infinitive).

The predicate taking care of subjeestibject raising in generationss ai si ng. It has a clause
which succeeds trivially (returns its first argiti second arg) in those cases where the transfiomia
not applicable, i.e. where the predicate of thennctause is not of the appropriate class:

sraising([clause,[pred_arg_mod_structure,Propl,
[predicate(Notraising,Agrl)]|R1]|R2],
[clause,[pred_arg_mod_structure,Propl,
[predicate(Notraising,Agrl)]|R1]|R2])etisraise(Notraising,_)), !.

The predicater ai se calls on the lexicon to check whether the verd $sibject-to-subject
raising one; the appropriate verb class isstagsing one:

sraise§raisingverb,to):-

Let us now turn to the case where sufife subject raising is applicable. The definit@use is as
follows:

sraising([clause,

[pred_arg_mod_structure,Prop1l,[predicate(SraisigdLA,
[[Subjectl,[clause,[pred_arg_mod_structbdrep2,Pred,
[[Subject2|Rest]Otherargs]]]]ll].

[clause,[pred_arg_mod_structure,Propl,[predi&ataging,Agr2)],
[[Subject2|Rest]
[Subjectl,[clause,[pred_arg_mod_structBrepnew2Pred,

[Otherargs]]]]]I]):-

sraise(Sraising,Requires),

allsubject(Subjectl),

allsubject(Subject2),

(Agrl = agr(Type,Tns,Number,Person), Agr2 = agp@,Tns, ,);
Agr2 = Agrl),

Prop2 = prop(Voice,Aspect,Mod,tns:present),

Propnew?2 = prop(Voice,Aspect,Mod,tns:Requires).

Apart from the manipulation of the setic relations performed in the head of the clatrse
following points should be noted:

1) Theagreement functorof the main predicate is changed. We do not kkepltmber andPerson
values, if we have them. If we do have them, wandiantiate them; if we do not have them (#oe

functor is not the 4-place one), we can copy tldeagl functor (Agrl) into the new oneXgr2). The
reason why we cannot keep fRersonandNumber values is obvious: agreement will have to be made
with the new subject, the promoted one.

2) To simplify generation we stipulate that SubjEeSubject raising cannot apply to subordinatests
that arenot present tenself tense is pasgxtraposition should be allowed to apply, not subject-to-
subject raising. Compare:

(@) it appears that rgerviewed browne
(b) he appears to be interviewing browne

In this way we do not need to introducpeafect value in theaspectslot of Propnew2when tense is
non-present ifProp2 (to generatde appears to have interviewed brovasevariant of (a)). Therefore in
Prop2 (theProperty field of the subordinate clause), we check thattémse value is present before
overwriting it with the non-finite value returneg thesr ai se predicate.

4.2.1.4.3. Extraposition

Extraposition is the end-placing of a subject clause and thedibf the vacated subject position
with place-fillerIT. It is the relation between the surface stiingeems that John teaches linguistesl
[John teach linguistics] seemswhich can also be related to the surface stiofth seems to teach
linguisticsby raising.

4.2.1.4.3.1. Parsing

In analysis the surface subject needsetdemoted. This is accomplished byrtbeg clause that
we have looked at in the preceding section.

In the lexicon extraposition verbs assigned thextraposclass:

m_verbéxtrapos,_,seem_1,seem,seem,seem,seems,seeming,
seemed,seemed,seemed,intrans,it,
[s(oblig,posprec(1,W),subject).

[* it seems that he has taught linguisticy/

Thearglist contains an S that is assigned the subject tolke shtisfied by the following defining
clause of the predicatat i sfy:

satisfy(P0,P1,Gap,Prefgen,posprec(Pos,4),
Rel,Intrel,[Function,Tree],
s(Type,posprec(Pos,4),Function)
subject(SUBJ,Semsubj),
subject(SUBJ,Semsubj)):-
xsentence(P0,P1,Gap,Pref, Tree,finite,Peksonber,Voice),
Prefgen is Pref + 4.

4.2.1.4.3.2. Generation

In generation we need to put the platr-IT back into the parse, so that it gets generated as
surface subject EEM. This is accomplished by the predicate r apos:

extrapos([clause,[pred_arg_mod_structure,Propl,
[predicate(Extrapos,Agrl)],
[[subject,[clause|Res{]Otherargs]]],

[clause,[pred_arg_mod_structure,Prop1,

[predicate(Extrapos,Agrl)],
[[subject,[nounphrase,index($index$),agr(third,sing)
ppro(thirdsg,neuter)]],
[object,[clause|Res{]|Otherargs]]]):-
expos(Extrapos,Requires).

The body of the clause simply checle the verb belongs to the right class. The clasigaject
is transferred to the object argument (it will ngrated as if it were an object, which it is posdilly),
and a new subject is created with the approprigiteeanent functoragr(third,sing)) and the appropriate
body (ppro(third,sing,neuter)).

4.2.2. Non-Declarative Main Clauses

4.2.2.1. Yes-No Questions
The basic format of a YES-NO quest®thie following:
Operator - Sentence with incomplete verb group

Theoperator is the first auxiliary of the verb group if thetkr includes any auxiliary, or DO
otherwise. The operator must tiate .

4.2.2.1.1. Parsing

Inhoratio we check that the operator and the remaindereo¥dinb group build up a licit verb
group (each auxiliary hasRequired value, which indicates thEype of the verb form that can be found
to its right).

yesnoquestion(P1,P3,Prefs,[yes_no_question,
[clause,
[P,prop(vce:V,asp:A2,mddbdality ,tnsTense |Rest]]
1):-

xaux(P1,P2/odality ,finite ,Required,Number,PersonTense,
checkaux3(AsRequired,V),
xsentence(P2,P3,

[,

Prefs,
[clause,
[P,prop(vce:V,asp:A,mod:M,tns:T) $8E
Required,PersonNumber,V),
(nonvar(Modality); var(Modality),Modality = me),
/* we have a valuaonein case there is no modal auxiliary */

myappend(Asp,A,Aspect),

I* myappend appends the aspect value contributed by the auxitiarsed byaux to the aspect value
returned by the parsing of the &éntence; the code fomyappendis to be found on page 66 */

(nonvar(Aspect); var(Aspect),A2 = none),
(Aspect =[], A2 = none; Aspect \= [],A2 = pect).

/* the returned value isoneif Aspect is uninstantiated or the empty list */

The value foNoice is computed bgheckaux3, whose code is the following (further discussed on
page 65):

checkaux3([perfect],en_active,).
checkaux3([progressive],ing,).

checkaux3([],Required,):-
Required \= passive,
Required \= aantive,
Required \g.n

checkaux3([],en_passive,passive).

The first argument is the contributtbe auxiliary makes to th&spectlist; the second argument
is theRequired feature; the third argument\Wice, which is to be lefuninstantiated if voice is active.

Looking at auxiliaries in the lexicame find both aRequired (fifth argument) and &ype (fourth
argument) value:

aux([does|X],X,_finite ,infinitive ,sing,thirdsg,present).
aux([been|X],X,_en_activeing, , ,).

Doesisfinite and requires amfinitive ; beencan be thective past participleand requires an
ing-form:

Does he know you ?
He has been reading a book.

The treatment of YES-NO questions nd¢eds different when the question opens witioa-
auxiliary , i.e.copula BE We do not have a verb group in the remainingh8,vee need to look at the
whole YES-NO question as having the following stove:

Copula - Subject - Copula's arglist

Is the teacher a genius ?
Are they aware of the problems

We therefore have the following piece of cod@amatio:

yesnoquestion(P1,P4,Prefint,[yes _no_question,
[clause,
[pred_arg_mod_structure,
prop(vcactive,aspnongmodnonetnsTense,
VERB,[SUBJ,Parse]]]
1):-
verb(P1,P2op, VERB finite , Tense
Number,PersonvpSemsubjrgs) ,

[* copis verb class of non-auxiliary BE (copula verk) *

xnounphrase(P2,P3,[],index(l),Prefnp,Weight]Rel
Intrell,subject,SUBlYymMber,PersonnpSemsubjnp),

agree(Personnp,Number,Personvp),
arglist(P3,P4,[],Status,Prefarg,Preclist,Rel,
Intrel,Voice,[Parse],vp,
Args,Func,subject(SUBJ,Semsubj),
nsubject(NSUBJ,NSemsubj), cop),
accu(Prefint,[Prefnp,Prefarg,4]).

Note that we must perform the agreembatk between the copula and the subject npt(cile
agr ee predicate). The arglist of the copula is parsea bygll to thearglist predicate. As far as the
verbal group properties are concerned, we knowwledtave no aspectual or modality values (there
would be an auxiliary in that case), and that vascactive.

4.2.2.1.2. Generation

When we haveopula BE as main verb, we need to generate the copularaené&e subject, and
then generate the remainder, i.e. the copula'stegid modifiers. The generator therefore looks the
parse tree to make sure that the predicate istBsd needs to isolate the first element in tlydisar and
make sure that it is the subject. Note that we ki@t voice is active, and that there is no auxilfar
either aspect or modality:

gen([yes_no_question,[clause,[pred_arg_mod_streictur
propyce:active,asp:none,mod:nongns:Tns),
[predicatdge,Agr)],
[[Subject,[nounphrase,l,agr(Person,Number)|Rests@fjgrargs]]]],
Sentence):-

subject(Subject),
gen([Subject,[nounphrase,l,agr(Person,Number)|Rgi$fsSensubject),
gen([predicate(be,Agr)],Vform,Part),
append([Part],Otherargs,Args),

insort(Args,Sortedargs),

gen(Sortedargs,Genargs),

append([Vform],[Gensubiject],Listl),
append(Listl,[Genargs],Sentence).

In all other cases we do have one aieraaxiliaries. We need to isolate the first aaxili
because it must appear in front, before the subjéwt generation of auxiliaries is carried out g t
genyesno predicate, whose code is examined in the sectidh@&verb phrase(see p.65 and
following). It returns dist of auxiliaries, and we append the first in frohtlee clause, insert the subject,
and then append the remaining auxiliaries (therg Io@anone), the verb, and finally the remainingsarg
and modifiers:

gen([yes_no_question,[clause,[pred_arg_mod_streictur
Properties,[predicate(Predicate,Agr)],
[[Subject,[nounphrase,l,agr(Person,Number}gridg] [Otherargs]]]],
Sentence):-

subject(Subject),
gen([Subject,[nounphrase,l,agr(Person,Number)|Rg$tsSensubject),
genyesno(Properties,Agr,Person,Number,[First|Otheis$,
gen([predicate(Predicate,Agr)],Vform,Part),
append([Part],Otherargs,Args),

insort(Args,Sortedargs),

gen(Sortedargs,Genargs),

append(First],[Gensubject],Listl),

appendQthers,[Vform],List2),
append(List2,[Genargs],List3),
append(Listl,List3,Sentence).
4.2.2.2. WH Questions

They are made up ofvh-group and a clause with gap which can be filled by that wh-group.

4.2.2.2.1. Parsing
We need to distinguish two cases:
a) the wh-group is the subject

We parse the sentence asegroup followed by asentencewhich lacks asubject The link
between the two parts is provided dnindexing

/* NP wh in subject position; the S does or doesfeature an auxiliary:
who knows the teacher ?
who has seen the teacher ?
who is the teacher ? */
whquestion(P0,P2,Prefint,[wh_question,NP,S]):-
nounphrase(PO0,P1jdex(l),Prefnp,Weight,
Semrelingt,Functioninint,,
NP,sing,third,Semwholenp),
/* this np must havent as 8th arg, i.e. it must be or contain an inteativg element */
nonvar(Semrelint),
xsentence(P1,P2,
[gap(_,npgap,Npsem,_,Functioniniiitdex(l),_)],
Prefs, Bnite ,thirdsg,sing,Voice),
[* only singular subject is catered for here: * wileach linguistics ? */

nonvar(Functioninint),
/* the gap is a real one */

Functioninint = subject,
/* the function of the missing elementssbject */

NP \= [_,[_,_,_,[interrogative(whom)]]],
/* we can't have whom as subject */

sfok(Npsem,Semwholenp),
accu(Prefint,[Prefnp,Prefs]).

b) the wh-group is not the subject
Examples:

A book about whom has he read ?
Whom has the teacher seen ?

Here we need to be able to look inmphrse trees, to account for the auxiliary whectidtached
from the remainder of the verb phrase, being ségaufeom it by the subject. The relevant piecearfe
is the following:

whquestion(P0,P3,Prefint,[wh_question,NP,

[clause,

[P,prop(vce:V,asp:A2,mddodality ,tinsTensg |Rest]]
1):-

nounphrase(P0O,P1lifidex(l),Prefnp,Weight,
Semrelinht,Functioninint,
NP,Number,thilSlemwholenp,

nonvar(Semrelint),

xaux(P1,P2/odality ,finite ,Required,Numbers,PersonTense,

[* the auxiliary contributes the modality and tefsatures */

checkaux3(Asp,Required,V),
xsentence(P2,P3,
[gap(_,npgdppsem_ Functioninint, index(l),)],
Prefs,
[clause,
[P,prop(vce:V,asp:A,mod:M,tns:Rekt]],
Required,PersoMlumbers,V),
(nonvar(Modality); var(Modality),Modality = me),
myappend(Asp,A,Aspect),
(nonvar(Aspect); var(Aspect),A2 = none),
(Aspect =[], A2 = none; Aspect \= [],A2 = pext),
nonvar(Functioninint),
Functioninint \= subject,
sfok(Npsem,Semwholenp),
accu(Prefint,[Prefnp,Prefs]).

Note the sharing of the functiBanctioninint between the openingh-group and thegapin the
S. Note also the semantic check betwabrgroup andgap (call tosf ok).

PP gaps receive a similar treatment.

4.2.2.2.2. Generation

In the case ofsabject WH-group, we generate the WH-group and then géméhne remainder as
a normal clause (recall that it is a gapped clasiseg it lacks a subject):

generate(Jwh_question,Whgroup,Clause],Sentence):-
Whgroup = [subject|Rest],
gen(Whgroup,Whgroupgen),
generate(Clause,Ynogen),
append([Whgroupgen],[Ynogen], Sentence).

Note the distinction between the twoegation predicate$en generates directly, whereas
gener at e first makes sure thabntrol and other function-changing processess{ng, passivization
etc.) have been undone (See section oryhke, p.108) by callingpr epgen:

generatgTree,Sentence):-
prepgen(Tree, Treeprep),

gen(Treeprep,List),
flatten(List,Sentence).

When the WH-group mot the subject, we generate the WH-group and therethainder as a
YES-NO question. Generating the clausal part as a YESji3tion ensures that the clause begins with
an auxiliary, and that DO is inserted if no auxiliss present.

generate(Jwh_question,Whgroup,Clause],Sentence):-
Whgroup \= [subject|Rest],
gen(Whgroup,Whgroupgen),
generate([yes_no_question,Clause],Ynogen),
append([Whgroupgen],[Ynogen], Sentence).

4.3. The Phrase Level

4.3.1. Noun Phrases

4.3.1.1. Parsing

In the parsing of noun phrases we hayey attention to the problem stfuctural weight, as
this is a determining element in the position of mpth respect to the verb, each other and othersah
elements such as pps.

The lightest nps are of coungegaps They are assigned a weight of zero. Next in ooder
increasing weight angersonal, relativeandinterrogative pronouns, which are assigned a weight of 1,
which ensures that they stay close to the v@dre npsget a weight of 2, provided the noun or adjective
they contain does not have iastantiated arglist. In the latter case they get a weight,diké other
heavynps, such as those that includelative clause

From the preceding paragraph it isrdleat the process which computes weight must bsitbee
to whether tharglist of a constituenargbearer has been satisfied. This is possible becauseréukcate
sati sfyli st returns in its fourth argumentsatus i.e. an indication whether any argument has been
satisfied or a modifier foundfatusis set to 1; otherwise it is left uninstantiated).

In the parsing of core nps we include it henel se: if the Statusvariable returned by
sati sfyli st isuninstantiated, we assign 2 as weight, otherwise we assign 3 Kdhe relevant
piece of code (the case envisaged here is that npavhich does not include adjective pre- or
postmodification andat i sfyl i st therefore applies to the head nowarglist):

corenounphrase(P0,P3,Gap,index(l),Pref,Weight jRed||
Function,
[Function,[nounphrase,ind@x(l
agr(third,Number),DNTRarse]],
Number,third,Sem):-
determiner(P0O,P1,DET,Number,Rell,Intrell) ,
xnoun(P1,P2,N,Number,Sefnglist),
satisfylist(P2,P3,Gaptatus Pref,Prec,Rel2,Intrel2, ,
Parse,mxglist ,Func,
subject([subject,[nounphrase,ir{ex
agr(third,Number),DET,N]]

Verbsem)),
sfok(Verbsem,Sem),
(var(Rell),var(Intrell),Rel=Rel2,Intrel=Ink2e
nonvar(Rell),nonvar(Intrell),Rel=Rell,Intreltrell),
ifthenelse(var(Status),Weight=2,Weight=3).

The ft henel se(Condi ti on, Yescase, Nocase) predicate is an Arity Prolog
extension to standard Edinburgh Prolog; if missing Prolog implementation, it can readily be
simulated by the following disjunction:

(var(Status), Weight = 2; nonvar(Status), Weiglst =

Theweight value is passed to tip@sprecfunctor and exploited by ther ecede relation to
determine the relative order of arguments and rmevdif See the relevant section, p. 91.

Coordinated nps present two problems:

1) computing the weight of the resulting coordioatiheuristically it has been decided to add thighte
of the constituent nps, divide the result by 2 add 1.

2) determining the person of the resulting np: tusstion is discussed on p. 35.
Np gaps are discussed on p. 99.

Most of the information necessary fug parsing opronouns is simply read off the lexicon. Of
course, théunction played by the pronoun cannot be determined ahieparsing, and it is not read off
the lexicon, although unification provides a checkthe possible function value stored in the lexiaod
the one assigned by the parsing process.

Let us take personal pronouns firse Tdatures copied from the lexicon are highlighted:

nounphrase(P0,P1,[],index(l),0,1,Rel,Intrel,
Function,
[Function,
[nounphrase,index(l),agr(Person,NumBeeg]],
Number,PersonSem):-
pp(PO,PIree,PersonNumber,Gender,Functiosem).

Note thaGender would also have to be percolated to tloein phrase levelf we wanted to deal
with reflexive pronouns. In the parsing of

She behaved herself.
we would have to check that gender is the sameeirstibject and the reflexive object.

Relative andinterrogative pronouns have two arguments that we need to gaaitittle, namely
the seventh and the eighth.

Relative pronouns use ffth position to store theemantic valueof the pronoun. If no relative is
present in a noun phrase, the 7th position ohthenphr ase predicate will be leftininstantiated. We
cannot therefore use an uninstantiated variabhedan that the relative does not set any semantic
restriction, and we use the valnerestriction instead. The predicate performing the semanticlche
(sf ok) knows how to deal with that value (see p. 87).

The code for noun phrases consisting r@fative pronoun is the following:

nounphrase(P0,P1,[],index(l),
0,1,Semnp,rel(l),Function,
[Function,
[nounphrase,index(l),agr(third, NumbEree]],
Number,third,[Semnp]):-
relative(P0O,P1,Tree,Semnp,Sempp,np).

Note that thBemnpfeature is inserted in a list when passed to thenrphrase level, because at
that level np semantics must be a list, as nouras#os is a list.

The el at i ve predicate is a lexical one; the last three argusnare as follows:

Semnp semantic features associated with the relativedivhas np value); the strimgrestriction is
used to indicate that no semantic feature is asdigag.

relative(Jwho|X],X,[relative(who)human, ,np).

S

relative([that|X],X,[relative(that)horestriction,_,np).

Sempp semantic features associated with the relativedvhas pp value), e.g.
relative(Jwhy|X],X,[relative(why)],norestrictiofreason],pp).

The last argument stipulates whether the relatieaqun stands for an np or an adverhig &ndpp
values).

Theeighth position is used to keeplative andinterrogative pronouns apart. In the case of
interrogatives, it is set to the string valuet. In the case of relatives it is used to enablaedsxing of
the relative pronoun when the latter does not @ostthe whole np but is embedded somewhere asit,
in a book about whomin such a case we need an index for the whokmndpone for relativeehom The
latter is provided by theel(l) functor, wherd is meant to carry an index.

Here is the code for interrogative ons:

nounphrase(P0,P1,[],index(l),
0,5emnpint,Function,
[Function,
[nounphrase,index(l),agr(third,Number),Tree]]
Number,thirdemnpg):-
interrogative(PO,P1, Tré®@emnpSempp,np).

The parsing of nps containingeative clausemust ensure that at the higher leveldbeenth
andeighth positions are leftininstantiated, and that the relative clause (in particular,gbp within it)
and the antecedent share what they must sharetiNdtihefunction is NOT shared between the
antecedent and the gap in the relative clauseawdiave an antecedesutbject coindexed with an
object gap in the relative clause, aslihe teachefsubject)you like(object gapteaches mathematics
The code is the following:

[* Weight is 3, i.e. the resulting np iseavy*/
nounphrase(P0,P2jfdex(l),
Preftop,3, Function,
[Function,Newrest],
Number,third,Sem):-
corenounphrase(PO,Plipdex(l),

Pref,WeigtRel,Intrel ,Function,
[Function,Rest],
Number,third NounSen),
(var(Intrel); Intrel \=int), /* not an iatrogative */

var(Rel),
[* the antecedent itself must feature a free Rehbée */

xrelclause(P1,P2,Prefrel,RELCL,
[gap(_,Npsem_,_,_index(l),_)],
Personinrel,FuncinfdhunSemNumber),
sfok(Npsem,NounSem),
append(Rest,[RELCL],Newrest),
accu(Preftop,[Pref,Prefrel]).

4.3.1.2. Generation

Generating nps is considerably simgilan parsing them. We consider three cases. Tétadir
that ofnp gapsand of nps that have beghosted(deprived of lexical material) by the generatoit$n
treatment otontrol relations (see p. 41). Such nps are represented by a paese/here the variable
namedNP in the following piece of code is aminstantiated variable. The generator produces an empty
list, which will disappear in the list appendingddiattening operations at the end of the genematio
process.

gen([Function,[nounphrase,index(l),agr(ANA]],[]):- var(NP),!.

The second case is thapefsonal pronouns They are retrieved form the lexicon on the basis
their person number, genderandfunction. Note that these values appear both inside arsideuthe
ppro functor. We give below the rule in the generatai the lexical clause fabject her.

gen(JFunction,[nounphrase,index(l),
agr(Person,Number),ppro(Person,Number,Gejpdri?jorm):-pp(PPform|
_],_ppro(Person,Number,Gender)PersonNumber,Gender,Function,).

pp([her|X],X,ppro(third,sing,fem),third,sing,fem,object,[human]).

The third case is the default case.sWife the information pieces that precede the léxicaterial
in the parse tree, and generate from that material:

gen([Function,[nounphrase,index(l),agr(ANG]], Gennp):-

NP \= ppro(_,_,_),
gen(NP,Gennp).

The call ogen will unify with its defining clause for generatirige various elements of a list:

gen([H|T],[Hgen|Tgen]):-
gen(H,Hgen),
genlist(T,Tgen).

genlist([],[]).

genlist([H|T],[Hgen|Tgen]):-
gen(H,Hgen),
genlist(T,Tgen).

Gen will then generate the determiner (if any), adyec(if any), the noun and its arguments and
modifiers (if any). To do so, it will call on thgen clauses foteaves such as the following for the
determiner:

gen([det(Det),index(1)],Det).
gen([det(zero)],[]).
gen([det(Det)],Det):- Det \= zero.

4.3.2. Adjective Phrases

An adjective modifying a noun generghgcedes that noun; however, if the adjectiveamas
arglist that is partly or totally satisfied, the adjectielows the noun. Contrast:

Each participant was asked an easy question.

* Each participant was asked a question easy.

A question easy for you to answer is not necegsanleasy question.
* An easy for you to answer questién

Inhoratio we use thétatusvariable returned bygat i sfyl i st to check whether tharglist of
the adjective has been partly or totally satisflethe adjective precedes the noun, the adjestiagglist
must be unsatisfied (the noun's arglist can of e satisfiecan easy book on linguisticdf the
adjective follows, the noun's arglist cannot bés§atl, and the adjective's must bea(book easy for you
to read on linguistics* a book easy on linguistigs

Here is the code for the case wherathective precedes the noun it modifies :

corenounphrase(P0,P4,Gap,index(l),Pref,Weight RetJl Function,
[Function,
[nounphrase,index(l),agr(thirdrier),
DET,ADJ,N,Parse]],
Number,third,Sem):-
determiner(P0O,P1,DET,Number,Rell,Intrell) ,
xadjphrase(P1,P2,[],subject(SUBJ,Semsubjad)),
Prefadj, ,modifi&tatadj,
ADJ,Semad)),
var(Statadj),
xnoun(P2,P3,N,Number,Sehnglist),
sfok(Semadj,Sem),
satisfylist(P3,P4,Gap,Status,Pref,Prec,Rdl2|R,_,
Parse,mxglist ,Func,
subject([subject,[nounphrase,iffeagr(third,Number),
DET,ADJ,N]],
Vpsem)),
sfok(Vpsem,Sem),
(var(Rell),var(Intrell),Rel=Rel2,Intrel=1gt?;
nonvar(Rell),nonvar(Intrell),Rel=Rell,Intreitrell),
ifthenelse(var(Status),Weight=2,Weight=3).

Phrases suchas easy man to pleasannot be parsed by the mechanisms explained atiwe:
adjective'sarglist is separated from the adjective by the noun. d#leoto parse them, we need to isolate
the adjective classes for which this constructgopassible. Irhoratio such adjectives are recognized by
looking at theirarglist, which is[to_vp(oblig,object)], i.e. the noun modified by the adjective is the
object of the infinitive in théo-phrase The code is the following:

corenounphrase(P0,P4,[],index(l),Pref,3,Rel,Int@hction,

[Function,[nounphrase,indg&@r(third, Number),
DET,ADJ,N,Parse]],
Number,third,Sem):-
determiner(P0O,P1,DET,Number,Rell,Intrell) ,
adj(P1,P2,ADJ,[tp_vp(oblig,object)]),
xnoun(P2,P3,N,Number,Sem,Arglist),
satisfy(P3,P4,[],Pref,Prec,Rel2,Intrel2,
Parsty_vp(oblig,object),
subject([_,[nounphrase,index(l),agrft, Number),
DET,ADJ,N]],Semsubj),
subject([_,[nounphrase,index(l),agrft, Number),
DET,ADJ,N]],Semsubj)),
(var(Rell),var(Intrell),Rel=Rel2,Intrel=Ink2e
nonvar(Rell),nonvar(Intrell),Rel=Rell,Intreitrell).

Note that the subject functor passetthésat i sf y predicate willnot be used for subject control
of theto-phrase in the absence of BOR NP the subject of the infinitive is nglyntactically retrievable.
The structure passed in the subject functor is tsedindexthe gap that the to-phrase needs to display,
namely arobject gap (object is not to be taken strictly here;ntgiy means aoblique function). The
defining clause for theat i sf y predicate as used here is the following:

satisfy([to|P0],P1,[],Prefgen,Posprec,Rel,Intrel,
[adj_arg,Tree],
to_vp(Type,object),
subject(SUBJ,Semsubj),
subject(SUBJ,Semsubj)):-

SUBJ=[X,[Y,index(l)|Remainder]],
/* the "subject” of the adjifdex(l)) is an object gap in the vp */

xverbphrase(PO,P1,
subject(NP,Sem), /* no subject control */
[gap(Object,npgaemsubj_Func, index(l),)],
Pref,Tree,Rel,
Intreltoinfinitive ,Tense,
aspect(Aspect),Modality,
Number,Person,Voice,nsubject(NNP,Nsem)),
nonvar(Func),
(Func=object; Func=indirect_object; Func=np_&g_of prep),

/* these are the possible functions for the gap:
hard to see; hard to give a book to; harooiwow from */

Prefgen is Pref + 3.
The code for the parsing of an adjecplarase does not require a lot of explanations:

adjphrase(P0,P2,Gap,subject(SUBJ,Sem),Pref,3,
Functiorgtatus
[Function,[adjectivephrase,Ad) $&t,Semad)):-
adj(P0,P1,Adj,Semadjrglist),
satisfylist(P1,P2,Gap,Status,Pref,Prec,Rel2, , ,
ParseArglist ,Func,
subject(SUBJ,Semadj)).

Note only that we need to haveshbject functor for cases such esluctant to gopwhere we

need the subject (either the modified noun or thgest in predicative constructions) to processli®e
phrase.

4.3.3. Prepositional Phrases

Prepositional phrases can appear asraagts of nouns. Nouns may then determine eitteer th
semantics of the whole prepositional phrase, oeitaet preposition to be used. The noun
HYPOTHESIS is of the first type; it specifies that its optadrargument pp must be a topic. We have the
following clause in the lexicon:

m_noun(hypothesis_1,hypothesis,[abstrgmpippt,n:topic),s(opt)]).

The noutrouble is of the second type. It specifies that its apicargument pp must be headed
by the prepositionvith:

m_noun(trouble_1,trouble,[abstragpi(opt,prep:with)]).

Accordingly, prepositional phraseshie grammar must have these two specificationseat th
highest level. A number of other pieces of infonmatare also needed, among whialo indices, one for
the whole pp and one for the np inside. We nedxktable to coindex the np inside the pp with an
antecedent:

The man about whom | have read a book is a teacher.
But we also need an index for the whole pp, todberred to in the gapped argumenbobk
We use the following code to parse "normal” (i@thmer gapped nor coordinated) pps:

prepphrase(P0,P2,Gapjex(J),
npindex(l),Prefnp,3?REP,Rel,Intrel,Function,
[Function,[prepphrase,index(H{PREP),NP]],
SemppSemnp):-
prep(PO,P1,[prePREP)],Sempp ,
nounphrase(P1,P2,Giyaex(l),Prefnp,Precnp,Rel,
Intrel,np_arg_of_prep,NP,NumbergdaSemnp.

We note that the semantics oféh@edded npis also percolated fop level. It is needed in the
parsing ofby-phrases where it must be checked that tiggwithin thepp has the appropriate semantics
for the subject role. The check is performed infall®wing piece of code:

satisfy(P0,P1,Gap,Pref,posprec(_,3),Rel,Intrel,
[subject,[nounphrase,index(1)|X]],
byphrase(opt,posprec(_,3),sulfsatisub),
subject(SUBJ,Sem),subject(SUBJ,$em)
xprepphrase(P0,P1,Gap,index(J),npindex(l),
Prefpp,Precpp,by,Rel,Intrel,
subject,
[subject,[prepphrase,index(J),prep(by),
[np_arg_of_prep,[nounphrasesk(®|X]]]],
PPsemingemsubjinpp),
sfok(Semsubj,Semsubjinpp),
Pref is Prefpp + 4.

Gapped pps are discussed on page 9fbbmaing.

We distinguish two casescobrdinated pps In the first one twdull pps are coordinated, as in
with the teacher and for the teachér the second, the first pp is reduced to a p#ijon, the np being
gapped, as iwith and for the teache/An alternative solution would be to parse a cowtbd
preposition, rather than whole pp, in the secorsgé.ca

The first case is dealt with by thddwling code:

xprepphrase(P0,P2,[],index(l),npindex(12),
Pref,Weight,PREP,Rel,Intrel, Fuoict
[Function,[and_prepphrd3el,PPZ],
Sempp,Semnp):-
inlist(and,PO0),
prepphrase(P0,[and|P1],[],index(l),
npindex(12),Prefl,Weightl,PREP,
Rel,Intrel,Function,
PP1Sempp,Semnp),
xprepphrase(P1,P2,[],index(J),
npindex(J2),Pref2,Weight2,Prep2
Rel,Intrel,Function,
PP2Sempp2,Semnp2),
accu(Pref,[Prefl,Pref2]),
accu(Weightaccu,[Weight1,Weight2]),
Weight is (Weightaccu/2) + 1.

Note that the two pps must shareRbBeandFunction values: if one contains a relative, so must
the otherabout whom and for wharf about whom and for the teacher

The second case is taken care of bfolleving code. Note that we must look into théureed
parse trees to restore the missing np to thedinsjunct:

xprepphrase(P0,P2,[],index(l),npindex(12),
Pref,Weight,PREP,
Rel,Intrel,Function,
[Function,[and_prepphrase,
[prepphrase,index(J),prep(PREP),NP],
[prepphrase,index(l),pp(Prep2),NP]
11,
Sempp,Semnp):-
inlist(and,PO0),
prep(PO,[and|P1hfep(PREP)],Sempp),
prepphrase(P1,P2,[],index(l),npindex(12),
Pref,Weight,Prep2,
Rel,Intrel,Function,
[Function,[prepphrase,indexgbep(Prep2),NH],
Sempp2,Semnp).

4.3.4. Verb Phrases

4.3.4.1. Parsing

4.3.4.1.1. The Auxiliary Group

We first discuss the treatment ofdhiliary group . We need to take into account the well-
known precedence relationsvithin the group. To do so, we assign two featdoesach auxiliary, one

being its typef{nite, ing, en-passiveetc.), the other the type that it requires the aexiliary (or main
verb) to be. In the lexicon, we therefore have stlabses as:

aux([may|X],X,mapfinite ,infinitive , _, ,present).
aux([is|X],X,_finite ,ing,sing,thirdsg,present).
aux([is|X],X,_finite ,en_passivesing,thirdsg,present).
aux([have|X],X,_infinitive ,en_active_, ,).

The fourth argument of the lexical pcateaux is theType of the auxiliary, the fifth one is the
Required feature, i.e. the type of the next verb form soright. The third clause in the sample applies to
BE aspassiveauxiliary, the fourth to HAVE aperfect auxiliary.

We also need to specify what each aryicontributes to thproperty field of the clause. Such a
property field has the following form:

prop(vce:Voice, asp:Aspect, mod:Modality,tns: Tense)

wherevce, asp, mod andtns are markers, and the capitalized items are vasaldbice ranges over two
values:passiveanduninstantiated (represented by an uninstantiated variallenpseranges ovepast
andpresent, and is set by the first element of the verb grdagoit an auxiliary or the main verAspect
is a featurdist, whose possible members aregressiveandperfect. Modality is also a featurkst,
whose possible members are the various modal atigsi §hall, will, may, can, etc.; the treatment is
admittedly very surfacy). We also make use of fierml valuenone for Modality and Aspect; it is
equivalent to an empty feature list.

We define the predicatbeckaux3 to specify the contribution made by each auxiliaryhe
aspectandvoicefields. The first argument is tlaspect feature list the second thRequired feature of
the auxiliary, and the third the value foice. The code is the following:

checkaux3([perfect],en_active,).
checkaux3([progressive],ing,_).
checkaux3([],Required,):-
Required \= en_passive
Required \= en_active,
Required \= ing.
checkaux3([],en_passive,passive).

Note that the value for Voice is #tr@nymousvariable when Voice is not passive, i.e. active.

Since we do not know the number of karkes that a given verb phrase will have, we methe
ver bphr ase predicate as recursive: it calls theer bphr ase predicate (recall that theprefix
indicates that the predicate can be coordinate@)csll a special version of tia@pend predicate
(myappend) to build up theaspectvalue.Myappend is able to deal with theonevalue. Here is the
relevant piece of code:

verbphrase(P0,P2,subject(SUBJ,Semsubj),Gap,Preflist

VG,

Rel,Intrel, Type,Tense,

aspect(Al),Modality,

Number,Person,Voice,

nsubject(NSUBJ,Nsem)):-
xaux(P0,P1,Modalityype,Required,Number,Person, Tense),
checkaux3(A2,Required,Voice),
myappend(Al,A2,A),
xverbphraseg(P1,P2,subject(SUBJ,Semsubj),Gap,Preflist,

VG,Rel,Intrel,

Required,Tense,aspect(A),Modality,
Number,Person,Voice,
nsubject(NSUBJ,Nsem)).

Myappend is defined by the following clauses:

/* the valuenone - either isolated or as first element of a onaerelet list - receives the same treatment as
theempty list */

myappend([],X,X).

myappend(X,none,X):-!.

myappend(X,[none],X):-I.

myappend(X,Y,Y):- var(X), L
myappend([Head|L1],L2,[Head|L3]):- myappend(L1,L2)L

4.3.4.1.2. Coordinated Verb Phrases

In coordinated verb phrases we make that thearglist is appropriate to both conjuncts. For
instance, in

He looked at and liked the girl
the phrasehe girlis the arglist of bothOOK AT andLIKE .

The check is implemented by feedingaigdist predicate the same word list. In our examfiie,
girl is parsed aarglist of LOOK AT and then reparsed agylist of LIKE. An additional problem arises
out of the presence of the preposition or partiel@ich remains close to its verb, instead of jognihe
arglist. Indeed, we do not have

* He looked and liked at the girl

We must therefore make sure that the particleuaddo the immediate right of the first coordinatedb.
The following piece of code takes care of the eXamp

/* 1 he looked at and liked the giri
verbphrase(P0,P4,subject(SUBJ,Semsubj2),Gap,Pref,
[pred_arg_mod_structure,
prop(vce:V,asp:A,mod:Modality,tns:Tepse
[and_predicate,VERB1,VERB2],SParse],
Rel,Intrel, Type, Tense,aspect(Aspecty#ivy,
Number,Person,Voice,nsubject(NSUBJ,NBgm
verb(PO,PXTlass1VERB1,Type, Tense,Number,
Person,Semsubjtgsl) ,
Argsl = [string(X,Y,Z)|Rest],

[* X is Status Y isposprecand Z is thestring itself in list format, e.glaway,with] */
append(Z,[and|P2],P1),

/* the string + and + the@emainder is what follows the verb */
verb(P2,P&lass2VERB2,Type, Tense2,Number,Person,SemsAoga?2),
arglistP3,P4Gap,Statusl,Prefl,Preclistl,Rel,

Intrel,Voice,Parsel,vp,
RestFunc,subject(SUBJ,Semsubjl),
nsubject(NSUBJ,Nsem1),
Class)),
arglistP3,P4Gap,Status2,Pref,Preclist,Rel,
Intrel,Voice,Parse2,vp,

Args2,Func,subject(SUBJ,Semsubj2),
nsubject(NSUBJ,Nsem?2),
Class?,
I* note P3,P4twice: the same list must satisfy both the remarargs of the first verb and those of the
second */
(nonvar(Aspect); var(Aspect),A = none),
(Aspect =[], A = none; Aspect \=[,A = A8,
(nonvar(Modality); var(Modality),Modality = me),
(nonvar(Tense); var(Tense), Tense = present),
(nonvar(Voice), V = Voice; var(Voice),V = agtl),
append([INSUBJ],Parse2,AParse?2),
insort(AParse2,SParse), /* to get canonicaidvworder */
Statusl = Status2. /* the two Status valuest mnuify */

Note that theerb class(ClasslandClass? is passed as an argumenatglist, but cannot be
used as the basis on which to determine whethdnith@erbs can be coordinated: we need to parse the
remaining word list. It would be counter-productieehave to assign the same word class to two verbs
merely on the basis of the observation that thev@rbs can be coordinated. In our example we do not
want to assign LOOK AT and LIKE to the same woralss|, as this would go against the spirit of
consistency checks and template sharing that whtmignt to place on the lexicon.

4.3.4.2. Generation

Generating the verbal group dividesiradly into two tasks: generation of the auxilignpup
(whose membership may be nil) and generation ofrtaim verb.

4.3.4.2.1. The Auxiliary Group

We shall first consider the generatbbthe auxiliary group. Thgen predicate dedicated to this
task needs to have access toRnaperty field (voice aspect modality andtense, and toagreement
valuesof the subject, i.eRerson(NP1 in the code cited below) ahdimber (NP2). It returns &st of
auxiliaries.

Thigyen predicate must also be sensitive to the requivediary order in the clausenodality,
aspect fferfect), aspectgrogressive andvoice, as in:

He may have been being interviewed.

Once we have generated a candidatdéiayXist, we check that the first auxiliary agsei@
person and number with the subject. If it does wethave to backtrack, but we can skip the pawéen
snips([!' ') (snips are a useful Arity Prolog extension tondtd Prolog: the predicates between the two
snips are skipped on backtrackifiy Here attempting to redo the legppendingwould be useless, and
attempting to redo the liflattening would lead to trouble.

The relevant piece of code is the foitay:
gen(prop(vce:Voice,asp:Asp,mod:Mod,tns: Tns),NP1 RR&2):-

gen(Mod, Tns,Modaux,Reql), [* Modality */

genaspl(Asp,Aspauxl,Reql,Req2), [* Aspectepe*/

genasp2(Asp,Aspaux2,Req2,Req3), [* Aspecigmssive */
gen(Voice,Voiceaux,Req3,Req4), /* Voice */

/* the Required feature of the preceding Aux isnfdun last position but one in the next, i.e. the o
housing its Type */

[! append([Modaux],[Aspaux1],Listl),

append([Aspaux2],[Voiceaux],List2),

append(Listl,List2,List3),

flatten(List3,Auxlist),

first(Auxlist,Auxfirst) 1] ,

getagr(Auxfirst,Auxfirstagree,Tns,To),

[* the last argument indicates whetheF@ is needed in front of the auxiliary list */
[! append(To,Auxlist,Alist),

flatten(Alist,Alist2) 1] ,

agree(NP1,NP2,Auxfirstagree).

Various predicates need to be explaihetius begin with the ones generating the auiela

Modal auxiliaries are very easy togate. We call thgen predicate with four arguments: the
first is theparse treeof the auxiliary (it reduces to a simple strindicating thdexemicvalue of the
auxiliary: bothmightandmaywill yield may, and differ as to tense); the secontkisse the third will
house theyenerated stringand the fourth is thiype required. In the case of modal auxiliaries, tlakie
is alwaysfinite .

We need to cater for the vahene which generates the empty list:

gen(none,_,[],).

If the parse tree is nmdne, we get the appropriate form from the lexicon:

gen(Mod,Tns,Modaux,Req1):-
aux([Modaux|_],_,Mod, ,Reql,Tns).

We have two predicates for the genanadif aspectualauxiliaries,genaspl andgenasp2.
This is due to the fact that tiperfect auxiliary (HAVE) needs to be generated beforepitugressive
auxiliary (BE). Of course, neither need be present.

CGenaspl looks for the valu@erfect in theaspect value list It may be the only value in the field
(there is no progressive), or it may be the fifdinm, or the second of two. We therefore havedhre
clauses, which we could easily reduce to one bintgd perfectis a member of the list passed as first
argument. It is this new version of the predichgd tve give here:

genaspl(Asplist,Auxform,Reql,en_active):-
inlist(perfect,Asplist),
aux([Auxform|X],X,have,Reql,en_active,_,.,)

Note thaReql points to the type that aspecthaleis required to have (for instance, infinitive
after a modal auxiliary), and thah_activeis the type it requires of the next auxiliary e tchain, and
will therefore appear in the preceding slot in tiegt call in the generation of the auxiliary ligs, in this
fragment:

genaspl(Asp,Aspauxl,Regeq?, /* Aspect: perfect */
genasp2(Asp,Aspaux2eqzReq3), /* Aspect: progressive */

We also need a clause for the caseanthere is no perfect auxiliary:
genaspl(_,[],Req,Req).

Note the anonymous variable in the fitst, which makes it clear that rule orderingakevant
here.

The generation of the progressive @uxilruns parallel, and will not be discussed here.

Generating the voice auxiliary is agyetask. If voice is active, we do not generatelang. If it
IS passive, we look in the lexicon for the apprat@iform of BE:

gen(active,[],Req,Req).

gen(passive,Auxform,Reql,en_passive):-
aux([Auxform|X],X,be,Reql,en_passive,_,.,)

The next predicate that deserves dantin isget agr , whose job is to get the agreement
feature of thdirst auxiliary in the auxiliary list, since this is tlealy auxiliary that needs to agree with
the subject, being the only finite one.

We must bear in mind that we have uketensefeature to indicate restriction on the whole
verb group in dealing withaising andcontrol, using it to indicate for instance that the whgdeup must
be aninfinitive oring group. For instance, consider the following deifom of or ai si ng, the predicate
taking care of subject to object raising:

oraising([H1,[pred_arg_mod_structure,Propl,
[predicate(Pred1,AgrPredl)],
[[object,[clause,
[pred_arg_mod_structuirop2,[predicate(P,agr(Agr))],
[[Subject|Rest]|OtherargsRil]]],
[H1,[pred_arg_mod_structure,Propl,
[predicate(Pred1,AgrPredl)],
[[object|Rest],
[object,[clause,
[pred_arg_mod_structuieropnew2 [predicate(P,agr(Agr))],
[Otherargs]]]l|R1]1]):-

allsubject(Subject),

second_header(H1) ,

oraise(Predl1,Requires),

nonfinite(Agr),

Prop2 = prop(Voice,Aspect,Mod,Tns),

Propnew?2 = prop(Voice,Aspect,Mod,tns:Requires).

Theor ai se predicate makes a direct call on the lexicon, ashall see. The call
or ai se(Predl, Requi r es) checks thaPredl is a subject-to-object raising predicate, butsba
determines the nature of the verbal group leftrdfte subject of the lower clause has been promntoted
object of the higher one.

The code far ai se is the following:

oraise(Oraisingvertn):-

[np(_,_,surf_object,),
np_vp(obligp_inf,object)]).

oraise(Oraisingverln):-

[np(_,_,subject_inf,),
np_vp(obligp_inf,object)]).

oraise(Oraisingverimg):-

[np(_,_,subject_ing,_),
np_vp(obligng,object)]).

From this we see that the second arguwfer ai se houses a property of the remaining non-
finite clause after the promotion of its subjectre higher clause: it is eithmfinitive (bare infinitive or
infinitive preceded by TO) agerundive.

In the code far ai si ng, we see that this properyerwrites the tense value iRrop2 to yield
Propnew?, the property list associated with the lower ctaus dealing with the agreement feature of the
first auxiliary in the auxiliary list, we also taketo account the restriction that the tense feaslot can
have been made to bear.

Tenseoccupies the third slot gfetagr. The first is the auxiliary and the second theeagrent
property of the auxiliary (the one that needs tocood with thePersonandNumber values percolated
from the subject; it is read off the lexicon). Thoerth slot is a list, which will either be left gty or will
house the infinitive particle TO.

Of course, it may be the case thattleeno first auxiliary, simply because the auxjlist is
empty. In that casget agr returnsnoaux as auxiliary agreement feature. Tdgree predicate will have
to be able to deal with this value.

Here is the code fget agr :

[* there is an aux*/

getagr(AuxAuxagreeTns,[]):-

Tns \== to,
Tns \== bare,
Tns \==ing,

aux([Aux|X],X,_finite, , AuxagreeTns).

getagr(AuxAuxagreeto,[to]):-
aux([Aux|X],X,_infinitive ,_, Auxagree_).

getagr(AuxAuxagreebare,[]):-
aux([Aux|X],X,_infinitive ,_, Auxagree_).

getagr(AuxAuxagreeing,[]):-
aux(JAux|X],X,_ing,_,_Auxagree_).

[* there is no aux*/

getagr([Jnoaux,Tns,[]):-
Tns \==to,
Tns \== bare,
Tns \==ing,!.

getagr([]Jnoaux;to,[to]).
getagr([Jnoaux,bare,[]).
getagr([Jnoaux,ing,[]).

Note that iTns really houses tense value the auxiliary needs to mite. Note also that we do
not really need four clauses when there is no euyi(two would do), but we have chosen to preserve
code parallelism.

The code fagr ee is similar to the one used in analysis, but wedreeelause fonoaux, which
we place at the end of the clause packet, and veuicbeeds no matter how the first two arguments
(percolated from the subject) are instantiated:

[* agree(Personnp,Number,Personvp) */

agree(first,sing,firstsg).
agree(first,plural,other).
agree(second,sing,other).
agree(second,plural,other).
agree(third,sing,thirdsg).
agree(third,plural,other).
agree(_,_,noaux).

INYES-NO questionswe use a special predicate to generate the ayxiish (genyesno). The
reason is that a form of DO needs to be generat¥@ES-NO questions when voice is active and there i
no modal or aspectual auxiliary (and recall thaatfbllows a non-subject WH-group is also generated
a YES-NO question). We call on the lexicon to pdevus with a finite form of DO and then call on
agr ee to check whether it is in agreement with the sttbje

genyesno(prop(vce:active,asp:none,mod:none,tns:Tns)
Person,Numb@Aux|[]]):-
aux(JAux|_],_,do,finite, , ,Agraux,Tns),
agree(Person,Number,Agraux),!.

Note that the form of DO is returnediest element of a list (with empty tail), in carfity with
the pattern used in the generation of auxiliameddclarative clauses. If we do not need to geeerat
form of DO,genyesno can simply fall back on the version of tipen predicate as used in declarative
clauses:

genyesno(prop(vce:Voice,asp:Asp,mod:Mod,tns: TnsgdteNumber,Auxlist):-
gen(prop(vce:Voice,asp:Asp,mod:Mod,tns)JRerson,Number,Auxlist).

4.3.4.2.2. The Main Verb

The generation of the last elemenhefiterb group, i.e. thmain verb, is in most cases simply a
matter of retrieving the verb form on the basisheflexeme value and the agreement functor. However
we also need to call on the maonover b clause to retrieve the particle that should acamgghe verb,
since it is amalgamated to the lexeme in the paegereturned bhoratio. For instancelie looked it up
will have a parse tree wheug is no longer an independent element, but appedydrothe lexeme
value, which will bdook_up_1, i.e. the first (and at present only) reading éa@&melLOOK UP. It
would also be possible to retrieve the particlalsgring operation on the lexeme value in the pese
but this is felt to be too tightly tied to the sgistructure of the lexeme value to be a reasorvedyeof
getting at the particle. We prefer to have it @gparate argument in the lexicon, even if it wilen be
left uninstantiated.

The default clause for the generatibtihe main verb runs as follows:

gen([predicate(Lex,Agr)],Vforn®):-
verb([Vform|_],_,_,[predicate(Lex,Agn],_,_,_,_,

(var(Part),P=[]; nonvar(Part),P=[Part]).

IfPart is left uninstantiated in the lexicon, we retumeanpty list as particle value (last argument
of thegen predicate); otherwise, we return the particle aAsatter of fact, the particle as read off the

lexicon is more than the string value of the péatitt is a couple made ofarticle type and astring
value. And particle is to be understood in an extended sense, asicgwarious types of fixed strings
associated with verbs. Consider thever b clause fol.OOK UP:

m_verb(vphmpartl:up,look_up_1,look,look,look,looks,looking,
looked,looked,looked,trans,human,
[part(oblig,posprec(1,2),up),
np(oblig,posprec(1,Wnp),object,abstract)])

/* she looked it up */

In the couplpartl:up, the first element, the particle type, is useddtermine the position of the
particle with respect to other elements, such awv#nb's arguments. This is accomplished in thedsial
way, by associating a certain weight with partides other constituents.

The relevant code is that of g ds predicate foids is French for weight):

poids([partO:_],0).
poids([partl:_],2).

poids([F1,[nounphrase, , ,ppro(_,_,)]l,1):-
(F1 = object; F1 = indirect_object; F1 dinrect_object_2).
[* personal pronouns filling these functions mualysclose to the verb */

poids([F1,R1],W):- assoc(F1,W).
/* general case: we read the value indssoctable */

PartO particles are given the lightest possible weight so will have to remain attached to the
verb. For instance, we will assigartO as particle type to the stripdacein the mwutake place We
have no problem regardimaceas a particle, in an extended sense at leastewherwordoarticle
refers to fixed string elements. In the sectiomomu's (see page 21) we argued thlatein take place
should not be considered an np or even a nourshmutld be regarded as a string, from which viewpoin
its resistance to morphological variation and sgtitamanipulation is readily explained.

Partl particles are given a weight of 2, and can theecfollow very light nps such as personal
pronouns, which receive a weight of 1. This ex@awhy we generatde looked it upand not *He
looked up it

Theassoc table will be further discussed on p. 80. The gatien version differs slightly from
the analysis version. Here is the code for germrati

assoc(subject,1).
assoc(subject_pass,1).
assoc(subject_inf,1).
assoc(object,3).
assoc(indirect_object,2).
assoc(indirect_object_2,2).
assoc(cplt_s,6).
assoc(subject_attribute,4).
assoc(object_attribute,4).
assoc(pp_arg,3).
assoc(vp_maodifier,5).

Two special cases precede the defast ¢ main verb generation. They deal with thetfa@
mustfollow bareinf verbs when used in the passive voitkdy saw him take ¥s.He was seeto take
it), and with the TO that muptecedethe verb when its agreement functor registersdweal for it (value

toinfinitive). The code for these cases runs as follows:

gen([predicatd(ex,agr(en_passive)]l,Genpred,P):-
verb([Vform|_],_, ,[predicate(Lex,agr(en_passive)l, , , ,),
(var(Part),P=[]; nonvar(Part),P=[Part]),
append([Vform],[to],Genpred).

gen([predicate(Lergr(toinfinitive))],Genpred,P):-

m_verb(Class,Part,Lex,_, , , , , , , ,_,_,)

(var(Part),P=[]; nonvar(Part),P=[Part]),
append([to],[Vform],Genpred).

4.4. Modifiers

Inhoratio modifiers can take the form of prepositional pesas'he main difference with
argument pps is in thereferencevalue assigned to the phrase: arguments are mefter modifiers,
according to thelensest match firstprinciple.

As to the internal structure of modifpps, we distinguish between prepositions thathesad
modifier pps assigned tgps and those that can head modifier pps assignegstdOf course, some
prepositions can head both np and vp modifier pps.predicatesodppvp andnodppnp are used to
implement the distinction. We have the followindidigions for these predicates:

[* availability of preps in np and vp modifiers */
I* vp */

modppvp(on).
modppvp(in).
modppvp(at).
modppvp(with).
modppvp(for).
modppvp(about).

[*np */

modppnp(of). /* a book of importance */

modppnp(on)/* a book on each table */

modppnp(in) /* a bird in the tree */

modppnp(with) /* a book with a black cover */

modppnp(for) /* a book for mary */

modppnp(about) /* a book about the economic sibuaith Great-Britain */

Modifier pps are parsed by calls toxppe epphr ase predicate. The reader is referred to the
section on prepositional phrases, p. 62. We give tiee code fonp modifier pps:

modifier(P0,PInp,Gap,Prefgen,posprec(1,Precpp),
Rel,Intrel, Tree,subject(SUBJ,Sem)):-
xprepphrase(P0,P1,Gap,index(J),npindex(l),Pref,Precpp,

Prepform,Rel,
Intrel,np_maodifier,
Tree,PPsem,PPsemnp),
modppnp(Prepform),
Prefgen is Pref + 1.

Np modifiers can also be clauses, eifi& -clauses oEN-clauses (passives). Examples are:

the man reading a book is good
the book read by the man is good

These modifier clauses are parsed by wathexver bphr ase predicate. The head noun must
be passed to the ING or EN clause, where it valy phe part of subject (active, ING-clause) oreai;
(passive, EN-clause). Here is the code for modiRs clauses:

modifier(P0,PInp,Gap,Prefgen,posprec(1,),Rel,Intrel,
[np_modifier,Tree],
subject([Function,[Cat,Index|Rest]],Sem):-

xverbphrase(PO,Rlbject([Function,[Cat,Index|VAR]],Semsubj),Gap,
Pref, Tree,Rel,Intrel,

ing,Tense,

aspect(Aspect),Modality,

Number,Person,

Voice,nsubject(NSUBJ,Nsem)),
sfok(Semsubj,Sem),
Prefgen is Pref + 1.

The third argument to the modifier daundicates that such modifiers are restrictetpto
modifiers. Note also that the body of the subjeet(Res) is ghostedin the tree returned by the call to
thexver bphr ase predicate. Only thendex is retained, to showoindexing A semantic check is
performed between the restriction placed on thgestibf the verb phrase and the semantic featste li
percolated from the head noun to its ING-modifier thesubject functor.

Such percolation is accomplished bglato thesat i sf yl i st predicate. Remember that this
predicate will also parse modifiers (the differeegng that in the case of a modifier the nourgdisdris
left untouched), so that modifiers have acceskdsubject functor:

corenounphrase(P0,P3,Gap,index(l),Pref,Weight jRed||
Function,
[Functiomounphrase,index(l),
agr(third,Number),DEN,Parse]],
Number,third,Sem):-
determiner(P0O,P1,DET,Number,Rell,Intrell) ,
xnoun(P1,P2,N,Number,Sem,Arglist),
satisfylist(P2,P3,Gap,Status,Pref,Prec,Rel2,Intrel2, ,
Parse,np,Arglist,Func,
subject([subject,[nounphrase,index(l),
agr(third,Number),DET,N]]
Verbsem)),
sfok(Verbsem,Sem),
(var(Rell),var(Intrell),Rel=Rel2,Intrel=Ink2e
nonvar(Rell),nonvar(Intrell),Rel=Rell,Intreitrell),
ifthenelse(var(Status),Weight=2,Weight=3).

In the case of an EN-clause as moderlikewise use thsubject functor in the clause. The

clause is passive, and therefore the passive dwhijecome to occupy object position in the trebem
passivization is undone in the EN-clause. The sémaheck is therefore between tBemfeature list
passed to theubject functor in the modifier clause and the new subjettirned by the passive clause
(nsubject functor; this would house the restriction on thgeot of READ, in our example).

modifier(P0,P1,np,Gap,Prefgen,posprec(1,_),Regintr

[np_maodifier, Tree],
subject([Function,[Cat,Index|Rest]],Sem):-

xverbphrase(PO,P1,

subject([Function,[Cat,Index|VAR]],Semsubj),

Gap,Pref,Tree,Rel,Intrel,
en_passiverense,
aspect(Aspect),Modality,Number,Person,
passivasubject(NSUBJ,Nsem)),

sfok(Nsem,Sem),

Prefgen is Pref + 1.

In generation, modifi&N-clausesneed a slightly special treatment: we must make that we
do not generate the passive auxiliary. In factD@egenerate it when we generate the passive claute,
we drop it from the string we return at the higHesel, i.e. as second argument of ¢am predicate:

[* written by student¥

gen([[np_modifier,[pred_arg_mod_structure,prop(pessive,B,C,D)|R]]]Tail):-
prepgen([clause,[pred_arg_mod_structure,prayfessiveB,C,D)|R]], Prepmod),
gen(Prepmod,Mod),
flatten(Mod,[HT ail]).

/* we return only the Tail; the Head (H) is the diaxy, which does not appear in the modifieritten by
students* is written by studentd

4.5. Canonical Order and Athematic Arguments

In the parse trees returnechbyatio the arguments appear ircanonical order, ancaithematic
arguments are excluded. This is achieved by a nuofledicates. We begin by consideringsort ,
which is simply annsertion sort that we perform on the arglisgtnsor t callsi nsert, which itself
callsbef ore. I nsort also calldr op, which decides whether the argument is athematicsaould be
dropped.

insort([H|T],S):- drop(H),
insort(T,S).

insort([H|T],S):- not(drop(H)),
insort(T,L),
insert(H,L,S).

insort([],[])-

If the head of the list to be sortednsathematic element, it is dropped amdor t calls itself
recursively on the tail. It the head is a thematgument, the tail is sorted and then the heatseried at
its proper place bynsert, whose code is the following:

insert(X,[H|T],[HIL]):-
before(H,X),
|

i.ﬁsert(X,T,L).
insert(X,L,[X|L]).

The element is inserted in the tailh#f list if the head of the list comes before tleernent to be
inserted; otherwise, the new element is insertdtbimt. The predicatbef or e determines whether its
first argument should come before its second argunide decision is taken on the basis of the
argument's function, which is always the head eflist representing it in the parse:

before([F1,R1],[F2,R2]):-
assoc(F1,Rank1l),
assoc(F2,Rank2),
Rankl<Rank2.

The predicat@ssoc associates a given rank with each thematic functio

assoc(subject,l1).
assoc(object,2).
assoc(indirect_object,3).
assoc(indirect_object_2,3).
assoc(cplt_s,4).
assoc(subject_attribute,5).
assoc(object_attribute,6).
assoc(pp_arg,7).
assoc(vp_modifier,8).

It remains to look at the listathematic functions, the ones that appear as argumentsof th
dr op predicate :

drop([surf_subject,Rest]).
drop([surf_object,Rest]).
drop([subject_inf,Rest]).
drop([subject_ing,Rest]).

5. Semantics

horatio is very poor on semantic features. The value®@anized in a hierarchy by means of
Prolog clauses very much like the well-knoparent/ancestorpredicates. The semantic checks are of
course performed by unification. It should be ndtet nouns havists of semantic features, whereas
verbs place restrictions by meansswofgle semantic features (one per argument, includingtigect).
The use of lists for nouns enables the lexicografthmaintain the principle of one macro-clause per
reading. Consider the entries for COMPUTER and BOOK

m_noun(computer_1,computer, computers,[thing,hurfjan]
m_noun(book_1,book, books,[thing,abstract],[ppfapdpic)]).

These entries allow us to deal withteeces such as the following where the verb orhaarot
predicative element places restrictions onrnpavhose head is a realization of the lexeme COMPUTER

1) The computer thinks that the problem is harsdiwe.
2) The computer should be repaired.

(if we accept that THINK requires a [+HUMAN] subjeand REPAIR a [+THING] object)

5.1. GF Level

It is obvious that semantic checks sthoot be applied agurface leve] but at theGF level,
where the grammatical functions corresponding ¢ostbecifications of the itemegglist have been
retrieved.

A case in point gassivesIn a sentence such &ke book has been read by the teacher
passivization has demoted thabject to by-phrase status, and promoted thbject to subject status. In
the lexicon, however, the semantic restrictionsasgul by the verkead are placed on the arguments as
they appear before passivization reorganizesitkst (to express things in chronological terms, a
harmless metaphor so long as we keep in mind tindioratio passives and actives are simmiated,
without any priority being given to either).

Let us track the subject of the passlaese. The predicateeog (whose behaviour has been
studied in the section on passives, p. 36) putshiect into the slots of thesubject functor, which is
passed on to ther gl i st predicate and ends up in ther bphr ase predicate:

arglist(P0,P2,Gaps,ArgOrModFound,

Pref,Posprecl,Rel,

Intrel,Voice,Parse,NpOrVp,List,

Funsubject(SUBJ,Semsubj)

nsubject(NSUBJ,Nsem),)

Class):-

reog(Voice,Classibject(SUBJ,SemsubjList,
nsubject(NSUBJ,Nsem)Nlist,Func),

satisfylist(P0,P2,Gaps,ArgOrModFourrdf,Posprecl,
Rel,Intrel,Voice,Parse,NpOrVp 3dli
Funsubject(NSUBJ,Nsem).

verbphrase(P1,P3,subject(SUBJ,Semsubj),Gap,Pref,
[pred_arg_mod_structure,
prop(vce:V,asp:A,mod:Modality,tnsribe),
VERB,SParse],
Rel,Intrel, Type, Tense,aspect(Aspeabyiity,
Number,Person,Voiosubject(NSUBJ,Nsem)).-
verb(P1,P2,Class,VERB,Type,Tense,
Number,Person,Semsubj,Args) ,
arglist(P2,P3,Gap,Status,Pref,Preclist,Rel,
Intrel,Voice,Parse,vp,
Args,Func,subject(SUBJ,Semsubj),
nsubject(NSUBJ,Nsem)
Class),
(nonvar(Aspect); var(Aspect),A = none),
(Aspect =[], A = none; Aspect \=[],A = Asge,
(nonvar(Modality); var(Modality),Modality = me),
(nonvar(Tense); var(Tense), Tense = present),
(nonvar(Voice), V = Voice; var(Voice),V = aetl),

append([INSUBJ],Parse,AParse),
insort(AParse,SParse).

Atsentencdevel, the check is performed betweendhbject np and the semantic restriction
specified by the@subject functor:

sentence(P0,P2,Gaps,Prefs,[clause,VP], Type,Personvp
Number,Voice):-
append(Gapnp,Gapvp,Gaps),
xnounphrase(P0,P1,Gapnp,index(l),Prefnp,Weight,Rell
Intrell,subject,SUBJ,Number,Pergg@emsubjnp ,
var(Rell),
agree(Personnp,Number,Personvp),
xverbphrase(P1,P2,subject(SUBJ,Semsubjvp),
Gapvp,Prefvp,VP,Rel2,
Intrel2, Type, Tense,aspect(Aspbdjality,
Number,Personvp,
Voice,
nsubject(NSUBJ,Nsemsubjvp),
var(Rel2),
sfok(Nsemsubjvp,Semsubjnp)
accu(Prefs,[Prefnp,Prefvp,4]).

5.2. Inheritance

Inhoratio semantic features are organized hierarchically cdsses, subclasses, sub-subclasses,
etc. A subclass is meant to be able to satisfyreagéic requirement expressed in terms of its pariass.

The class/subclass relation is exprebgehe predicatapl. Its first argument is the subclass, its
second the parent class. We find:

upl(animal,living).
upl(human,living).

These two clauses are meant to corhweynformation that animals and humans are bothdiv
entities. More formally, that the claasimal is a subclass of the clasgng, and that the clagauiman is
also a subclass of the cldssng.

The hierarchy is traversed upwardsheypredicateip, whose definition is similar to that of the
ancest or predicate, to be found in introductory tutoriatsRrolog. Thegar ent predicate's role is
similarly played by theipl predicate:

up(X,Y):- upl(X,Y).
up(X,Y):- upl(X,2),up(Z,Y).

When a semantic restriction is checkieelup predicate is called to see whether we do not have
subclass of the class we are looking for, in witiabe the semantic requirement is satisfied:

sfok(Sem,Semlist)ap(Seml1,Sem)nlist(Sem1,Semlist).

5.3. Percolation

Percolation can be defined as the copying up or down thedféeature values. In Prolog this
copying is of course done lification. For instance, we need to be able to refer thvéaal noun's
semantic feature list at the level of the wholempbrase. Similarly, we sometimes need to reféin¢o
semantic feature list of a noun phrase within @pséional phrase.

Let us look at the first of these tw@mnples of feature percolation. In the relevaniriled clause
for thecor enounphr ase predicate the two occurrences of the semanticifedist appear itold

type:

corenounphrase(P0,P3,Gap,index(l),Pref,Weight jRed||
Function,
[Function,[nounphrase,indgx(l
agr(third,Number),DETRarse]],
Number,thirffien):-
determiner(P0O,P1,DET,Number,Rell,Intrell) ,
xnoun(P1,P2,N,Numb&emArglist),
satisfylist(P2,P3,Gap,Status,Pref,Prec,Rdl2|@,_,
Parse,np,Arglist,Func,
subject([subject,[nounphrase,irfex
agr(third,Number),DET,N]]
Verbsem)),
sfok(Verbsem,Sem),
(var(Rell),var(Intrell),Rel=Rel2,Intrel=Ink2e
nonvar(Rell),nonvar(Intrell),Rel=Rell,Intreltrell),
ifthenelse(var(Status),Weight=2,Weight=3).

Thexnoun predicate is itself defined in terms of the peaténoun:
xnoun(V1,V2,V3,V4Y5,V6):- noun(V1,V2,V3,V4Y5,V6).
The predicateoun itself is a macro-expansion of the lexical pretéea noun:

noun([Singular|X],X,[noun(Lex,agr(sing))],siggemArglist):-
m_noun(Lex,Singular,Plur&@emArglist).

Here is an example ofranoun clause, with the semantic list (fourth argumentpold type:

m_noun(explanation_1,explanation,explanati@stract],[]).

5.4. From Semantic to Lexical Classes

Consider the phraBAY ATTENTION TO . Attention is modifiable, and the np whose head it
is plays a functional role, namely that of objeicth® verbPAY :

You should paynore attentionto the problems he has mentioned.
Too much attentionhas been paid to these pseudo-problems.

Nevertheled3AY ATTENTION TO is a multi-word unit: the preposition is lexicatigtermined
and the sense of PAY is not assignable withoutidenisg the object.

The solution adopted for such mwu'Bamatio is to use the slot reserved f@mantic
restrictions to cod&exical restrictions. We have one entry f8AY (where the lexeme value is the phrase
pay_attention_1) where we specify that the object must bear theasdic featurattention. We also
have a reading dattention which bears the required feature in its semaetture list:

m_verb(vobjfreepp, pay_attention_1,pay,pay,pay,pays,paying,
paid,paid,paid,trans,human,
[np(oblig,posprec(1,Wnp),objeamtention),
pp(oblig,posprec(1,Wpp),pp_arg, , ,to)]).

/* they should pay attention to the problem he $&en */

m_noun(attention_1,attentioatfention],[]).

By the side of the entry fpay_attention_1given above, we need another one, wiadtention
to is parsed as particle attached to the verb. This is achieved by inclgdirestring value attention to
in thearglist. This entry is needed to account for passives agghe problem was paid attention to
where the object is naittention butthe problemi.e. theobject argument in the arglist for this second
entry (cf. the section otiouble analysis p. 19):

m_verb(vtrphrprep,part0O:'attention tpgy_attention_to 1 a
pay,pay,pay,pays,paying,
paid,paid,paid,trans,human,
[string(oblig,posprec(1,0),[attention,to])
np(oblig,posprec(2,Wnphject,_)]).

/* the problem should be paid attention to */

We would also need another entryX®@TENTION to account for its uses outside the nRAIY
ATTENTION TO . The following would be appropriate:

m_noun(attention_2,attentioaljstract],[]).

Note that hem@bstract is a true semantic feature, not a lexical one.

5.5. Performing the Checks

SFOK is used to check that a semantic restriction pldgea verb or an adjective is satisfied by
the noun phrase filling the verlasgslot or by the noun modified by the adjective.

CHECKSEMis used when the two values are both semantidagésirs. They are checked for
compatibility, i.e. it is ascertained whether timeget somewhere by going up the semantic trees they
belong to.

5.5.1.5f ok

To understarsf ok, it is necessary to recall that nouns have semésdturdists, whereas verbs
and adjectives place semantic restrictions by measimgle semantic features. For instance, the noun
BOOK has the following entry in the lexicon:

m_noun(book_1,book,bookthing,abstract],[pp(opt,n:topic)]).,
[thing,abstract] being its semantic feature list.

On the other hand, the verb READ hasoiowing entry:

m_verb(verbtr, ,read_1,read,read,read,reads,reading
read,read,read,tramsman,
[np(opt,posprec(1,Wnp),objedistract)]).
/* she was reading */
wherehuman is the semantic restriction on its subject, abdtract on its object.

To check whether a semantic restricisosatisfied, we try to find the feature embodying
semantic restriction placed by the verb on onésohiguments among the semantic feature list sgsoci
with the np or pp filling the argument position.erhecessary list traversal is accomplished tlyi st ,
which is basically a deterministic version of thenber predicate:
inlist(X,X):- 1.
inlist(Sem,[norestriction]):- !.
inlist(Sem,[Sem|X]):- .
inlist(Sem,[_|X]):- inlist(Sem,X).

The first clause takes care of the £aggere one of the two arguments, or both, is an
uninstantiated variable. In such a case the test must succeed.

The second clause takes care of tha@amseEmantic feature lighorestriction] which is used
with certain relative and interrogative pronounsréitoo the test succeeds, no matter what the sieman
restriction placed by the verb or the adjective is.

The third and last clauses code a detéstic version of the well-knowmember predicate.

Sf ok similarly opens with a number of clauses takingeai# the special cases:
sfok(Sem,Sem):- !.

/* this clause is used to assign a value to a bljanecessary when tiNP is a gap; the semantic
restriction in the VP will be projected onto thegd also takes care of cases where both argunaeats
variables, e.g. checking the semantic features @jpgional argument that is not realized in the S«
parsed */

sfok(norestriction,X):- !.

sfok(X,norestriction):- !.

sfok([],X):- !.

The last two clauses datil i st to accomplish the list traversal of the semardatdre list
associated with the np or pp argument. The lastaligup, whose role, as we have seen, is to permit
inheritance:

sfok(Sem,Semlist):- inlist(Sem,Semlist),!.

sfok(Sem,Semlist):- up(Sem1,Sem) ,
inlist(Sem1,Sen)lis

5.5.2.Checksem

As already said, we uskeckseminstead okf ok when we have two semantic restrictions, and
want to know if they areompatible. This will be the case in the analysis of suchesgres athe man
wants to read the bopkvhere what is passed on to the infinitive claaseead the books the restriction
thatwants places on its subject. Consider the following pie€code:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
[Function,[clause,Tree]],
np_vp(Type,to_inf,Function),
subject([Sfunction, Treesubj],Semsubjl)
subject([Sfunction, Treesubj],Semsib
xverbphrase(PO0,P1,subject([subject, Treesubj],BbjRas
Gap,Pref,Tree,Rel,
Intrel,infinitive, Tense,
aspect(Aspect),Modality,
Number,Person,Voice,
nsubject(NSUBJ,Nsem),
checksem(Nsem,Semsubj]l)
Prefgen is Pref + 4.

Thexver bphr ase predicate will put its semantic requirement orsiibject in théNsem
variable in thensubject functor (remember that it can be submitted to sargnment reshuffling
transformations agassivg. TheSemsubjlvariable in thesubject functor of thesat i sf y predicate
records the semantic restriction on the subjeth®ierb that has already been parseahts in our case.
We need to verify whether the two semantic restms are compatible, and we udeecksemfor this
purpose.

The code farhecksemis the following.

If we have one or twaminstantiated variables, or if the two variables arnifiable, checksem
succeeds:

checksem(X,X):- I.

It may be the case that the secondnaegti ofchecksempoints to a list of features (this may
happen through unification of semantic featuresyyhich case we simply usd ok:

checksem(X,Y):- sfok(X,Y), .

If both arguments refer to semanti¢rie®ons, they must beompatible, i.e. must meet - be
identical - somewhere on tlup path in the hierarchy:

checksem(X,Y):- up(X,X1),

checksem(X1,Y),
|

[* X is more restrictive than Y */

checksem(X,Y):- up(Y,Y1),

checksem(X,Y1).
/* Y is more restrictive than X */

Note that in the casesfbject-to-subject raisingwe do not usehecksem because such
raising verbs (such &EEM) do not place restrictions on their subjects. \lg$y/ pass the restriction
placed by thénfinitive on its subject to the higher level (by percolatj@and leave theent ence
predicate to make the appropriate calkdrok:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
[Function,[clause, Tree]],
vp(Type,Function),
subject([Sfunction, TreesuBgmsubj]),
subject([Sfunction, TreesuBgmsubjl):-
xverbphrase(P0,P1,subject([subject, Treesubj],Bbj2k
Gap,Pref,Tree,Rel,
Intrelinfinitive, Tense,
aspect(Aspect),Modality,
Number,Person,Voice,
nsubject(NSUBIemsubj),
Prefgen is Pref + 2.

6. Parsing Issues

6.1. Dealing with Flexible Word Order

English is characterized by a word ottat is neither wholly free nor entirely fixed.e/ghall
therefore call iflexible. The first task is to isolate the relevant factesermining word order. For the
cases dealt with ihoratio, these are twargument canonical orderas specified in an item&glist,
andstructural weight.

Structural weight has priority overamgent order, although the exact weighting of these
factors is not easy to determine, and a good datischeuristics, i.e. trying various possibgis and
seeing how well they fit the data.

Argument order as determined in theckxclause specifying the arglist is undoubtedfgcor.
Consider the phrases built around the skeletorsider x y If x and y have the same structural weight, x
needs to refer to the object and y to the objeotsplement, not the other way round. In an inteégbien
wheremotoristsis the object andriminalsthe complement, we can have
| consider motorists criminals
but not
* | consider criminals motorists

However, if the object is weightier thifae complement, it will follow:

| consider criminals the motorists who drink andver

Sticking to the argument order spedifiethe rule would yield a much less acceptabigesee,

also on account of the unintended object link betverive andcriminals
? | consider the motorists who drink and drive énats.

Inhoratio, we use th@osprecstructure to house both the argument order atehiee room for
the weight, to be filled when the argument is altyyzarsed. Consider again the entry for ALLOW ydhi
reading, repeated here for convenience:

m_verb(vio,allow_3,allow,allow,allow,allows,allowgn
allowed,allowed,allowed,trans,human,
[np(obligposprec(2,Wnp1l)object,thing),
io(obligposprec(1,W2)indirect_object,human,)]).

The first value ipospreccan be determined in the argument list itself.e;iéris meant to
convey the information that the indirect objectdldgrecede the direct object. The second value in
posprecis left as a variable in the argument list. It instantiated when the actwdlject np andio
(indirect object) are parsed. It reflects the weigfithe element. For instance, a prepositionahgamwill
be assigned a certain weighps will differ in the weight they are assigned (fastance, anp
consisting of a personal pronoun is very lightparconsisting of a head followed by a relative claigse
heavy, etc.).

As already said, priority is given tetsecond value over the firstpospreg to allow for end
placing of heavy elements. The relative importaiedee assigned to the two values of plesprec
structure is a matter for investigatign

The approach sketched here does nantarnthe problems that tHeLE one (Core Language
Engine) is confronted with (sé&lman 1992 in his section on subcategorization, p. 62 aiid féle
points out the the GPSG approach, as well as the &pproach, does not "allow for the possibility of
optional modifiers like PP or AdvP to appear betwekements on a subcat list" . To remedy this @bl
CLE has "a version of the subcategorization schitvaizsplitsthe list of complements and allows a
modifying structure to intervene”. llshawi et al. 1992we are given no further information on this
splitting scheme. | believe that we should lookdolution that takes into account both arg oasher
weight. As has been said already, the crux lighenwveighting of these two factors.

6.2. Computing Preferences

Inhoratio, each parse is assigned a preference, expresseddsjtive number. The greater the
number, the higher the preference. The preferehaearse is a function of the preferences assigmed
its constituents. The preference mechanism is arolind the time-honoured principle of the redugtan
of natural language, i.e. tliensest match - best matchrinciple. In practice, it means that arguments
are preferred to modifiers.

Consider the following two predicatdidigons. They both deal with the parsing of
prepositional phrases In the first case we have a ppaagument, in the second case amdifier.

satisfy(P0,P1,Gaprefgenposprec(Pos,Precpp),Rel,Intrel, Tree,
pp(Type,posprec(Pos,Precpp),
Function,PPsemnp,PPsemvp,Prapfor
subject(SUBJ,Semsubj),
subject(SUBJ,Semsubj)):-
xprepphrase(P0,P1,Gap,index(J),npindex(l),
Prefpp,Precpp,Prepform,
Rel,Intrel,Function,Tree,
PPsem,PPsemnp),
sfok(PPsemvp,PPsem),

Prefgen is Prefpp + 4

modifier(P0,P1,vp,Gaprefgenposprec(1,Precpp),

Rel,Intrel, Tree,subject(SUBJ,Sem)):-

xprepphrase(P0,P1,Gap,index(J),npind&@fpp,Precpp,
Prepform,Rel,
Intrel,vp_modifier,
Tree,PPsem,PPsemnp),

modppvp(Prepform),

Prefgen is Prefpp + 2

Prefgenrecords the preference assigned to the phragiee liirst case (argument), it is the
preference returned by ti@r epphr ase predicate plus 4. In the second case (modifibe) added
value is only 2.

Consider now how the preference vatusomputed at the highest level, i.e. for wholdessres.
Here is the relevant definition of tls@nt ence predicate:

sentence(P0,P2,Gapsefs,[clause,VP], Type,Personvp,
Number,Voice):-
append(Gapnp,Gapvp,Gaps),
xnounphrase(P0,P1,Gapnp,indexiiefnp,Weight,Rel1l,
Intrell,subject,SUBJ,Number,Pergn8emsubjnp) ,
var(Rell),
agree(Personnp,Number,Personvp),
xverbphrase(P1,P2,subject(SUBJ,Semsubjvp),
Gapvprefvp,VP,Rel2,
Intrel2, Type, Tense,aspect(Aspbtijiality,
Number,Personvp,
Voice,
nsubject(NSUBJ,Nsemsubjvp)),
var(Rel2),
sfok(Nsemsubjvp,Semsubjnp),
accu(Prefs,[Prefnp,Prefvp,4])

The preference value for the whold@&fs) results from the accumulatioagcu predicate) of the
preference values of the subject Rpefnp) and the verb phras@refvp). But an S is more than the
concatenation of an np and a vp. The np must keetalfunction as subject of the vp (in this senéenc
pattern) and this is ensured by the grammaticalsenghntic agreement checkg(ee andsf ok
predicates). This link is the reason for the addibf the value 4 to the accumulated np and vepeete
values. How do we find out that 4 is the approprialue to add here ? The computing of preference
values, like that of precedence values, is veryhrauquestion of heuristics, i.e. finding out by exment
which values give the best results.

Accu is a simple predicate which returns in its firgguanent the sum of the values listed in its
second argument, which must be a list. The moteei$ollowing:

accu(-Totalvalue,+Valuelist).
Accu is defined as follows:
accu(0,[]).

accu(Res,[Head|Tail]):-
nonvar(Head),

accu(Respart, Tail),
Res is Head + Respart.

accu(Res,[Head|Tail]):-
var(Head),
accu(Res,Tail).

The first clause is tim®n-recursive case: an empty value list yields a total valueesd.

The second clause caltscu recursively on the tail of the value list, and sadlde value of the
head to the result, provided the head is instattiat

The third clause takes care of unirtssed heads: they are simply dropped, andu is called
on the tail of the list to return the final result.

6.3. Hard Coordination

horatio can deal with certain types of so-calletd coordination. The reader is referred to the
last two sample parses (see Appendix F, page IT&8&)main principle is that only like elements can b
conjoined, but the problem consists in determirniregconditions that must be fulfilled for two eleme
to be regarded as similar enough to be coordinéteck the argument list plays a crucial part, and i
availability in the lexical entries themselves isracial condition for the strategies developeceher
work.

In order to exemplify the approach takehoratio, we shall look at coordination at the sentence
level. We first deal with the easiest case: the tl@oses do not display any gap. The only requingénse
that they be of the sanmig/pe, either finite or non-finite.

For each linguistic phrase (from theusle level down) that can be coordinated, we defisiger-
predicate (by convention its name should begin wjtlitself defined as a call to the simpler predi¢cat
the parsing of a conjunction, and a recursiveaalihe complex predicate (the rules are theraigtd -
recursive). Of course, the second defining cladisbeocomplex predicate defines it as a call on the
simpler predicate, to get out of the recursiorthis way, we avoid the well-known problemleft-
recursive rules (e.gup --> np coord npfor a top-down parser as the one useldaratio.

At the clause level, we therefore hidneefollowing piece of code, whexkesent ence is the
complex predicate and _sent ence the simpler one. Note that the gap value (thigharent) is set to
the empty list: the two clauses do not feature gayy.

xsentencéP0,P2[] ,Prefs,[and_sentence,S1,33jpe,Person,
Number,Voice):-

inlist(and,PO0),

c_sentencé0,[and|P1]],Prefl,S1Type,Person,Number,
Voice),

xsentenc¢P1,P2,[],Pref2,SType,Person2,Number2,Voice2),

accu(Prefs,[Prefl,Pref2]).

[* getting out of the recursion */
xsentencé¢A,B,C,D,E,F,G,H,I):-
c_sentencéA,B,C,D,E,F,G,H,I).

We also note the simplistic callioml i st . It checks that the word AND is a member of the
remaining word list, This call is for efficiency only, and would hateebe revised or dropped in a
version ofhoratio that attempted to deal with other coordinatingjeoctions than AND (recall that the

comma is the coordinating conjunction of choice witee coordination has more than two members).

We next consider the case where we hayep. It needs to be shared by the two conjoined
clauses. Consider:

The linguistics which he thinkse teaches and she likes

The italicized bit is a conjunctiontafo S's sharing the same gap, hamely the relatmeooin.
Sharing the gap implies here that the gap is of#mee typer(p or pp) and points to the same antecedent
(and also, of course, has the same index). Weftrerbave the following piece of code:

xsentence(PO0,P2,
[gap(_,_,_,_,FunctioninS2,_,index(l),)]
Prefs,[and_sentence,S1,82pe,Person,Number,Voice):-
inlist(and,PO0),
c_sentence(P0,[and|P1],
[gap(Ref,Gaptype,_, ,FunctioninS1,_,index(l),)]
Prefl,SType,Person,Number,Voice),
nonvar(FunctioninS1),
xsentence(P1,P2,
[gap(Ref,Gaptype,_, ,FunctioninS2,_,index(l),)]
Pref2,SZype,Person2,Number2,Voice2),
nonvar(FunctioninS2),
accu(Prefs,[Prefl,Pref2]).

Note here the calls aonvar , to make sure that the gaps are real. Functiagraegnt can only
happen in the clause itself: if the function vakieot left uninstantiated, it is evidence thaiecp of
structure was missing, since a function was asdigmés place-holder (the gap).

The next case we consider is thatgd@that is filled somewhere to thght (the gaps in the
previous case were filled on the left, as in irdgative or relative clauses). An example is

John likes and Mary reads the book

which we will analyse as two gapped S'sJdhn likesGAP; 2:Mary readsGAP) followed by the gap
filler (the book.

Here we require that the gap fill #zemefunction in the two coordinated S's (the objeciction
in the example), and we check that the gap filesamantically OK for both gaps. The gap functa ha
two positions for semantic restrictions (oneriprgaps and one fq@p gaps) and we carry out the check
between the appropriate slot in the gap functortheademantic feature list associated with the noun
phrase or prepositional phrase filling the gap.eHsithe code in the casergd gaps:

xsentence(PO,A3,Prefs,[and_sentence,S1,S2,NRje,
Person,Number,Voice):-

inlist(and,PO0),

sentence(PO,[and|P1],
[gap(NP,npgap,Npseml, ,FunctioninS1, ,index(l),)]
Prefl,SType,Person,Number,Voice),

nonvar(FunctioninS1),

sentence(P1,P2,
[gap(NP,npgap,Npsem2,_,FunctioninS2,_,index(l),_,)]
Pref2,SZype,Person2,Number2,Voice2),

nonvar(FunctioninS2),

FunctioninS1=FunctioninS2,

xnounphrase(P2,P3jfjdex(l),Pref,Weight,Rel,

IntrelFunctioninS1,NP,Numbernp,Personrpen),
sfok(Npsem1,Sem),
sfok(Npsem2,Sem),
accu(Prefs,[Prefl,Pref2]).

Note that at the highest level the statesulting from the coordination of the two gabpkauses
and the gap filler must feature an empty list gs\g@ue. This is in contrast with the precedingecas
where the gap was percolated to the resulting elaus

The most complex case is that of clawgeich are gapped in their main verb, such as
Mary teaches linguistics antbhn mathematics.

Matsumoto 1991 leaves such cases tiehk with by a device which does not belong torttzen
parsing scheme, the Extra-Grammatical Sentence MoHe writes (page 10): "Because the Extra-
Grammatical Sentence Module is activated only wi@sentence structure is found, the gap type of
coordination handling is never tried if there idegtst one possible parse obtained from the in@uté of
the sentences he discusses is the following:

John will cook the meals today and Barbara tomor(avissing vp in the second S).

If the 'cannibalistic’ reading is not rejectedyill preclude finding the 'gapped’ reading. Matsuonis
aware of this danger (p.11), although he has rest s®at the interpretation of one of his example
sentences falls prey to it.

The treatment of such gapped Shomatio crucially depends on the availability foame
information in the lexicon. As a matter of fact, we need targo the structure returned by the parsing of
the first clause, get at tli&dassandLex value for the verb, call the corresponding madamse
(m_ver b) to get at thé\rgs required by the predicate, and attempt to parsa faiows the subject of
the second clause with a call to #regl | st predicate, to which the requirédgs andClassvalues are
passed. Then ver b clause also yields the semantic restriction orsthgect and we use it to make sure
that the subject of the second clause is semalytegapropriate to its (gapped) verb. The followiadhe
commented code for this more complex case:

xsentence(PO0,P4,[],Prefs,

[and_sentence,

[clause, [pred_arg_mod_structure,
prop(vce:V,asp:A,mod:Modality,tnsribe),
[predicatéex,Agr)],

SParse]],

[clause, [pred_arg_mod_structure,
prop(vce:V,asp:A,mod:Modality,tnsribe),
[predicatéex,)],

SParse2]]

1,

Type,PersonNumber,V):-

inlist(and,PO0),

xnounphrase(PO0,P1,[],index(l),Prefnpl,Weight1iRel
Intrell,subject,SUBJ,Number,Pergp8emsubjnp) ,

[* e.qg. Mary */

var(Rell),

agree(Personnp,Number,Person),

verbphrase(P1,[and|P2],subject(SUBJ,Semsubjefvp1l,
[pred_arg_mod_structure,
prop(vce:V,asp:A,mod:Modality,tnsribe),

[predicateéex,Agr)],

SParse],
Relvpl,intrelvpl,Type,Tens,aspect(Asp®od,
Number,Person,Voice,nsubject(NSUBJMN3e

[* e.g. teaches linguistics */

[* P2,P3: subject of the second S, e.g. John */

xnounphrase(P2,P3,[],index(12),Prefnp2,Weight2Re
Intrel2,subject,NP,Number2,PersonSe®),

var(Rel2),

m_verb(Class_ Lex,

SemsubjArgs),

[* P3,P4: argument list in the second S */
[* e.g. mathematics */

arglist(P3,P4,[],Status,Prefvp2,Preclist,Relvp2,
Intrelvp2,Voice,Parse2,vp,
Args,Func,subject(NP,Semsubj),
nsubject(NSUBJXsem),
Class,
nonvar(Status),
append([NSUBJ2],Parse2,AParse?2),

* the append predicate is used to append the subject at thariag of the parse tree produced by
arglist, from which the subject is excluded */

insort(AParse2,SParse?2),
sfok(Nsem,Sem),
accu(Prefs,[Prefnpl,Prefvpl,Prefnp2,Prefvp2]).

A Note on Generation

The generation of coordinate structisesraightforward: we generate the first conjuagipend
the coordinating conjunction AND, and then genetlagéesecond conjunct (recall thadratio knows only
about one coordinator, AND). But there is one ¢hagis slightly more complex. It is due to thetfdmat
sometimes the parser factors out a piece of infoaamasuch as for instance tReoperty field (modality,
aspect, voice, tense) in the case of coordingie8-NO questions We therefore need to redistribute the
factored out information. We first make sure tladtbrisation has taken place by checking that the
factored out element is uninstantiated at the gladgere it will have to be redistributed. The
redistribution is accomplished by the following geeof code:

gen([yes_no_question,[clause,[and_pred_arg_modatstaProperties,
[pred_arg_mod_structuMpropl|Restl],
[pred_arg_mod_structumgprop2|Rest2]]]],
Sentence):-
var(Vpropl),
var(Vprop2),
gen([yes_no_question,[clause,[pred_arg_modctstre,
Properties|Rest1]]],S1),
gen([yes_no_question,[clause,[pred_arg_modctstre,
Properties|Rest2]]],S2),
append(S1,[and],S1land),
append(Sland,S2,Sentence).

Such redistribution also applies tof@ction value in the case of coordinated nps:

gen([Function,[and_nounphrase,NP1,NP2]],Gennp):-
gen(Function,NP1],NP1gen),
gen(Function,NP2],NP2gen),
append([NP1gen],[and],L1),
append(L1,[NP2gen],Gennp).

6.4. Long Distance Dependencies

The treatment of long distance depeai@sns similar to that suggestedGiSG (Generalized
Phrase Structure Grammar) andMLG 18! (Modular Logic Grammar) . Gap threading is used (via
APPEND, not viadifference list techniques). Iinoratio we use two types of gapsp gaps angp gaps.
Consider:

The house in which he lives is nice.
The house he lives in is nice.

In the first relative clauskedlive3 we have gp gap filled in by the relative prepositional phrase
in which (a relative prepositional phrase is a prepositiphaase which contains a relatimp). In the
second relative claused lives in we have amp gap filled by the zero relative pronoun. Coindegxill
ensure that thep within thepp in the first case is coindexed with the antecetlehousgin the second
case the zero relative will likewise be coindexethwthe antecedenhe house

Np gapscome into existence when argbearer misses amp argument in the word list it is
attempting to parse, i.e. canrs@t i sfy it as a regular np and calls on the relevant elawushe
nounphr ase predicate, which returns something without consignainything in the input list (hence
theP0,POvalues asnput andoutput lists in the code quoted below). When the gaparsed, the only
value that is set is that of tfienction played by the gap. This is the reason why we aftestk whether
this value is instantiated: if it is, we can beestirat theargbearer has missed one of its arguments. All
the other values may come to be instantiatedrifycation, as will become clear when we discuss the
percolation of the features in thgap functor. Here is the clause for the parsinghofin phrase gaps

nounphrase(P0,PO,
[gap(Antecedent,npgap,Npsem,_,Function,_,index(I)],
index(1),0,0,Rel,Intrélunction,
Function,
[nounphrasaedex(l),agr(third, NumberNP]],
Number,third,Npsem).

The zero values are WvMeight andPreferencevalues. Note that in the parse tree of a gapped np
only thefunction, index andagreementvalue are kept; it should be noted tN& is an uninstantiated
variable, not a copy of the antecedent.

The gap functor holds the followingtigas:

Antecedent: this feature can hold a full copy of the antecéaéhe gap;
gap type npgap or ppgap;

Npsem semantic restriction on the np;

PPsem semantic restriction on the pp;

Function: function filled by the gap in clause structure;
Prep : preposition, if any;

Index: we keep an index, so that we do not need a fply @ the antecedent to show the coindexing
relation;

NPindex: indexes the np within a pp; necessary for suchagpbout whomwhere the ngvhommust be
coindexed with its antecedent.

A pp gap is similar. Here is the releiclause for thpr epphr ase predicate:

prepphrase(P0O,PO,
[gap(Antecedent,ppgap,Semnp,Sempp,Function,Prep,inki@),npindex(J))],
index(l),npindex(J),0,0,Prep,Rel,IntrdFunction,
[Function,[prepphraséndex(l),_,_]l
Sempp,Semnp).

Note that the two index values are kkgtinct. Only the index value for the whole pp is
preserved in the parse tree.

If, apart fronfrunction, the values in the gap functor do not come froengarsing of the missing
np or pp, wheredothey come from? In order to show the instantiatbthe values carried out by
unification (of which percolation is a special caseing unification up or down a tree), we shalmine
the treatment of relative clauses.

The passing of values is to be fountivatplaces:

1) in a defining clause farounphr ase which accounts for nps governing a relative clause
percolate the features from the antecedent todpbdunctor carried by the relative clause predicate

2) in the defining clauses for relative clauses peecolate the values from the gap functor in tlative
clause to thesent ence predicate that parses the body of the relativesealt follows that the
xsent ence predicate must also bear a gap functor (the gapamme from the subject or from an
argument in tharglist of anargbearer that is a constituent of the S).

Two things need to be kept in mind. Tire is that even if we like to think of a dirémt in the
percolation process, it has none. It is a relabietween values, not even a process, and certaotly n
copy from one place to another. We have already & theFunction value could not be assigned
before the parsing of the gap.

The second is that in the processqusiined, it is the gap functor carried by the tigka clause
predicate which provides the link between the aadeant and the sentence (with a missing arg) which
makes up the body of the relative.

Let us consider first tm@unphr ase clause which takes care of nps governing a relatiause.
We have already looked at it (in the sectiomps, see p.55), but this time we shall concentrate our
attention on the unification pattern between ardeneand gap functor in the relative clause preeica
Here is the code:

nounphrase(P0,P2,[],index(l),
Preftop,3, , ,Function,
[Function,Newrest],
Number,third,Sem):-
corenounphrase(PO,Plipdex(l),
Pref,Weight,Rel,Intrel,Function,

[Function,Rest],
Number,third NounSen),

(var(Intrel); Intrel \=int), /* not an iatrogative */
var(Rel),
xrelclause(P1,P2,Prefrel,RELCL,

[gap(_,_,Npsem, , , ,index(l),)]

Personinrel,FuncinfdhunSemNumber),
sfok(Npsem,NounSem),
append(Rest,[RELCL],Newrest),
accu(Preftop,[Pref,Prefrel]).

The shared information covers ithdex, which is the means of indicatimgindexing
relationships inhoratio. Note that the semantic feature list of the artenenp NounSen) is not copied
to thegap functor. The latter will hold a semantic restrictiadgsemn), and the call tafok will make
sure that the antecedent fits the semantic rastriplaced in the relative clause.

We also see thidtimber andNounsemare transferred from the antecedent to the reafiause
predicate Xr el cl ause), but are not part of the gap functor. We shatlarstand the rationale behind

such transfer when we look at tkeel cl ause predicate.

Let us take one type of relative claugs®llow the fate of the percolated features:skall look at
relative clauses which feature a relative pronawan{zero relative) and an np gap. We should bear in
mind that the last two features of thel cl ause predicate are copied from the antecedent: antatede
semantic feature list and antecedent number, iroticier.

The code is the following:

/* the man whom the woman likes
the man the book about whom the woman likes */

relclause(P0,P2,Prefrel,[relative_clause,NP,S],
[gap(_,npgap,Semrel, , , ,index(J),)]
PersonrelFunctioninrelNounSemNumberant):-
nounphrase(PO,Plifidex(l),Prefnp,Weight,Semrel,
rel(J),Functioninrel,
NMumber,third Semwholenp),

/* bear in mind that the structure spannechbynphraseis NOT the antecedent, but the relative pronoun
(e.g. which) or the noun phrase containing a netaglement (e.g. a book about whom) */

/* 1 and J can be the same, but need na& limok about whom you have reladould refer tobook J to
whom*/

nonvar(Semrel), /* the np must haveebfeature */
sentence(P1,P2,
[gap(_,npgap,Npsem, ,Functioninrel, ,index(l),)]

Prefs,S,finitegrsonrelNumberrel,Voice),
nonvar(Functioninrel),
(Weight \= 1 sfok(Npsem,Semwholen)p

ifthen((Functioninrel=subject),
agree(third,Number,Personrel)

Weight = 1 sfok(Npsem,NounSem)
ifthen((Functioninrel=subject),
agree(third,Numberant,Personrel)) ,
accu(Prefrel,[Prefnp,Prefs]).

I* checking theWeight value is a slightly roundabout way of getting tmWw whether we have a relative
pronoun alone (such agnom- Weight is 1) or an np containing a relative {sasa book about whom
Weight is heavier than 1). */

The only feature that is directly slthbetween thgap functor in ther el cl ause predicate and
that in thesent ence predicate is thgap type here both gaps need to tye gaps. However, the sharing
of values is more extensive if one considers theufes in th@ounphr ase predicate (parsing the
relative pronoun, or the noun phrase containinglaive pronoun). First of all, andex is shared: the
index of the relative element within theun phrase(J) is to be found at thelclauselevel. Second, the
Semrelat therelclauselevel is shared by theounphr ase predicateSemrelwill be the same as
Semwholenpwhen the noun phrase consists only of a relatigaqun. The relevant piece of code for the
parsing of relative pronouns is repeated below:

nounphrase(PO0,P1,idex(l),
0,85emnprel(l) ,Function,
[Function, [nounphrase,index(lj(#grd,Number),Tree]],
Number,thirdemnpg):-
relative(PO,P1,Tree,Semnp,Sempp,np).

We see that here tiet index and the index for the whole np are alsoeshafrhe semantic
feature is shared, but inserted as a one-elengnbd Iconform toxp semantics, which is always in list
format.

At the level of theent ence predicate, the semantic restriction on the gagxjsessed in the
Npsemfeature. If we have a noun phrase that consistsrefative pronoun onlyl{e manwvhom he
likes), its weight will be 1, and the semantic check barcarried out between the semantic restriction
placed by thesent ence predicate on the gaplpsem and the semantics of the antecedent itself, which
is housed in the last argument but one ofrtekecl| ause predicate lounSen). If the noun phrase
contains a relative pronoun, but is not limitegteh a pronoun (as the mara book about whom |
have reagl, its weight will be different from 1, and the santic test is to be carried out with the
semantics of the whole np as second argun&srnivholeny).

If the noun phrase consists of a redaironoun only\eight equals 1), and that relative is
subject in the relative clause, we need to cheblestiverb agreement in the relative clause. Wedtan
so because theumber of the antecedent has been percolated as lashargwf ther el cl ause
predicate Numberant), and thepersonfeature is percolated to sentence level insthet ence
predicate Personrel). The relative pronoun is always third perggrso we have a check where the first
two arguments (the np ones) #negd andNumberant (the number of the antecedent) and the third
argument (the verbal one)Rersonrel carried by thesent ence predicate.

On the other hand, if the subject eftblative clause is a whole np containing a netgpironoun
(Weight is different from 1), as ifhe genius book about whom has just been publishede need to
check agreement with the second argument repragahi number of the whole np, not that of the
relative pronoun within it. We therefore have
agree(third, Number, Personrel),

whereNumber is the number of the whole np, returned byritbenphr ase predicate.

To illustrate pp gaps we shall lookné¢rrogative clauses. We take as illustrationtdini
interrogative clauses featuring a pp gap, as in

He knew in whose library she lived.

We analyse the interrogative clause peepositional phrase followed by a sentence Ifiegfa
pp gap, and we rely on unification to relate thenih the pp gap. The code is the following:

intclause(PO,P2,Prefint,[interrogative_clause,PR,S]
xprepphrase(PO,P1lifidex(l),npindex(J),Prefpp,
Weight,Prep,
Semrelint,irunction,
PP,PPsemSemnp),
nonvar(Semrelint),
sentence(P1,P2,
[gap(PP,ppgap,Npsem,PPsem,Function, P_Prep,index(pindex(J))],
Prefs,S,finite,Personint,NumbeXiice),
nonvar(Function),
accu(Prefint,[Prefpp,Prefs]).

In order to understand the needviar indices in ppsifdex andnpindex), we return to the
treatment of relative clauses similar to the irdgative clause we have just looked at. Consider

the man in whose library she lived

We need to establish a link betweghoseandthe man This link will be carried by theel(X) functor
within the pp.

First, we must recall the structureghaflexical clause accounting faoelative whose
determiner([whose|X],X,[det(whose),index(l)],_,astriction,rel(l)).

The last argumefrel(l)) has a variable position for an indek-which will be instantiated so as
to keep track of the relation betweshoseand its antecedent. Note that this index is asarned in the
parse tree associated with determivbpse.

Second, note that tled(l) functor is percolated from thdeterminer to thenoun phraselevel
when thenp is parsed. It is callebhtrell at thedeterminer level in the piece of code below, aimdrel
at thenp level.

corenounphrase(P0,P3,Gap,index(l),Pref,WeightRed)
Function,
[Function,[nounphrase,indgx(l
agr(third,Number),DRTRarse]],
Number,third,Sem):-
determiner(P0O,P1,DET,Number,Réitrell) ,
xnoun(P1,P2,N,Number,Sem,Arglist),
satisfylist(P2,P3,Gap,Status,Pref,Prec,Rdl2|R,_,
Parse,np,Arglist,Func,
subject([subject,[nounphrase,irfex
agr(third,Number),DET,N]]
Verbsem)),
sfok(Verbsem,Sem),
(var(Rell),var(Intrell),Rel=Rel2,Intrel=Ink2e
nonvar(Rell),nonvar(Intrell),Rel=Rell,Intrel=Intrel 1),
ifthenelse(var(Status),Weight=2,Weight=3).

From thap it will be percolated to thpp:

prepphrase(P0,P2,Gap,index(J),
npindex(l),Prefnp,3,PREP,Ratirel ,Function,

[Function,[prepphrase,index(BHp{PREP),NP]],
Sempp,Semnp):-
prep(PO,P1,[prep(PREP)],Sempp) ,
nounphrase(P1,P2,Gigex(l),Prefnp,Precnp,Rel,
Intrel ,np_arg_of_prep,NP,Number,Person,Semnp).

We can now look at the defining clatmerelative clauses where the gap is a pp gap:

relclause(P0,P2,Prefrel,[relative_clause,PP,S],
[gap(_,ppgap,Semrel,PPsem, ,Prep,index(J),npindef()],
Personrel,Function,NounSem,Numbgrant
xprepphrase(PO,P1lifidex(l),npindex(12),
Prefpp,Weight,Prep,
Semrekl(J),
Function,
PP,PPsem,Semnp),
nonvar(Semrel),
sentence(P1,P2,
[gap(PP,ppgap,Npsem,PPsem,Function,P_Prep, index(ipindex(12))],
Prefs,S,finite,Personrel,Numbe¥feice),
nonvar(Function),
accu(Prefrel,[Prefpp,Prefs]).

The index of theel functor at thepp level must be the same as that of the index functthe
relclausegap, i.e. point to thantecedent In our example sentendeywould refer to the whole ppn(
whose library, 12 would refer to the np within the pwkose library, andJ to the antecedenthie man.

7. Generation Issues

There is some research in generatidin wnification grammars which tends towards thealdf
reversibility: the same grammar is made use ohadysis and generation (d¢gabelle et al. 1988
Dymetman and Isabelle 199D By same grammaris meant here the sarnedeembodying the
grammar, not just the same linguistic concepts.

horgen, the generation counterpartlofratio, doesnot use the same grammar. The reason is that
parses are supposed to be fully unambiguous aneftine generation ought to be much simpler than
analysis, which is faced with potentially and attfuambiguous inputs.

In this piece of research generatiomsisd mainly as a test, to make sure that thecutét is
retrievable from the parses produced by the anal{aech a property of parses is crucial in machine
translation.

Inhorgen generation isot backtrackable. Only one surface string is produced per parse. Th
non-backtrackability of generation implies that th&use order of the generation predicates isfsigni,
and that the modeixceptions first, general case lastan be used without necessarily making use of the
cut.

7.1. Freezing the Variables in the Parses

The parses producedhmyratio account forcoindexing by means o$haredvariables in the
index(VAR) functors. We need to convert them to strings leefoe start generating from them, to
prevent generation from running wild. The convansabvariable to string is achieved by a small script
applied to the parses before feeding themaigen.

This script is Kornshell script executable under tiKS implementation of Unix utilities for
0OS/2 and MS-DOS. It runs as follows:

sed -E -e "s/index\(_(....)))/index\(\$\1\$\)/$1 > tmp.tmp
if [-s tmp.tmp]
then
mv tmp.tmp $1
else
echo "Error 1"
fi

SED s a call to the UNIXstream editor. The command is to perform a globg) §ubstitution)
of the source patterindex(_....) where the dots stand for alphanumeric characiéestarget pattern
includes the 4 alphanumeric characters (the digitthetarget pattern refers to the first parenthesized
expression in theourcepattern). They appear between dollar signs, tiregstielimiter in Arity Prolog.
The variable marker (the underscore) in the sopatiern is not copied to the target pattern. The ne
result is to transform variables into strings. A@mple is given below in the section on the cycle.

7.2. The Cycle

horatio produces parses in which tges (grammatical functions) are deep, i.e. corresgorttie
specifications in tharglist of the predicate, the argument bearer. To retribgesurface string, this work
must be undone. Since the days of standard tranafmmal grammar, it has been known thatdbwetrol
relations (i.e. the control of the subjects of sdbmate clauses by highapsin argument functions), and
transformations such asassiveandraising, apply cyclically, to the more deeply embeddedisiss first.

Even if we do not wish to stick to antsformational treatment, this insight of TG i stucial.
To retrieve the surface string, we will need toaitite work done bjoratio in cyclic fashion. Hence the
title of the appropriate section in thergen code:The Cycle

Consider the parse corresponding tetineace string:
| believe him to have been killed.

Schematically, it looks like this:
| believe [VAR has killed him].

We first need to apply thassi ve predicate in generation mode, whose job is to ntbge
object into subject position and to createygphrase for the subject (here this by-phrase will not |éad
the generation of anything, since it has no lexicaterial in thenp slot). We obtain something along the

lines of:

| believe [he has been killed]

We now applgubject to object raising the subject of the subordinate clause is raisabject
position in the main clause. At the same time tlagnmaerb of the subordinate clause is turned into a
infinitive with TO:

| believe him [he to have been killed]
Control will now take care ghosting(i.e. depriving of lexical content) the controllsdbject.
| believe him [VAR to have been killed]

Generating théAR will yield the empty list, which will later disapar by the list flattening and
appending operations which complete the generatiocess:

| believe him to have been killed.

We will now consider the generatiorited resulting sentence in somewhat more detad,\aay
of illustrating the cycle principle in action.

We start from what the parser giveslim pretty-printed parse looks like this:

12
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: none,tns: ptgsen
predicate(believe_1,agr(finite,present,singtfjr
subject
nounphrase
index(_0398)
agr(first,sing)
ppro(first,sing,_041C)
object
clause
pred_arg_mod_structure
prop(vce: passive,asp: [perfect],mod: norse present)
predicate(kill_1,agr(en_passive))
object
nounphrase
index(_0580)
agr(third,sing)
ppro(third,sing,masc)

We see that the objectb@llieveis clausal, and th&ill has an object and no subject (passive has
been undone; but tregr functor and theroperty list record that we have a passive clause).

Of course, the generator does not workretty-printed objects. Here is ttav object produced
by the parser. It is Brolog term (carriage returns have nonetheless been addegtovereadability):

[12,[clause,[pred_arg_mod_structure,

prop(vce: active,asp: none,mod: none, tns: present)
[predicate(believe_1,agr(finite,present,sing,fjist)
[[subject,[nounphrasmdex(_0398)agr(first,sing),ppro(first,sing, _041C)]],
[object,[clause,[pred_arg_mod_structure,

prop(vce: passive,asp: [perfect],mod: none,tnssgg), [predicate(kill_1,agr(en_passive))],
[[object,[nounphras&édex(_0580)

agr(third,sing),ppro(third,sing,masc)]]]111111]-

We note that two of the thneeinstantiated variables appear as arguments ofititex functor.
These are the ones that we neeftdeze We do so by converting them indtyings, as explained in the
preceding section. The result is as follows:

[12,[clause,[pred_arg_mod_structure,

prop(vce: active,asp: none,mod: none,tns: present),
[predicate(believe_1,agr(finite,present,sing,fjist)
[[subject,[nounphrasiedex($0398%)agr(first,sing),ppro(first,sing, _041C)]],
[object,[clause,[pred_arg_mod_structure,

prop(vce: passive,asp: [perfect],mod: none,tnseny,
[predicate(kill_1,agr(en_passive))],

[[object,[nounphras&dex($0580%$)
agr(third,sing),ppro(third,sing,masc)]]1111111]-

We havéwo clauses, with theontrolled clause inrsecondposition in the arglist of the
controlling clause. The following defining clause for epgen therefore applies:

prepgen([H2_cll,[pred_arg_mod_structure,Propl,RfEndtarg cll,
[H1_clI2,[clause|RcI2]|R2]|R1]]],

Res4):-

second_header(H2_cll),

first_header(H1_cl2),

passive([clause|Rcl2],Resl),

control([H2_cl1,[pred_arg_mod_structure,Propl,Pygdistarg_cl1,
[H1 cl2,Resl1|R2]|R1]]],Res2),

oraising(Res2,Res3),

passive(Res3,Res4).

The first job carried out Ipy epgen is to check thelause headersto make sure that we are in
the right environment to apply the processes ddfin@assi ve, cont rol , andor ai si ng. Let us
look at the checkecond_header . It will be instantiated in the following way whéime call is made:

second_header(clause).

The call will succeed because it fac recorded in the packet of clauses for the preéicat
second_header, listed below:

second_header(clause).
second_header(np_maodifier).
second_header(adj_arg).
second_header(arg).
second_header(noun_arg).

The next checkj r st _header, will consist of the following call
first_header(object).
and will also succeed, for a similar reason.

Passi ve will then try to apply in the controlled clauséheTinstantiation is the following when
the call is made:

passive([clause,[pred_arg_mod_structure, prop(assipe, asp:[perfect], mod:none, tns:present),
[predicate(kill_1,agr(en_passive))],
[[object,[nounphrase, index($0580%),agr(third,sipgjo(third,sing,masc)]]]]],_2888).

_ 2888 will get instantiated to the following term:

[clause,[pred_arg_mod_structure, prop(vce:pasasg[perfect], mod:none, tns:present),
[predicate(kill_1,agr(en_passive))],
[[subject,[nounphrase, index($0580%),agr(third,simgro(third,sing,masc)]]]]

We see that the (deep) object has heeerd into a (surface) subject. The job was peréat by
the following clause fopassi ve:

passive([H1,[pred_arg _mod_structure,prop(vce:pasBiC,D),Predl,
[[object,O]|Otherargs]]],

[H1,[pred_arg_mod_structure,prop(vce:passive,B,P @01,
[[subject,O]|Otherargs]]]):- second_header(H1).

Note that the job is carried out in He&ad of the clause, the body consisting only luéader
check.

The next predicate to be calledast r ol , which gets the whole structure as argument, It w
the result of the call tpassi ve instead of the original controlled clause. Theédansation when the call
iIs made is the following:

control([clause,[pred_arg_mod_structure,

prop(vce:active,asp:none, mod:none,tns:present),
[predicate(believe_1,agr(finite,present,sing,fjist)

[[subject, [nounphrase,index(0398),agr(first,siqgro(first,sing, 041C)]],
[object,[clause,[pred_arg_mod_structure,

prop(vce:passive, asp: [perfect],mod:none, tnsguigs
[predicate(kill_1,agr(en_passive))],

[[subject, [nounphrase, index(0580%), agr(thirygnasc)]]]1111]],_28A8).

As a result of the call, _28A8 is imgtated to the following term:

[clause,[pred_arg_mod_structure,

prop(vce:active,asp:none, mod:none,tns:present),
[predicate(believe_1,agr(finite,present,sing,fist)

[[subject, [nounphrase,index($0398%),agr(first,simpro(first,sing,_041C)]],
[object,[clause,[pred_arg_mod_structure,

prop(vce:passive, asp: [perfect],mod:none, tnsgu@s
[predicate(kill_1,agr(en_passive))],

[[subject, [nounphrase, index($0580%), agr(thirsggnasc)]]]11111]

I.e. the same Cont r ol had no work to do, because the controller doesoair in the controlled
clause, and so does not need to be gho€tatt r ol succeeded doing nothing on account of the
following of its defining clauses:

control(X,X).

The next predicate to be appliedrigi si ng. Sincecont r ol has not modified the structure,
we get the following call:

oraising([clause,[pred_arg_mod_structure,

prop(vce:active,asp:none, mod:none,tns:present),
[predicate(believe_1,agr(finite,present,sing,fjist)

[[subject, [nounphrase,index(0398),agr(first,siqgpro(first,sing, 041C)]],
[object,[clause,[pred_arg_mod_structure,

prop(vce:passive, asp: [perfect],mod:none, tnsguigs

[predicate(kill_1,agr(en_passive))],
[[subject, [nounphrase, index($05803%), agr(thirgsinasc)]]]11111],_2910).

O ai si ng does change the structure. The defining claugeafi@ies is the following:

oraising([H1,[pred_arg_mod_structure,Prop1,
[predicate(Pred1,AgrPred1)],
[Argl,
[object,[clause,
[pred_arg_mod_structure,Prop2,[predicate(P,agr{fgr)
[[Subject|Rest]|OtherargsR]]],

H1,
[pred_arg_mod_structure,Propl,
[predicate(Pred1,AgrPredl)],

[Argl,

[object|Rest],

[object,[clause,
[pred_arg_mod_structure,Propnew2,[predicate(P,agjfA

[Otherargs]]]]IR]]]):-

allsubject(Subject),

second_header(H1) ,

oraise(Predl1,Requires),

nonfinite(Agr),

Prop2 = prop(Voice,Aspect,Mod, Tns),

Propnew?2 = prop(Voice,Aspect,Mod,tns:Requires).

Al | subj ect is, likesecond_header, a check on the environment of the rule. It reggiihat
the variable name8ubject cover a subject function. The code & subj ect is the following:

allsubject(S):- subject(S),!.
allsubject(S):- subject_active(S).

subject(subject).
subject(subject_pass).
subject_active(subject).
subject_active(subject_inf).

The call succeeds in the present dase Subjectis instantiated tsubject

Next, theraise predicate checks that the verb of the main claesengs to the right class, and at
the same time it instantiates tRequiresfeature, which will tell us whether what will remaof the
controlled clause should be infinitive or gerundiVle call here is the following:
oraise(believe_1,X),
which succeeds and instantiates XaoOr ai se calls on the macrm ver b clause:
oraiseQraisingverb,to):-

[np(_,_,surf_object,),
np_vp(oblig,to_inf,object)]).

Them ver b responsible for the successoofai se is the lexical clause for the relevant reading
of BELIEVE, namely:

m_verbyinf, _believe_1believe,believe,believe,believes,believing,
believed,believed,believed,trans,human,
[np(oblig,posprec(1,Wnp),surf_object,),
np_vp(oblig,to_inf,object)]).

/* he believes him to teach linguistics */

Next is the check on the agreementevafuithe predicate in the controlled clause; itncdrbe a
finite clause, to whiclsubject to object raisingcould not apply. In this case the call is:

nonfinite(en_passive)
which succeeds.

Or ai se then proceeds to copy tReoperty field of the controlled clause to a new varialblet
replaces the value féense(of no application in non-finite clauses) with tRequiresfeature, i.eto,
which will indicate to the relevant clause of trengrator that amfinitive with to vp should be
generated as the remaining vp in the controlledsga

Let us now look at the structure re@artoyor ai si ng. We see that the subject of the controlled
clause is moved to the controlling clause, anéuitstion changed to object. The controlled classe i
returned as second object, but now misses its dulbjmally, the new property field is assignedhe
controlled clause, which is thereby untensed. éncdise of our example sentence, the arglist for the
matrix clause has the following two objects:

[object,[nounphrase,index($0580%), agr(third,sipgxo(third, sing, masc))),
[object,[clause,[pred_arg_mod_structure,
prop(vce:passive,asp:[perfect], mod:none, tns:to],

[predicate(kill_1, agr(en_passive))],[[11111]

Returning tpr epgen, we find that there is another callgassi ve, this time on the matrix
clause. This call will succeed trivially, sinpassi ve does not apply there:

passive([H1,[pred_arg_mod_structure,prop(aceve,B,C,D)|R1]|R2],
[H1,[pred_arg_mod_structure,prop(acéve,B,C,D)|R1]|R2]):-

second_header(H1),
L

Pr epgen has now finished, and the generator will takeréseilts it has delivered and attempt to
generate a string from them:

generate(Tree,Sentence):-
prepgen(Tree, Treeprep),
gen(Treeprep,List),
flatten(List,Sentence).
Sentencewill be instantiated tdi,believe,him,to,have,been,killedand output as:

i believe him to have been killed.

Appendix A. Non-Standard Arity Prolog
Predicates

This appendix briefly describes the-geéined Prolog predicates that are specific tayArirolog
(or at least non-standard) and have been madef uséaratio and/orhorgen. Note that + in front of an
argument indicates that it should be instantiatbdmthe call to the predicate is made; a - sigicatds
that the variable should still be uninstantiated.

Execution Control

[!' P1, P2, ...1J:the snip symbol[{!]) isolates code (a set of goals, Bgehere) to be skipped in the event
of backtracking. Example froimoratio on page 69.

abort(1): with 1 as argumengbort returns to the operating system

ifthenelse(Condition,YesAction,NoAction) If Condition succeedsyesAction is attempted; otherwise,
NoAction is. Ifthenelse can be simulated by a disjunction of go&l€ondi ti on, Yesacti on;
not (Condi ti on), NoActi on). Example fromhoratio on page 56.

String Manipulation

concat(+Stringl, +String2, -String3) String3 results from the concatenation®tfingl andString2.
Example fromhoratio:

concat(Output,$.ter$,Outterm),
concat(Output,$.Ist$,Outlist),

used to produce the names of the output fites:(raw Prolog terms) andst (pretty-printed terms)

File Operations

create(-Handle, +Filename) a file named-ilenameis created and associated with hardiadle.
Example fromhoratio:

dealwith(Input,):-
Input=stdin,
create(Handleln,'bidon’),
close(Handleln),!.

open(-Handle, +Filename, +Mode)Mode isr for readingw for writing ora for appending; a file with
nameFilenameis opened and associated with harididedle, for the operation specified Mode.
Example fromhoratio:

dealwith(Fileln,Handleln):-
open(Handleln,Fileln,r).

close(+Handle):the file associated with handhandle is closed. Example frommoratio:

dealwith(Input,):-
Input=stdin,

create(Handleln,'bidon’),
close(Handleln)!.

read_line(+Handle, -String) Handle Ois standard inputring is read as a one-line string from the
input stream associated wittandle (the end of the string is indicated by a carriagjam).Read_line
offers minimal editing facilities (backspacing fieletion). Example frorhoratio:

start(Outterm,Outlist, ,stdin):-
open(Y,Outterm,w),
open(Z,Outlist,w),
repeat,
nl,
write($Please key in your sentencstop. to stop$),
nl,

read_line(0,S)

open(Handleln,'bidon’,w), /* fariting */
write(Handleln,S),
close(Handleln),
open(Handlenew,'bidon',r), df feading */
getsentence(Sentence,Handlenew),
close(Handlenew),
nl,
write(Sentence),
process(Sentence,Y,Z).

Appendix B. File Organization and Compilation
Directives

File Organization

Both the parsendratio.exe) and the generatohgrgen.exé result from compiling and linking
several source files. The compiling and linkingehieved by calls to th&rity Prolog Compiler and the
Microsoft Linker by two.BAT or.CMD files, i.e. batch files for MS-DOS or for OS/2.deypt for the
file name extension the files are the same for BG$OS/2
Moratio.cmd

Moratio.cmd is an OS/2 batch file used to generate and liekothject modules, to create
horatio.exg the executable file for the parsharatio.ari, lexatiol.ari, lexatio2.ari, lexatio3.ari are text
files containing the source code of the progrhoratio.ari is the grammar propdexatiox.ari are the
files holding the lexicon; the full commented sais available on the companion disk.
apc horatio,,/n
[* compiling the grammar, generating the data Base
I* APC.EXE is theArity Prolog compiler */

[* horatio.ari contains the grammar for the parser */

/[* it is compiled and producdw®oratio.idb as data base */

/* Inindicates that a new Prolog data base needs teeheed; its name defaults to that of the soureg fil
but the extension isdb instead ofari, the default file extension for Arity Prolog soercode */

/* the object file's name defaults horatio.obj, since the second argument is left empty (heneévib
commas with nothing in between) */

apc lexatiol,,horatio

/* compiling the lexicon (part 1), adding to thereadata base (last argument) */

apc lexatio2,,horatio /* idem (part 2) */

apc lexatio3,,horatio /* idem (part 3) */

link code lexiol lexio2 lexio3 horatio lexatiol ko2 lexatio3, horatio,, arity doscalls,,

/* linking the code moduledoratio.obj, lexatiol.obj, lexatio2.obj, lexatio3.obj result from the
compiling process carried out in the precedingsling the Arity Prolog compile€Codeis part of the
Arity Prolog delivery and is to be used as thet fitgject module for all Arity Prolog applicatiorisexiol
to 3 are cloned (with the utilitglone.exe also part of the Arity Prolog delivery) so adtable to make
use offar Prolog. Arity anddoscallsare the libraries. Under DOS there is no needhfedoscalls
library. The second argument is the name of etefile; here it ishoratio.exe*/

Morgen.cmd

[* similar to MORATIO.CMD,; the first lexicon fileléxgenl.ar) differs slightly from the one used in
analysis, nameliexatiol.ari; the executable file for the generator is calledgen.exe*/

apc horgen,,/n
apc lexgenl,,horgen
apc lexatio2,,horgen

apc lexatio3,,horgen
link code lexiol lexio2 lexio3 horgen lexgenl lemdtlexatio3, horgen,, arity doscalls,,

Arity Prolog Compilation Directives

When several files are meant to be dlmai@nd linked together to yield a single execledite,
the first code file to be compiled needs a dedlamdbr a predicate callemhain, of zero arity and to be
declaredoublic. We therefore find in the fileoratio.ari:

.- public main/O.

Themai n predicate is itself defined by a call to the predicate, which provides the GO step.

All lexical clauses in both the paraed the generator are declasedernal andfar. For instance,
in horatio.ari, we have compilation directives such as

;- extrn verb/10:far.

This means that the predicateb is to be found in aexternal file (in casulexatio2.ari), has
arity 10 (needs 1@rguments), and is to be compiled &ar 18 code.

In the fildexatio2.ari, we find the following compilation directive

.- public verb/10:far.

making the predicateer b public, i.e. callable from other modules.

Besides, each module contairfenrgcode needs to have its own segment declaration. Fo
instance, ifexatio2.ari we find

.- segment(lexio2).
Lexio2.0bj is obtained by an appropriate call on thene.exeprogram, part of the Arity package, namely

clone lexio2

Appendix C. Input and Output

Input

Inhoratio input is either from the keyboard (standard inptdin in horatio code), or from a text
file. In the latter case, the text must be pAE&CII, with one sentence per line, the end of the Emdp
marked by a line containing only the watbp.

In the former case, the input is regdhe predicate ead_| i ne (which provides minimal
editing facilities, such as the usebafckspaceto delete characters already entered at the kegpaad
saved into a dummy file callddon. Then the dummy file is opened and input procéedse way
described in the previous paragraph.

The ead_I i ne predicate is an Arity Prolog extension to stand2mlog. It takes two
arguments: the first is the rehdndle, which is 0 in the case of standard input. Th@sdas the string to
be read from the input stream associated with &melle. The string is read as a single line.

The next job in input is to convert 8teng to a word list. This is achieved by a staddtring to
word list converter program. We use the one giverBratko 1990.

The resulting word list is then subettto the parsing process.

It should be noted thathoratio input is within a loop. We keep reading in seng=ngntil we hit
the word liststop], resulting from the end-of-file markstop. When we do, we call theebor t
predicate to return to the operating system.

Inparsing we need to get at all the possible parses indke of ambiguous input. This is why we
fail atthe end of the parsing process for a giveresert whereas in generation we succeed (the
generator does not backtrack once it has produsgéiihg corresponding to a given parse).

In the generatbiorgen input is never from the keyboard, as the expeictedt is a parse. Such
parses are read in with the standard Prolegd predicate, which is able to read any well-formed &y
term.

Output

Inhoratio we need to produce two types of output:

1) raw objects: these are the Prol@gms which result from the parsing process. They agedéle to the

generatohorgen (after a transformation into strings of the uramgtated variables in thedex functors -
this transformation is described above, on page¢. ich parses go into a file withtar extension (for
terms). The file name is created by concatenatirgektensionter to the base file name elicited from the
user. We make sure that the parses end with sathat they can be read in by tread predicate in

the generator.

2) pretty-printed objects: these are meant to be examined by tmengea-designer for debugging and
other purposes. They are collected into a file Wigets anlst extension. The pretty-printer used is
elementary and standard. It is a slight adaptaifdhe one to be found iBlocksin and Mellish 1981
(the adaptation concerns the pretty-printing ohatantiated variables).

horgen produces strings as output. It is a trivial extendb add the capability of capitalizing the
first word of the output, as well as proper namesuaring in the string. It is equally trivial to gure that
questions end with a question mark. These extessionleft as exercises for the reader.

Appendix D. Selective Lexicon Downloading

Getvoc.awk
BEGIN {RS="."}

{if (FILENAME==ARGV[1])
for (i=1;i<=NF;i++) x[tolower($i)]= tolowd$i)
}

{if (FILENAME==ARGV[2]) { RS="@";FS=",";
for (i=2;i<=10;i++)
{
if (tolow&i) in x && ($0 iny))
{print > "voc.ari"
y[$0]="in"
}

The first argument is the text to bespd, the second the lexicon to be searched. Ifirghdile
(the text to be parsed) we use a period (.) agdesmparatorRS is set to dot). In the second file (the
lexicon to be used) we separate records wit@amwhich we therefore assign as new valueR&r

The individual words are saved intextarray, and the lexicon is then searched for matahe
the lexeme and morphological variant fields. THeded entries are saved to a fitec.ari; the second
condition in the laslkF clauseprevents repetitions in thec.ari file. A batch procedure will then take
care of the compilation ofoc.ari, and of the linking of the resulting object codéhwihat produced for
the grammar files, in order to build the requirgdaitable. Under OS/2, the batch file is the follayv

echo %1. %1. >filin

awkl -f getvoc.awk %1 lex.ari

copy lexdcl.ari+voc.ari lexsel.ari

apc lexsel,,horatio

link code lexiol lexio2 horatio lexatiol lexselqrkx,,arity doscalls,,
horex < filin

(%1 stands for the text filgwkl invokes the large model afvk in theMKS OS/2 implementatidh,

lex.ari houses the compleb®ratio lexicon;lexdcl.ari contains the necessary compiler declarations for
Arity Prolog; apc calls the Arity Prolog compiler; the linkdink) produces the executable filerex,
which is fed the name of the text file twice, satth can produce %1.Ist and &o1l.ter file, the latter
containing the raw objects, and the former thetytetinted ones).

Appendix E. Importing Lexical Entries from
Ldoce

Introduction

It should be stated from the outset ¢heertain familiarity with at least the publishegtsion of
LDOCE is presupposed in this appendix. A whole be@melyBoguraev and Briscoe 198Phas
recently been devoted to computer applicationsisfdictionary data base, and the reader is reféae
the first four chapters of that book, and the mfees given there, for more information on LDOCE,
particularly on its grammar coding system. The @ghigld version of LDOCE contains explanatory
prefatory material and a table of the grammar codesl in the dictionary, but does not explain the
semantic or field codes used in the computer tape.

There is now a lot of interest in tkese of available lexical resources. However, nai¢he
available literature on the topic is speculativd programmatic in nature. This appendix, on thetreop,
is unashamedly pragmatic. It reports on an experirtiet has been carried out, going down to thellev
of specifying the queries on the data base andwi&2 programs used to reformat the imported data.

The application programs for retrievingterial from the lexical data base anddté programs
all run on a PC under MS-DOS.

Description of the Liege Ldoce Data Base

LDOCE in Liege is in relational datessbdormat. The retrieval software is made up adrées of
application programs written @lipper, whose data definition and query language carefiaet as an
enhancediBaselanguage. The next section looks at the majoetadihd their fields. The data base
design and the transformation of the LDOCE compiaee into the relational tables was carried out by
Jacques Jansen. The application programs wer@mwhit the author.

Ldoce Data Base Design

Lemma Data Base: Coword

Field Name Type | Nature Width

ENTRYKEY Char shared by all LDOCE-derived dbf as a link e th4
dbf

HEADCLAS Char simple, compound or run-on: S,C,R 1

DEFINUM Char for run-on entries: link to the relevant diom 2
number in the main entry

VARISUF Char flag: is there a variable suffix? (e.g.. idjicse/ize) 1
FLAGCV Char included in LDOCE's controlled vocabulary ? 1
FLAGIE Char does final consonant redoubling apply 1

(red -> redder)?

POS Char Part of speech: up to five different POS, eaxted5

in one byte
NOTE Char reference to grammatical note 3
|WORD Char | lemma B4 |

Structure for ncoword.dbf

Ncoword is similar tocoword, but also includes lexicographical WEIGHT of tkenma, measured in
terms of number of definitions, examples, differgrammatical codes and idiomatic structures astaatia
with the entry.

DEFNU Num [Number of definitions associated with ¢&mery 2
IDIONU Num Number of idioms associated with the entry 2
EXNU Num Number of examples associated with the entry 3

| GRNU Num | Number of grammatical codes associateld thi2 |3 |

entry

Definition Data Base: Codefi

Field Name Type | Nature Width

ENTRYKEY [Char cf coword 4

HEADCLAS |[Char I identifies an idiomatic structure 1

DEFINUM Char sequential number of the definition 2

DEFILET Char small letter associated with a given definum: 1
a,b,c,..

DEFIMAT Char field codes: a four-byte field; codes the stibje 4
matter(s) (1 or 2) to which the lexical item unties
given definition belongs

DEFISEM Char semantic codes: a ten-byte field; codes such 10
properties as the semantic requirements to beglace
on the deep subject (byte 5) and objects of verbs
(bytes 10 and 8); also codes inherent semantic
properties for nouns and selection restrictions for
adjectives (byte 5)

LINECNT Char sequential value of definition line (each diedilis 1

76 char long, and several may be needed to cover a

single definition; the @ sign identifies the filiste)

IDEFILINE ~ Char |text of one line of a given definition |67 |

Idiom Data Base: Coidio

Field Name Type | Nature Width
ENTRYKEY Char cf coword 4
HEADCLAS Char | identifies idioms or idiomatic structures 1
DEFINUM Char cf codefi 2
VARISUF Char cf coword 1
lIDIOM Char | text of the idiom | 60

Example Data Base: Coexam

Examples are associated with definitions and idioms

Field Name Type | Nature Width
ENTRYKEY Char cf coword 4
HEADCLAS Char cf codefi 1

DEFINUM Char cf codefi 2

DEFILET Char cf codefi 1

EXAMNUM Char sequential number of the example (associaitida/
given word sense or idiom)

DCODNUM Char hand-coded: relation between example and 2
grammatical code

LINECNT Char cf codefi 1

|[EXAMLINE ~ Char |line of example text | 76

Grammatical Code Data Base: Codcod

Field Name Type | Nature Width

ENTRYKEY Char cf coword 4

HEADCLAS Char cf codefi 1

DEFINUM Char cf codefi 2

DCODNUM Char sequential number of grammatical code assuCi&t
with a given definition

LEFTLINK Char type of linkoptional, 'esp.’, obligatory; this field 1
codes the cohesiveness of the link between the
lexical item and its lexical left environment

LEFTTYPO Char type of fontitalic, bold,...: this field can be used tb
retrieve the nature of the coded lexical left
environment; for instance, prepositions will be
codeditalic and adverbial particldsold

LEFTCTX Char word or word group specified as lexical leffe 3
vironment

GRAMCODE |[Char three-byte grammatical code; consult the LDOCE
Table of Codes (in the printed form of the dic-
tionary)

RGHTLINK Char cf leftlink 1

RGHTTYPO Char cf lefttypo 1

RGHTCTX Char cf leftctx 3

|GRAMCOMM Char |grammatical comment (partly formalized) 3

B I

It might be useful to look at the regmetation of a given lexical item in the Liege LDB@ata
base, so that the reader can build for himself eernoncrete picture of what the data base looles lik
have taken the entry for the vdrblieve because it is short and illustrates the restiltseodecompaction
process that has been applied to the LDOCE grarfields, a process that needed to be carried dheif
data base was to prove usable for the retrievgiashmatical information, as illustrated in this apgix.
The need for a decompaction procedure is also skeclin Michiels 1982.

Believe in Ldoce
believe/ pron /v [Wv6] 1[l0] to have a firm religious faitt2 [T1] to consider to be true or honetst:
believe someonieto believe someone's reporddT5a,b;V3;X ¢o be 1, (o be 7] to hold as an
opinion; supposel believe he has compHe has come, | belieye:Has he come?" "l believe s¢'l

believe him to have done |t believe him (to be) honest see unbelief (USAGE)

In the Liege data bases:

In COWORD

Entrykey B@zV
Headclas S
Flagcv 1

Flagif 0

Pos v
|word believe
In CODCOD

Entrykey B@zV B@zVv B@zV B@zVv B@zV B@zv |B@zV

Headclas S S S S S S S

Dcodnum 1 1 1 2 3 4 5

|Gramcode 10 T1 Ts5a | 7T5b | V3 Xle X7e

In CODEFI

Entrykey B@zVv B@zV B@zVv

Headclas S S S

Definum 1 2 3

Defimat RLRNz

Defisem wGHL I o Y, < wGHLTRA

Linecnt @ @ @

|Defiline to have a firm re- ||o consider to be truIio hold as an opiniorlu,
ligious faith or honest suppose

In COEXAM

(first three examples only)

Entrykey B@ZV B@ZV B@ZV
Headclas S S S
Definum 2 2 3
Examnum 1 2 1

Dcodnum 1 1

Linecnt @ @ @

|Examline to believe someor{e to believe some; | believe he has
one's reports come

A good deal of criticism has been ledelecently against the use of the relational dase model
for the implementation of lexical data bases. ftogted out that the restrictions of the relatianadel
(fixed number of fields, fixed field length) makeeixtremely difficult to implement a lexical datade in
such a model. For instance, lexical items havefit number of homographs; homographs have
different numbers of associated definitions; ddéifoms have different numbers of associated examples
definitions and examples are of varying lengthirfra single word to a full sentence. However, ihithe
very essence of the relational model to work widegaes of tables, rather than a single one.
Consequently, the fact that one definition hasewemple, whereas the following has six, is notlyeal
problem if the definition table and the exampldeaadre distinct tables related by one or sevenalnaon
fields, as they are in the Liege LDOCE data base.

Clearly, efficiency considerations malke relational model unusable for real time realen
NLP tasks such as machine translation. But thematiee full power of the relational model is not
necessarily needed in such cases, as retrievalssaften to be carried out on the basis of the
morphological variant or lemma, and not on the asthe complex queries on grammatical, semantic
and field code information that the relational mozin handle. The power of the latter, however, lman
put to good use in a lexicographer's workbench.

The Importation Process from Ldoce into Horatio's Lexicon

In its present state of developmantatio works with 18 verb classes. The formats of thesda
selected for the importation experiment are bridégcribed below. For each verb class, the filsedwon
the Liege LDOCE data base is described, as welHeasaw data from the Liege data base and the AWK
program used to convert to the format usedhdmatio .

An essential feature lodratio is that it goes down to the level r@fading, i.e. a selected
interpretation of a lexical item according to prdfs of its environment. Such a level of delicey
crucial for most NLP tasks, machine translatiombei prime example. As can be guessed from the
sample entries reproduced in this appendix, therapon from LDOCE concerns mainly entries
beginning witha, and no effort has been made to select entrigBeohasis of frequency, lexicographical
weight or membership of a domain-related sublangkexicographical weight could have been assessed
on the basis of the information containechdoword and domain-relatedness captured by means of the
subject field codes idefimat in codefi).

We shall concentrate on showing howntheerb clauses for various verb classes (indicated by
the first argument of then_verb clause) can be derived fom LDOCE by a three-stepgss:

a) obtain the relevant material from LDOCE (thistsomplished by EXPORT, a Clipper application
which enables the linguist to select lexical estri@t the reading level - according to entry-level
semantic and grammatical properties; irregulaettibnal morphology is taken care of by retrievahi
a specialized data base; regular inflectional moiqyy is generated by a procedure belonging to
EXPORT)

b) reformat the material obtained in a) by meanthefappropriate AWK program
c) hand-check the results (the assignment of LDG&mantic codes is often debatable; inflectional
variants also have to be checked)
Intransitive Verbs
A. FILTERS ON LDOCE
on ENTRIES ¢oword)
'v' $ pos .and. headclas ="S"

(the POSfield includes (operator$) "v" - i.e. it is a verb - antleadclasis "S'- i.e. it is not a compound,
multi-word unit or a run-on entry C" or "R" values)

on SEMANTICS ¢odefi)
headclas # "I"
Headclasmust bedifferent from (# operator) "I", i.e. must not be an idiom.

on GRAMMAR (codcod

gramcode="I0 " .and. rghtlink =

Gramcodeis a three-byte codeghtlink gives the nature of the link with a lexical elemattached to
the item on the right. By specifying an empghtlink we make sure that we do not select prepositional
or phrasal verbs (for which see below, p. 138 atij.1

B. RAW IMPORTED MATERIAL

As pointed out above, the applicatioogpams include a rather elementary generator of
inflectional variants; this generator has accessdata base of irregular forms and uses the fiag f
consonant redoubling ebword (FLAGIF field - see above, p. 126).

(Rnu = LDOCE reading number)

LEX Vs Ving Ved VenPos Gr Sem Rnu

abate abates abating abated abatetDv....T..... 1

DEF (of winds, storms, disease, pain, etc.) tobe less strong; decrease
EX The ship waited till the storm abated befesding out to sea

abrade abrades abrading abradededbrad 10Z....5 la
DEF (esp. of skin) to wear away by hard rubbiog;ause (esp. skin) to wear away by hard rubbing

accelerate accelerates acceleratingeretet! acceleratedv 10Z...Z 1
DEF to (cause to) move faster

accept accepts accepting acceptezpetyv 10 ...H...Z 1
DEF to take or receive (something offered or gjyesp. willingly; receive with favour
EX | cannot accept your gift. He asked her torgnaim and she accepted (him)

C. AWK PROGRAM TO CONVERT RAW MATERIAL TO HORATIO BRMAT

Thef-clauses test the value of the fifth byte in theb¥€ field allocated to the semantic codes;
this byte houses the restrictions on the subjectides Movable and Solid’, deemed to roughly
correspond to the featuréhing™ in horatio; H is "human" andT is "abstract’; absence of semantic
restriction on the subject is codednharatio by means of Prologanonymous variable ()

BEGIN {nu=1}
nu is the entry counter
{ semsubj="_"

semsubj is assigned the anonymous variabéssidl, H or T is found at the appropriate place in
the semantic info field

if (substr($8,5,1)=="J") semsubj = "thing"
if (substr($8,5,1)=="H") semsubj = "human"
if (substr($8,5,1)=="T") semsubj = "abstract"

if ($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
printf("/* %s *An",$0)

the first part of the IF clause deals withimiibn and example lines; these appear as comments
in the Prolog clauses

else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(verbintr,%s_%s,%s,%s,%s %55 \n%s,%s,%s,intrans,%s,\n[]).\n",
$1,$9,$1,$1,$1,$2,$3,%$4,$4,$5,semsubj)

$1 = Lex

#$9 = Rnu

#$2=Vs

$3 = Ving

$4 = Ved

$5 = Ven
nu++}}

}
D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1 */
m_verb(verbintr,abate 1,abate,abate,abate,abadtia@b
abated,abated,abated,intrans,abstract,

D).

[* DEF (of winds, storms, disease, pain, etcheécome less strong; decrease */
[* EX The ship waited till the storm abated lrefgailing out to sea */

Note

[* The T feature transcribed abstract is made more precise by the list of typical sutsiéreaded by
OF; such lists are best read as listsh&fsauric heads they are hard to make use of */

/*NU 2 */
m_verb(verbintr,abrade_1a,abrade,abrade,abraddeshadrading,

abraded,abraded,abraded,intrans,_,

[)-
/* DEF (esp. of skin) to wear away by hard rulgpito cause (esp. skin) to wear away by hard rgbbin

*/
Note

[* The Z value transcribed as tla@monymous variableis hardly what we need: the selectional restnictio
is very strong, but is once again buried in theli&t*/

[* NU 3 */
m_verb(verbintr,accelerate_1,accelerate,accelacaielerate,accelerates,accelerating,
accelerated,accelerated,accelerated,intrans,_,

).

/* DEF to (cause to) move faster */

/* NU 4 */
m_verb(verbintr,accept_1,accept,accept,accept,s;aepepting,
accepted,accepted,accepted,intrans,human,

[)-

/* DEF to take or receive (something offered imeg), esp. willingly; receive with favour */
[* EX | cannot accept your gift. He asked hentarry him and she accepted (him) */

The main problem with intransitive velib how to distinguish them from transitive vetiat can
have a zero (understood) object, either definitedefinite.
Mono-Transitive Verbs

A. FILTERS ON LDOCE

ENTRY LEVEL 'v' $ pos .and. headclas = "S"
SEMANTICS headclas # "I"
GRAMMAR gramcode ="T1 " .and. rghtlink =" "

B. RAW IMPORTED MATERIAL

abandon abandons abandoning abanddrsedionedv T1 ...H..T 1
DEF to leave completely and for ever; desert
EX The sailors abandoned the burning ship

abandon abandons abandoning abanddrsedionedv T1 ..D.H...H 2
DEF to leave (a relation or friend) in a thougkd or cruel way
EX He abandoned his wife and went away withhrair money

abandon abandons abandoning abanddrsedionedv T1 ...H...T 3
DEF to give up, esp. without finishing
EX The search was abandoned when night came,teeegh the child had not been found

abate abates abating abated abateddV ... T....T 2
DEF lit to make less
EX His pride was not abated by his many mistakes

abate abates abating abated abateddH....T 3

DEF law to bring to an end (esp. in the phr. alzahuisance)
C. AWK PROGRAM

Note that byte 10 defisem(field 8) codes the semantic restriction on ¢hgect of a transitive
verb.

BEGIN {nu=1}

{ semsubj="_"
if (substr($8,5,1)=="J") semsubj = "thing"
if (substr($8,5,1)=="H") semsubj = "human"
if (substr($8,5,1)=="T") semsubj = "abstract"

semobj="_"

if (substr($8,10,1)=="J") semobj = "thing"

if (substr($8,10,1)=="H") semobj = "human"
if (substr($8,10,1)=="T") semobj = "abstract"

if ($1 ~ /DEF/ || $1 ~ /[EX/) && NF>1)

printf("/* %s *A\n",$0)
else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(verbtr,%s_%s,%s,%s,%s,%s5\P80s,%s,%s,trans,
%s,\n[np(oblig,posprec(1,Wnp),object,%s)]).\n", L8 ,$1,$1,$2,$3,$4,$4,$5,semsubj,semobj)

nu++}}

}

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1 */
m_verb(verbtr,abandon_1,abandon,abandon,abandaod@imabandoning,
abandoned,abandoned,abandoned,trans,human,
[np(oblig,posprec(1,Wnp),object,abstract)]).

/* DEF to leave completely and for ever; desért *

[* EX The sailors abandoned the burning ship */

Note

/* The T value giving rise to thabstract value results from a miscoding on the part ofUtB©CE
lexicographers */

/* NU 2 */
m_verb(verbtr,abandon_2,abandon,abandon,abandad@ismabandoning,
abandoned,abandoned,abandoned,trans,human,
[np(oblig,posprec(1,Wnp),object,human)]).

/* DEF to leave (a relation or friend) in a thodigss or cruel way */

[* EX He abandoned his wife and went away withheir money */

/* NU 3 */

m_verb(verbtr,abandon_3,abandon,abandon,abandad@ismabandoning,
abandoned,abandoned,abandoned,trans,human,

[np(oblig,posprec(1,Wnp),object,abstract)]).

/* DEF to give up, esp. without finishing */

[* EX The search was abandoned when night cexen though the child had not been found */

* NU 6 */
m_verb(verbtr,abate_2,abate,abate,abate,abaté@sgabat
abated,abated,abated,trans,abstract,
[np(oblig,posprec(1,Wnp),object,abstract)]).

/* DEF lit to make less */

[* EX His pride was not abated by his many nkista*/

[*NU 7 */
m_verb(verbtr,abate_3,abate,abate,abate,abaté@sggbat
abated,abated,abated,trans,human,
[np(oblig,posprec(1,Wnp),object,abstract)]).

/* DEF law to bring to an end (esp. in the plrate a nuisance) */

Note
[*The T feature is again much too general */

Prepositional Verbs

Examplesiook at, listen to: strongly bound preposition
A. FILTERS ON LDOCE

ENTRY 'y' $ pos .and. headclas ="C"

('y' is the POS assigned to prepositional vehlesidclasis now 'C", i.e.compound (more than one
word))

SEM headclas # "I"
GRAMMAR substr(gramcode,1,2) ="T1"
B. RAW IMPORTED MATERIAL

abide by abides abiding abided abidedy1H... T 1

DEF to be faithful to; obey (laws, agreements,)et

EX If you join the club you must abide by itdesl

abide by abides abiding abided abidedy1H...T 2

DEF to wait for or accept

EX You must abide by the results of your mistake

account for accounts accounting accouateduntedy T1 ...H..YT 1 -lto
DEF to give a statement showing how money or gdeft in one's care have been dealt with
EX He has to account to the chairman for allrttumey he spends

account for accounts accounting accouateduntedy T1 ...H... T 2 -lto
DEF to give an explanation or reason for

EX He could not account for his foolish mistake

account for accounts accounting accouateduntedy T1 ..LLH...O 3

DEF infml to kill, shoot, or catch

EX |think | accounted for 3 of the attackers

C. AWK PROGRAM
This program generates two clauses for each sdleeteling, in accordance with Quirk et al.'s cohoép

multiple analysisfor such verbs, to which the reader is referreg @uirk et al. 1985 88 2.61, 16.5 and
here p. 19).

BEGIN {nu=1}

{ semsubj="_"
if (substr($9,5,1)=="J") semsubj = "thing"
if (substr($9,5,1)=="H") semsubj = "human"
if (substr($9,5,1)=="T") semsubj = "abstract"

semobj="_"

if (substr($9,10,1)=="J") semobj = "thing"

if (substr($9,10,1)=="H") semobj = "human"
if (substr($9,10,1)=="T") semobj = "abstract"

if (31 ~ /DEF/ || $1 ~ /[EX/) && NF>1)
printf("/* %s *\n",$0)
else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(vtrprep,%s_%s_%s,%s,%s%&5%s,\n%s,%s,%s,trans,
%s,\n[pp(oblig,posprec(1,Wpp),pp_arg,%s, ,%s)]).\n"
$1,$2,$10,$1,$1,$1,$3,$4,$5,$5,$6,senserpbj,$2)

$2 is the preposition
printf("m_verb(vtrprep,%s_%s_%s,%s,%s,%s,%s,%%\i8%,%s,trans,%s,\n
[string(oblig,posprec(1,0),[%s]),\nnp(oblig,pospi&dVnp),object,%s)]).\n",
$1,$2,$10,$1,$1,$1,$3,$4,$5,$5,$6,sentbisemobj)
nu++}}

}

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1 */

m_verb(vtrprep,abide_by 1,abide,abide,abide,alabtiating,
abided,abided,abided,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,abstract, ,by)]).
m_verb(vtrprep,abide by 1,abide,abide,abide,alabeting,
abided,abided,abided,trans,human,
[string(oblig,posprec(1,0),[by]),
np(oblig,posprec(2,Wnp),object,abstract)]).

/* DEF to be faithful to; obey (laws, agreememts,.) */

[* EX If you join the club you must abide by ngles */

Note
/* Here too the specification of the thesauric tgbéhe object is much more precise thanTheode */

/* NU 2 */

m_verb(vtrprep,abide_by 2,abide,abide,abide,alabtiating,
abided,abided,abided,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,abstract, ,by)]).
m_verb(vtrprep,abide by 2,abide,abide,abide,alabating,
abided,abided,abided,trans,human,
[string(oblig,posprec(1,0),[by]),
np(oblig,posprec(2,Wnp),object,abstract)]).

/* DEF to wait for or accept */

/* EX You must abide by the results of your raksts */

[* NU 5 */
m_verb(vtrprep,account_for_1,account,account,adcaccounts,accounting,

accounted,accounted,accounted,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,abstract, ,for)]).
m_verb(vtrprep,account_for_1,account,account,adgaceounts,accounting,
accounted,accounted,accounted,trans,human,

[string(oblig,posprec(1,0),[for]),

np(oblig,posprec(2,Wnp),object,abstract)]).

/* DEF to give a statement showing how moneyawds left in one's care have been dealt with */
[* EX He has to account to the chairman foitladl money he spends */

/* NU 6 */
m_verb(vtrprep,account_for_2,account,account,adcaccounts,accounting,
accounted,accounted,accounted,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,abstract, ,for)]).
m_verb(vtrprep,account_for_2,account,account,adsaccounts,accounting,
accounted,accounted,accounted,trans,human,
[string(oblig,posprec(1,0),[for]),
np(oblig,posprec(2,Wnp),object,abstract)]).

/* DEF to give an explanation or reason for */

/* EX He could not account for his foolish mista*/

[*NU 7 */
m_verb(vtrprep,account_for_3,account,account,adsaccounts,accounting,
accounted,accounted,accounted,trans,human,

[pp(oblig,posprec(1,Wpp),pp_arg,_, ,for)]).
m_verb(vtrprep,account_for_3,account,account,adcaccounts,accounting,
accounted,accounted,accounted,trans,human,
[string(oblig,posprec(1,0),[for]),

np(oblig,posprec(2,Wnp),object,)]).

/* DEF infml to kill, shoot, or catch */

[* EX | think | accounted for 3 of the attackérs

Transitive Phrasal Verbs

Examplesiook up, put off: transitive phrasal verbkok it up *look up it
A. FILTERS ON LDOCE

ENTRY 'z' $ pos .and. headclas = "C"

('z' is theposassociated with phrasal verbs in LDOCE)

SEM headclas # "I"

GRAMMAR substr(gramcode,1,2) ="T1"

B. RAW IMPORTED MATERIAL

act out acts acting acted acted®™@. ...H...T 1
DEF to express (thoughts, unconscious fears, iatactions and behaviour rather than in words
add up adds adding added added'2H....T 2

DEF to add (numbers) together to get a total
C. AWK PROGRAM

BEGIN {nu=1}

{ semsubj="_"
if (substr($9,5,1)=="J") semsubj = "thing"
if (substr($9,5,1)=="H") semsubj = "human"
if (substr($9,5,1)=="T") semsubj = "abstract"

semobj="_"

if (substr($9,10,1)=="J") semobj = "thing"

if (substr($9,10,1)=="H") semobj = "human"
if (substr($9,10,1)=="T") semobj = "abstract"

if ($1 ~ /DEF/ || $1 ~ /[EX/) && NF>1)
printf("/* %s *A\n",$0)
else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(vphr,%s_%s_%s,%s,%s,%s%65\n%s,%s,%s,trans,
%s,\n[part(oblig,posprec(1,2),[%s]),\nnp(oblig, prs{1,Wnp),object,%s)]).\n",
$1,$2,$10,$1,$1,$1,$3,$4,$5,$5,$6,sentbisemobj)
nu++}}

}

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1 */

m_verb(vphr,act_out_1,act,act,act,acts,acting,

acted,acted,acted,trans,human,

[part(oblig,posprec(1,2),[out]),

np(oblig,posprec(1,Wnp),object,abstract)]).

/* DEF to express (thoughts, unconscious fedcs) i actions and behaviour rather than in wdrds

/* NU 2 */
m_verb(vphr,add_up_2,add,add,add,adds,adding,
added,added,added,trans,human,
[part(oblig,posprec(1,2),[up]),

np(oblig,posprec(1,Wnp),object,abstract)]).

/* DEF to add (numbers) together to get a total *

Note

/* In both these entries the bracketed materighendefinition is again much more precise than the
semantic code; the two cases are different, howavact_out, the list is open-ended and has
exemplificatory value only; iadd_up, the one-member list is best read as head ofsatine class */
Verbs Taking an Object and an Object Complement

A. Object complement is a noun phrase

Example:consider. he considers the teacher a genius

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"

SEM headclas # "I"

GRAMMAR gramcode="X1" .or. gramcode="X1e"

(in the Liege LDOCE data basé¢le corresponds tX (to be) 1in the printed version of LDOCE)
B. RAW IMPORTED MATERIAL

acclaim acclaims acclaiming acclaimedlaimedv X1 ...H..T.H 2

DEF to declare to be or publicly recognize ap, @sth loud shouts of approval or praise

EX They acclaimed him as the best writer ofytear. They acclaimed her their leader

account accounts accounting accouateduntedv. = X1 ...H...Z 1

DEF to consider

EX He was accounted a wise man. He accountesdfiimucky to be alive

acknowledge acknowledges acknowledging@askedged acknowledgedv Xle ...H...H 2
DEF to recognize, accept, or admit (as)

EX He was acknowledged to be the best playemwateacknowledged as their leader. They
acknowledged themselves (to be) defeated

C. AWK PROGRAM

BEGIN {nu=1}

{ semsubj="_"
if (substr($8,5,1)=="J") semsubj = "thing"
if (substr($8,5,1)=="H") semsubj = "human"
if (substr($8,5,1)=="T") semsubj = "abstract"

semobj="_"

if (substr($8,10,1)=="J") semobj = "thing"

if (substr($8,10,1)=="H") semobj = "human"
if (substr($8,10,1)=="T") semobj = "abstract"

semattr houses restrictions on the object camghe
semattr =" _"
if (substr($8,8,1)=="J") semattr = "thing"
if (substr($8,8,1)=="H") semattr = "human"
if (substr($8,8,1)=="T") semattr = "abstract"

if (31 ~ /DEF/ || $1 ~ /[EX/) && NF>1)
printf("/* %s *\n",$0)
else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(vcomp,%s_%s,%s,%s,%s,%99%6s,%s,%s,trans,
%s,\n[np(oblig,posprec(1,Wnp),object,%s),\nnp(cpligprec(2,Wnp2),object_attribute,%s)]).\n",
$1,$9,$1,$1,$1,%$2,$3,$4,$4,$5,semsubpbgsemattr)
nu++}}

}
D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1 */

m_verb(vcomp,acclaim_2,acclaim,acclaim,acclaimantd,acclaiming,
acclaimed,acclaimed,acclaimed,trans,human,

[np(oblig,posprec(1,Wnp),object,human),
np(oblig,posprec(2,Wnp2),0bject_attribute,abstiact)

/* DEF to declare to be or publicly recognize esp. with loud shouts of approval or praise */
[* EX They acclaimed him as the best writerlad yyear. They acclaimed her their leader */

[* NU 2 */

m_verb(vcomp,account_1,account,account,accounyatg@accounting,
accounted,accounted,accounted,trans,human,
[np(oblig,posprec(1,Wnp),object,),
np(oblig,posprec(2,Wnp2),object_attribute,)]).

/* DEF to consider */

[* EX He was accounted a wise man. He accounitedelf lucky to be alive */

/* NU 3 */
m_verb(vcomp,acknowledge_2,acknowledge,acknowladgapwledge,acknowledges,acknowledging,
acknowledged,acknowledged,acknowledged,trans,human,
[np(oblig,posprec(1,Wnp),object,human),

np(oblig,posprec(2,Wnp2),object_attribute,)]).

/* DEF to recognize, accept, or admit (as) */

/* EX He was acknowledged to be the best plajerwas acknowledged as their leader. They
acknowledged themselves (to be) defeated */

Note

/* The [hu] feature on the object is too restrictiiehe problem was acknowledged one of the hardest in
the field */

B. Object complement is an adjective phrase

Example:consider. he considers the teacher very intelligent

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"
SEM headclas # "I"
GRAMMAR gramcode="X7 " .or. gramcode="X7e"

(in the Liege LDOCE data basé¢7e corresponds tX (to be) 7in the printed version of LDOCE)
B. RAW IMPORTED MATERIAL

account accounts accounting accouateduntedv = X7 ...H...Z 1

DEF to consider

EX He was accounted a wise man. He accountesdfiimucky to be alive

acknowledge acknowledges acknowledging@askedged acknowledgedv X7e ...H...H 2
DEF to recognize, accept, or admit (as)

EX He was acknowledged to be the best playemwateacknowledged as their leader. They
acknowledged themselves (to be) defeated

C. AWK PROGRAM

BEGIN {nu=1}

{ semsubj="_"
if (substr($8,5,1)=="J") semsubj = "thing"
if (substr($8,5,1)=="H") semsubj = "human"
if (substr($8,5,1)=="T") semsubj = "abstract"

semobj="_"

if (substr($8,10,1)=="J") semobj = "thing"

if (substr($8,10,1)=="H") semobj = "human"
if (substr($8,10,1)=="T") semobj = "abstract"

semattr =" _"

if (substr($8,8,1)=="J") semattr = "thing"

if (substr($8,8,1)=="H") semattr = "human"
if (substr($8,8,1)=="T") semattr = "abstract"

if ($1 ~ /DEF/ || $1 ~ /[EX/) && NF>1)
printf("/* %s *A\n",$0)
else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(vcomp,%s_%s,%s,%s,%s,%9986s,%s,%s,trans,
%s,\n[np(oblig,posprec(1,Wnp),object,%s),\nadjpi@bbsprec(2,W),object_attribute,%s)]).\n",
$1,$9,$1,$1,$1,$2,$3,%4,%4,$5,semsubpbgsemattr)
nu++}}

}

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1%
m_verb(vcomp,account_1,account,account,accounyats@ccounting,
accounted,accounted,accounted,trans,human,
[np(oblig,posprec(1,Wnp),object,),
adjp(oblig,posprec(2,W),object_attribute,)]).

/* DEF to consider */

/* EX He was accounted a wise man. He accoumi@delf lucky to be alive */

/* NU 2 */

m_verb(vcomp,acknowledge 2,acknowledge,acknowladgepwledge,acknowledges,acknowledging,
acknowledged,acknowledged,acknowledged,trans,human,
[np(oblig,posprec(1,Wnp),object,human),

adjp(oblig,posprec(2,W),object_attribute,)]).

/* DEF to recognize, accept, or admit (as) */

[* EX He was acknowledged to be the best plajlerwas acknowledged as their leader. They
acknowledged themselves (to be) defeated */

Ditransitive Verbs

A. FILTERS ON LDOCE

ENTRY V' $ pos .and. headclas ="S"
SEM headclas # "I"
GRAMMAR gramcode="D1"

B. RAW IMPORTED MATERIAL

accord accords according accordedrded v D1 ..F.H.T.H 2 -lto
DEF fml to give; allow

EX He was accorded permission to use the library

afford affords affording afforded@ffled v D1 ..BZ...T 3

DEF fml & lit to provide with; supply with; give

EX The tree afforded us shelter from the rain

allocate allocates allocating allocadéldcated v D1H..TAU 2

DEF to give as a share

EX We allocated the society some money

allocate allocates allocating allocat#idcated v D1H...AT 3
DEF to set apart for somebody or some purpose

EX That space has already been allocated fddibgia new hospital

C. AWK PROGRAM

Paul Procter's memorandum to the LD@@iors dated 16/9/1974 specifies that byte 10 fudtw
is for usdefisemshould be used to place semantic restrictionfiefirst object or nominal complement
of a ditransitive verb. Byte 8 should be used lfesecondobject. However, there is some ambiguity in
these specifications, in so far as the indirecectgan beositionally the first object, butonceptually
the second. As a matter of fact, the LDOCE lexiapgers have been rather inconsistent in their godin
of semantic restrictions ono verbs. Thewk program caters for the most frequent type of cgpdie.
byte 8 for the direct object and byte 10 for theirect one.

BEGIN {nu=1}

{ semsubj="_"
if (substr($8,5,1)=="J") semsubj = "thing"
if (substr($8,5,1)=="H") semsubj = "human"
if (substr($8,5,1)=="T") semsubj = "abstract"

semiobj ="_"

if (substr($8,10,1)=="J") semiobj = "thing"

if (substr($8,10,1)=="H") semiobj = "human"

if (substr($8,10,1)=="T") semiobj = "abstract"
semobj="_"

if (substr($8,8,1)=="J") semobj = "thing"

if (substr($8,8,1)=="H") semobj = "human"

if (substr($8,8,1)=="T") semobj = "abstract"

if ($1 ~ /DEF/ || $1 ~ /[EX/) && NF>1)
printf("/* %s *A\n",$0)
else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(vio,%s_%s,%s,%s,%s,%s,%08%3,%s,%s,trans,
%s,\n[np(oblig,posprec(2,Wnp1l),object,%s),\nio(opsprec(1,W2),indirect_object,%s,)]).\n",
$1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubpbgsemiobj)
nu++}}

}

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1 */
m_verb(vio,accord_2,accord,accord,accord,accorcs;ding,
accorded,accorded,accorded,trans,human,
[np(oblig,posprec(2,Wnpl),object,abstract),
io(opt,posprec(1,W2),indirect_object,human,_)]).

[* DEF fml to give; allow */

/* EX He was accorded permission to use thaiipr/

/* NU 2 */
m_verb(vio,afford_3,afford,afford,afford,affordd@iding,
afforded,afforded,afforded,trans,

[np(oblig,posprec(2,Wnpl),object,),
io(opt,posprec(1,W2),indirect_object,abstract,)]).
[* DEF fml & lit to provide with; supply with; gie */
[* EX The tree afforded us shelter from the rdin

Note
[* The T feature is misplaced: it should be placed on thectiobject, not the indirect one */

/* NU 3 */
m_verb(vio,allocate_2,allocate,allocate,allocalecaltes,allocating,
allocated,allocated,allocated,trans,human,
[np(oblig,posprec(2,Wnpl),object,abstract),
io(opt,posprec(1,W2),indirect_object, ,)]).

/* DEF to give as a share */

[* EX We allocated the society some money */

/* NU 4 */

m_verb(vio,allocate 3,allocate,allocate,allocatecaltes,allocating,
allocated,allocated,allocated,trans,human,
[np(oblig,posprec(2,Wnp1l),object,),
io(opt,posprec(1,W2),indirect_object,abstract,)]).

/* DEF to set apart for somebody or some purpgbse

[* EX That space has already been allocatetddding a new hospital */

Note

[* Again, T is misplaced */

Verbs Taking an Object and a That-Clause
Example:tell: he told the teacher that he had taught linguistics

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"
SEM headclas # "I"
GRAMMAR substr(gramcode,1,2) = "D5"

B. RAW IMPORTED MATERIAL

advise advises advising advised aivis D5 ...H..T.X 1

DEF to tell (somebody) what one thinks shouldlbee; give advice to (somebody)

EX | advise waiting till the proper time. | willo as you advise. | advised her that she shouid Wwa
advised her where to stay. | advise you to leawe no

advise advises advising advised &dvis D5 ..F.H.T.X 2
DEF fml to give notice to; inform
EX | have advised her that we are coming. Wallhadvise us (of) when the bags should arrive?

assure assures assuring assurecedssur D5aH..Z.H 1

DEF to try to cause to believe or trust in sormgthpromise; try to persuade

EX | assure you that this medicine cannot haoon yHe assured us of his ability to work
assure assures assuring assurecedssur D5aH..Z.H 2

DEF to make (oneself) sure or certain

EX Before going to bed she assured herselftttfgatioor was locked
C. AWK PROGRAM

BEGIN {nu=1}

{ semsubj="_"
if (substr($8,5,1)=="J") semsubj = "thing"
if (substr($8,5,1)=="H") semsubj = "human"
if (substr($8,5,1)=="T") semsubj = "abstract"

semiobj="_"

if (substr($8,10,1)=="J") semiobj = "thing"

if (substr($8,10,1)=="H") semiobj = "human"
if (substr($8,10,1)=="T") semiobj = "abstract"

if (31 ~ /DEF/ || $1 ~ /[EX/) && NF>1)
printf("/* %s *\n",$0)
else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(viothat,%s_%s,%s,%s,%s %% \n%s,%s,%s,trans,
%s,\n[io(opt,posprec(1,W2),indirect_object,%s,ms)bblig,posprec(2,W),object]).\n",
$1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubjegm
nu++}}

}

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1 */

m_verb(viothat,advise_1,advise,advise,advise,ag)adgising,
advised,advised,advised,trans,human,

[io(opt,posprec(1,W2),indirect_object, ,np),

s(oblig,posprec(2,W),object]).

/* DEF to tell (somebody) what one thinks sholbdddone; give advice to (somebody) */

[* EX | advise waiting till the proper time. lilvdo as you advise. | advised her that she shoad. |
advised her where to stay. | advise you to leawe fio

/* NU 2 */

m_verb(viothat,advise_2,advise,advise,advise,ag)adgising,
advised,advised,advised,trans,human,

[io(opt,posprec(1,W2),indirect_object, ,np),

s(oblig,posprec(2,W),object]).

/* DEF fml to give notice to; inform */

[* EX | have advised her that we are coming.|Wlu advise us (of) when the bags should arrive? *

/* NU 3 */

m_verb(viothat,assure_1,assure,assure,assure 3asstging,
assured,assured,assured,trans,human,

[io(opt,posprec(1,W2),indirect_object,human,np),

s(oblig,posprec(2,W),object]).

/* DEF to try to cause to believe or trust in tling; promise; try to persuade */

[* EX | assure you that this medicine cannonthgou. He assured us of his ability to work */

[* NU 4 */
m_verb(viothat,assure_2,assure,assure,assure §8ssLging,

assured,assured,assured,trans,human,
[io(opt,posprec(1,W2),indirect_object,human,np),
s(oblig,posprec(2,W),object]).

/* DEF to make (oneself) sure or certain */

[* EX Before going to bed she assured herself tihe door was locked */

Note
/* This second reading should be restrictedgsure oneself*/
Verbs Taking an Object and a Prepositional Object

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"

SEM headclas # "I"

GRAMMAR substr(gramcode,1,2) = "T1" .and. righttypo="1"

(if righttypo ="I" (italics) then there is a lexical item in thghthand-side environment and it is a

preposition: recall thatarticles are inbold andprepositionsn italics in therghtctx field)
B. RAW IMPORTED MATERIAL

abandon abandons abandoning abanddrsedionedv T1 ...H...H 4 -lto
DEF to give (oneself) up completely to a feelidgsire, etc.

EX He abandoned himself to grief. abandoneddeba

abet abets abetting abetted abettedllH....X 1 -lin

DEF to encourage or give help to (a crime or orat)

EX He abetted the thief in robbing the bank

absent absents absenting absentedtadsvy T1 ..F.H...H 1 -Ifro

DEF to keep (oneself) away

EX He absented himself from the meeting

absolve absolves absolving absolvedlabdv T1 ... X...H 2 -lfro

DEF to free (someone) from fulfilling a promiseaoduty, or from having to suffer for wrongdoing
abstract abstracts abstracting abstaaibstractedv T1H....C 1 -l fro

DEF tech to remove by drawing out gently; semarat

abstract abstracts abstracting abstaaibstractedv. T1 ..E.H....C 2 -l fro

DEF euph to steal

acclaim acclaims acclaiming acclairmedlaimedv T1 ...H.T.H 2 -las

DEF to declare to be or publicly recognize ap, ®sth loud shouts of approval or praise
EX They acclaimed him as the best writer ofytbar. They acclaimed her their leader

C. AWK PROGRAM

Here the semantic restrictions on the direct olgeetin byte 10; byte 8 codes restrictions on the
prepositional object.

BEGIN {nu=1}

{ semsubj="_"
if (substr($8,5,1)=="J") semsubj = "thing"
if (substr($8,5,1)=="H") semsubj = "human"
if (substr($8,5,1)=="T") semsubj = "abstract"

semobj ="_"

if (substr($8,10,1)=="J") semobj = "thing"
if (substr($8,10,1)=="H") semobj = "human"
if (substr($8,10,1)=="T") semobj = "abstract"

sempobj houses semantic restrictions on thgopreéonal object
sempobj ="_"

if (substr($8,8,1)=="J") sempobj = "thing"

if (substr($8,8,1)=="H") sempobj = "human"

if (substr($8,8,1)=="T") sempobj = "abstract"

the following if-clauses expand the abbrewiagi used for prepositions in the right contextfiel
if ($11 == "fro") $11="from"

if (311 == "wit") $11="with"

if ($11 =="til") $11="till"

if ($11 == "unt") $11="until"

if ($11 =="int") $11="into"

if ($11 == "amo") $11="among"

if ($11 == "bet") $11="between"

if ($11 == "ouf") $11="out_of"

if ($11 == "uon") $11="upon"

if ($1 ~ /DEF/ || $1 ~ /[EX/) && NF>1)
printf("/* %s *\n",$0)
else
{if (NF>1)
{printf("\n/* NU %d */\n",nu)
printf("m_verb(vobjfreepp,%s_%s,%s,%s %5 %s,\n%s,%s,%s,trans,
%s,\n[np(oblig,posprec(1,Wnp),object,%s),\npp(cpligprec(1,Wpp),pp_arg,%s, ,%s)]).\n",
$1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubpbgsempobj,$11)
nu++}}

}

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/*NU 1 */
m_verb(vobjfreepp,abandon_4,abandon,abandon,abadoons,abandoning,
abandoned,abandoned,abandoned,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,t0)]).

/* DEF to give (oneself) up completely to a feegli desire, etc. */

/* EX He abandoned himself to grief. abandonedawviour */

Note
/* The adjectiveabandonedis best dealt with as a separate entry; the dmny should babandon
oneself to*/

/* NU 2 */
m_verb(vobjfreepp,abet_1,abet,abet,abet,abetsrahett
abetted,abetted,abetted,trans,human,
[np(oblig,posprec(1,Wnp),object,),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,in)]).

/* DEF to encourage or give help to (a crime mmaal) */
[* EX He abetted the thief in robbing the bark *

[* NU 3 */
m_verb(vobjfreepp,absent_1,absent,absent,absesmialabsenting,

absented,absented,absented,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,from)]).

/* DEF to keep (oneself) away */

[* EX He absented himself from the meeting */

Note
[* The entry should readbsent oneself fromHe absented her from the meetimgjocular at best*/

I* NU 4 */
m_verb(vobjfrepp,absolve_2,absolve,absolve,absaibge)ves,absolving,
absolved,absolved,absolved,trans,_,
[np(oblig,posprec(1,Wnp),object,human),

pp(oblig,posprec(1,Wpp),pp_arg, , ,from)]).
/* DEF to free (someone) from fulfilling a promeisr a duty, or from having to suffer for wrongdwpiri

[* NU 5 */
m_verb(vobjfreepp,abstract_1,abstract,abstractatisibstracts,abstracting,
abstracted,abstracted,abstracted,trans,human,
[np(oblig,posprec(1,Wnp),object,),

pp(oblig,posprec(1,Wpp),pp_arg, , ,from)]).
/* DEF tech to remove by drawing out gently; sepa */

I* NU 6 */
m_verb(vobjfreepp,abstract_2,abstract,abstractatigibstracts,abstracting,
abstracted,abstracted,abstracted,trans,human,
[np(oblig,posprec(1,Wnp),object,),

pp(oblig,posprec(1,Wpp),pp_arg, , ,from)]).
/* DEF euph to steal */

[*NU 7 */

m_verb(vobjfreepp,acclaim_2,acclaim,acclaim,acclagtlaims,acclaiming,
acclaimed,acclaimed,acclaimed,trans,human,

[np(oblig,posprec(1,Wnp),object,human),

pp(oblig,posprec(1,Wpp),pp_arg,abstract, ,as)]).

/* DEF to declare to be or publicly recognize esp. with loud shouts of approval or praise */
[* EX They acclaimed him as the best writerlad yyear. They acclaimed her their leader */

Appendix F. Sample Parses

The backbone of the parses igpiteelicate-argument-modifier model. Properties of the clause
(voice, aspect, modality, tense) are recordedeaptbp structure. The arguments are givercamonical
order according to their deegf. Athematic elements do not appear in the parses. The shairiihg
variable within thendex structure is used to indicate coindexing.

1. He was eager to back down.

[* control */

[* mwu */

Parse:
[he,was,eager,to,back,down]

7 [* preference index */
clause

pred_arg_mod_structure
prop(vce: active,asp: hone,mod: none,tns: past)
/* Voice, Aspect, Modality, Tense */
predicate(be,agr(finite,past,sing,third))
subject
nounphrase
index(_02B0) /* shared: used to indicate coreference */
ppro(third,sing,masc)
subject_attribute
adjectivephrase
adjective(eager_1)
adj_arg
pred_arg_mod_structure
prop(vce: active,asp: none,mod: nonefresent)
predicate(back_down_1,agr(infinitive))
subject
nounphrase
index(_02B0) /* shared: used to indicate coreference */
ppro(third,sing,masc)

2. They took the problems he had seen into account.

I* mwu */

/* linear precedence */

/* long distance dependencies */

Parse:
[they,took,the,problems,he,had,seen,into,account]

16
clause
pred_arg_mod_structure
prop(vce: active,asp: hone,mod: none,tns: past)
predicate(take_into_account_1,agr(finite,p&stgdb or_second)) mwu */
subject
nounphrase
index(_0360)
ppro(third,plural)
object
nounphrase
index(_0544)
det(the)
noun(problem_1,agr(plural))
relative_clause
clause
pred_arg_mod_structure
prop(vce: active,asp: [perfect],mod: name,past)
predicate(see_1,agr(en_active))
subject
nounphrase
index(_06BC)
ppro(third,sing,masc)
object
gapped_nounphrase
index(_0544)

3. John wants to appear to be loved by Mary.

[* control and raising */

[* passive */

Parse:
[john,wants,to,appear,to,be,loved,by,mary]

14
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: none,tns: ptgsen
predicate(want_1,agr(finite,present,sing,third)
subject
nounphrase
index(_0334)
noun(john,agr(sing))
object /* the object of WANT is clausal */
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: none,tressqant)
predicate(appear_1,agr(infinitive))
subject /* the subject of APPEAR is clausal */
clause
pred_arg_mod_structure
prop(vce: passive,asp: none,mod: nosigpresent)
predicate(love_1,agr(en_passive))
subject [* passive undone */
nounphrase
index(_08AC)
noun(mary,agr(sing))
object
nounphrase
index(_0334)
noun(john,agr(sing))

4. John appears to want to be loved by Mary.

/[* control and raising */

[* passive */

Parse:
[john,appears,to,want,to,be,loved,by,mary]

14
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: none,tns: ptgsen
predicate(appear_1,agr(finite,present,singihir
subject
clause /*the subject of APPEAR is clausal */
pred_arg_mod_structure
prop(vce: active,asp: none,mod: none,tresgnt)
predicate(want_1,agr(infinitive))
subject
nounphrase
index(_0334)
noun(john,agr(sing))
object
clause /* the object of WANT is clausal */

pred_arg_mod_structure
prop(vce: passive,asp: none,mod: nosigpresent)
predicate(love_1,agr(en_passive))
subject /* passive is undone */
nounphrase
index(_08AC)
noun(mary,agr(sing))
object
nounphrase
index(_0334)
noun(john,agr(sing))

5. The genius a book about whom he has read teathiematics.

/* long distance dependencies */

Parse:

[the,genius,a,book,about,whom,he,has,read,teacaggmatics]

19
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: none,tns: ptgsen
predicate(teach_1,agr(finite,present,sing,jhird
subject
nounphrase
index(_03C8) [* coref 1 */
det(the)
noun(genius_1,agr(sing))
relative_clause
object
nounphrase
index(_051C) [* coref 2 */
det(a)
noun(book_1,agr(sing))
np_arg_of_prep
prepphrase
index(_0668)
prep(about)
np_arg_of_prep
nounphrase
index(_03C8) /*coref1*
relative(whom)
clause
pred_arg_mod_structure
prop(vce: active,asp: [perfect],mod: name,present)
predicate(read_1,agr(en_active))
subject
nounphrase
index(_075C)
ppro(third,sing,masc)
object
gapped_nounphrase
index(_051C) [* coref 2 */
object
nounphrase
index(_0B68)

det(zero)
noun(mathematics_1,agr(sing_uncountable))

6. | am reading in the library a book the studevast me to read.

/[* linear precedence */

[* control */

/* long distance dependencies */

Parse:

[i,am,reading,in,the,library,a,book,the,studentsyae,to,read]

26
clause
pred_arg_mod_structure
prop(vce: active,asp: [progressive],mod: norse pinesent)
predicate(read_1,agr(ing))
subject
nounphrase
index(_03EO0)
ppro(first,sing)
object
nounphrase
index(_06EO)
det(a)
noun(book_1,agr(sing))
relative_clause
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: nonepresent)
predicate(want_1,agr(finite,present,dlusa. second))
subject
nounphrase
index(_0860)
det(the)
noun(student_1,agr(plural))
object
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: nose present)
predicate(read_1,agr(infinitive))
subject
nounphrase
index(_0A98)
ppro(first,sing)
object
gapped_nounphrase
index(_06EO0)
vp_modifier
prepphrase
index(_056C)
prep(in)
np_arg_of _prep
nounphrase
index(_05CO0)
det(the)
noun(library_1,agr(sing))

7. The teacher has been given a book and the ssuadibrary.

I* gapping */

[* passive */

Parse:
[the,teacher,has,been,given,a,book,and,the,styddiisry]

8
and_sentence
clause
pred_arg_mod_structure
prop(vce: passive,asp: [perfect],mod: nonepnssent)
predicate(give_1,agr(en_passive))
object
nounphrase
index(_075C)
det(a)
noun(book 1,agr(sing))
indirect_object
nounphrase
index(_049C)
det(the)
noun(teacher_1,agr(sing))
clause
pred_arg_mod_structure
prop(vce: passive,asp: [perfect],mod: nonepnssent)
[* gapped v */
predicate(give_1, 0494)
object
nounphrase
index(_0A7C)
det(a)
noun(library_1,agr(sing))
indirect_object
nounphrase
index(_04CC)
det(the)
noun(student_1,agr(plural))

8. She likes the books that | have written and lyave put into the library.

/* coordination with across-the-board deletions */
Parse:
[she,likes,the,books,that,i,have,written,and,youelyaut,into,the,library]

28
clause
pred_arg_mod_structure
prop(vce: active,asp: none,mod: none,tns: ptgsen
predicate(like_1,agr(finite,present,sing,third)
subject
nounphrase
index(_0434)
ppro(third,sing,fem)
object
nounphrase

index(_O5EC) [* coref */
det(the)
noun(book 1,agr(plural))
and_relative_clause
relative_clause
object
nounphrase
index(_05EC) [* coref */
relative(that)
clause
pred_arg_mod_structure
prop(vce: active,asp: [perfect],mod: nome present)
predicate(write_1,agr(en_active))
subject
nounphrase
index(_0844)
ppro(first,sing)
object
gapped_nounphrase
index(_0O5EC) /* coref */
relative_clause
clause
pred_arg_mod_structure
prop(vce: active,asp: [perfect],mod: nome present)
predicate(put_1,agr(en_active))
subject
nounphrase
index(_0B2C)
ppro(second)
object
gapped_nounphrase
index(_05EC) [* coref */
pp_arg
prepphrase
index(_0D74)
prep(into)
np_arg_of_prep
nounphrase
index(_0DCS8)
det(the)
noun(library_1,agr(sing))

Appendix G. Test Suites

For Analysis

Designed for Horatio

They failed.
He was eager to back down.
Do the facts allow the explanation he gave to thdents ?

They should back up the teacher.

They should back the good teachers up.

They should back up the teacher they like.

The teacher should have been backed up.

She must allow that John is a good teacher.

She must allow John is a bad teacher.

You must allow for the oversimplifications he haada.
The teacher allows the boys money for books.

He told her that he loved Mary.

She told him what to see.

John has alienated the students from the teacher.
He allowed the students into the library.

The students he had allowed into the library weegling books.
They are teachers.

He is reluctant to go into the library.

The problem is that she knows him.

We have been in the library.

He has become a good teacher.

The books belong in the library.

The girl went to the library.

He brought the books he had liked to the library.

He brought to the library the books he liked.

He considers the claim she has made an oversiogtldn.
They declared the claim valid.

They will decide where to go.

They did away with the bad teachers.

They want him to kick the bucket.

They should pay attention to the problems he saw.
Great attention was paid to the problems he haal see
The students had been put at risk.

They took the problems he had seen into account.
They took into account the problems they had seen.
He should take them into account.

The workshop will take place in the library.

They were shooting the breeze.

They allowed her to teach linguistics.

She was allowed to teach linguistics.

They wanted to teach linguistics.

He wanted them to put the workshop off.

John tried to teach linguistics.

* John tried them to teach linguistics.

They persuaded her to teach linguistics.

She was persuaded to teach linguistics.

They expected her to teach linguistics.

She was expected to teach linguistics.

Mary is expected to be elected.

She promised to teach linguistics.

She promised them to teach linguistics.

She seems to have taught linguistics.

It seems that she has taught mathematics.

The book seems to have been read by the students.
The book was expected to have been read.

She is eager to teach.

She is easy to please.

She is an easy woman to please.

The teacher was seen to read a bad book.

The students saw John teach mathematics.

Teachers avoid reading books.

She wants to avoid their reading bad books.

They believed him to have killed a student.

He was believed to have killed a student.

* The book seems to read.

The book seems to be read.

The book seems to have been read by the student.

* The book was seen to read.

The book is believed to have been read.

The man is believed to have read the book.

* The man is believed to have been read.

Mary tends to be annoyed by John.

John tends to annoy Mary.

John tries to annoy Mary.

Mary tries to be annoyed by John.

John wants to appear to be loved by Mary.

John appears to want to be loved by Mary.

When Mary saw John she told him that she wantedtdiimeet the teacher.
He warned her that she had been seen before std¢ontbe library.
If he saw her he must have seen her before sheimterthe library.
The teacher who teaches linguistics is good.

The workshop that he wants to put off will fail.

The genius a book about whom he has read teachbemmatics.
She likes the town in which she lives.

She likes the town which she lives in.

She likes the town that she lives in.

She likes the town she lives in.

She likes the town where she lives.

The teacher whose books she likes thinks thatssheyood student.
| know the university which she tells him she kndveswants her to go to.
Who knew that John expected her to break down ?

What might the man have been looking at ?

On which table has he put the books ?

Which table has he put the books on ?

Where did he go ?

Have you met Mary ?

Do | know him ?

Are they the teachers who taught you linguistics ?

| knew where he wanted to go.

You must decide which books the students should. rea

| told him where to go.

He must have been told where to go.

Might he have been writing a book ?

Does he believe her to have gone in for linguistics

Have you read the letter to the teacher aboutibhnary ?

The problem with you is that you know me.

Do you back up the decision to give him money ?

They are easy to teach.

John is reluctant to teach linguistics.

John is black.

John has seen a black dog.

He is sure to tell them what to read.

He is sure | will tell them what to read.

Mary is an easy woman to please.

The man reading a book in the library is a teacher.

| want to read a book written by a student.

He went to the library with Mary.

Mary was reading a book about linguistics in tibedry.

The woman is reading a book in the library.

* The woman is reading in the library a book.

| am reading in the library a book the studentstwaa to read.
She gave books to the students.

* She gave to the students books.

She gave the students good books.

* She gave books the students.

She gave the students the books she wanted thexado
The teacher took the problems into account.

The teacher took into account the problems.

The teacher took them into account.

* The teacher took into account them.

The teacher took into account the problems theesiigchad seen.
Do you like books about linguistics ?

The man reading a book in the library is a goodtien

He considers the claim she made an oversimpliGoati

The students were persuaded to read the books iibtary.
He had been looked down on.

Mary has been given a book.

A good book has been given to Mary.

A book has been given to Mary by the student.

The students are expected to read books abouidirggu
The teacher was seen to read a book about women.
Books should be read.

The student was declared a genius.

The problems were paid attention to.

Great attention was paid to the problems the stsdsad seen.
The books they said they liked were put in thealijpr

He had been told where to meet her.

He was believed to have killed a bad student.

The good books seem to have been read by the ssuden
The teacher whose books | told her I liked knovesuhiversity | have persuaded her to go to.
The students like the books the teacher wants thesad.
What does the teacher think the student is learhing

Who is the man the woman has been looking forrliageto ?
On which table might the man have put the books ?
Which table might the man have put the books on ?

| decided what to tell her | believed her to like.

With coordination:

Mary teaches linguistics and John is learning nraties.
Mary teaches linguistics and John mathematics.

Mary is and John wants to be in the library.

Mary is in and John wants to be in the library.

Mary went to the library and John to the workshop.
The teacher has been given a book and the stualdibtary.
John and the students want to put off the workshop.
John likes dogs and black cats.

He looked at the teacher and the students.

She made a valid and true claim.

The teacher turned up and broke down.

She declares and considers him a genius.

She told him where to go and what to see.

He can and should see her.

He relied on and liked the students.

He liked and relied on the students.

He backed up and liked the decision to give themeayo

He liked and backed up the decision to give themeayo

She likes the books that | have written and yoweh@au into the library.
They had been tripping the light fantastic and singahe breeze.
They tripped the light fantastic and shot the beeez

They may trip the light fantastic and shoot theehee

Based on Flickinger et al. 1987

Abrams works.

Abrams hired Browne.
Abrams showed the office to Browne.
Abrams showed Chiang the office.
Abrams became competent.
Abrams became a manager.

* Abrams became in the office.
* Abrams became working.
Abrams is interviewing an applicant.
Abrams is interviewing.
Abrams is working for Browne.
Abrams is working.

Abrams works for Browne.

* Abrams works of Browne.
Abrams approves of Browne.
* Abrams approves for Browne.
She hired him.

He hired her.

* She hired he.

* He hired she.

* Her hired he.

* Him hired she.

* Her hired him.

* Him hired her.

He showed it to her.

He showed her it.

He showed her an office.

He showed it to Chiang.

* He showed Chiang it.

He interviewed them.

* He interviewed they.

They interviewed him.

* Them interviewed him.

| interviewed Abrams.

Abrams interviewed me.

* Me interviewed Abrams.

* Abrams interviewed I.

We interviewed Abrams.
Abrams interviewed us.

* Us interviewed Abrams.

* Abrams interviewed we.

You interviewed Abrams.

Abrams interviewed you.

She and | interviewed Abrams.

| and she interviewed Abrams.

* Me and her interviewed Abrams.
* Her and me interviewed Abrams.
* Her and | interviewed Abrams.

* She and me interviewed Abrams.
* Me and she interviewed Abrams.
* | and her interviewed Abrams.
Abrams interviewed her and me.

* Abrams interviewed she and I.
Abrams interviewed me and her.

* Abrams interviewed | and she.

* Abrams interviewed her and |I.

* Abrams interviewed she and me.
* Abrams interviewed me and she.
* Abrams interviewed | and her.
Whom does she work for ?

Who does she work for ?

For whom does she work ?

Who hired Browne ?

* Whom hired Browne ?

A manager works.

Managers work.

* A manager work.

* Managers works.

| work.

* | works.

You work.

* You works.

He works.

* He work.

We work.

* We works.

They work.

* They works.

They list women who have bookcases.
* They list women which have bookcases.
* They list bookcases who women have.
They list bookcases which women have.
A manager is an employee.
Managers are employees.
Managers are a problem.

Abrams may hire Browne.
Abrams might hire Browne.
Abrams can hire Browne.

Abrams shall hire Browne.
Abrams should hire Browne.
Abrams will hire Browne.

Abrams would hire Browne.
Abrams must hire Browne.
Abrams has hired Browne.
Abrams is hiring Browne.

Abrams could have hired Browne.
Abrams could be hiring Browne.

Abrams could have been hiring Browne.
Browne was interviewed by Abrams.

Browne could be interviewed by Abrams.
Browne has been interviewed by Abrams.
Browne is being interviewed by Abrams.
Browne could have been interviewed by Abrams.
Browne could be being interviewed by Abrams.
Browne has been being interviewed by Abrams.
Browne could have been being interviewed by Abrams.
* Abrams could hired Browne.

* Abrams could hiring Browne.

* Abrams has hire Browne.

* Abrams has hiring Browne.

* Abrams is hire Browne.

* Abrams is hired Browne.

* Abrams has could hire Browne.

* Abrams is coulding hire Browne.

* Abrams is having hired Browne.

* Abrams has could be hiring Browne.

* Abrams could be having hired Browne.

* Abrams could may hire Browne.

* Abrams has had hired Browne.

* Abrams is being hiring Browne.

* Abrams did could hire Browne.

* Browne is could interviewed by Abrams.

* Browne is had interviewed by Abrams.

* Browne did be interviewed by Abrams.

* Browne is did interviewed by Abrams.

* Browne is been interviewed by Abrams.
Abrams knew who to hire.

Abrams knew who Browne hired.

Abrams knew that Browne hired Chiang.
Abrams laid off a programmer.

Abrams laid a programmer off.

Abrams managed to hire Browne.

Abrams promised Browne to hire Chiang.
Abrams promised Browne to be interviewed by Chiang.
Browne was promised by Abrams to hire Chiang.
Browne was promised to hire Chiang.

Abrams urged Browne to hire Chiang.

Browne was urged to hire Chiang.

Abrams urged Browne to be interviewed.
Abrams was urged to be interviewed.

Abrams failed to hire Browne.

Abrams failed to be interviewed by Browne.
Abrams was hired by Browne.

Abrams was hired.

He was hired by her.

* Him was hired by her.

* He was hired by she.

An office was shown to Abrams by Chiang.

An office was shown to Abrams.

An office was shown by Abrams to Browne.
Devito was shown an office by Abrams.

An office was shown Chiang by Abrams.
Abrams was urged to hire Browne by Chiang.

Abrams was urged by Devito to hire Browne.

Abrams was urged to hire Browne.

Abrams was known to be interviewing Browne.

Abrams was known by Chiang to be interviewing Brewn
Abrams was approved of by Chiang.

Abrams was approved of.

Abrams is competent.

Abrams is a manager.

Abrams is in the office.

Abrams hired a woman who was competent.

Abrams hired women who were competent.

* Abrams hired a woman who were competent.

* Abrams hired women who was competent.

Abrams hired women whose manager was competent.
Abrams hired a woman who Browne interviewed.

Abrams hired a woman who Browne approved of.

Abrams hired a woman who Browne knew Chiang ineaned.
Abrams has a bookcase which is heavy.

Abrams has a bookcase that is heavy.

* Abrams has a bookcase what is heavy.

Abrams has an office that Browne showed Chiang.
Abrams has an office which Browne showed Chiang.
Abrams has an office Browne showed Devito.

Abrams has an office that Browne showed to Devito.
Abrams interviewed a woman who Browne showed aicetb.
Abrams has an office Devito showed to Chiang.

Abrams hired a woman that was competent.

Abrams hired a woman was competent.

Abrams hired a woman that Browne interviewed.

Abrams hired a woman Browne interviewed.

Abrams hired a woman that Browne approved of.

Abrams hired a woman Devito approved of.

Abrams hired a woman that Browne knew Chiang inésved.
Abrams hired a woman Browne knew Devito interviewed
Abrams hired a woman interviewed by Chiang.

Abrams hired a woman working for Chiang.

Abrams hired a woman of whom Chiang approved.
Abrams has a bookcase of which Chiang approved.
Abrams hired a woman the manager of whom Chiangritadsiewed.
Abrams hired a woman whose manager Chiang had/iewezd.
Abrams interviewed programmers whose manager wangh
* Abrams interviewed programmers whose manager @Wéiang.
* Which project is Abrams a programmer and the nganaf ?
* Which project does Abrams manage the departmaht?a

* Which manager did Abrams have an office that @giahowed to ?
* Which projects does Abrams know who had worked®on

* Which managers does Abrams know which officesvBre had shown to ?
* Which programmer did Abrams know which office had

* Which programmer was that Abrams had interviewedwn by Browne ?
Is Abrams a manager ?

Is Abrams competent ?

* Are Abrams competent ?

Does Abrams work for Browne ?

Could Abrams work for Browne ?

Is Abrams working for Browne ?

Has Abrams worked for Browne ?

Could Abrams be working for Browne ?

Could Abrams have worked for Browne ?

Has Abrams been working for Browne ?
Could Abrams have been working for Browne ?
* Has been Abrams working for Browne ?

* Has Abrams is working for Browne ?

* Has Abrams be working for Browne ?

* Have Abrams could be working for Browne ?
Could Abrams have been interviewed by Browne ?
Has Abrams been interviewed by Browne ?
Was Abrams interviewed by Browne ?

Was Abrams interviewed ?

Was Abrams being interviewed by Browne ?

* Did Abrams be interviewed by Browne ?

* Was Abrams been interviewing by Browne ?
Who works for Chiang ?

Who is a manager ?

Who will be a manager ?

Who is managed by Abrams ?

What was shown to Browne ?

Which programmer works for Abrams ?
Which programmer is a manager ?

Which programmer will be a manager ?
Which programmer was hired by Abrams ?
Who does Chiang employ ?

What did Abrams show Browne ?

What did Abrams show to Chiang ?

What was Abrams shown ?

Which programmer did Abrams interview ?
What project does Abrams manage ?

Which office was Abrams shown ?

Where does Abrams work ?

Where was Abrams interviewed ?

Who does Abrams work for ?

Which office does Abrams work in ?

Whom did Abrams show an office to ?

Who is Browne managed by ?

Which department does Abrams know the manager of ?
Whose department does Abrams work in ?

Of whom does Abrams approve ?

In which office does Abrams work ?

To whom did Abrams show an office ?

Who did Abrams show an office ?

Who was shown an office by Abrams ?

By whom is Browne managed ?

Of which department is Browne the manager ?
In whose department does Chiang work ?
Whose manager did Abrams hire ?

* Whose did Abrams hire manager ?

Abrams knows who hired Browne.

Abrams knows who was hired by Browne.
Abrams knows which managers interviewed Browne.
Abrams knows who Browne hired.

Abrams knows who showed Browne an office.
Abrams knows who Browne was hired by.
Abrams knows whom Browne was hired by.

Abrams knows by whom Browne was hired.

Abrams knows which programmers Browne hired.

Abrams knows where Browne works.

The managers of the projects are trustworthy.

The consultants to the managers were hired by Adram

The programmer who was hired by Abrams manageprtiect.
Abrams manages the project that has consultants.

* Abrams manages the project has consultants.

* The programmer was hired by Abrams manages thegr
The programmer whom Browne hired manages the grojec
Abrams works on the project that Browne manages.
Abrams works on the project Browne manages.

Abrams works for a competent manager.

Browne hired a competent programmer who Abramsvigeed.
It appears that Chiang interviewed Browne.

Programmers are hard to interview.

* Programmers are hard to interview engineers.

* Programmers is hard to interview.

Chiang was hard to show an office to.

Offices are hard to show to Chiang.

Devito was hard to show an office.

Offices are hard to show Devito.

He worked.

He was working.

He had worked.

He had been working.

He is working.

He has worked.

He has been working.

He will work.

He will be working.

He will have worked.

He will have been working.

Abrams hired a programmer before Devito interviewadngineer.
Abrams hired a programmer after Devito interviewaadengineer.

With coordination:

Chiang is a manager and Devito is a programmer.
Chiang and Devito work.

* Chiang and Devito works.

Chiang hired Devito and Devito manages Browne.
Chiang hired Devito and manages Browne.

* Chiang hired Devito and manage Browne.

Abrams was interviewed and Browne was hired.

Abrams interviewed programmers and Browne was hired
Abrams interviews programmers and is managed bwieo
Abrams was interviewed and was hired.

Abrams was interviewed by Browne and hired by Devit
Abrams was interviewed and hired by Browne.

Abrams was interviewed and hired.

Chiang works and manages programmers.

* Chiang work and manages programmers.

* Chiang work and manage programmers.

Chiang interviewed programmers and showed Brownaffare.
Chiang hired and manages Devito.

* Chiang hired and manage Devito.

Devito works for Devito and with Browne.

Devito works for and with Chiang.

An old and trustworthy employee manages Devito.

* An old and trustworthy employee manage Devito.

Devito is old and trustworthy.

The managers and programmers are employees.

Devito manages a programmer who Abrams intervieavetiBrowne hired.
Devito manages a programmer Abrams interviewedBaodne hired.
Devito is the manager who interviewed Abrams amechBrowne.
Did Abrams interview a programmer and hire an eegir?

Who did Abrams interview and Browne hire ?

Who was interviewed by Abrams and hired by Browne ?

* Who does Devito manage and Chiang work for ?

* Who does Devito manage and Chiang works for ?

* Who does Devito manages and Chiang works for ?

* Who does Devito manage Browne and Chiang workefor
Who was Abrams interviewed by and hired by ?

* Who was Abrams interviewed by Browne and hired?by

* Who does Devito manage and Chiang work for Browne
Devito is the manager with whom and for whom Chiargks.

For Generation

(the following are generatable from the correspogdgiarses produced Ibpratio)

they failed

he was eager to back down

do the facts allow the explanation he gave theestted
they should back up the teacher

they should back up the good teachers

they should back up the teacher they like

the teacher should have been backed up

she must allow john is a good teacher

she must allow john is a bad teacher

you must allow for the oversimplifications he haade
the teacher allows the boys money for books

he told her he loved mary

she told him what to see

john has alienated the students from the teacher
he allowed the students into the library

the students he had allowed into the library weealing books
they are teachers

he is reluctant to go into the library

the problem is she knows him

we have been in the library

he has become a good teacher

the books belong in the library

the girl went to the library

he brought the books he had liked to the library

he brought the books he liked to the library

he considers the claim she has made an oversiogpidn

they declared the claim valid

they will decide where to go

they did away with the bad teachers

they want him to kick the bucket

they should pay attention to the problems he saw
great attention was paid to the problems he had see
the students had been put at risk

they took into account the problems he had seen
they took into account the problems they had seen
he should take them into account

the workshop will take place in the library

they were shooting the breeze

they allowed her to teach linguistics

she was allowed to teach linguistics

they wanted to teach linguistics

he wanted them to put off the workshop

john tried to teach linguistics

they persuaded her to teach linguistics

she was persuaded to teach linguistics

they expected her to teach linguistics

she was expected to teach linguistics

mary is expected to be elected

she promised to teach linguistics

she promised them to teach linguistics

she seems to have taught linguistics

she seems to have taught mathematics

the book seems to have been read by the students
the book was expected to have been read

she is eager to teach

she is easy to please

she is an easy woman to please

the teacher was seen to read a bad book

the students saw john teach mathematics
teachers avoid reading books

she wants to avoid them reading bad books

they believed him to have killed a student

he was believed to have killed a student

the book seems to be read

the book seems to have been read by the student
the book is believed to have been read

the man is believed to have read the book

mary tends to be annoyed by john

john tends to annoy mary

john tries to annoy mary

mary tries to be annoyed by john

john wants to appear to be loved by mary

john appears to want to be loved by mary

when mary saw john she told him she wanted himesetrthe teacher
if he saw her he must have seen her before sheimterthe library
the teacher who teaches linguistics is good

the workshop that he wants to put off will fail

the genius a book about whom he has read teachesmetics
she likes the town in which she lives

she likes the town which she lives in

she likes the town that she lives in

she likes the town she lives in

she likes the town where she lives

the teacher whose books she likes thinks she @®d student
* 1 know the university which she tells him she lkwsohe wants she go to
who knew john expected her to break down

what might the man have been looking at

on which table has he put the books

which table has he put the books on

where did he go

have you met mary

do i know him

are they the teachers who taught you linguistics

i knew where he wanted to go

you must decide which books the students shouldl rea
i told him where to go

he must have been told where to go

might he have been writing a book

does he believe her to have gone in for linguistics
have you read the letter to the teacher abouilihery

the problem with you is you know me

do you back up the decision to give him money

they are easy to teach

john is reluctant to teach linguistics

john is black

john has seen a black dog

he is sure to tell them what to read

he is sure i will tell them what to read

mary is an easy woman to please

the man reading a book in the library is a teacher

I want to read a book written by a student

he went to the library with mary

mary was reading a book about linguistics in thealy
the woman is reading a book in the library

I am reading a book the students want me to re#itkifibrary
she gave the students books

she gave the students good books

she gave the books she wanted them to read thenssud
she gave the students the books she wanted therado
the teacher took into account the problems

the teacher took them into account

the teacher took into account the problems theesiischad seen
do you like books about linguistics

the man reading a book in the library is a goodhea

he considers the claim she made an oversimplifinati
the students were persuaded to read the books iibtary
he had been looked down on

mary has been given a book

mary has been given a good book

mary has been given a book by the student

the students are expected to read books abouidingyu
the teacher was seen to read a book about women
books should be read

the student was declared a genius

the problems were paid attention to

great attention was paid to the problems the stgdead seen
the books they said they liked were put in thealifpr

he had been told where to meet her

he was believed to have killed a bad student

the good books seem to have been read by the ssuden

the teacher whose books i told her i liked knovesuthiversity i have persuaded her to go to
the students like the books the teacher wants thewad

what does the teacher think the student is learning

who is the man the woman has been looking forfiatgto

on which table might the man have put the books

which table might the man have put the books on

| decided what to tell her i believed her to like

Appendix H. Prolog Predicates

The predicates covered in this appeadixthenonpredefined Prolog predicates used loratio
andhorgen and described in the body of the text. Each pegdits assigned one or sevaralsges),
which reflect(s) the area and/or job inminly used for. The list of classes is the following:

CHECK: used for checking purposes

DATA BASE: defined by a set of facts (no rules)
EXPANSION: expands a lexical macro-clause
GENERATION: used by the generator
LEXICAL.: belongs to the vocabulary files
MACRO: macro-clause for the vocabulary
PARSING: used by the parser

UTIL: utility predicate

Thepurpose section describes what the predicate is usedafooratio and/orhorgen. It is not a
description of the purpose of the predicate in garterms. Theargument pattern section is likewise
geared towards the application in hand. Ti$teof arguments describes any or all of the typical args used
in the predicate argument structure. It shoulddieadhthat the parsing predicates implenufierence
list parsing and therefore open up with two arguments concewittdthe word list: the first is the word
list on entry, and the second the word list on.&¢iiese two arguments are callagutWordList and
OutputWordList in argument patterns. The parsing predicates aft@ninclude the following
arguments:

Gaplist, which houses the list of gaps to be passed uglawth in the treatment of long distance
dependencies.

Preference a number reflecting the preference to be assigméuke parse (a tree with a higher
preference is to be preferred over one with a Igwecedence)

Weight, a number reflecting the structural complexityagfhrase, to account for end placement of
weightier elements

accu

Class: UTIL

Purpose: accumulates the preferenaxgwlof the constituents in order to compute the
preference index for the whole S

Argument pattern: accu(Total, Listof\fas$)
List of arguments: Totalnsof the list of values contained in ListofValues
tabvalues: values to be added up

adverb_sentence
Class: PARSING
Purpose: parses an adverbial clauaelettl to a main declarative S
Argument pattern: adverb_sentence(MfautlList, OutputWordList, Gaps, Preference, Paesgtr
Finiteness, Person, Number, Voice)
List of arguments: Gapsdste the empty list
Famess is set thnite

adj
Class: LEXICAL / EXPANSION
Purpose: expands the macro-clansedj for adjectives
Argument pattern: adj(InputWordList, tputWordList, LexicalTree, SemRestr, Arglist)
List of arguments: SemResthe semantic restriction the adjective placethemoun it
modifies
Agj is the adjective's argument list; it may bepéyn

agree
Class: PARSING / CHECK
Purpose: checks subject-verb agreement
Argument pattern: agree(Personnp, Nunhe/pAgr)
List of arguments: Personpgrson of subject NP
Nbernp: number of subject NP
V@A one of firstsg, thirdsg, other/

allopt

Class: CHECK

Purpose: checks that all remaining ardbe arglist are optionaal | opt is called after
sati sfyli st has applied to the arglist)

Argument pattern: allopt(Arglist)

List of arguments: Arglist is the Idtremaining arguments, afteat i sfyl i st has worked
through it

allsubject
Class: CHECK / GENERATION
Purpose: checks that the function ghaseargument is a subject
Argument pattern: allsubject(Subjecttiion)
List of arguments: SubjectFunction:jeah subject_inf, subject_pass, ...

append
Class: UTIL
Purpose: standard list appending
Argument pattern: append(L1, L2, L3)

arglist

Class: PARSING

Purpose: modifies, if necessary, thiedf arguments to be satisfied. It does so byntatleog to
deal with arg-changing transformations such asiy&ass raising

Argument pattern: arglist(InputWordlL.iStutputWordList, Gaps, Status, Preference, Prewsge
RelStat, Relorint, Voice, Parsetree, Nature, AtgksomotedFunction, SubjectFunctorl,
SubjectFunctor2, Class)

List of arguments: Statudicates whether an argument or a modifier has fmerd,; it is

set to 1 if the answer is yes

Bt shows whether a relative or interrogative pumnor determiner has
been found

Beht is used to keep relatives and interrogatajest

Neg shows whether we have an np or a vp arglist

RrotedFunction is the function promoted to subject

$ediFunctorl is a subject functor showing the ragrsubject before
satisfaction of thar gl i st predicate

$ediFunctor2: running subject after satisfactionh&far gl i st
predicate

€4as the predicate class of the arg-bearing paélic

assoC
Class:UTIL / DATA BASE
Purpose: associates a rank with a grainoal function (used to give args in canonicaleorid the

parse)
Argument pattern: assoc(Gf, Rank)
List of arguments: Gf: amraatical function (subject, object, ...)
@rda number reflecting the position of the arghie canonical order
aux

Class: LEXICAL
Purpose: lexical predicate for auxigar
Argument pattern: aux(InputWordList, tputWordList, LexemeValue, Type, TypeRequired,
Number, AgreementValue, Tense)
List of arguments: Type:l@ttional type of the aux
BRpequired: inflectional type of the next aux to tigt

before
Class: UTILITY / CHECK
Purpose: checks that an argument neeegdes another in canonical order
Argument pattern: before[F1,R1], [FZR2
List of arguments: the arguments ats hvhose first member is a grammatical functidoet,

pp_arg, ...)

C_sentence

Class: PARSING

Purpose: parses main declarative ciawsgi¢h or without on either side or on both adair
subordinate clauses

Argument pattern: c_sentence(InputWatlOutputWordList, Preference, ParseTree, Fiessn
Person, Number, Voice)

List of arguments: Finiteness is sdirtibe : we are dealing with main declarative clauses

checkaux3
Class: PARSING
Purpose: records relationships betvessprect, voice and auxiliary type
Argument pattern: checkaux3(AspectlisfiectionalSpec, Voice)
List of arguments: Aspettissa list, possibly empty; members @regressiveand
perfect
InflectionalSpec is an inflectional specification the next verb to the right
eiis either passive or uninstantiated (interprasedctive voice)

checksem
Class: SEMANTICS

Purpose: checks that two semanticioéisins are compatible
Argument pattern: checksem(Semresbndtj Semrestriction2)

control
Class: GENERATION
Purpose: takes care of deleting theérobber element in the controlled clause; the colter is
always the subject in that clause; its index iainetd but the body of the np is ghosted
Argument pattern: control(DeeperTre@rdSurfacyTree)

controller

Class: GENERATION / CHECK / DATA BASE

Purpose: checks that the grammatigaitfan is one that can control the governed subaitdi
clause, i.e. act as subject

Argument pattern: controller(Function)

List of arguments: Function: subjedtjeat, subject_inf, indirect_object, ...

corenounphrase

Class: PARSING

Purpose: parses typical, ‘core’ nps

Argument pattern: corenounphrase(InparitWist, OutputWordList, Gaplist, Index, Preference
Weight, Rel, IntRel, Function, ParseTree, Numbersén, Semantics)

List of arguments: seeunphr ase

cv

Class: LEXICAL / CHECK / GENERATION

Purpose: checks that a verb belongise@lass of control verbs. Such verbs have amvhrch
plays the role of subject in a nonfinite complemdatise (infinitive or ing clause) which is itsat arg
of the control verb

Argument pattern: cv(ControlVerb, Reqd)

List of arguments: Required: onetof bare, ing /, indicating the type of nonfinite complement
clause

determiner

Class: LEXICAL

Purpose: provides lexical entries fetedminers

Argument pattern: determiner(InputWasd] OutputWordList, LexicalParseTree, Number,
Semantics, Index)

List of arguments: Semantica semantic restriction used for relative arnidriogative
determiners

idis an index functorél(Index)) used for indexing purposes in

relative clauses; Index is set to the stiimgfor interrogative determiners

drop
Class:UTILITY
Purpose: removes athematic argumeaits fne list of arguments to appear in the parse tre
Argument pattern: drop([AthematicFuonti RestofTree])
List of arguments: the arg to drophis list corresponding to the tree for the athemattiment,
whose head is the name of the athematic functiani (@bject, subject_inf, ...)

expos

Class: LEXICAL / GENERATION

Purpose: checks that a predicate bsltmthe class of extraposition verbs (such as seeused
in It seems that.)

Argument pattern: expos(Extraposvesb, t

List of argumentso is the infinitive particldo

extrapos

Class: GENERATION

Purpose: extraposes the subject clamuthe right and fills the surface subject positiath place-
filler IT (It seems that John likes linguisfics

Argument pattern: extrapos(DeeperTkéareSurfacyTree)

first
Class: UTIL
Purpose: generates the first auxiliargn auxiliary list
Argument pattern: first(List, FirstElent)

first_header
Class: CHECK / GENERATION
Purpose: checks on the environmengeiregation
Argument pattern: first_header(String)
List of arguments: String: object, cpilt...

flatten
Class: UTIL
Purpose: flattens a list (code is beed from Bratko 1990, p.572)
Argument pattern: flatten(List, Flatbethist)

gen
Class: GENERATION
Purpose: central predicate in genematio
Argument pattern: gen(ParseTreeListhgbatedStringList)
List of arguments: ParseTListeis a list representing a parse tree
@eatedStringList is a list of generated words
genaspl

Class: GENERATION
Purpose: generates aspectual auxsi@genaspl takes care of perfect HAVE)
Argument pattern: genaspl(AspectSlaisBETree, GeneratedAux, RequiredTypel,
RequiredType2)
List of arguments: Requirgdé&l is the inflectional type of the aux
RegdType2 is the inflectional type of the next aoxhe right

genasp?2
Class: GENERATION
Purpose: cfenaspl, but deals with the generation of progressive Blbx
Argument pattern: cjenaspl

generate

Class: GENERATION

Purpose: generates strings from paessitit is higher thagen, because it first callgr epgen
to undo the results of passive, raising, etc. ardgen to perform the actual generation

Argument pattern: generate(ParseTréeGisneratedStringList)

List of arguments: ajen

genlist

Class: GENERATION

Purpose: help predicate ¢@n; it generates from a list by callimgen on the head and then itself
on the tail

Argument pattern: genlist(ParseTreeGsheratedStringList)

List of arguments: ajen

genyesno
Class: GENERATION
Purpose: generates auxiliaries in y@sprestions; it inserts DO when necessary
Argument pattern: genyesno(ClausePtgpist, Person, Number, GeneratedAuxList)
List of arguments: ClausePropertylssthie prop functor to be found at clause level

getagr
Class: GENERATION
Purpose: fills in the agreement featartne first auxiliary
Argument pattern: getagr(Auxiliary, fagree, Tense, ToOrNotTo)
List of arguments: Tenge:bare anding are also possible values, by the side of proper
tense valuespfesent/ past)
To@tTo: either a one-element ligtq]) or an empty list[{)

inlist
Class: UTIL / CHECK
Purpose: nondeterministic check thatlament belongs to a list
Argument pattern: inlist(Element, List)

insert
Class: UTIL
Purpose: inserts an element into guiséd by insertion sort)
Argument pattern: insert(Element, LisgwList)

insort

Class: UTIL

Purpose: sorts the args in canoniadrofor outputting in the parse, dropping athemaitgs from
the list (sealr op)

Argument pattern: insort(List, Sortestl)i

interrogative
Class: LEXICAL
Purpose: provides lexical entries fieirogatives
Argument pattern: interrogative(Inputiflast, OutputWordList, Tree, Semrestric, PPsentanti
PpOrNp)
List of arguments: Semrestsemantic restriction for interrogative nps
BR®nNtics: a list of semantic features for intertvgs playing the part
of an adverbialWhy, when, how, ...)
AP: indicates whether the interrogative playsphg of an np or an
adverbial vho vswhen)

m_ad]
Class: LEXICAL / MACRO
Purpose: provides lexical entries (raatauses) for adjectives (expandedaloly)
Argument pattern: m_adj(Lexeme, AdjeetiSemrestric, Arglist)
List of arguments: Lexemeludes a reading number, ebtack 1
Adfive: the positive degree of the adjective, elack
Sestric: the semantic restriction placed by theetiye on the noun it
modifies
Al the adjective's argument list, possibly empty

m_noun
Class: LEXICAL / MACRO

Purpose: provides lexical entries (rnadauses) for nouns (expandedriyun)
Argument pattern: Two patterns, thstfone for countable nouns, the second for uncolata
ones:
noum(Lexeme, Sing, Plural, Semantics, Arglist)
noum(Lexeme, Noun, Semantics, Arglist)
List of arguments: Lexemecludes a reading number, epgtience_1
Sing, Plural: inflectional variants
Nounvariant form (for uncountables)
Samtics: noun semantics is a list of semantic festur
Agl the noun's argument list, possibly empty

m_verb
Class: LEXICAL / MACRO
Purpose: provides lexical entries (raadauses) for verbs (expandedumsr b)
Argument pattern: m_verb(VerbclasstiBla; Lexeme, Infinitive, Firstp, Secondp, Thirdpg,
FirstOrThirdPast, SecondOrPluralPast, En, Trangjiti&emrestric, Arglist)
List of arguments: Verbclasovides a handle for the lexicographer, andsexduoy the
parser and the generator as a check
fee: the type and form of the patrticle attachedhie verb, if any, e.g.
partO:down
lesre: includes a reading number, alok_down_on_1
Infinitive: bare infinitive form, e.glook
Firstp: first person singular present tense
$adp: second person present tense, plural presese {all persons)
Tfdp: third person singular present tense
Ingg-form
$tOrThirdPast: first or third singular past tense
8adOrPluralPast: second person past tense; plasatense (all
persons)
Em-form
Mmeativity: transitivity feature
Sestric: semantic restriction on the deep subject
Al the verb's argument list

modifier
Class: PARSING
Purpose: parses modifiers, strings@input list that do not match lexical args asvgled in the
predicate's arglist
Argument pattern: modifier(InputWordti®utputWordList, Type, Gaplist, Preference,
Precedence, Rel, Intrel, ParseTree, SubjectFunctor)
List of arguments: Typedistinguish vp from np modifiers
Rigitrel: to keep track of relatives or interrogas inside the modifier
$ediFunctor: to provide a subject to be used far wyhin the modifier

modppnp
Class: CHECK / DATA BASE
Purpose: checks that a given prepeositan head an np modifier
Argument pattern: modppnp(Preposition)

modppvp
Class: CHECK / DATA BASE
Purpose: checks that a given preposian head a vp modifier
Argument pattern: modppvp(Preposition)

myappend

Class: UTIL

Purpose: does list appending; is abldetal with the valuaone sometimes used in the property
list of the clause

Argument pattern: cf. append

nonfinite
Class: CHECK / GENERATION / DATA BASE
Purpose: checks that the inflectiopaic#fication of the wordform is non-finite
Argument pattern: nonfinite(Inflectign)
List of arguments: InflectionSpec: ibginfinitive, en_active, ...

noun
Class: LEXICAL
Purpose: expands macro-clause for nams noun
Argument pattern: noun(InputWordLisyt@utWordList, ParseTree, Number, Semlist, Arglist)
List of arguments: ahh noun

nounphrase
Class: PARSING
Purpose: parses non-coordinate nps
Argument pattern: nounphrase(InputWastlOutputWordList, Gaplist, Index, Preference,
Weight, Rel, Intrel, Function, ParseTree, NumbersBn, Semantics)
List of arguments: Indexeddor coindexing purposes
Rigltrel: used in the treatment of relative an@iragative nps
Nben, Person: percolated from the head noun
Samtics: a list of semantic features percolated ftoennp head

nsubject

Class: PARSING / CHECK

Purpose: checks that the np which biar$unction passed as arg can be the subjeattbief
vps to the right (theunning subject, used in control relations)

Argument pattern: nsubject(Function)

List of arguments: Function: a grammedtiunction, such as subject_inf, object, ...

oraise

Class: LEXICAL / GENERATION

Purpose: checks that a verb belongiset@lass of object-raising verbs

Argument pattern: oraise(Verb, Requires

List of arguments: Requires is seti particleto, indicating thabraise verbs are followed by a
to-infinitive (I believe himto have taught linguistigs

oraising

Class: GENERATION

Purpose: carries out subject-to-ohjaisting in generation: the subject in the contbliause is
extracted and made the object of the matrix cléilecont r ol predicate will take care of deleting the
subject of the controlled clause through ghosting)

Argument pattern: oraising(DeeperTidereSurfacyTree)

parse
Class: PARSING
Purpose: main predicate for the paR&r.se parses main declarative clauses, yes-no questions
and wh-questions
Argument pattern: parse(InputWordL@utputWordList, ParseTree)

passive

Class: GENERATION
Purpose: restores the surface subjetpeoduces a by-phrase for the deep subject
Argument pattern: passive(DeeperTreard@urfacyTree)

pick
Class: UTIL
Purpose: non-deterministic selectioamtlement in a list
Argument pattern: pick(List, ElemengrRainderOfList)
poids

Class: UTIL

Purpose: computes the rank of a parstree according to a given canonical order. lsaah
assoc

Argument pattern: poids(ParseTree, Rank

List of arguments: Rank is numeric; $healler it is, the nearer to the verb the argumdrdse
structure is reflected in the subtree has to be

pp
Class: LEXICAL

Purpose: provides lexical clauses faspnal pronouns
Argument pattern: pp(InputWordList, Put\WordList, AgreementFunctor, Person, Number,
Gender, Function, SemFeaturelList)
List of arguments: Agreentantctor isppro(Person, Number, Gender)
Sematurelist is a list of semantic features (thieftiemat is selected to
maintain coding conformity with other nps)

precede

Class: PARSING

Purpose: in a list of instantiated aagd modifiers, checks that the weight of an eldrmsenot
greater than the one of the next element to it# rig

Argument pattern: precede(PospreclRdgprecRight)

List of arguments: PosprecLeft and PesRight argposprecfunctors:
posprec(PositioninLexicalArglist, Weight), where PositionIinLexicalArglist is the standardgipon of
the element as specified in the lexical entry far &arg-bearer, and Weight is to be compurtesitu (i.e.
while parsing the clause) to account for the eratgainent of heavier constituents

prep

Class: LEXICAL

Purpose: provides lexical clauses feppsitions

Argument pattern: prep(InputWordLisyt@utWordList, Tree, SemList)

List of arguments: Semlist is a listpofssible semantic values to be associated witpphe
governed by the prep, elgirection, location, topic] for ON

prepgen

Class: GENERATION

Purpose: undoes the subject assignmpentieiced by the parser to account for raisingsigas
extraposition, ... and calls quassi ve, cont rol ,or ai si ng, srai si ng andext r apos

Argument pattern:prepgen(DeeperTreed@arfacyTree)

prepphrase

Class: PARSING

Purpose: parses prepositional phrases

Argument pattern: prepphrase(InputWastjlOutputWordList, Gaplist, Index, NPIndex,
Preference, Weight, Preposition, Rel, Intrel, Fiam;tParseTree, SemPP, SemNP)

List of arguments: Indexdéx of the whole pp

MBex: index of the np inside the pp

Rigitrel: keep track of relatives and interrogasiveside the pp
e inherited from the prep

¢t inherited from the np within the pp

priority
Class: PARSING
Purpose: determines person prioritydardinate structureygu and I--> we, etc.)
Argument pattern: priority(Personl, do&2, WhoWins)
List of arguments: WhoWins is the lowéiPersonl and Person2

psubject

Class: PARSING / CHECK

Purpose: checks that the arg beara@it@uin which enables it to be turned into the scibpd the
corresponding passive

Argument pattern: psubject(Function)

List of arguments: Function: indiredbjert, object, etc.

relative
Class: LEXICAL
Purpose: provides lexical clauses étative pronouns
Argument pattern: relative(InputWordl.i®utputWordList, ParseTree, SemNP, SemPP,
NPOrPP)
List of arguments: SemNRemantic feature or the stringrestriction (associated with
np relatives such asho, which, that)
e a list of semantic features (associated witlernilal relatives such
ashow, why, where when
NARP: marker to indicate whether the relative ionpp-like

relclause

Class: PARSING

Purpose: parses relative clauses

Argument pattern: relclause(InputWorst| OutputWordList, Preference, ParseTree, GapList,
Person, FunctioninRel, NounSem, NumberAntecedent)

List of arguments: FunctioREl: function of the relative pronoun within tredative
clause
Ngem, NumberAntecedent: these two values are tederom the
antecedent
reog

Class: PARSING
Purpose: keeps track of deep subjed¢mupassive and other subject-changing transfoomsti
Argument pattern: reog(Voice, Clasdyj8ctOnEntry, Arglist, SubjectOnExit, NewArgList,
PromotedFunction)
List of arguments: Classqicate class as specified in the lexical entry
$ediOnENtry and SubjectOnEXxit are subject functdrihe form
(n)subject(ParseTree,Semantics)
RrotedFunction points to a function in the activin& can be promoted
to subject of the passive

satisfy
Class: PARSING
Purpose: matches an element in thedépiredicate's arglist with a string in the inpuatrd list
Argument pattern: satisfy(InputWordl.i©utputWordList, GapList, Preference, PrecedeRes,
IntRel, ParseTree, Arg, SubjectOnEntry, SubjectGNEXx

List of arguments: Rel, IetRare used to keep track of relatives and intertiogs
Atge lexical argument to be matched
$ediOnENtry: subject functor for the running subjea entering
satisfy

$etiONnEXit: subject functor for the running subjentexitingsat i sfy

satisfylist
Class: PARSING
Purpose: matches the arguments inrgaigate's arglist against the input word listjscal
satisfy
Argument pattern: satisfylist(InputWarst, OutputWordList, ArgOrModFound, Preference,
Weight, Rel, IntRel, Voice, ParseTreeList, Npor¥pglist, Func, SubjectFunctor)
List of arguments: sfat i sfy +
AgModFound: flag to indicate whether a match hasnldfeund (either
an argument or a modifier)
Np@: flag to indicate whether the arglist belongsah np or a vp
feugrammatical function in the active that can benpoted to subject of
passive
$ediFunctor: subject functor for tmenning subject

second_header
Class: GENERATION / CHECK / DATA BASE
Purpose: checks the environment in iggios
Argument pattern: second-header(Header)
List of arguments: Header: clause, npdifrer, adj_arg, ...

sentence
Class: PARSING
Purpose: parses declarative clauses
Argument pattern: sentence(InputWorgl@utputWordList, GapList, Preference, ParseTree,
Type, PersonVp, Number, Voice)
List of arguments: Type:ite/ nonfinite
BamVp: the person is inherited from the vp
¢ei uninstantiated if the voice is active

sfok

Class: SEMANTICS

Purpose: checks timgs andpps satisfy the semantic requirements of verbs - ¢la¢ufre required
by the verb must belong to the list of semanti¢uess associated with the noun, or must be reaehabl
from one of them through feature implicationg) materializing a feature hierarchy

Argument pattern: sfok(SemRestric, Qf$teatures)

List of arguments: SemResBia semantic restriction

tdFeatures is a list of semantic features

sraise

Class: LEXICAL / GENERATION

Purpose: checks that a verb is a stibpesubject raising verb

Argument pattern: sraise(SraisingVéop,

List of argumentso is the infinitive particldo used in generating the nonfinite complement
clause John seemt teach linguistics

sraising
Class: GENERATION
Purpose: takes care of subject-to-stilpg@sing
Argument pattern: sraising(DeeperTMereSurfacyTree)

subject_active

Class: GENERATION / CHECK / DATA BASE

Purpose: checks that the arg whichsotre function passed as argsitbj ect _acti ve can be
the subject of a clause in the active voice

Argument pattern: subject_active(Fuortyi

List of arguments: Function must bé@isubject or subject_inf if the predicate is to succeed

up

Class: SEMANTICS

Purpose: explores a semantic hieratctexploit semantic inheritance relations (jukse lthe
ancest or predicate)

Argument pattern: up(SubClass, BiggasS)

upl
Class: SEMANTICS / DATA BASE
Purpose: builds up ako relation in a semantic hierarchy (just like theer ent predicate)
Argument pattern: up1l(SubClass, Bigdges€)

verb

Class: LEXICAL / EXPANSION
Purpose: expanasver b clauses (macro-clauses for verbs)
Argument pattern: verb(InputWordListjtputWordList, Class, ParseTree, Finiteness, Tense,
Number, Agreement, SemSubj, Args)
List of arguments: Clasowpdes a handle for the lexicographer and is usegdrious
checks in the parser and generator
Agment: the agreement value of the verb
Seubj: the semantic restriction placed by the veribhe (deep) subject
Arghe verb's argument list

verbphrase
Class: PARSING
Purpose: parses verb phrases
Argument pattern: verbphrase(InputWaestlLOutputWordList, SubjectOnEntry, Gap,
Preference, ParseTree, Rel, Intrel, Type, Tensge&sModality, Number, Person, Voice,
SubjectOnEXxit)
List of arguments: SubjecHEDdtry is a subject functos(bject(Tree, Sem) giving the
running subject on entering the procedure
Rigitrel: used in the treatment of relatives anténigatives inside the vp
Eydinite / nonfinite
$ediOnEXit is ansubject functor fisubject(Tree,Sem) giving the
running subject on exiting the procedure

whquestion
Class: PARSING
Purpose: parses wh-questions as mauses
Argument pattern: whquestion(InputWaed] OutputWordList, Preference, ParseTree)

The predicates whose names begin with an x deblasibrdinate structures; they have the same
argument pattern and argument list as their simrggjeivalents. They are:

xadjphrase
Xaux

xnoun
xnounphrase

xprepphrase
xrelclause
xsentence
xverbphrase

yesnoquestion
Class: PARSING
Purpose: parses yes-no questions
Argument pattern: yesnoquestion(InputiiLcst, OutputWordList, Preference, ParseTree)

Index to Prolog Predicates

PA points to a predefined predicate specific to ARtplog, or at least not standardly available & th
family of Edinburgh Prologs. For the non-PA pretisathe last reference generally points to the
appendix on Prolog predicates.
A

abort(PA), 116

accu, 94; 179

adj, 179

adjphrase, 62
adverb_sentence, 33; 179
agree, 35; 73; 179

allopt, 31; 179

allsubject, 113; 180

append, 180

arglist, 29; 38; 83; 180

assoc, 76; 80; 180

aux, 50; 65; 181

B

before, 80; 181

C

c_sentence, 33; 95; 181
checkaux3, 49; 66; 181

checksem, 89; 90; 181

close(PA), 117
concat(PA), 116
control, 42; 112; 182
controller, 42; 182
corenounphrase, 56; 61; 78; 85; 106; 182
create(PA), 117

cv, 42; 182

D

determiner, 105; 182
drop, 81; 183

E

expos, 183

extrapos, 48; 183

=

first, 183

first_header, 111; 183
flatten, 183

G

gen, 43; 51; 59; 60; 69; 70; 71; 74; 76; 79; 98 18
genaspl, 70; 184
genasp2, 70; 184
generate, 54; 115; 184
genlist, 60; 184
genyesno, 74; 184
getagr, 73; 184

I

ifthenelse(PA), 56; 116

inlist, 88; 185

insert, 80; 185

insort, 80; 185

intclause, 105

interrogative, 185

M

m_adj, 185
m_noun, 63; 82; 86; 87; 186
m_verb, 15; 16; 17; 19; 22; 28; 40; 43; 44, 47,8%&;,87; 92; 114, 186
modifier, 32; 77; 78; 79; 93; 187
modppnp, 77; 187
modppvp, 77; 187
myappend, 49; 66; 187

N

nonfinite, 114; 187
noun, 85; 187
nounphrase, 57; 58; 59; 100; 102; 104; 188
nsubject, 41; 188

@)

open(PA), 117

oraise, 71; 72; 113; 114, 188
oraising, 71; 112; 113; 188

P

parse, 32; 188
passive, 38; 111; 114; 188
pick, 30; 189

poids, 75; 189

pp, 59; 189

precede, 189

prep, 189

prepgen, 110; 190
prepphrase, 63; 101; 106; 190
priority, 36; 190

psubject, 37; 190

R

read_line(PA), 117; 121
relative, 57; 58; 190

relclause, 103; 106; 191

reog, 37; 38; 45; 191

S

satisfy, 27; 30; 40; 41; 44; 45, 47; 62; 63; 89; 98; 191
satisfylist, 30; 31; 192
second_header, 110; 111; 192
sentence, 34; 35; 84; 93; 192
sfok, 85; 87; 88; 192

sraise, 46; 193

sraising, 46; 193

subject, 113

subject_active, 113; 193

U

up, 84; 193

upl, 84; 193

\%

verb, 17; 193

verbphrase, 29; 66; 68; 194
W

whquestion, 52; 53; 194

X

Xnoun, 85

xnounphrase, 36
Xprepphrase, 64

xsentence, 33; 95; 96; 97; 98
Y

yesnoquestion, 49; 50; 194

References

1. Prolog

a) Bratko, I.,Prolog Programming for Artificial IntelligenceAddison-Wesley, 1990, second edition
b) Clocksin, W. F. and Mellish, C. $2rogramming in PrologThird Edition, Springer-Verlag, 1987
c) Marcus, C.Prolog ProgrammingAddison-Wesley, 1986

d) Ross, P.Advanced PrologAddison-Wesley, 1989

e) Sterling, L. and Shapiro, H.he Art of Prolog Advanced Programming Techniques, The MIT Press,
1986

2. Prolog and NLP

a) Covington, M. A.Natural Language Processing for Prolog Programmé&isglewood Cliffs, Prentice
Hall, 1993

b) Gal, A, et al.Prolog for Natural Language Processing/iley, Chichester, 1991

c) Gazdar, G. and Mellish, CiNatural Language Processing in PROLOA&Idison-Wesley, Reading,
Mass., 1989.

d) Pereira, F.C.N. and Shieber, S.Mplog and Natural-Language AnalysiSSLI Lecture Notes, Nr
10, 1987

e) Walker, A. et a] Knowledge Systems and Projdgldison-Wesley, Reading, Mass, 1987.
3. Linguistics

Shieber's book is a succinct, but very informainteoduction to the concept of unification in gram
which plays a crucial role in contemporary lingisisheories.

Shieber, S.An Introduction to Unification-Based Approachesaammmar Chicago University Press,
Chicago, 1986

On linguistic theories belonging to the generatraenework, the following two introductions stand:ou

Sells, P Lectures on Contemporary Syntactic TheqriéSLI Lecture Notes Nr 3, Chicago University
Press, Chicago, 1985

Horrocks, G.Generative Grammail.ongman, London, 1987

The four main models are described in the followmogks, which do not aim at pedagogical
presentation:

1) Lexical Functional Grammar (LFG)

Bresnan, J. W., Kaplan, R. M.exical Functional Grammain Bresnan, J.W. (ed.Jhe Mental
Representation of Grammatical Relatip@ambridge, Mass., MIT Press, 1982

2) Generalized Phrase Structure Grammar (GPSG)

Gazdar, G., Klein, E., Pullum, G., Sag,Generalized Phrase Structure GrammBasil Blackwell,
Oxford, 1985

3) Head-Driven Phrase Structure Grammar (HPSG)

Pollard, C. J, Sag, |. Alnformation-based Syntax and Semantiésl. 1: Fundamentals, CSLI Lecture
Notes nr 13, Chicago University Press, Chicaga871%0l.2: Agreement, Binding, and Control, 1991.

4) Government and Binding (GB)
Chomsky, N.Lectures on Government and Bindifgris, Dordrecht, 1982
Eclectic and fairly comprehensive:

Quirk, R, Geenbaum, S, Leech, G., SvartvikAJGomprehensive Grammar of the English Language
Longman, 1985

Dictionary:
LDOCE = P.Procter (ed.),ongman Dictionary of Contemporary Engligtongman, London, 1978
Other publications referred to:

Aho et al. 1988 = Alfred V. Aho, Brian W. Kernighareter J. WeinbergeFhe AWK Programming
Language Addison-Wesley, Reading, Mass., 1988

Alshawi et al. 1992 = Alshawi, H. et al.he Core Language Engin€he MIT Press, Cambridge, Mass.
and London, 1992

Boguraev and Briscoe 1989 = Boguraev, B. and Beisto (eds)Computational Lexico-graphy for
Natural Language Processingongman, London and New York, 1989

Bresnan 1981 = Bresnan, A.Realistic Transformational Grammar, in Halle, M., Bresnan, J. and
Miller, G.A. (eds),Linguistic Theory and Psychological Realifyne MIT Press, Cambridge, Mass., 1981

Dahl and Abramson 1984 = Dahl, V. and Abramson(t. gapping grammars Proceedings Second
Logic Programming Conferencblppsala, 1984

Dymetman and Isabelle 1990 = Dymetman, M. and lsglfe.,Grammar bidirectionality through

controlled backward deduction in Saint-Dizier and Szpakowicz 1990, pp. 275-293

Flickinger et al. 1987 = Flickinger, D., Nerbonde,Sag, I., and Wasow, T.oward evaluation of
NLP systems Workshop paper at the 25th Int. Mtg. of the AstmcComputational LinguistigsStanford
University, Cal., USA

Hirschman and Dowding 1990 = Hirschman, L. and DiogydJ.,Restriction Grammar: a logic
grammar, in Saint-Dizier and Szpakowicz 1990, pp. 141-167

Isabelle et al. 1988 = Isabelle, P., Dymetman, hl Blackiovitch, E.CRITTER: a translation system
for agricultural market reports, Proceedings of the 12th International Conference&Computational
Linguistics Budapest, 1988

Matsumoto 1991 = Matsumoto, YHandling Coordination in a Logic-based Concurrent Rarser, in
Brown, C. and Koch, G. (eds)latural Language Understanding and Logic Programgnih, Elsevier
Science Publishers, 1991, pp. 1-12

Matsumoto et al. 1983 = Matsumoto, Y., TanakaHitakawa, H., Miyoshi, H. and Yasukawa, H.,
BUP: a bottom-up parser embedded in PrologNew Generation Computing(2), 1983

Michiels 1982 = Michiels, A.Exploiting a Large Dictionary Data Base Unpublished PhD Thesis,
University of Lieége, Liege, 1982

McCord 1982 = McCord, M. ClJsing slots and modifiers in logic grammars for nairal language,
Artificial Intelligence Vol. 18, pp. 327-367

McCord 1987 = McCord, M. C., Chapter 5\0falker et al. 1987

McCord 1989a = McCord, M. CA New Version of the Machine Translation System LMT Journal
of Literary and Linguistic Computing, pp. 218-229

McCord 1989b = McCord, M. CLMT and Slot Grammar , paper read at the IBM Europe Institute,
August 1989, Garmisch-Partenkirchen

McCord 1990 = McCord, M. CSLOT GRAMMAR: A System for Simpler Construction of
Practical Natural Language Grammars in Studer, R. (ed)nternational Symposium on Natural
Language and Logjd_ecture Notes in Computer Science, Springer-\éerla

Pereira 1981 = Pereira, F.C.[Extraposition Grammars, American Journal of Computational
Linguistics Vol.9, Nr 4, 1981

Pereira and Warren 1980 = Pereira, F.C.N, and WabdH.D.,Definite clause grammars for
language analysis: a survey of the formalism and ogparison with augmented transition networks
Artificial Intelligence 13 (3), 1980

Saint-Dizier and Szpakowicz 1990 = Saint-DizieraRd Szpakowicz, S., (ed&pgic and Logic
Grammars for Language Processijrif)lis Horwood, Chichester, 1990

Saint-Dizier et al. 1990 = Saint-Dizier, P., TousgaY., Delaunay, C., Sebillot, PA natural language
processing system based on the government and binditheory, in Saint-Dizier and Szpakowicz
1990, pp. 108-140

Tomita 1991 = Tomita, M\Why Parsing Technologiesin Tomita, M. (ed)Current Issues in Parsing
TechnologyKluwer Academic Publishers, Boston, 1991

A we follow Alshawi et al. 1992 (p.1) in distinguisigi betweeranalysis (using only linguistic knowledge) and
interpretation (applying contextual knowledge)

2 The companion disk includes the following :

- the grammar files for the analysis and generat@mmponents ofioratio

- the vocabulary files

- the CMD(0S/2) and BAT(DOS) files for compilingaifinking the program

- the AWK program used for the selective downlogdihthe lexicon

- the SED program used for manipulating the Prédoms to make them suitable for the generator
- the test suites used to demonstrate the capebitif the system for parsing and generation

- some sample parses highlighting some of the ¢iebof the system

All files are documented and ready to be compilecua, on both DOS and OS/2.

BBl Arity Prolog is produced by Arity Corporation, Dammill Square, Concord, Massachusetts, USA.

4 McCord 1987 = Chapter ™Natural Language Processing in Prologf Adrian Walker (ed)Knowledge Systems and
Prolog, Addison-Wesley, Reading, Mass., 1987

Bl 1t should be emphasized here thatatio has never been part of 'standard’ Eurotra, lsialveays remained a sideline.
More information on Eurotra can be found in theimas volumes in th&tudies in Machine Translation and Natural
Language Processinggeries published by the Commission of the Eurofi&@nmunities in Luxemburg, especially in Volumes
I and Il, 1991 (I The Eurotra Linguistic Specificationsl : The Eurotra Formal SpecificationdBoth volumes are edited by

C. Copeland, J. Durand, S. Krauwer and B. Maegaard.

Bl |n agreement with McCord (séécCord 1987, p. 338), | do not include the subject in the jraté's argument list. As
McCord writes, "Since every verb has a subjeca(fimite clause), we will not actually list the et slot by name, but will
just put the subject marker in a separate arguwiethie lexical entry” (in McCord's systenmaarker is a semantic

restriction).

[satisfy issimilartofil | in McCord'sModular Logic Grammar (seeMcCord 1987, p. 344 and foll.)

Bl Satisfylist issimilar topost nods in McCord'sMLG (seeMcCord 1987, p. 344 and foll.)

B Pi ck is defined by the following code :

pi ck([Head| Tai |], Head, Tai l).
pi ck([Head| Tail],El em [Head| Ntail]) :-
pick(Tail,ElemNtail).

9 Cf thethemein McCord'sMLG (seeMcCord 1987, p. 346)

1 Note that this is the san®EEM as thesraising one.

12 An easy question for you to ansviedealt with below.

31 Covington 1992 (p. 300) defines a predicaeein standard Prolog whose semantics is the sartessf the snips.

14 McCord (seeMcCord 1987, p. 348 and following) has designed a similaresysfor precedence relations. His predicate
pr ecede inspired the treatment imoratio.

5 Matsumoto 1991 has a similar check: "The rulectmrdination handling are activated only when ardivate
conjunction appears in the input” (p. 10).

18 Cf. the section oleft extraposition in McCord 1987 (p. 351 and foll.).

7 At least in the subset of English thatratio attempts to cover, which does not incl@er Father, which art in Heaven.

8 FAR code can be housed in other memory segmenishis64K segment automatically allocated to AFtplog code. In
the segmented memory model used in this versidkritf Prolog, such declarations are necessary oidfeisized and large
grammars.

9 MKS (Mortice Kern Systems, Ontario, Canada) produga@émentations of the Unix utilities for the DOS abD&/2
operating systems, includirayvk (for which the OS/2 implementation provides a éavgrsion -awkl - which allows longer

records to be treated).

201 The reader is assumed to know this UNIX utilitye #dno et al. 1988

211 RLRN is the conjunction of two field (i.e. subjenatter) codes:

RL : Religion (not Bible) (Christian and/or Jist)

RN : Religion (other than Christian and Jewish)

221 H in byte 5 : deep subject has feature [+ HUMAN]

231 X in byte 10 : deep object has feature [+ ABSTRAGT[+ HUMAN]

24 T in byte 10 : deep object has feature [+ ABSTHA

