

HORATIO

A middle-sized NLP application in Prolog

Archibald Michiels

University of Liège, Liège

1994

Table of Contents
Table of Contents....................... 2

1. Foreword....................... 5

2. Introduction....................... 9

3. The Lexicon....................... 15

3.1. Use of Macros........... 17

3.2. Double Analysis........... 18

3.3. Verb Classes........... 20

3.4. Raising and Control........... 21

3.5. Multi-Word Units........... 21

3.5.1. Insertion 22

3.5.2. Extraction 23

3.5.3. Proformation 23

3.6. Inflectional Morphology........... 26

4. The Grammar: Interpreting the Lexicon....................... 27

4.1. General Strategy........... 28

Arguments and Modifiers 28

4.2. The S Level........... 32

4.2.1. Declarative Clauses 32

4.2.1.1. Subject / Operator Agreement Rules 35

4.2.1.2. Priority among Person Features 35

4.2.1.3. Passives 36

4.2.1.3.1. Parsing 36

4.2.1.3.2. Generation 38

4.2.1.4. The Assignment of the Subject Role 39

4.2.1.4.1. Control 40

4.2.1.4.1.1. Parsing 40

4.2.1.4.1.2. Generation 41

4.2.1.4.2. Raising 43

4.2.1.4.2.1. Parsing 43

4.2.1.4.2.1.1. Subject-to-Object Raising 43

4.2.1.4.2.1.2. Subject-to-Subject Raising 44

4.2.1.4.2.2. Generation 45

4.2.1.4.2.2.1. Subject-to-Object Raising 45

4.2.1.4.2.2.2. Subject-to-Subject Raising 45

4.2.1.4.3. Extraposition 47

4.2.1.4.3.1. Parsing 47

4.2.1.4.3.2. Generation 48

4.2.2. Non-Declarative Main Clauses 48

4.2.2.1. Yes-No Questions 48

4.2.2.1.1. Parsing 48

4.2.2.1.2. Generation 51

4.2.2.2. WH Questions 52

4.2.2.2.1. Parsing 52

4.2.2.2.2. Generation 54

4.3. The Phrase Level........... 55

4.3.1. Noun Phrases 55

4.3.1.1. Parsing 55

4.3.1.2. Generation 59

4.3.2. Adjective Phrases 60

4.3.3. Prepositional Phrases 62

4.3.4. Verb Phrases 65

4.3.4.1. Parsing 65

4.3.4.1.1. The Auxiliary Group 65

4.3.4.1.2. Coordinated Verb Phrases 67

4.3.4.2. Generation 68

4.3.4.2.1. The Auxiliary Group 69

4.3.4.2.2. The Main Verb 74

4.4. Modifiers........... 76

4.5. Canonical Order and Athematic Arguments........... 79

5. Semantics....................... 82

5.1. GF Level........... 82

5.2. Inheritance........... 84

5.3. Percolation........... 85

5.4. From Semantic to Lexical Classes........... 86

5.5. Performing the Checks........... 87

5.5.1. Sfok 87

5.5.2. Checksem 89

6. Parsing Issues....................... 91

6.1. Dealing with Flexible Word Order........... 91

6.2. Computing Preferences........... 92

6.3. Hard Coordination........... 94

6.4. Long Distance Dependencies........... 99

7. Generation Issues....................... 107

7.1. Freezing the Variables in the Parses........... 107

7.2. The Cycle........... 108

Appendix A. Non-Standard Arity Prolog Predicates....................... 116

Execution Control........... 116

String Manipulation........... 116

File Operations........... 117

Appendix B. File Organization and Compilation Directives....................... 118

File Organization........... 118

Moratio.cmd 118

Morgen.cmd 119

Arity Prolog Compilation Directives........... 119

Appendix C. Input and Output....................... 121

Input 121

Output 122

Appendix D. Selective Lexicon Downloading....................... 123

Appendix E. Importing Lexical Entries from Ldoce....................... 125

Introduction........... 125

Description of the Liège Ldoce Data Base........... 125

Ldoce Data Base Design........... 126

Lemma Data Base: Coword 126

Definition Data Base: Codefi 127

Idiom Data Base: Coidio 128

Example Data Base: Coexam 128

Grammatical Code Data Base: Codcod 129

Believe in Ldoce 130

The Importation Process from Ldoce into Horatio's Lexicon........... 132

Intransitive Verbs 133

Mono-Transitive Verbs 136

Prepositional Verbs 138

Transitive Phrasal Verbs 141

Verbs Taking an Object and an Object Complement 143

Ditransitive Verbs 147

Verbs Taking an Object and a That-Clause 149

Verbs Taking an Object and a Prepositional Object 151

Appendix F. Sample Parses....................... 155

Appendix G. Test Suites....................... 164

For Analysis........... 164

Designed for Horatio 164

Based on Flickinger et al. 1987 167

For Generation........... 174

Appendix H. Prolog Predicates....................... 178

Index to Prolog Predicates....................... 195

References....................... 198

1. Foreword
 There now exist quite a number of books on Prolog and even quite a few on Prolog and NLP
(Natural Language Processing). Among the latter the following stand out: Pereira and Shieber 1987,
Gazdar and Mellish 1989, Gal et al. 1991, Covington 1993 and the chapter on natural language in
Walker et al. 1987 (by Michael McCord, whose approach is the one followed here; see also McCord
1982, as well as McCord 1989a, 1989b and 1990 for new developments).

 However these books remain at an introductory level. More specifically, they discuss only short
introductory programs. None of them describes and gives the full code of a medium-sized application.

 This is precisely what this book does. horatio (and its generation counterpart horgen) is a middle-
sized application in the field of NLP, more precisely natural language analysis[1] and generation. The full
source code, with numerous comments, is to be found on the disk distributed with the book[2].

 No pseudo-code is given. No piece of code is presented in a simplified form. Cited code always
corresponds exactly to the runnable code to be found on the companion disk. This may lead to the reader
feeling somewhat swamped under barely digestible code. However, if he persists in his study of horatio,
allowing some areas to remain unexplained for a while, he will have mastered not only the general design
decisions, but also the interactions between the various components of the grammar and the coding
idioms and mechanisms in full detail. The hard step from elementary to advanced NLP applications in
Prolog is due to the need for managing the interactions between various 'solutions', which are all
beautifully simple when looked at in isolation but display the irritating tendency not to mesh with their
neighbours as readily as one would wish.

 horatio remains a 'toy' system in that it is oriented towards the teaching of Prolog for NLP rather
than any real life application. It is geared to the parsing and generation of 'linguistic' rather than 'real'
sentences (in the sense of Tomita 1991, i.e. sentences made up for the purpose of testing linguistic
hypotheses rather than utterances occurring in actual text).

 The emphasis throughout this book is on grammar writing rather than on the writing of
grammar interpreters or compilers as extensions to standard Prolog. The grammars here are interpreted
within the strict top down regime of Prolog; although they belong to the family of definite clause
grammars (dcg's), the dcg notation is not made use of.

 This position needs to be explained and argued for. Recently a lot of research has been geared
towards extensions of Prolog for NLP, to be either interpreted or compiled into standard Prolog (cf. inter
alia Definite Clause Grammars (Pereira and Warren 1980), Extraposition Grammars (Pereira 1981),
Gapping Grammars (Dahl and Abramson 1984), Dislog (Saint-Dizier et al. 1990), Restriction
Grammar (Hirschman and Dowding 1990), CLE (The Core Language Engine, Alshawi et al. 1992).
These extensions aim at enhancing the following desirable properties for NLP systems:

 clean separation between the grammar and the parsing algorithm;

 expressive power of the grammar, leading to a compact grammar that directly embodies linguistic
generalizations (for instance in the treatment of linguistic discontinuities such as the relation between a
trace and its filler);

 automatic construction of the parse tree.

 The dcg notation is clearly a first step in this direction: the linguist need no longer be concerned
with the difference list technique that takes care of progression in the input word list. The distinction
between grammar predicates and standard Prolog predicates is emphasized notationally.

 However, these extensions to Prolog are not 'free'. The price to pay is on the one hand some loss
of control over the parsing process and on the other much harder debugging. The first point can be
illustrated with reference to the dcg notation. Since the progression in the input list is added when the dcg
grammar is interpreted or compiled into standard Prolog, it is no longer possible to specify no progression
in the input list in the head of the clause. A body needs to be written. Compare:

gap(...,Input,Input).

with

gap(...) --> [].

This may seem a matter of no great import. However, when horatio is rewritten in dcg notation, a
considerable loss of efficiency is incurred. Parsing time increases by about 50% on the standard test suite.

 One of the lessons to be learnt from the Eurotra project is the importance of efficiency for testing
and debugging purposes. If the system needs half an hour to provide a sentence with a parse, or to
generate a surface form from some deeper representation, the grammar writer will be very wary of
experimenting with alternative approaches. He will keep his test suite as short as possible. He will not run
the full test suite after so-called 'minimal', 'housekeeping' changes to the grammar. He will invent tricks to
attempt to improve efficiency, even if they are detrimental to the readability of the code. As a result, the
grammar will be brittle, not properly debugged and even harder to debug than if efficiency had been a
primary concern right from the start.

 Debugging is known to be hard in Prolog, on account of nondeterminism and non-permanent
variable instantiation. It gets much harder when what is debugged is not the grammar the linguist has
written but its extended form, i.e. its translation into standard Prolog. Published documentation on the
extensions to Prolog mentioned above does not discuss debugging facilities. We have preferred to restrict
ourselves to standard Prolog: what is debugged is then the grammar as written by the linguist.

 Efforts have been made to keep the code of horatio reasonably clean and maintainable: no use has
been made of program-modifying predicates (assert, retract, recorda,...) and the grammar itself
is devoid of cuts. The whole system relies on standard Prolog unification, which is a clean, monotonic
process. Control of execution in the system is restricted to testing whether variables are instantiated at the
point a call is made to a predicate.

 Our parsing algorithm is top-down, left-to-right and depth-first . This is of course the parsing
algorithm that Prolog itself uses, its 'native' parsing algorithm as it were. It is not necessarily the most or
the least efficient: this depends on the nature of the grammar, and on the inputs it is meant to account for.
Well-known bottom-up parsers (with top down oracles implemented by a link predicate) have been
designed in Prolog, for instance the left-corner parser of Pereira and Shieber 1987 and BUP (Matsumoto
et al. 1983).

 The programs in this book are written in Arity Prolog [3]. Use is made of Arity Prolog extensions
to standard Edinburgh Prolog, mainly in the area of input and output (cf. such predicates as concat,
create, open, read_line, etc.). The syntax and semantics of these predicates will be briefly explained in
the body of the text and in comments to the source code, as well as in a short appendix (see Appendix A,
p. 116). The reader who wants a full specification is referred to the Arity Prolog documentation or to
Marcus 1986.

 It should be made clear that horatio is not "tied" to Arity Prolog. It is easily convertible to
standard Edinburgh Prolog notation, and as a matter of fact horatio also exists in a Yap Prolog version
running on Sun. Arity Prolog has been selected because it is both reasonably fast and available on PC
platforms (DOS, WINDOWS and OS/2).

2. Introduction
 horatio is a parser for a subset of English based on a definite clause grammar belonging to the
slot grammar framework (cf. the work of Michael McCord and associates; cf. e.g. McCord 1987[4], a
presentation of the framework in half-tutorial fashion). It is written in ARITY Prolog (Version 5.1 for
DOS) and runs on a 386/486 PC under DOS or OS/2 (for OS/2, version 6 of Arity Prolog has been used).

 All parses shown in this book were produced on an IBM Model 70, with 4 Megabytes of core
memory and a 120 Mega hard disk. The operating system is DOS 6.0.

 On an Intel 486 DX2 PC clone (66 MHz) the standard horatio test suite (horsuite, the 156
sentences to be found in Appendix G, p. 164, from "they failed" to "I decided what to tell her I believed
her to like") takes less than 9 minutes real time (user time, not cpu) to parse. The average parsing time
for a sentence in the test suite is therefore about three seconds. Parsing here includes writing the raw
(horsuite.ter) and pretty-printed (horsuite.lst) parses to disk files (horsuite.lst: 159.702 bytes). The
generator horgen is considerably faster than the parser. Compiling and linking the grammar to make the
executable file horatio.exe (executing moratio.bat, the DOS counterpart of moratio.cmd to be found on
page 118) takes less than one minute under DOS 6.0. on the specified machine.

 A first question that we need to tackle concerns the nature of parsing. Obviously the nature and
depth of the parses produced is a crucial issue. Parsing goes from tagging (the association of form with
grammatical tags reflecting Part of Speech (POS)) to deep analysis, looking for the semantic invariant
behind different phrasings.

 The level chosen here is the one that is deemed to be adequate for the translation from/into
English into/from a related language, such as French. In terms of depth the type of parse produced is not
very different from those in the IS (Interface Structure) in the EEC Eurotra project, with which the
author was associated[5]. The backbone remains syntactic.

 In order to give an idea of the type of parses produced by horatio, we shall look at the parse
returned by the system for the following sentence: The workshop is believed to have taken place in the
library I wanted her to go to.

 It will be seen that the parse is uncontroversial. Any application that needs to rely on a linguistic
analysis of the sentences it is confronted with (i.e. an application such as machine translation, for which
template matching or keyword search, however refined, are not good enough) will at least have to be
able to retrieve the information provided by the horatio parse. I tend to agree with McCord, who writes:
"It also appears reasonable to use syntactic analysis (embodying some semantic choices, such as word
sense disambiguation) in machine translation systems." (in McCord 1987, p. 325)

 We shall look at the parse in its pretty-printed format. Indentation from the left margin reflects

depth of embedding: the further we are from the left margin, the deeper we are in the postulated structure.
Items at the same distance from the margin are supposed to display the same level of embedding.

 Here is the parse (other parses can be found in appendix F, p. 155):

 28
 clause
 pred_arg_mod_structure
 prop(vce: passive,asp: none,mod: none,tns: present)
 predicate(believe_1,agr(en_passive))
 object
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: [perfect],mod: none,tns: present)
 predicate(take_place_1,agr(en_active))
 subject
 nounphrase
 index(_0508)
 agr(third,sing)
 det(the)
 noun(workshop_1,agr(sing))
 pp_arg
 prepphrase
 index(_09EC)
 prep(in)
 np_arg_of_prep
 nounphrase
 index(_09F4)
 agr(third,sing)
 det(the)
 noun(library_1,agr(sing))
 relative_clause
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: past)
 predicate(want_1,agr(finite,past,sing,first))
 subject
 nounphrase
 index(_0C28)
 agr(first,sing)
 ppro(first,sing,_0CAC)
 object
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(go_1,agr(infinitive))
 subject
 nounphrase
 index(_0E10)
 agr(third,sing)
 ppro(third,sing,fem)
 pp_arg
 prepphrase
 index(_1010)
 prep(to)
 np_arg_of_prep

 nounphrase
 index(_09F4)
 agr(third,_1074)

 The first line of the returned parse is the preference (28). In the case of multiple parses, the one
with the highest preference index is to be preferred. The mechanisms used in the computation of the
preference index are discussed on page 92 and following.

 The parse is best conceived of as a set of clause parses each headed by a clause header of the
following form:

 clause
 pred_arg_mod_structure

This means that the parser has found a clause and that it is going to display its structure in terms of its
predicate, the arguments pertaining to that predicate and the clause modifiers, if any (the latter are not
tied to the lexically-determined argument structure opened up by the predicate).

 We then have a line devoted to the properties of the clause: voice (active/passive), aspect
(none/perfect/progressive), modality (none/modal aux), and tense (present/past). Have taken place yields
the following prop line:

 prop(vce: active,asp: [perfect],mod: none,tns: present)

 The predicate has its own property line, made up of the lexeme (with reading number) and of an
agreement structure. Multi-word units are recognized as such, even if their component parts are not
adjacent to each other in the input string (see the relevant section on page 21). The predicate line for
wanted is the following:

 predicate(want_1,agr(finite,past,sing,first))

The values sing and first (person) are obviously not computed on the basis of wanted, but on the basis of
the surface subject I.

 We then get the list of arguments, in canonical order. Unspecified arguments (such as the subject
of believe) are left out. The relationships between the four clauses as displayed by the parse are the
following:

clause 1
 predicate: believe
 args: subject: unspecified
 object: clausal (clause 2)

clause 2
 predicate: take_place
 args: subject: workshop
 pp_arg: in library (index X)
 np modifier: rel clause (clause 3)

clause 3
 predicate: want
 args: subject: I
 object: clausal (clause 4)

clause 4
 predicate: go

 args: subject: she
 pp_arg: to library (index X)

 Prepositional phrases and noun phrases bear an index that is used for coindexing. In the sample
parse, the missing np governed by the preposition to is coindexed with the np the library: (index(_09F4)).
Such coindexing is crucial for the treatment of gapping and long distance dependencies (see page 99).

 Noun phrases also display an agreement structure. For her we find the following two lines:

 agr(third,sing)
 ppro(third,sing,fem)

They indicate that we have a personal pronoun whose gender is feminine, number singular and person
third. The agreement structures are part of the information that the horatio parses keep about surface
structure to make it possible for the generator horgen to retrieve the surface forms from the raw Prolog
terms corresponding to the parses.

 However, the adequacy of this type of parsing for translation purposes is not proven - the reader is
given a program that parses and generates, not one that translates; besides, and on a more positive note,
the structures arrived at are presumably usable for other purposes than translation from and into a related
language.

 We claim that the real touchstone in horatio is the ability to disambiguate between the various
readings of the lexical items belonging to the string to be parsed. Such reading assignment can be seen as
one of the central tasks of any parsing system geared towards high quality translation. But of course this
is not a rigorous test, because there is no way to decide on the number of readings an item has - the
granularity depends on the purposes that are set to the lexicon in the system, as it does on the size of the
dictionary and the targeted audience in lexicographical practice.

 In the last instance the best way for the reader to decide whether he is interested in what horatio
can do is to look at the sample parses and the test suites provided, and then at the mechanisms and
strategies put to work in the parser, to assess their degree of generality and reusability.

 We make no claim as to the originality of the solutions provided by horatio to parsing problems
(although we would be entitled to do so for the treatment of multi-word units and hard coordination). As
has already been stressed, it is the interaction between the components that proves the most difficult to
manage in applications that go beyond the 'toy' stage.

 It should be noted that the generator horgen provides a minimal check on the parses produced by
horatio. It guarantees that the parses produced keep enough information for generating back the strings
the parser worked on. This minimal ability is crucial in machine translation, although it is of less interest
for other endeavours, such as the development of a natural language front end to a data base.

3. The Lexicon
 A main principle of horatio is that information which belongs to the lexicon should belong in the
lexicon. A prime example is frame information, i.e. information on the syntactic (and/or semantic)
environment a given item can or must fit into. The lexical entries themselves contain the relevant frames;
they do not refer to information stored elsewhere. Consider the entries for ALLOW in horatio:

m_verb(verbtr,allow_1,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,abstract,

 [np(oblig,posprec(1,Wnp),object,abstract)]).

/* the facts allow the explanation */

m_verb(vthat,allow_2,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,human,
 [s(oblig,posprec(1,Precs),object)]).

/* she allows that he is good */

m_verb(vio,allow_3,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,human,
 [np(oblig,posprec(2,Wnp1),object,thing),
 io(oblig,posprec(1,W2),indirect_object,human,_)]).

/* the teacher allows the boys money for books */

m_verb(vinf,allow_4,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,_,
 [np(oblig,posprec(1,Wnp),surf_object,_),
 np_vp(oblig,to_inf,object)]).

/* they allowed him to teach linguistics */

m_verb(vobjadv,allow_5,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,human,
 [np(oblig,posprec(1,Wnp),object,human),
 pp(oblig,posprec(1,Wpp),pp_arg,_,direction,_)]).

/* he allowed the girl into the library */

m_verb(vtrprep,allow_for_1,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,human,
 [pp(oblig,posprec(1,Wpp),pp_arg,_,_,for)]).

/* he allowed for the oversimplifications */

m_verb(vtrprep,allow_for_1,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,human,
 [string(oblig,posprec(1,0),[for]),
 np(oblig,posprec(2,Wnp),object,_)]).

/* he allowed for the oversimplifications */

(the existence of two m_verb clauses for the same reading of ALLOW is explained below, p. 19.)

 The arguments appear in a list which is the last argument of the predicate m_verb, which acts as
macro-clause. The first argument is the class the predicate belongs to, the second is the lexeme value -
including reading number - , positions 3 to 10 take care of inflectional morphology, position 11 is the
value for the transitivity feature, position 12 is a semantic restriction on the deep subject[6]. Each element
of the argument list opens with the value for the optionality feature - either oblig(atory) or opt(ional). The
posprec structure is discussed below, p. 91 - it is used to establish linear precedence. The nature of a
given argument in the lexical predicate's argument list is of course given by the functor of the structure
(such as string, np, pp, etc. in the entries for ALLOW). A common feature is that for surface or deep gf
(grammatical function).

 The advantage of putting lexical information in the lexicon is obvious: additions, changes or
enhancements in the argument structure of lexical predicates (whether individual predicates or whole
classes) do not entail changes in the grammar.

 An alleged disadvantage is the size of the lexicon, which very soon grows rather bulky. However,
this disadvantage is not a real one because lexical entries need not be produced as such by the linguist or
lexicographer; they can result from the expansion of macro-clauses, either within or outside Prolog.
Besides, lexical entries can be imported from a machine-readable dictionary (MRD), as in the importation
from ldoce (The Longman Dictionary of Contemporary English) to horatio, discussed in Appendix E.
The task of the linguist or lexicographer is then reduced to selecting retrieval criteria and checking and
expanding the resulting entries. A string manipulation language such as AWK is an ideal tool for
performing the necessary format transformations.

 As for consultation, at least for languages such as English, it is not necessary to load the whole
lexicon into Prolog. Selective downloading can easily be achieved by a simple AWK program, such as
getvoc.awk (see Appendix D, page 123).

3.1. Use of Macros

 In horatio macro-expansion is done in Prolog. Consider an m_verb clause and one of its
expansion clauses:

Macro-clause

m_verb(verbtr,_,allow_1,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,abstract,
 [np(oblig,posprec(1,Wnp),object,abstract)]).

/* the facts allow the explanation */

Expansion for third person singular present tense inflectional form

verb([Vs|X],X,Class,[predicate(Lex,agr(finite,
 present,sing,third))],
 finite,present,sing,thirdsg,Semsubj,Args):-
m_verb(Class,Part,Lex,_,_,_,Vs,_,_,_,_,_,Semsubj,Args).

 The verb clause is responsible for progression in the input list. The word that is to be read in
must be a third person singular present tense form. This form is read off the macro-clause, where it
occupies a certain position in the predicate's argument list. The agr functor is filled in the verb clause
and appears as part of the structure that is returned in the parse tree. Other relevant information is
transferred from the macro-clause to its expansions by unification (such as for instance the argument list
Args).

 By having as many verb clauses as is warranted by the inflectional paradigm associated with
English verbs we manage to account - in a fairly economical fashion - for all possible forms for the verbs
our lexicon includes.

 It is of course possible to generate the macro-clauses themselves, at least partially. In fact, it is
even possible to import them from a computerized dictionary such as LDOCE , once it has been
converted to data base format, as it has been at the University of Liège. The interested reader is referred to
Appendix E for a full discussion, including the complete code of the awk programs that take care of the

necessary reformatting operations.

3.2. Double Analysis

 Quirk et al. 1985 and Bresnan 1981 argue cogently that some English lexical constructions can
be parsed in two ways. Such a double analysis is necessary to account for the syntactic manipulations that
these constructions admit of.

 A case in point for English is the verb+preposition combination, as in LOOK AT. We can
conceive of LOOK AT as a transitive verb like any other, or we can conceive of it as the verb LOOK
governing a prepositional phrase headed by AT. Schematically:

1) LOOK AT + NP
2) LOOK +PP (AT)

 The following sentences illustrate two of the syntactic manipulations (WH-movement and
passivization) that lead one to postulate the need for a double analysis. Others can be found in Quirk et
al. 1985 and Bresnan 1981.

1: What are you looking at ?
 The man he was looking at ...
 The problem has been looked at from every angle
2: The text at which we have been looking for too long ...

 Pulman in Alshawi et al. 1992 (p. 74) points out that if take advantage of is treated as a complex
V only one passive can be derived in the GPSG meta-rule treatment of the passive, because advantage
will not be available as an NP node for the meta-rule to apply to. Consequently, only the first of the
following two passive S's will be generated:

Kim was taken advantage of.
Advantage was taken of Kim.

This leads Pulman to reject the GPSG treatment. But the problem disappears if a double analysis is
provided, evidence for which is precisely the availability of two passives.

 It should be noted that the need for double analysis of some lexical constructions is not limited to
English. Consider AVOIR L'AIR in French. We need to assign the following two analyses:

1) AVOIR L'AIR + ADJ
2) AVOIR + NP (AIR + ADJ)

on account of the two ways in which agreement can be made (either with AIR or with the subject of the
whole phrase AVOIR L'AIR):

Elle a l'air idiote.
Elle a l'air idiot.

 In horatio the lexicon file lexatio2.ari holds two macro-clauses for prepositional verbs such as
LOOK AT. The first caters for the analysis in which the preposition belongs to the prepositional phrase
rather than to the verb (analysis 2 in our account). The arglist contains a prepositional phrase specified in
terms of the preposition heading it (AT in the case of LOOK AT):

m_verb(vtrprep,_,look_at_1,look,look,look,looks,looking,
 looked,looked,looked,trans,living,
 [pp(oblig,posprec(1,Wpp),pp_arg,_,_,at)]).

/* they were looking at her
 the girl at whom they had been looking */

 The second macro-clause identifies AT as a particle to be appended immediately to the right of the
verb LOOK (second argument of the macro-clause). The arglist opens with a string (AT) and further
contains the np playing the object role:

m_verb(vtrprep,part0:at ,look_at_1,look,look,look,looks,looking,
 looked,looked,looked,trans,living,
 [string(oblig,posprec(1,0),[at]),
 np(oblig,posprec(2,Wnp),object,_)]).

/* they were looking at her
 whom are they looking at ? */

 It should be noted that in both m_verb clauses the lexeme value is the same, viz. look_at_1. We
are dealing with the same lexical item.

 In the analysis of sentences such as They were looking at her, both m_verb clauses will succeed,
and two parses will be returned. Such redundancy is not felt to be a negative feature, as the relationship
between verb and preposition is truly indeterminate in such cases.

 Parsing an S such as the problem was paid attention to relies in horatio on the availability of a
lexical entry for pay attention to in which attention to is simply a string appended to pay, the only
argument being the np inside the to-phrase, and therefore the only candidate for the subject role in the
passive clause:

m_verb(vtrphrprep,part0:'attention to',
pay_attention_to_1_a,pay,pay,pay,pays,paying,
 paid,paid,paid,trans,human,
 [string(oblig,posprec(1,0),[attention,to]),
 np(oblig,posprec(2,Wnp),object,_)]).

 On the other hand parsing the other passive (attention was paid to the problem) will take
advantage of the np node whose head is the word attention:

m_verb(vobjfreepp,_,pay_attention_1,pay,pay,pay,pays,paying,
 paid,paid,paid,trans,human,
 [np(oblig,posprec(1,Wnp),object,attention),
 pp(oblig,posprec(1,Wpp),pp_arg,_,_,to)]).

Note that here we have a pp argument governed by preposition to, which is necessary to account for such
relative clauses as to which he had paid great attention.

3.3. Verb Classes

 In horatio the lexical clauses for verbs (m_verb clauses) have as first argument the class the verb
belongs to. Such a piece of information is used as a handle, useful when we wish to have a quick and easy
way of ascertaining that a given verb is appropriate for the operation we want to perform. For instance, it
is very handy to be able to pick out quickly raising or extraposition verbs, or copula verbs.

 However, we do not use the sharing of verb class as a necessary or sufficient condition for the two
verbs to be coordinated in a verb phrase. We shall see that we cannot readily dispense with a double
parsing of the remaining word list, once as arglist of the first verb, and once as arglist of the second (see
the section on hard coordination, p. 94).

 The most important part played by the verb class is to provide an entry point for consistency
checks and template determination in a lexicographer's workbench, or in the importation process of
lexical material from a machine-readable dictionary.

3.4. Raising and Control

 The treatment of raising and control in horatio is based on the distinction between surface and
deep grammatical functions. The main principle is that a subject will go on playing the subject role until a
potential new subject is found.

 I should point out that I disagree with McCord as to the potential subject status of the indirect
object. He claims (cf. McCord 1987, p. 346) that the slot frame for PROMISE should have an iobj slot,
not an obj slot, and that the indirect object (iobj) cannot play the part of new subject in complement verb
phrases, whereas obj (direct objects) and pobj (prepositional objects) can. Therefore Bill is able to play
the part of subject of the complement vp (to see Mary and to find Mary) in the first two of the following
sentences (because Bill is obj in the first and pobj in the second), but not in the third, where Bill is iobj:

 John wants Bill to see Mary.
 John depended on Bill to find Mary.
 John promised Bill to see Mary.

 I hold PROMISE to be a real exception, to be marked as such in the lexicon. Compare the
following sentences, which show that PROMISE and TEACH behave the same way, syntactically:

I promised him to teach linguistics.
I taught him to teach linguistics.
What did I promise him ?
What did I teach him ?
Who did I promise to teach linguistics ?
Who did I teach to teach linguistics ?
I promised it to him.
I taught it to him.

 The distinction between the two arguments cannot be captured by syntactic tests. Him (Who) is
iobj (indirect object) in both cases, but cannot fill the new subject slot (i.e. that of subject for any vp to
the right) in the case of PROMISE, whereas it can (and does) in the case of TEACH and other verbs
governing an indirect object.

3.5. Multi-Word Units

 In horatio multi-word units (mwus) are dealt with according to the degree of morphological,
syntactic and lexical frozenness that they exhibit.

 Certain pieces of structure develop ties (a degree of internal cohesiveness) that go beyond what
the grammar predicts, or have meanings (and often translations) that are non-compositional with respect
to the grammar being used, or -as is often the case- display both these characteristics at one and the same
time. We call them mwus.

 Mwus illustrate the non-givenness of the lexicon. More than single word units, they are
theoretical constructs. Their recognition -and the structure that they are assigned- should result from their
behaviour in discourse, more precisely from their potential for manipulation . The main principle
adhered to in horatio is that mwus should be assigned as little structure as their behaviour warrants. It is
this amount of assigned structure which determines the appropriate techniques to be used for the
recognition of mwus from their manifestation in discourse. To give just one example: in order to
recognize the mwu TAKE PLACE we look for a morphological form of the verb TAKE immediately
followed by the string P-L-A-C-E ; we do not look for an object NP whose realization is the noun
PLACE ; we do not look for the noun PLACE either. Consequently, the entry for TAKE PLACE runs
as follows:

m_verb(vidiomintr,take_place_1,take,take,take,takes,taking,
 took,took,taken,intrans,abstract,
 [string(oblig,posprec(1,0),[place]),
 pp(oblig,posprec(2,Wpp),pp_arg,_,location,_)]).

/* the workshop took place in the university */

 Mwus also illustrate the arbitrariness of the grammar-lexis distinction. In horatio there is no
linguistically motivated border between syntax and lexis. We can choose to say that unit clauses (a
Prolog concept) make up the dictionary of the system, but then the term dictionary is no longer used in a
sense that is relevant to linguistic theory.

 In order to assess the degree of internal cohesion of mwus we explore three classes of
manipulation:

3.5.1. Insertion

Insertion of material into the lexical unit; compare:

PLAY A ROLE ---> PLAY AN important ROLE

SET FIRE TO ---> * SET dangerous FIRE TO

 This type of insertion (insertion of modifiers attached to elements belonging to a piece of the mwu)
should be distinguished from:

a) interruption of the mwu by foreign material:

 he PAID, if I may say so, ATTENTION TO the problem
 * the match TOOK, if I may say so, PLACE in the library

b) insertion into the mwu of one or several of its arguments:

 he TOOK the problems INTO ACCOUNT (insertion of the object 'the problems' into the mwu
TAKE INTO ACCOUNT)

3.5.2. Extraction

 Extraction of an element from its position within the canonical representation of the lexical unit;
this basic manipulation subsumes all standard transformations effecting movement or deletion; compare:

PAY ATTENTION TO ---> attention was paid to every single detail

MAKE A FOOL OF ---> * a fool was made of the new head

3.5.3. Proformation

 Replacement of a node in the mwu by a suitable pro-form : personal or indefinite pronoun for NP,
so for S, do so for (certain classes of) VP, there for PPs functioning as place adjunct, etc. Compare:

PLAY A ROLE ---> play it again

PAY ATTENTION TO ---> * pay some again / * don't pay any to him

 In horatio we distinguish (in a hierarchy from frozen to open):

a) completely frozen mwus

 A standard example is the adverb BY AND LARGE .

 These mwus have no internal structure. They should be regarded as objects of type string, with
their various elements bound by the adjacency operator (i.e. white space). In particular, there is no
reason whatsoever for trying to assign a part of speech to any of the constitutive elements: for example,
BY is not a preposition here (or whatever else for that matter: it is no more than the sequence of letters
B-Y) and LARGE is not an adjective.

b) mwus that allow only inflectional morphology variation (in one or several of their constituents)

 Examples in horatio are TAKE PLACE and SHOOT THE BREEZE , in which TAKE and
SHOOT can be inflected. Only the complete configurations are assigned structures. There is no reason to
assign any structure to PLACE , which is simply the sequence of letters P-L-A-C-E . It does not behave as
an NP, so is not an NP. It does not behave as a noun, so is not a noun. We have already given the entry
for TAKE PLACE. Here is the one for SHOOT THE BREEZE:

m_verb(vidiomintr,part0:'the breeze',
 shoot_the_breeze_1,shoot,shoot,shoot,shoots,shooting,
 shot,shot,shot,intrans,human,
 [string(oblig,posprec(1,0),[the,breeze])]).

c) mwus which can be interrupted by one or several of their arguments.

 An example in horatio is TAKE INTO ACCOUNT . TAKE can be inflected. TAKE and INTO
ACCOUNT can be separated by the object of the mwu:

he took the problems into account
he took into account the problems that she had seen

(the relevant feature for position of the object is its weight) Here is the entry for TAKE INTO
ACCOUNT:

m_verb(vobjfixedpp,part1:'into account',
 take_into_account_1,take,take,take,takes,taking,
 took,took,taken,trans,human,
 [string(oblig,posprec(1,3),[into,account]),
 np(oblig,posprec(1,Wnp),object,_)]).

d) collocations: these are mwus whose elements are free to behave as the normal (i.e. with respect to a
given grammar) structure assignment predicts. An example in horatio is TAKE MEASURE , where both

TAKE and the NP whose head is the noun MEASURE behave as predicted by the 'normal' structure
assignment:

VP [V [TAKE] NP [... Head N [MEASURE]]]]

 The link between TAKE and MEASURE is collocational, i.e. TAKE is the preferred verb to
express what it expresses here. The implementation of such a lexical affinity in horatio is achieved
through a feature on the object of TAKE , namely [measure], feature which is assigned to the noun
MEASURE under one of its readings. Such features can be regarded as hyperspecialised semantic
features, i.e. it is hypothesized that they will not be needed alongside semantic features, and that
consequently they can share the same slot. The entry for TAKE MEASURE looks like this:

m_verb(verbtr,_,take_measure_1,take,take,take,takes,taking,
 took,took,taken,trans,human,
 [np(oblig,posprec(1,Wnp),object,measure)]).

 horatio also has the corresponding entry for the noun MEASURE when used in the TAKE
MEASURE collocation:

m_noun(measure_1,measure,measures,[measure],[]).

 In connection with the implementation of mwu's it should be noted that when we satisfy (i.e.
match against the input word list) a fixed string, we return no parse tree, as the fixed string is included in
the predicate's lexical entry (as in look_down_on_1) as well as in the predicate's arglist:

satisfy(P0,P1,[],0,Posprec,Rel,Intrel,[],
 string(Type,Posprec,String),_,_):-
append(String, P1, P0).

 The String appended to the remaining list should yield the input list. In the lexical entry, String is
a list as in:

[string(oblig,posprec(1,0),[down]),

part of the entry for look down on:

m_verb(vtrphrprep,part0:down,look_down_on_1,look,look,look,looks,looking,
 looked,looked,looked,trans,human,
 [string(oblig,posprec(1,0),[down]),
 pp(oblig,posprec(2,Wpp),pp_arg,_,_,on)]).

/* the teacher looked down on his students */

3.6. Inflectional Morphology

 horatio works with a full form dictionary (of course, morphological variants can be looked up
-irregular forms- or generated -regular forms- cf. Appendix E); verbs have nine morphological variants:

am first person sing present tense

is third person sing present tense

was first person singular past tense

was third person sing past tense

were second person or plural past tense

are second person or plural present tense

being ING form

been past participle

be infinitive

Note: even BE does not have nine, but eight, distinct forms; the assignment of nine forms is grammar-
internal.

4. The Grammar: Interpreting the Lexicon
 horatio is a lexicon-driven parser. The main task of the grammar component is to interpret the
information contained in the lexical predicates of the system.

 What does interpreting the lexicon actually mean? Consider the arglist for the second reading of
ALLOW, repeated here for convenience:

[s(oblig,posprec(1,Precs),object)]

 This argument is interpreted by a clause for the predicate satisfy[7], which recursively calls the
grammar for the parsing of a sentence (job of the xsentence predicate):

satisfy(P0,P1,Gap,Prefgen,posprec(Pos,4),
 Rel,Intrel,[Function,Tree],
 s(Type,posprec(Pos,4),Function),
 subject(SUBJ,Semsubj),
 subject(SUBJ,Semsubj)):-

 xsentence(P0,P1,Gap,Pref,Tree,finite,Person,Number,Voice),
 Prefgen is Pref + 4.

 The same process is used for other argument types; for instance, to satisfy an np arg, a call on the
nounphrase predicate is made; information can be read off the lexicon when necessary, as in this case
information on the function to be filled by the np. The argument list is traversed non-deterministically.
The checking of linear precedence is discussed below (see p.91).

4.1. General Strategy

Arguments and Modifiers

 Arguments are lexically determined. They are either obligatory or optional. In Horatio , each
lexical argbearer (argument bearer) has an arglist (argument list) associated with it in the lexicon (the
arglist is always the last argument of a lexical predicate).

 Modifiers are not associated with lexical items, but with syntactic classes. They are always
optional.

 When an argbearer participates in a syntactic construction, its obligatory arguments must be
satisfied in the construction. Besides, they must appear in a sequence which satisfies the precedence
relation: each argument must satisfy the precede predicate with respect to the argument which follows
it in the left to right order of the word list to be parsed.

 Let us take the example of an arglist associated with a verb. The verb CONSIDER can take,
under one of its readings, an arglist consisting of an object and an object complement:

m_verb(vcomp,_,consider_2,consider,consider,consider,considers,
 considering,
 considered,considered,considered,trans,human,
 [np(oblig,posprec(1,Wnp1),object,_),
 np(oblig,posprec(2,Wnp2),object_attribute,_)]).

/* he considered the claim she made an oversimplification */

 This arglist will be passed on to the predicate arglist when the verb phrase which has consider
as main verb is parsed by the predicate verbphrase:

verbphrase(P1,P3,subject(SUBJ,Semsubj),Gap,Pref,

 [pred_arg_mod_structure,
 prop(vce:V,asp:A,mod:Modality,tns:Tense),
 VERB,SParse],
 Rel,Intrel,Type,Tense,aspect(Aspect),Modality,
 Number,Person,Voice,nsubject(NSUBJ,Nsem)):-
 verb(P1,P2,Class,VERB,Type,Tense,
 Number,Person,Semsubj,Args) ,
 arglist(P2,P3,Gap,Status,Pref,Preclist,Rel,
 Intrel,Voice,Parse,vp,
 Args,Func,subject(SUBJ,Semsubj),
 nsubject(NSUBJ,Nsem),
 Class),
 (nonvar(Aspect); var(Aspect),A = none),
 (Aspect = [] , A = none; Aspect \= [],A = Aspect),
 (nonvar(Modality); var(Modality),Modality = none),
 (nonvar(Tense); var(Tense), Tense = present),
 (nonvar(Voice), V = Voice; var(Voice),V = active),
 append([NSUBJ],Parse,AParse),
 insort(AParse,SParse).

 The predicate arglist will call reog to deal with possible subject changes induced by
passivization and other subject-changing transformations and then will call satisfylist with the new,
reorganized, arglist:

arglist(P0,P2,Gaps,ArgOrModFound,
 Pref,Posprec1,Rel,
 Intrel,Voice,Parse,NpOrVp,List ,
 Func,subject(SUBJ,Semsubj),
 nsubject(NSUBJ,Nsem),
 Class):-
 reog(Voice,Class,subject(SUBJ,Semsubj),List ,
 nsubject(NSUBJ,Nsem),Nlist,Func),
 satisfylist(P0,P2,Gaps,ArgOrModFound,Pref,Posprec1,
 Rel,Intrel,Voice,Parse,NpOrVp,Nlist,
 Func,subject(NSUBJ,Nsem)).

 The predicate satisfylist[8] will non-deterministically pick an element out of the arglist
and try to satisfy it by calling the predicate satisfy; it will then go on to try and satisfy the remainder
of the arglist, making sure that the precede relation between the satisfied argument and the remainder
is satisfied:

satisfylist(P0,P2,Gaps,ArgOrModFound,
 Pref,Posprec1,Rel,
 Intrel,Voice,Parse,NpOrVp,List ,
 Func,subject(SUBJ,Sem)):-
 append(Gap1,Gap2,Gaps),
 pick(List,Elem,Tail),

/* pick [9] is non-deterministic selection of an element from a list:
List is the list to select from
Elem is the selected element
Tail is List from which the selected element has been deleted */

 satisfy(P0,P1,Gap1,Pref1,Posprec1,
 Rel,Intrel,Parse1,
 Elem,subject(SUBJ,Sem),

 subject(NEXTSUBJ,Nsem)),
 ArgOrModFound = 1,
 satisfylist(P1,P2,Gap2,ArgOrModFound,
 Pref2,Posprec2,Rel,Intrel,Voice,
 Parse2,NpOrVp,Tail,
 Func,subject(NEXTSUBJ,Nsem)),
 precede(Posprec1,Posprec2),
 accu(Pref,[Pref1,Pref2]),
 append([Parse1],Parse2,Parse).

 The predicate satisfy is defined in different ways according to the argument that it is passed.
In the case of CONSIDER, it will be passed two nps, and the following clause will be triggered:

satisfy(P0,P1,Gap,Pref,posprec(Pos,Prec),Rel,Intrel,
 [Function,Rest],
 np(Type,posprec(Pos,Prec),
 Function,Semvp),
 subject(SUBJ,Semsubj),
 subject([subject,Rest],Semvp)):-

 nsubject(Function),
 xnounphrase(P0,P1,Gap,index(J),
 Prefnp,Prec,Rel,Intrel,
 Function,
 [Function,Rest],
 Number,Person,Sem),
 sfok(Semvp,Sem),
 Pref is Prefnp + 4.

 Satisfy calls the xnounphrase predicate to parse the argument np. It will be called twice, as
the two elements in the arglist are both nps (but they do not fill the same function, the first being the
object, and the second the complement, unless weight considerations have disturbed the canonical arg
order).

 How is the difference between obligatory and optional arguments accounted for? We have seen
that satisfylist calls itself recursively. When it cannot succeed by parsing more of the input, it is
allowed to succeed doing nothing, provided the arglist no longer contains obligatory args, i.e. all the
remaining args are optional:

satisfylist(P0,P0,Gap,_,0,_,_,_,_,[],_,List ,Func,_):-
 allopt(List).

 Allopt checks that all the args are optional. It does so by looking at their Type, which is always
the first member of the functor representing the arg (np, pp, s, etc.):

allopt([Head|Tail]):-
 arg(1,Head,opt),
 allopt(Tail).

allopt([]).

 Modifiers are parsed by the predicate modifier. The crucial difference is that their parsing does
not affect the arglist:

satisfylist(P0,P2,Gaps,ArgOrModFound,
 Pref,Posprec1,Rel,

 Intrel,Voice,Parse,NpOrVp,List ,
 Func,subject(SUBJ,Sem)):-
 append(Gap1,Gap2,Gaps),
 modifier(P0,P1,NpOrVp,Gap1,
 Prefmod,Posprec1,
 Rel,Intrel,Parse1,
 subject(SUBJ,Sem)),
 ArgOrModFound = 1,
 satisfylist(P1,P2,Gap2,ArgOrModFound,
 Preflist,Posprec2,
 Rel,Intrel,Voice,
 Parse2,NpOrVp,List ,
 Func,subject(SUBJ,Sem)),
 precede(Posprec1,Posprec2),
 accu(Pref,[Prefmod,Preflist]),
 append([Parse1],Parse2,Parse).

 The predicate modifier will parse modifier pps for both nps and vps, and will also parse ing-
phrases and en-phrases as np modifiers. In the case of pps it will call on the xprepphrase predicate,
and in the case of ing and en-phrases on the xverbphrase predicate. Here is, for example, the
definition of the predicate modifier for the parsing of modifier pps within vps:

modifier(P0,P1,vp,Gap,Prefgen,posprec(1,Precpp),
 Rel,Intrel,Tree,subject(SUBJ,Sem)):-
 xprepphrase(P0,P1,Gap,index(J),npindex(I),Pref,Precpp,
 Prepform,Rel,
 Intrel,vp_modifier,
 Tree,PPsem,PPsemnp),
 modppvp(Prepform),
 Prefgen is Pref + 2.

4.2. The S Level

 At the highest level, we have the parse predicate, with three clauses: one for declarative
sentences, a second for yes-no questions and a third for wh-questions (imperatives are not covered).
This highest level is the only one at which the Preference value is included in the parse tree.

parse(P0,[],[Preference,Tree]):-
 xsentence(P0,[],[],Preference,Tree,finite,Person,Number,Voice).

 Note that the S parsed by xsentence must be finite and that the whole string must have been
traversed. The first arg of xsentence, P0, is the input word list and the second arg is the remaining
word list to be traversed. It is here set to the empty list ([]). The third argument of xsentence is the gap
specification. It is also set to the empty list: a main declarative clause cannot feature any gap.

parse(P0,[],[Preference,Tree]):-
 yesnoquestion(P0,[],Preference,Tree).

parse(P0,[],[Preference,Tree]):-
 whquestion(P0,[],Preference,Tree).

4.2.1. Declarative Clauses

 The main predicate here is xsentence. In horatio a predicate name beginning with an x, such
as here xsentence, is used to parse a phrase that can, but need not, result from the coordination of two
phrases of the type indicated by the predicate name without the x. xsentence will take care of both
simple and coordinated S's. In the case of coordinated S's, xsentence will make a call on
c_sentence and then recursively call itself.

xsentence(P0,P2,[],Prefs,[and_sentence,S1,S2],Type,Person,
 Number,Voice):-
inlist(and,P0),
c_sentence(P0,[and|P1],[],Pref1,S1,Type,Person,Number,
 Voice),
xsentence(P1,P2,[],Pref2,S2,Type,Person2,Number2,Voice2),
accu(Prefs,[Pref1,Pref2]).

 In the case of a simplex S (non-coordinated main clause), xsentence will simply make a call on
c_sentence:

xsentence(A,B,C,D,E,F,G,H,I):- c_sentence(A,B,C,D,E,F,G,H,I).

 c_sentence parses main clauses that can, but need not, be flanked by an adverbial subordinate
clause on either side. Here is the code for a main clause preceded by an adverbial subordinate clause:

c_sentence(P0,P2,[],Preftot,[sentence,Adverbs,[S]],
 finite,Person,Number,Voice):-
adverb_sentence(P0,P1,[],Prefsub,Adverbs,finite,Person1,Number1,Voice1),
sentence(P1,P2,[],Prefmain,S,finite,Person,Number,Voice),
accu(Preftot,[Prefsub,Prefmain]).

 The adverb_sentence predicate parses an adverbial subordinate clause by finding a
subordinator and parsing an S:

adverb_sentence(P0,P2,[],Pref,[SUB,S],finite,Person,Number,Voice):-
sub(P0,P1,SUB,_),
/* subordinating conjunction; last position in argument list is currently unused */
sentence(P1,P2,[],Pref,S,finite,Person,Number,Voice).

 Finally, a c_sentence can have no adverbial subordinate clause, but consist of a main clause only:

c_sentence(A,B,C,D,E,F,G,H,I):- sentence(A,B,C,D,E,F,G,H,I).

We can now look at the sentence predicate itself.

sentence(P0,P2,Gaps,Prefs,[clause,VP],Type,Personvp,Number,Voice):-

append(Gapnp,Gapvp,Gaps),

/* it is more efficient to do the appending of the gaplists now, because there are cases where we know that
the result of the appending must be the empty list */

/* the subject np */

xnounphrase(P0,P1,Gapnp,index(I),Prefnp,Weight,Rel1,
 Intrel1,subject,SUBJ,Number,Personnp,Semsubjnp) ,

var(Rel1),

/* the Rel variables must be uninstantiated; it is the conjunction of an antecedent and a relative clause that
releases, i.e. uninstantiates the Rel var; see the treatment of relative clauses below, p. 99 */

/* Subject-verb agreement */

agree(Personnp,Number,Personvp),

/* the first two arguments of agree come from the np, the third from the vp */

/* the vp */

/* the parse tree corresponding to the subject will be included in the parse tree returned by the
xverbphrase predicate */

xverbphrase(P1,P2,subject(SUBJ,Semsubjvp),
 Gapvp,Prefvp,VP,Rel2,
 Intrel2,Type,Tense,aspect(Aspect),Modality,
 Number,Personvp,
 Voice,
 nsubject(NSUBJ,Nsemsubjvp)),

/* Nsemsubjvp records the semantic restriction on the subject if the verbphrase has been found to be
passive; the Voice variable is left uninstantiated in the active */

/* nsubject potentially changes the deep subject (passives, for instance); the semantic check (sfok) must
therefore be between Nsemsubjvp and the Semsubjnp list */

var(Rel2),

/* semantic check */
sfok(Nsemsubjvp,Semsubjnp),

/* computing the preference index */
accu(Prefs,[Prefnp,Prefvp,4]).

4.2.1.1. Subject / Operator Agreement Rules

 Agreement between the subject np and the verb phrase is checked by the predicate agree, whose
code is the following:

agree(first,sing,firstsg).
agree(first,plural,other).
agree(second,sing,other).
agree(second,plural,other).
agree(third,sing,thirdsg).
agree(third,plural,other).

 The first two arguments come from the subject np: Person and Number. The third argument
comes from the verb phrase. The value firstsg is necessary for the forms was and am of BE; the value
thirdsg is used to capture the agreement feature of was and of the present tense third person of most
verbs. The value other is a catchall value.

 A call to the agree predicate is made at the S level, in the definition of the sentence predicate,

repeated below with the relevant pieces in bold type:

sentence(P0,P2,Gaps,Prefs,[clause,VP],Type,Personvp,
 Number,Voice):-
append(Gapnp,Gapvp,Gaps),
xnounphrase(P0,P1,Gapnp,index(I),Prefnp,Weight,Rel1,
 Intrel1,subject,SUBJ,Number,Personnp,Semsubjnp) ,
var(Rel1),
agree(Personnp,Number,Personvp),
xverbphrase(P1,P2,subject(SUBJ,Semsubjvp),
 Gapvp,Prefvp,VP,Rel2,
 Intrel2,Type,Tense,aspect(Aspect),Modality,
 Number,Personvp,
 Voice,
 nsubject(NSUBJ,Nsemsubjvp)),
var(Rel2),
sfok(Nsemsubjvp,Semsubjnp),
accu(Prefs,[Prefnp,Prefvp,4]).

4.2.1.2. Priority among Person Features

 When dealing with coordinated nps we need to call on the priority predicate to determine the
person of the np resulting from the coordination. For instance she and I is first person, not third. The code
for the priority predicate reflects the person hierarchy: first has priority over second and third, and
second over third:

priority(first,second,first):- !.
priority(first,third,first):- !.
priority(third,first,first):- !.
priority(second,first,first):- !.
priority(third,second,second):- !.
priority(second,third,second):- !.
priority(X,X,X).

 The first two arguments are the person values of the first and second member of the coordination;
the third arg is the resulting person value, the one associated with the coordination as a whole. Note that
we can use the cut and that we need so many clauses because we need to cater for the two positions that
the winning value can have in the coordination. The last clause deals with the case where the two
coordinated nps share the person value.

 The predicate priority is called in the parsing of coordinated nps:

xnounphrase(P0,P2,[],index(I),Pref,Weight,Rel,Intrel,
 Function,
 [Function,[and_nounphrase,Rest1,Rest2]],
 plural,Person,Sem):-
 inlist(and,P0),
 nounphrase(P0,[and|P1],[],_,Pref1,Weight1,Rel,
 Intrel,Function,
 [Function,Rest1],
 Number1,Person1,Sem),
 xnounphrase(P1,P2,[],_,Pref2,Weight2,Rel,
 Intrel,Function,
 [Function,Rest2],
 Number2,Person2,Sem2),

 priority(Person1,Person2,Person),
 accu(Pref,[Pref1,Pref2]),
 accu(Weightaccu,[Weight1,Weight2]),
 Weight is (Weightaccu/2)+1.

4.2.1.3. Passives

4.2.1.3.1. Parsing

 Passivization induces changes in the arglist associated with the passivized verb: the active subject
is left out of the arglist, or demoted to head of a by-phrase; one of the other arguments is promoted to
subject.

 In horatio it is the predicate reog (for reorganization of the arglist) which takes care of
accounting for these changes, i.e. maintaining the relation between the arglist as expressed in the lexicon
and the arguments as occurring in the passivized clause.

 It should be noted that in horatio the voice value is left uninstantiated when the clause is active,
and set to passive when the clause is passive. Here is the relevant definition of the reog predicate:

reog(passive,Class,subject([SFunc,Rest],Semsubj),List ,
 nsubject(NSUBJ,Nsem),Nlist,Func):-
 pick(List,Elem,Remainder),
 Elem =.. Elemlist,

/* tree to list conversion: each element in the arglist is a tree whose root indicates its nature: np, pp, s,
etc... */

 Elemlist = [Nature,Type,Posprec,Func,Nsem|_],
 psubject(Func),

/* Func points to a function in the active S that can be promoted to subject of passive; this is checked by
psubject */

 NSUBJ=[Func,Rest],

/* note that the deep function is preserved in the parse tree */

 append(Remainder,
 [byphrase(opt,posprec(_,3),subject,Semsubj)],
 Nlist).

/* the subject position opened up for the active vp yields a by-phrase position to be appended to the
remaining arglist */

 The code for psubject enumerates the various functions that can fill in the subject role in a
passivized S:

psubject(indirect_object).
psubject(object).
psubject(surf_object).

 The last one will be used in the parsing of such sentences as She is expected to teach, where the
subject (she) results from a promotion to surface subject of the main clause of a surf_object (They expect

her to teach). This surface object results from the promotion of the subject of the embedded clause (via
subject-to-object raising), which is the real (i.e. deep), clausal object (she to teach).

 Reog is always called in the definition of the arglist predicate (passage from arglist to
satisfylist), but it is allowed to succeed doing nothing in the case of active clauses to which neither
raising nor extraposition applies:

reog(Voice,Class,subject(SUBJ,Semsubj),List,
 nsubject(SUBJ,Semsubj),List,Func):-
 Class \= sraising,
 Class \= extrapos,
 var(Voice),!.

 The code for arglist includes a call to reog, which, if appropriate, will reassign the subject
and modify the argument list:

arglist(P0,P2,Gaps,ArgOrModFound,
 Pref,Posprec1,Rel,
 Intrel,Voice,Parse,NpOrVp,List ,
 Func,subject(SUBJ,Semsubj),
 nsubject(NSUBJ,Nsem),
 Class):-
 reog(Voice,Class,subject(SUBJ,Semsubj),List,
 nsubject(NSUBJ,Nsem),Nlist,Func),
 satisfylist(P0,P2,Gaps,ArgOrModFound,Pref,Posprec1,
 Rel,Intrel,Voice,Parse,NpOrVp,Nlist,
 Func,subject(NSUBJ,Nsem)).

4.2.1.3.2. Generation

 Passive in generation is the inverse of passive in analysis. Analysis yields parse trees which
exhibit deep grammatical functions, and the surface relations must be re-established before the strings
corresponding to the surface phrases can be generated. The whole reorganization process is in the hands
of the predicate prepgen, which adheres to the transformational cycle (see the section on the cycle on
page 108), and prepgen calls on passive where appropriate. Passive has a fair number of clauses
on account of the various geometries of the trees it is supposed to work on: they may contain indirect
objects, direct objects, subjects, in various orders. Passive has a clause for each configuration. It is not
necessary to examine them all here.

 First, let us look at the clause for passive which applies when voice is active. Obviously
enough, we do not want passive to fail in such cases, but rather to succeed trivially, i.e. leaving the tree
untouched:

passive([H1,[pred_arg_mod_structure,prop(vce:active,B,C,D)|R1]|R2],
 [H1,[pred_arg_mod_structure,prop(vce:active,B,C,D)|R1]|R2]):-
second_header(H1),
!.

 Second_header(H1) is only a check on the environment, namely on the clause header.

 As an example of a clause for passive that actually does something, let us look at the one for
clauses with an indirect object that can be demoted to subject of the passive clause:

passive([H1,[pred_arg_mod_structure,prop(vce:passive,B,C,D),Pred1,
 [[Subject,S],

 [object|Robject],
 [indirect_object|Rio]|Otherargs]]],

 [H1,[pred_arg_mod_structure,prop(vce:passive,B,C,D),Pred1,
 [[subject_pass|Rio],[object|Robject],
 [pp_arg,[prepphrase,index(I),prep(by),[np_arg_of_prep,
 S]]]|Otherargs]]]):-

subject_active(Subject),
second_header(H1) .

 The actual work gets done in the head of the clause, the body only containing checks on the
environment, namely a check on the clause header (H1) and on the subject of the active clause.

 The reorganization work consists in demoting the active subject to by-phrase in the passive
clause. The by-phrase is created as a pp_arg, with preposition BY governing an np_arg_of_prep
corresponding to the body of the subject in the active clause. The second transformation concerns the
status of the active indirect object. Its body is not changed, but its function is turned to subject_pass, i.e.
subject of a passive S.

 Note that we need to take care of the case where the by-phrase has an np arg that is
uninstantiated, so that we do not generate a surface by-phrase with an empty np inside. The following
clause for gen does the job:

gen([pp_arg,[prepphrase,index(I1),prep(by),
 [np_arg_of_prep,[nounphrase,index(I2)|VAR]]]], []):-
var(VAR) .

The second arg of gen, which houses the generated string, is set here to the empty list ([]).

4.2.1.4. The Assignment of the Subject Role

 Control relations (which determine the assignment of one of the predicate's arguments to the
subject slot of a nonfinite complement clause, such as an infinitive or ing clause) are computed while
syntactically parsing the S. They are not taken out of the syntactic component and assigned to semantic
interpretation rules, as they are in CLE (see Alshawi et al. 1992, section 5.3.2, VP control phenomena,
p. 101 and foll.)

4.2.1.4.1. Control

 In Horatio , control takes care of the coindexing of a controlling argument with the argument it
controls, which is always the subject of a subordinate clause which belongs to the same arglist as the
controller.

 In generation, the task consists in ghosting the controlled subject, i.e. depriving it of lexical
material, so that nothing is generated.

4.2.1.4.1.1. Parsing

 Consider the case of verbs such as WANT constructed with an np followed by a to-infinitive. The
control relation is between the surface object of WANT and the subject of the infinitive. In a sentence
such as The woman wants the teacher to teach, the teacher will be assigned as running subject[10] (i.e.
subject of any vp further to the right) when it is parsed to satisfy the np argument in the arglist of
WANT:

m_verb(vinf,_,want_1,want,want,want,wants,wanting,
 wanted,wanted,wanted,trans,living,
 [np(opt,posprec(1,Wnp),subject_inf,_),
 np_vp(oblig,to_inf,object)]).

 The running subject assignment will be done by the satisfy predicate:

satisfy(P0,P1,Gap,Pref,posprec(Pos,Prec),Rel,Intrel,
 [Function,Rest],
 np(Type,posprec(Pos,Prec),
 Function,Semvp),
 subject(SUBJ,Semsubj),
 subject([subject,Rest],Semvp)):-
 nsubject(Function),
 xnounphrase(P0,P1,Gap,index(J),
 Prefnp,Prec,Rel,Intrel,
 Function,
 [Function,Rest],
 Number,Person,Sem),
 sfok(Semvp,Sem),
 Pref is Prefnp + 4.

 The first subject functor in the satisfy argument list points to the running subject on entering
and the second to the running subject on exiting the procedure. The parse tree returned by the
xnounphrase is unified with the first argument of the second subject functor, except for the function,
which is set to subject in the second subject functor.

 Nsubject checks that the function is one that can yield the running subject. It is defined by the
following code:

nsubject(subject_inf).
nsubject(subject_ing).
nsubject(surf_subject).
nsubject(object).
nsubject(surf_object).
nsubject(indirect_object).

 Now that the running subject has been set, it can be assigned as subject to the to-infinitive. This
is done when the to-infinitive argument is satisfied by a call to the satisfy predicate:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
 [Function,[clause,Tree]],
 np_vp(Type,to_inf,Function),
 subject([Sfunction,Treesubj],Semsubj1),
 subject([Sfunction,Treesubj],Semsubj1)):-
 xverbphrase(P0,P1,subject([subject,Treesubj],Semsubj2),
 Gap,Pref,Tree,Rel,
 Intrel,infinitive,Tense,
 aspect(Aspect),Modality,
 Number,Person,Voice,
 nsubject(NSUBJ,Nsem)),
 checksem(Nsem,Semsubj1),
 Prefgen is Pref + 4.

4.2.1.4.1.2. Generation

 In generation, the controlled subject needs to be ghosted, i.e. deprived of lexical material, so that
it does not appear in the generated string. We need several clauses for the predicate control, depending
on the structural positions of the controller and of the clause with the controlled subject. Let us examine
the one for controller as first argument and clause containing the controlled subject as second:

control([H2,
[pred_arg_mod_structure,Prop1,[predicate(Pred1,AgrPred1)],
 [[Controller,[nounphrase,index(I),AgrNP|Rest1]],
 [H1,[clause,[pred_arg_mod_structure,Prop2,[predicate(Pred,agr(Agr))],
 [[Subject,[nounphrase,index(I),AgrNP|Restsubj]]|Otherargs]]]]|R1]]],

[H2,[pred_arg_mod_structure,Prop1,[predicate(Pred1,AgrPred1)],
 [[Controller,[nounphrase,index(I),AgrNP|Rest1]],
 [H1,[clause,
[pred_arg_mod_structure,Propnew2,[predicate(Pred,agr(Agr))],
 [[Subject,[nounphrase,index(I),AgrNP|VAR]]|Otherargs]]]]|R1]]]):-

nonvar(I),
allsubject(Subject),
cv(Pred1,Requires),
second_header(H2),
first_header(H1),
controller(Controller),
nonfinite(Agr),
Prop2 = prop(Voice,Aspect,Mod,Tns),
Propnew2 = prop(Voice,Aspect,Mod,tns:Requires).

 We first check that the index is instantiated. We do not want control to be responsible for
instantiation through unification.

 This is followed by a series of other checks on the environment of the rule. We make sure that the
variable Subject refers to a subject function (the code for allsubject is given on page 113), and that
the clause headers are as expected (see page 110). We also check that Controller points to a function
that can control. The code for the controller predicate is the following:

controller(subject).
controller(object).
controller(subject_inf).
controller(subject_pass).
controller(indirect_object).

 The cv clause makes a call on the lexicon (macro clause m_verb) and checks that the verb class
is that of a control verb with the help of the predicate cvclass. The predicate cvclass also gives the
nature of what will remain from the controlled clause: it will be a vp, and cvclass indicates whether it
will be gerundive or infinitive . This value returned by cvclass will come to occupy the position for
the tense value, which does not apply to non-finite clause. This mechanism is further explained on page
114.

 The last check is on the agreement feature of the predicate in the controlled clause. It cannot be a
finite clause, as control does not apply to finite clauses (rather pronominalization does).

 The ghosting job consists in replacing Restsubj, the body of the subject in the parse tree, by
VAR , an uninstantiated variable.

 The generator has a clause which ensures that ghosted nps (and other ghosted elements) do not
generate any output. It simply stipulates that uninstantiated variables generate the empty list, and this
empty list disappears in the list appending and flattening processes which complete generation:

gen(X,[]):- var(X), !.

4.2.1.4.2. Raising

 We need to distinguish Subject-to-Object raising and Subject-to-Subject raising. The first case
is exemplified by the relation between the string I believe John to teach linguistics and the parse
produced, revealing that the surface object is the deep subject of the subordinate clause (something
linearizable as I believe [John teach linguistics].) The second case is exemplified by the surface string
John seems to teach linguistics and its "source" (in transformational terms - merely metaphorical here,
since horatio does not assume the existence of transformations, but is only interested in revealing
relations): [John teach linguistics] seems.

4.2.1.4.2.1. Parsing

4.2.1.4.2.1.1. Subject-to-Object Raising

 In the lexicon subject-to-object raising verbs belong to the vinf class. Consider the entry for
BELIEVE under the relevant reading :

m_verb(vinf ,_,believe_1,believe,believe,believe,believes,believing,
 believed,believed,believed,trans,human,
 [np(oblig,posprec(1,Wnp),surf_object,_),
 np_vp(oblig,to_inf,object)]).

/* he believes him to teach linguistics */

 When the arglist is satisfied, the np (such as him in the example) will be assigned surf_object as
function. This function is an athematic one, and the np will therefore not appear in the parse tree, on
account of the following defining clause for the predicate drop: drop([surf_object,Rest]).

 However, this np will have been made running subject by the satisfy predicate, since
surf_object is one of the functions accepted by nsubject: nsubject(surf_object).

satisfy(P0,P1,Gap,Pref,posprec(Pos,Prec),Rel,Intrel,
 [Function,Rest],
 np(Type,posprec(Pos,Prec),
 Function,Semvp),
 subject(SUBJ,Semsubj),
 subject([subject,Rest],Semvp)):-
 nsubject(Function),
 xnounphrase(P0,P1,Gap,index(J),
 Prefnp,Prec,Rel,Intrel,
 Function,
 [Function,Rest],
 Number,Person,Sem),
 sfok(Semvp,Sem),
 Pref is Prefnp + 4.

 When the np_vp construction in the arglist is satisfied, it is assigned the running subject as
subject:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
 [Function,[clause,Tree]],
 np_vp(Type,to_inf,Function),
 subject([Sfunction,Treesubj],Semsubj1),
 subject([Sfunction,Treesubj],Semsubj1)):-
 xverbphrase(P0,P1,subject([subject,Treesubj],Semsubj2),
 Gap,Pref,Tree,Rel,
 Intrel,infinitive,Tense,
 aspect(Aspect),Modality,
 Number,Person,Voice,
 nsubject(NSUBJ,Nsem)),
 checksem(Nsem,Semsubj1),
 Prefgen is Pref + 4.

 The function of the whole clause is read off the lexicon (object). We therefore end up with the
clausal object we need: him to teach, where him is assigned subject role.

4.2.1.4.2.1.2. Subject-to-Subject Raising

 Subject-to-Subject Raising verbs are assigned the sraising class. Consider the entry for SEEM
under the relevant reading in the lexicon:

m_verb(sraising,_,seem_1,seem,seem,seem,seems,seeming,
 seemed,seemed,seemed,intrans,_,
 [vp(oblig,subject)]).
/* he seems to have taught linguistics */

 The vp structure in the arglist will be satisfied by the following defining clause for the predicate
satisfy:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
 [Function,[clause,Tree]],
 vp(Type,Function),
 subject([Sfunction,Treesubj],Semsubj1),
 subject([Sfunction,Treesubj],Semsubj1)):-
 xverbphrase(P0,P1,subject([subject,Treesubj],Semsubj2),
 Gap,Pref,Tree,Rel,
 Intrel,infinitive,Tense,
 aspect(Aspect),Modality,
 Number,Person,Voice,
 nsubject(NSUBJ,Semsubj1)),
 Prefgen is Pref + 2.

 The whole infinitive clause is assigned the subject role (read off the lexical entry). Here too the
running subject (in this case the subject of SEEM) is assigned as subject of the infinitive clause. But it
also needs to be made athematic in the higher clause, so that it does not appear as subject in the parse tree,
the real subject being clausal. This demotion is accomplished by reog:

reog(Voice,Class,subject([subject,Rest],_),List,
 nsubject([surf_subject,Rest],_),List,Func):-
 (Class = sraising; Class = extrapos),
 var(Voice),!.

4.2.1.4.2.2. Generation

4.2.1.4.2.2.1. Subject-to-Object Raising

 Subject-to-Object raising in generation is accomplished by the predicate oraising. It is
examined in detail in the section on the cycle, where the sentence we follow through the cycle is one
where subject-to-object raising applies, namely I believe him to have been killed. The reader is referred to
page 112 and following.

4.2.1.4.2.2.2. Subject-to-Subject Raising

 In generation terms Subject-to-Subject raising, as in we tend to like students, applies to
subordinate clauses in subject function. Their own subject is promoted to subject of the main clause,
leaving a subjectless subordinate clause which will be non-finite (infinitive).

 The predicate taking care of subject-to-subject raising in generation is sraising. It has a clause
which succeeds trivially (returns its first arg in its second arg) in those cases where the transformation is
not applicable, i.e. where the predicate of the main clause is not of the appropriate class:

sraising([clause,[pred_arg_mod_structure,Prop1,
 [predicate(Notraising,Agr1)]|R1]|R2],
 [clause,[pred_arg_mod_structure,Prop1,
 [predicate(Notraising,Agr1)]|R1]|R2]):- not(sraise(Notraising,_)), !.

 The predicate sraise calls on the lexicon to check whether the verb is a subject-to-subject
raising one; the appropriate verb class is the sraising one:

sraise(Sraisingverb,to):-
m_verb(sraising,_,Sraisingverb,_,_,_,_,_,_,_,_,_,_,_).

 Let us now turn to the case where subject-to-subject raising is applicable. The defining clause is as
follows:

sraising([clause,
[pred_arg_mod_structure,Prop1,[predicate(Sraising,Agr1)],
 [[Subject1,[clause,[pred_arg_mod_structure,Prop2,Pred,
 [[Subject2|Rest]|Otherargs]]]]]]],

[clause,[pred_arg_mod_structure,Prop1,[predicate(Sraising,Agr2)],
 [[Subject2|Rest],
[Subject1,[clause,[pred_arg_mod_structure,Propnew2,Pred,
 [Otherargs]]]]]]]):-

sraise(Sraising,Requires),
allsubject(Subject1),
allsubject(Subject2),
 (Agr1 = agr(Type,Tns,Number,Person), Agr2 = agr(Type,Tns,_,_);
 Agr2 = Agr1),
Prop2 = prop(Voice,Aspect,Mod,tns:present),
Propnew2 = prop(Voice,Aspect,Mod,tns:Requires).

 Apart from the manipulation of the syntactic relations performed in the head of the clause, the
following points should be noted:

1) The agreement functor of the main predicate is changed. We do not keep the Number and Person
values, if we have them. If we do have them, we disinstantiate them; if we do not have them (the agr

functor is not the 4-place one), we can copy the old agr functor (Agr1) into the new one (Agr2). The
reason why we cannot keep the Person and Number values is obvious: agreement will have to be made
with the new subject, the promoted one.

2) To simplify generation we stipulate that Subject-to-Subject raising cannot apply to subordinate clauses
that are not present tense. If tense is past, extraposition should be allowed to apply, not subject-to-
subject raising. Compare:

(a) it appears that he interviewed browne
(b) he appears to be interviewing browne

In this way we do not need to introduce a perfect value in the aspect slot of Propnew2 when tense is
non-present in Prop2 (to generate he appears to have interviewed browne as variant of (a)). Therefore in
Prop2 (the Property field of the subordinate clause), we check that the tense value is present before
overwriting it with the non-finite value returned by the sraise predicate.

4.2.1.4.3. Extraposition

 Extraposition is the end-placing of a subject clause and the filling of the vacated subject position
with place-filler IT. It is the relation between the surface string It seems that John teaches linguistics and
[John teach linguistics] seems, which can also be related to the surface string John seems to teach
linguistics by raising.

4.2.1.4.3.1. Parsing

 In analysis the surface subject needs to be demoted. This is accomplished by the reog clause that
we have looked at in the preceding section.

 In the lexicon extraposition verbs are assigned the extrapos class:

m_verb(extrapos,_,seem_1,seem,seem,seem,seems,seeming,
 seemed,seemed,seemed,intrans,it,
 [s(oblig,posprec(1,W),subject)]).
/* it seems that he has taught linguistics[11] */

 The arglist contains an S that is assigned the subject role. It is satisfied by the following defining
clause of the predicate satisfy:

satisfy(P0,P1,Gap,Prefgen,posprec(Pos,4),
 Rel,Intrel,[Function,Tree],
 s(Type,posprec(Pos,4),Function),
 subject(SUBJ,Semsubj),
 subject(SUBJ,Semsubj)):-
 xsentence(P0,P1,Gap,Pref,Tree,finite,Person,Number,Voice),
 Prefgen is Pref + 4.

4.2.1.4.3.2. Generation

 In generation we need to put the place-filler IT back into the parse, so that it gets generated as
surface subject of SEEM. This is accomplished by the predicate extrapos:

extrapos([clause,[pred_arg_mod_structure,Prop1,
[predicate(Extrapos,Agr1)],
 [[subject,[clause|Rest]]|Otherargs]]],

[clause,[pred_arg_mod_structure,Prop1,

[predicate(Extrapos,Agr1)],
 [[subject,[nounphrase,index($index$),agr(third,sing),
 ppro(third,sing,neuter)]],
 [object,[clause|Rest]]|Otherargs]]]):-
expos(Extrapos,Requires).

 The body of the clause simply checks that the verb belongs to the right class. The clausal subject
is transferred to the object argument (it will be generated as if it were an object, which it is positionally),
and a new subject is created with the appropriate agreement functor (agr(third,sing)) and the appropriate
body (ppro(third,sing,neuter)).

4.2.2. Non-Declarative Main Clauses

4.2.2.1. Yes-No Questions

 The basic format of a YES-NO question is the following:

Operator - Sentence with incomplete verb group

 The operator is the first auxiliary of the verb group if the latter includes any auxiliary, or DO
otherwise. The operator must be finite .

4.2.2.1.1. Parsing

 In horatio we check that the operator and the remainder of the verb group build up a licit verb
group (each auxiliary has a Required value, which indicates the Type of the verb form that can be found
to its right).

yesnoquestion(P1,P3,Prefs,[yes_no_question,
 [clause,
 [P,prop(vce:V,asp:A2,mod:Modality ,tns:Tense) |Rest]]
]):-
 xaux(P1,P2,Modality ,finite ,Required,Number,Person,Tense),
 checkaux3(Asp,Required,V),
 xsentence(P2,P3,
 [],
 Prefs,
 [clause,
 [P,prop(vce:V,asp:A,mod:M,tns:T) |Rest]],
 Required,Person,Number,V),

 (nonvar(Modality); var(Modality),Modality = none),

/* we have a value none in case there is no modal auxiliary */

 myappend(Asp,A,Aspect),

/* myappend appends the aspect value contributed by the auxiliary parsed by xaux to the aspect value
returned by the parsing of the S (xsentence); the code for myappend is to be found on page 66 */

 (nonvar(Aspect); var(Aspect),A2 = none),
 (Aspect = [] , A2 = none; Aspect \= [],A2 = Aspect).

/* the returned value is none if Aspect is uninstantiated or the empty list */

 The value for Voice is computed by checkaux3, whose code is the following (further discussed on
page 65):

checkaux3([perfect],en_active,_).

checkaux3([progressive],ing,_).

checkaux3([],Required,_):-
 Required \= en_passive,
 Required \= en_active,
 Required \= ing.

checkaux3([],en_passive,passive).

 The first argument is the contribution the auxiliary makes to the Aspect list; the second argument
is the Required feature; the third argument is Voice, which is to be left uninstantiated if voice is active.

 Looking at auxiliaries in the lexicon, we find both a Required (fifth argument) and a Type (fourth
argument) value:

aux([does|X],X,_,finite ,infinitive ,sing,thirdsg,present).
aux([been|X],X,_,en_active,ing,_,_,_).

 Does is finite and requires an infinitive ; been can be the active past participle and requires an
ing-form :

Does he know you ?
He has been reading a book.

 The treatment of YES-NO questions needs to be different when the question opens with a non-
auxiliary , i.e. copula BE. We do not have a verb group in the remaining S, and we need to look at the
whole YES-NO question as having the following structure:

Copula - Subject - Copula's arglist

Is the teacher a genius ?
Are they aware of the problems ?

We therefore have the following piece of code in horatio:

yesnoquestion(P1,P4,Prefint,[yes_no_question,
 [clause,
 [pred_arg_mod_structure,
 prop(vce:active,asp:none,mod:none,tns:Tense),
 VERB,[SUBJ,Parse]]]
]):-
 verb(P1,P2,cop,VERB,finite ,Tense,
 Number,Personvp,Semsubj,Args) ,

/* cop is verb class of non-auxiliary BE (copula verb) */

 xnounphrase(P2,P3,[],index(I),Prefnp,Weight,Rel1,
 Intrel1,subject,SUBJ,Number,Personnp,Semsubjnp),

 agree(Personnp,Number,Personvp),
 arglist(P3,P4,[],Status,Prefarg,Preclist,Rel,
 Intrel,Voice,[Parse],vp,
 Args,Func,subject(SUBJ,Semsubj),
 nsubject(NSUBJ,NSemsubj), cop),
 accu(Prefint,[Prefnp,Prefarg,4]).

 Note that we must perform the agreement check between the copula and the subject np (call to the
agree predicate). The arglist of the copula is parsed by a call to the arglist predicate. As far as the
verbal group properties are concerned, we know that we have no aspectual or modality values (there
would be an auxiliary in that case), and that voice is active.

4.2.2.1.2. Generation

 When we have copula BE as main verb, we need to generate the copula, generate the subject, and
then generate the remainder, i.e. the copula's arglist and modifiers. The generator therefore looks into the
parse tree to make sure that the predicate is BE. It also needs to isolate the first element in the arglist, and
make sure that it is the subject. Note that we know that voice is active, and that there is no auxiliary for
either aspect or modality:

gen([yes_no_question,[clause,[pred_arg_mod_structure,
 prop(vce:active,asp:none,mod:none,tns:Tns),
 [predicate(be,Agr)],
 [[Subject,[nounphrase,I,agr(Person,Number)|Restsubj]]|Otherargs]]]],
 Sentence):-

subject(Subject),
gen([Subject,[nounphrase,I,agr(Person,Number)|Restsubj]],Gensubject),
gen([predicate(be,Agr)],Vform,Part),
append([Part],Otherargs,Args),
insort(Args,Sortedargs),
gen(Sortedargs,Genargs),
append([Vform],[Gensubject],List1),
append(List1,[Genargs],Sentence).

 In all other cases we do have one or more auxiliaries. We need to isolate the first auxiliary,
because it must appear in front, before the subject. The generation of auxiliaries is carried out by the
genyesno predicate, whose code is examined in the section on the verb phrase (see p.65 and
following). It returns a list of auxiliaries, and we append the first in front of the clause, insert the subject,
and then append the remaining auxiliaries (there may be none), the verb, and finally the remaining args
and modifiers:

gen([yes_no_question,[clause,[pred_arg_mod_structure,
 Properties,[predicate(Predicate,Agr)],
 [[Subject,[nounphrase,I,agr(Person,Number)|Restsubj]]|Otherargs]]]],
 Sentence):-

subject(Subject),
gen([Subject,[nounphrase,I,agr(Person,Number)|Restsubj]],Gensubject),
genyesno(Properties,Agr,Person,Number,[First|Others]),
gen([predicate(Predicate,Agr)],Vform,Part),
append([Part],Otherargs,Args),
insort(Args,Sortedargs),
gen(Sortedargs,Genargs),
append([First],[Gensubject],List1),

append(Others,[Vform],List2),
append(List2,[Genargs],List3),
append(List1,List3,Sentence).

4.2.2.2. WH Questions

 They are made up of a wh-group and a clause with a gap which can be filled by that wh-group.

4.2.2.2.1. Parsing

 We need to distinguish two cases:

a) the wh-group is the subject

 We parse the sentence as a wh-group followed by a sentence which lacks a subject. The link
between the two parts is provided by coindexing.

/* NP wh in subject position; the S does or does not feature an auxiliary:

who knows the teacher ?
who has seen the teacher ?
who is the teacher ? */

whquestion(P0,P2,Prefint,[wh_question,NP,S]):-
 nounphrase(P0,P1,[],index(I),Prefnp,Weight,
 Semrelint,int ,Functioninint ,
 NP,sing,third,Semwholenp),

/* this np must have int as 8th arg, i.e. it must be or contain an interrogative element */

 nonvar(Semrelint),
 xsentence(P1,P2,
 [gap(_,npgap,Npsem,_,Functioninint,_,index(I),_)],
 Prefs,S,finite ,thirdsg,sing,Voice),

/* only singular subject is catered for here: * who teach linguistics ? */

 nonvar(Functioninint),
/* the gap is a real one */

 Functioninint = subject,
/* the function of the missing element is subject */

 NP \= [_,[_,_,_,[interrogative(whom)]]],
/* we can't have whom as subject */

 sfok(Npsem,Semwholenp),
 accu(Prefint,[Prefnp,Prefs]).

b) the wh-group is not the subject

Examples:

 A book about whom has he read ?
 Whom has the teacher seen ?

 Here we need to be able to look into the parse trees, to account for the auxiliary which is detached
from the remainder of the verb phrase, being separated from it by the subject. The relevant piece of code
is the following:

whquestion(P0,P3,Prefint,[wh_question,NP,
 [clause,
 [P,prop(vce:V,asp:A2,mod:Modality ,tns:Tense) |Rest]]
]):-

 nounphrase(P0,P1,[],index(I),Prefnp,Weight,
 Semrelint,int ,Functioninint ,
 NP,Number,third,Semwholenp),
 nonvar(Semrelint),
 xaux(P1,P2,Modality ,finite ,Required,Numbers,Person,Tense),

/* the auxiliary contributes the modality and tense features */

 checkaux3(Asp,Required,V),
 xsentence(P2,P3,
 [gap(_,npgap,Npsem,_,Functioninint ,_,index(I),_)],
 Prefs,
 [clause,
 [P,prop(vce:V,asp:A,mod:M,tns:T) |Rest]],
 Required,Person,Numbers,V),
 (nonvar(Modality); var(Modality),Modality = none),
 myappend(Asp,A,Aspect),
 (nonvar(Aspect); var(Aspect),A2 = none),
 (Aspect = [] , A2 = none; Aspect \= [],A2 = Aspect),
 nonvar(Functioninint),
 Functioninint \= subject,
 sfok(Npsem,Semwholenp),
 accu(Prefint,[Prefnp,Prefs]).

 Note the sharing of the function Functioninint between the opening wh-group and the gap in the
S. Note also the semantic check between wh-group and gap (call to sfok).

 PP gaps receive a similar treatment.

4.2.2.2.2. Generation

 In the case of a subject WH-group, we generate the WH-group and then generate the remainder as
a normal clause (recall that it is a gapped clause, since it lacks a subject):

generate([wh_question,Whgroup,Clause],Sentence):-
Whgroup = [subject|Rest],
gen(Whgroup,Whgroupgen),
generate(Clause,Ynogen),
append([Whgroupgen],[Ynogen], Sentence).

 Note the distinction between the two generation predicates. Gen generates directly, whereas
generate first makes sure that control and other function-changing processes (raising, passivization,
etc.) have been undone (See section on the cycle, p.108) by calling prepgen:

generate(Tree,Sentence):-
 prepgen(Tree,Treeprep),

 gen(Treeprep,List),
 flatten(List,Sentence).

 When the WH-group is not the subject, we generate the WH-group and then the remainder as a
YES-NO question. Generating the clausal part as a YES-NO question ensures that the clause begins with
an auxiliary, and that DO is inserted if no auxiliary is present.

generate([wh_question,Whgroup,Clause],Sentence):-
Whgroup \= [subject|Rest],
gen(Whgroup,Whgroupgen),
generate([yes_no_question,Clause],Ynogen),
append([Whgroupgen],[Ynogen], Sentence).

4.3. The Phrase Level

4.3.1. Noun Phrases

4.3.1.1. Parsing

 In the parsing of noun phrases we have to pay attention to the problem of structural weight , as
this is a determining element in the position of nps with respect to the verb, each other and other phrasal
elements such as pps.

 The lightest nps are of course np gaps. They are assigned a weight of zero. Next in order of
increasing weight are personal, relative and interrogative pronouns, which are assigned a weight of 1,
which ensures that they stay close to the verb. Core nps get a weight of 2, provided the noun or adjective
they contain does not have an instantiated arglist. In the latter case they get a weight of 3, like other
heavy nps, such as those that include a relative clause.

 From the preceding paragraph it is clear that the process which computes weight must be sensitive
to whether the arglist of a constituent argbearer has been satisfied. This is possible because the predicate
satisfylist returns in its fourth argument a Status, i.e. an indication whether any argument has been
satisfied or a modifier found (Status is set to 1; otherwise it is left uninstantiated).

 In the parsing of core nps we include an ifthenelse: if the Status variable returned by
satisfylist is uninstantiated, we assign 2 as weight, otherwise we assign 3. Here is the relevant
piece of code (the case envisaged here is that of an np which does not include adjective pre- or
postmodification and satisfylist therefore applies to the head noun's arglist):

corenounphrase(P0,P3,Gap,index(I),Pref,Weight,Rel,Intrel,
 Function,
 [Function,[nounphrase,index(I),
 agr(third,Number),DET,N,Parse]],
 Number,third,Sem):-
 determiner(P0,P1,DET,Number,Rel1,Intrel1) ,
 xnoun(P1,P2,N,Number,Sem,Arglist),
 satisfylist(P2,P3,Gap,Status,Pref,Prec,Rel2,Intrel2,_,
 Parse,np,Arglist ,Func,
 subject([subject,[nounphrase,index(I),
 agr(third,Number),DET,N]],

 Verbsem)),
 sfok(Verbsem,Sem),
 (var(Rel1),var(Intrel1),Rel=Rel2,Intrel=Intrel2;
 nonvar(Rel1),nonvar(Intrel1),Rel=Rel1,Intrel=Intrel1),
 ifthenelse(var(Status),Weight=2,Weight=3).

 The ifthenelse(Condition, Yescase, Nocase) predicate is an Arity Prolog
extension to standard Edinburgh Prolog; if missing in a Prolog implementation, it can readily be
simulated by the following disjunction:

(var(Status), Weight = 2; nonvar(Status), Weight = 3)

 The weight value is passed to the posprec functor and exploited by the precede relation to
determine the relative order of arguments and modifiers. See the relevant section, p. 91.

 Coordinated nps present two problems:

1) computing the weight of the resulting coordination: heuristically it has been decided to add the weights
of the constituent nps, divide the result by 2 and add 1.

2) determining the person of the resulting np: this question is discussed on p. 35.

 Np gaps are discussed on p. 99.

 Most of the information necessary for the parsing of pronouns is simply read off the lexicon. Of
course, the function played by the pronoun cannot be determined ahead of parsing, and it is not read off
the lexicon, although unification provides a check on the possible function value stored in the lexicon and
the one assigned by the parsing process.

 Let us take personal pronouns first. The features copied from the lexicon are highlighted:

nounphrase(P0,P1,[],index(I),0,1,Rel,Intrel,
 Function,
 [Function,
 [nounphrase,index(I),agr(Person,Number),Tree]],
 Number,Person,Sem):-
 pp(P0,P1,Tree,Person,Number,Gender,Function,Sem).

 Note that Gender would also have to be percolated to the noun phrase level if we wanted to deal
with reflexive pronouns. In the parsing of

She behaved herself.

we would have to check that gender is the same in the subject and the reflexive object.

 Relative and interrogative pronouns have two arguments that we need to go into a little, namely
the seventh and the eighth.

 Relative pronouns use the 7th position to store the semantic value of the pronoun. If no relative is
present in a noun phrase, the 7th position of the nounphrase predicate will be left uninstantiated. We
cannot therefore use an uninstantiated variable to mean that the relative does not set any semantic
restriction, and we use the value norestriction instead. The predicate performing the semantic check
(sfok) knows how to deal with that value (see p. 87).

 The code for noun phrases consisting of a relative pronoun is the following:

nounphrase(P0,P1,[],index(I),
 0,1,Semnp,rel(I),Function,
 [Function,
 [nounphrase,index(I),agr(third,Number),Tree]],
 Number,third,[Semnp]):-
relative(P0,P1,Tree,Semnp,Sempp,np).

 Note that the Semnp feature is inserted in a list when passed to the noun phrase level, because at
that level np semantics must be a list, as noun semantics is a list.

 The relative predicate is a lexical one; the last three arguments are as follows:

Semnp: semantic features associated with the relative (which has np value); the string norestriction is
used to indicate that no semantic feature is assigned, e.g.

relative([who|X],X,[relative(who)],human,_,np).

vs

relative([that|X],X,[relative(that)],norestriction,_,np).

Sempp: semantic features associated with the relative (which has pp value), e.g.

relative([why|X],X,[relative(why)],norestriction,[reason],pp).

The last argument stipulates whether the relative pronoun stands for an np or an adverbial (np and pp
values).

 The eighth position is used to keep relative and interrogative pronouns apart. In the case of
interrogatives, it is set to the string value int . In the case of relatives it is used to enable coindexing of
the relative pronoun when the latter does not constitute the whole np but is embedded somewhere in it, as
in a book about whom. In such a case we need an index for the whole np and one for relative whom. The
latter is provided by the rel(I) functor, where I is meant to carry an index.

 Here is the code for interrogative pronouns:

nounphrase(P0,P1,[],index(I),
 0,1,Semnp,int ,Function,
 [Function,
 [nounphrase,index(I),agr(third,Number),Tree]],
 Number,third,[Semnp]):-
 interrogative(P0,P1,Tree,Semnp,Sempp,np).

 The parsing of nps containing a relative clause must ensure that at the higher level the seventh
and eighth positions are left uninstantiated, and that the relative clause (in particular, the gap within it)
and the antecedent share what they must share. Note that the function is NOT shared between the
antecedent and the gap in the relative clause: we can have an antecedent subject coindexed with an
object gap in the relative clause, as in The teacher (subject) you like (object gap) teaches mathematics.
The code is the following:

/* Weight is 3, i.e. the resulting np is heavy */
 nounphrase(P0,P2,[],index(I),
 Preftop,3,_,_,Function,
 [Function,Newrest],
 Number,third,Sem):-
 corenounphrase(P0,P1,[],index(I),

 Pref,Weight,Rel,Intrel ,Function,
 [Function,Rest],
 Number,third,NounSem),
 (var(Intrel); Intrel \= int), /* not an interrogative */

 var(Rel),
/* the antecedent itself must feature a free Rel variable */

 xrelclause(P1,P2,Prefrel,RELCL,
 [gap(_,_,Npsem,_,_,_,index(I),_)],
 Personinrel,Funcinrel,NounSem,Number),
 sfok(Npsem,NounSem),
 append(Rest,[RELCL],Newrest),
 accu(Preftop,[Pref,Prefrel]).

4.3.1.2. Generation

 Generating nps is considerably simpler than parsing them. We consider three cases. The first is
that of np gaps and of nps that have been ghosted (deprived of lexical material) by the generator in its
treatment of control relations (see p. 41). Such nps are represented by a parse tree where the variable
named NP in the following piece of code is an uninstantiated variable. The generator produces an empty
list, which will disappear in the list appending and flattening operations at the end of the generation
process.

gen([Function,[nounphrase,index(I),agr(P,N)|NP]],[]):- var(NP),!.

 The second case is that of personal pronouns. They are retrieved form the lexicon on the basis of
their person, number, gender and function. Note that these values appear both inside and outside the
ppro functor. We give below the rule in the generator and the lexical clause for object her:

gen([Function,[nounphrase,index(I),
 agr(Person,Number),ppro(Person,Number,Gender)]],PPform):-pp([PPform|
],,ppro(Person,Number,Gender),Person,Number,Gender,Function,_).

pp([her|X],X,ppro(third,sing,fem),third,sing,fem,object,[human]).

 The third case is the default case. We skip the information pieces that precede the lexical material
in the parse tree, and generate from that material:

gen([Function,[nounphrase,index(I),agr(P,N)|NP]],Gennp):-
 NP \= ppro(_,_,_),
 gen(NP,Gennp).

 The call on gen will unify with its defining clause for generating the various elements of a list:

gen([H|T],[Hgen|Tgen]):-
 gen(H,Hgen),
 genlist(T,Tgen).

genlist([],[]).

genlist([H|T],[Hgen|Tgen]):-
 gen(H,Hgen),
 genlist(T,Tgen).

 Gen will then generate the determiner (if any), adjective (if any), the noun and its arguments and
modifiers (if any). To do so, it will call on the gen clauses for leaves, such as the following for the
determiner:

gen([det(Det),index(I)],Det).
gen([det(zero)],[]).
gen([det(Det)],Det):- Det \= zero.

4.3.2. Adjective Phrases

 An adjective modifying a noun generally precedes that noun; however, if the adjective has an
arglist that is partly or totally satisfied, the adjective follows the noun. Contrast:

Each participant was asked an easy question.
* Each participant was asked a question easy.
A question easy for you to answer is not necessarily an easy question.
* An easy for you to answer question[12]

 In horatio we use the Status variable returned by satisfylist to check whether the arglist of
the adjective has been partly or totally satisfied. If the adjective precedes the noun, the adjective's arglist
must be unsatisfied (the noun's arglist can of course be satisfied: an easy book on linguistics). If the
adjective follows, the noun's arglist cannot be satisfied, and the adjective's must be (* a book easy for you
to read on linguistics; * a book easy on linguistics).

 Here is the code for the case where the adjective precedes the noun it modifies :

corenounphrase(P0,P4,Gap,index(I),Pref,Weight,Rel,Intrel,Function,
 [Function,
 [nounphrase,index(I),agr(third,Number),
 DET,ADJ,N,Parse]],
 Number,third,Sem):-
 determiner(P0,P1,DET,Number,Rel1,Intrel1) ,
 xadjphrase(P1,P2,[],subject(SUBJ,Semsubjadj),
 Prefadj,_,modifier,Statadj,
 ADJ,Semadj),
 var(Statadj),
 xnoun(P2,P3,N,Number,Sem,Arglist),
 sfok(Semadj,Sem),
 satisfylist(P3,P4,Gap,Status,Pref,Prec,Rel2,Intrel2,_,
 Parse,np,Arglist ,Func,
 subject([subject,[nounphrase,index(I),agr(third,Number),
 DET,ADJ,N]],
 Vpsem)),
 sfok(Vpsem,Sem),
 (var(Rel1),var(Intrel1),Rel=Rel2,Intrel=Intrel2;
 nonvar(Rel1),nonvar(Intrel1),Rel=Rel1,Intrel=Intrel1),
 ifthenelse(var(Status),Weight=2,Weight=3).

 Phrases such as an easy man to please cannot be parsed by the mechanisms explained above: the
adjective's arglist is separated from the adjective by the noun. In order to parse them, we need to isolate
the adjective classes for which this construction is possible. In horatio such adjectives are recognized by
looking at their arglist, which is [to_vp(oblig,object)], i.e. the noun modified by the adjective is the
object of the infinitive in the to-phrase. The code is the following:

corenounphrase(P0,P4,[],index(I),Pref,3,Rel,Intrel,Function,

 [Function,[nounphrase,index(I),agr(third,Number),
 DET,ADJ,N,Parse]],
 Number,third,Sem):-
 determiner(P0,P1,DET,Number,Rel1,Intrel1) ,
 adj(P1,P2,ADJ,_,[to_vp(oblig,object)]),
 xnoun(P2,P3,N,Number,Sem,Arglist),
 satisfy(P3,P4,[],Pref,Prec,Rel2,Intrel2,
 Parse,to_vp(oblig,object),
 subject([_,[nounphrase,index(I),agr(third,Number),
 DET,ADJ,N]],Semsubj),
 subject([_,[nounphrase,index(I),agr(third,Number),
 DET,ADJ,N]],Semsubj)),
 (var(Rel1),var(Intrel1),Rel=Rel2,Intrel=Intrel2;
 nonvar(Rel1),nonvar(Intrel1),Rel=Rel1,Intrel=Intrel1).

 Note that the subject functor passed to the satisfy predicate will not be used for subject control
of the to-phrase; in the absence of a FOR NP the subject of the infinitive is not syntactically retrievable.
The structure passed in the subject functor is used to coindex the gap that the to-phrase needs to display,
namely an object gap (object is not to be taken strictly here; it simply means an oblique function). The
defining clause for the satisfy predicate as used here is the following:

satisfy([to|P0],P1,[],Prefgen,Posprec,Rel,Intrel,
 [adj_arg,Tree],
 to_vp(Type,object),
 subject(SUBJ,Semsubj),
 subject(SUBJ,Semsubj)):-

 SUBJ=[X,[Y,index(I)|Remainder]],
/* the "subject" of the adj (index(I)) is an object gap in the vp */

 xverbphrase(P0,P1,
 subject(NP,Sem), /* no subject control */
 [gap(Object,npgap,Semsubj,_,Func,_,index(I),_)],
 Pref,Tree,Rel,
 Intrel,toinfinitive ,Tense,
 aspect(Aspect),Modality,
 Number,Person,Voice,nsubject(NNP,Nsem)),
 nonvar(Func),
 (Func=object; Func=indirect_object; Func=np_arg_of_prep),

/* these are the possible functions for the gap:
 hard to see; hard to give a book to; hard to borrow from */

 Prefgen is Pref + 3.

 The code for the parsing of an adjective phrase does not require a lot of explanations:

adjphrase(P0,P2,Gap,subject(SUBJ,Sem),Pref,3,
 Function,Status,
 [Function,[adjectivephrase,Adj,Parse]],Semadj):-
 adj(P0,P1,Adj,Semadj,Arglist),
 satisfylist(P1,P2,Gap,Status,Pref,Prec,Rel2,_,_,
 Parse,_,Arglist ,Func,
 subject(SUBJ,Semadj)).

 Note only that we need to have the subject functor for cases such as reluctant to go, where we

need the subject (either the modified noun or the subject in predicative constructions) to process the TO
phrase.

4.3.3. Prepositional Phrases

 Prepositional phrases can appear as arguments of nouns. Nouns may then determine either the
semantics of the whole prepositional phrase, or the exact preposition to be used. The noun
HYPOTHESIS is of the first type; it specifies that its optional argument pp must be a topic. We have the
following clause in the lexicon:

m_noun(hypothesis_1,hypothesis,[abstract],[pp(opt,n:topic),s(opt)]).

 The noun trouble is of the second type. It specifies that its optional argument pp must be headed
by the preposition with:

m_noun(trouble_1,trouble,[abstract],[pp(opt,prep:with)]).

 Accordingly, prepositional phrases in the grammar must have these two specifications at the
highest level. A number of other pieces of information are also needed, among which two indices, one for
the whole pp and one for the np inside. We need to be able to coindex the np inside the pp with an
antecedent:

The man about whom I have read a book is a teacher.

But we also need an index for the whole pp, to be referred to in the gapped argument of book.

We use the following code to parse "normal" (i.e. neither gapped nor coordinated) pps:

prepphrase(P0,P2,Gap,index(J),
 npindex(I),Prefnp,3,PREP,Rel,Intrel,Function,
 [Function,[prepphrase,index(J),prep(PREP),NP]],
 Sempp,Semnp):-
 prep(P0,P1,[prep(PREP)],Sempp) ,
 nounphrase(P1,P2,Gap,index(I),Prefnp,Precnp,Rel,
 Intrel,np_arg_of_prep,NP,Number,Person,Semnp).

 We note that the semantics of the embedded np is also percolated to pp level. It is needed in the
parsing of by-phrases, where it must be checked that the np within the pp has the appropriate semantics
for the subject role. The check is performed in the following piece of code:

satisfy(P0,P1,Gap,Pref,posprec(_,3),Rel,Intrel,
 [subject,[nounphrase,index(I)|X]],
 byphrase(opt,posprec(_,3),subject,Semsubj),
 subject(SUBJ,Sem),subject(SUBJ,Sem)):-
 xprepphrase(P0,P1,Gap,index(J),npindex(I),
 Prefpp,Precpp,by,Rel,Intrel,
 subject,
 [subject,[prepphrase,index(J),prep(by),
 [np_arg_of_prep,[nounphrase,index(I)|X]]]],
 PPseminpp,Semsubjinpp),
 sfok(Semsubj,Semsubjinpp),
 Pref is Prefpp + 4.

 Gapped pps are discussed on page 99 and following.

 We distinguish two cases of coordinated pps. In the first one two full pps are coordinated, as in
with the teacher and for the teacher. In the second, the first pp is reduced to a preposition, the np being
gapped, as in with and for the teacher. An alternative solution would be to parse a coordinated
preposition, rather than whole pp, in the second case.

 The first case is dealt with by the following code:

xprepphrase(P0,P2,[],index(I),npindex(I2),
 Pref,Weight,PREP,Rel,Intrel,Function,
 [Function,[and_prepphrase,PP1,PP2]],
 Sempp,Semnp):-
 inlist(and,P0),
 prepphrase(P0,[and|P1],[],index(I),
 npindex(I2),Pref1,Weight1,PREP,
 Rel,Intrel,Function ,
 PP1,Sempp,Semnp),
 xprepphrase(P1,P2,[],index(J),
 npindex(J2),Pref2,Weight2,Prep2,
 Rel,Intrel,Function ,
 PP2,Sempp2,Semnp2),
 accu(Pref,[Pref1,Pref2]),
 accu(Weightaccu,[Weight1,Weight2]),
 Weight is (Weightaccu/2) + 1.

 Note that the two pps must share the Rel and Function values: if one contains a relative, so must
the other: about whom and for whom; * about whom and for the teacher.

 The second case is taken care of by the following code. Note that we must look into the returned
parse trees to restore the missing np to the first conjunct:

xprepphrase(P0,P2,[],index(I),npindex(I2),
 Pref,Weight,PREP,
 Rel,Intrel,Function,
 [Function,[and_prepphrase,
 [prepphrase,index(J),prep(PREP),NP],
 [prepphrase,index(I),prep(Prep2),NP]
]],
 Sempp,Semnp):-
 inlist(and,P0),
 prep(P0,[and|P1],[prep(PREP)],Sempp),
 prepphrase(P1,P2,[],index(I),npindex(I2),
 Pref,Weight,Prep2,
 Rel,Intrel,Function,
 [Function,[prepphrase,index(I),prep(Prep2),NP]],
 Sempp2,Semnp).

4.3.4. Verb Phrases

4.3.4.1. Parsing

4.3.4.1.1. The Auxiliary Group

 We first discuss the treatment of the auxiliary group . We need to take into account the well-
known precedence relations within the group. To do so, we assign two features to each auxiliary, one

being its type (finite , ing, en-passive, etc.), the other the type that it requires the next auxiliary (or main
verb) to be. In the lexicon, we therefore have such clauses as:

aux([may|X],X,may,finite ,infinitive ,_,_,present).
aux([is|X],X,_,finite ,ing,sing,thirdsg,present).
aux([is|X],X,_,finite ,en_passive,sing,thirdsg,present).
aux([have|X],X,_,infinitive ,en_active,_,_,_).

 The fourth argument of the lexical predicate aux is the Type of the auxiliary, the fifth one is the
Required feature, i.e. the type of the next verb form to its right. The third clause in the sample applies to
BE as passive auxiliary, the fourth to HAVE as perfect auxiliary.

 We also need to specify what each auxiliary contributes to the property field of the clause. Such a
property field has the following form:

prop(vce:Voice, asp:Aspect, mod:Modality,tns:Tense),

where vce, asp, mod and tns are markers, and the capitalized items are variables. Voice ranges over two
values: passive and uninstantiated (represented by an uninstantiated variable). Tense ranges over past
and present, and is set by the first element of the verb group, be it an auxiliary or the main verb. Aspect
is a feature list, whose possible members are progressive and perfect. Modality is also a feature list,
whose possible members are the various modal auxiliaries (shall, will , may, can, etc.; the treatment is
admittedly very surfacy). We also make use of the special value none for Modality and Aspect; it is
equivalent to an empty feature list.

 We define the predicate checkaux3 to specify the contribution made by each auxiliary to the
aspect and voice fields. The first argument is the aspect feature list, the second the Required feature of
the auxiliary, and the third the value for Voice. The code is the following:

checkaux3([perfect],en_active,_).
checkaux3([progressive],ing,_).
checkaux3([],Required,_):-
 Required \= en_passive,
 Required \= en_active,
 Required \= ing.
checkaux3([],en_passive,passive).

 Note that the value for Voice is the anonymous variable when Voice is not passive, i.e. active.

 Since we do not know the number of auxiliaries that a given verb phrase will have, we define the
verbphrase predicate as recursive: it calls the xverbphrase predicate (recall that the x prefix
indicates that the predicate can be coordinated). We call a special version of the append predicate
(myappend) to build up the aspect value. Myappend is able to deal with the none value. Here is the
relevant piece of code:

verbphrase(P0,P2,subject(SUBJ,Semsubj),Gap,Preflist,
 VG,
 Rel,Intrel,Type,Tense,
 aspect(A1),Modality,
 Number,Person,Voice,
 nsubject(NSUBJ,Nsem)):-
 xaux(P0,P1,Modality,Type,Required,Number,Person,Tense),
 checkaux3(A2,Required,Voice),
 myappend(A1,A2,A),
 xverbphrase(P1,P2,subject(SUBJ,Semsubj),Gap,Preflist,
 VG,Rel,Intrel,

 Required,Tense,aspect(A),Modality,
 Number,Person,Voice,
 nsubject(NSUBJ,Nsem)).

Myappend is defined by the following clauses:

/* the value none - either isolated or as first element of a one-element list - receives the same treatment as
the empty list */

myappend([],X,X).
myappend(X,none,X):-!.
myappend(X,[none],X):-!.
myappend(X,Y,Y):- var(X), !.
myappend([Head|L1],L2,[Head|L3]):- myappend(L1,L2,L3).

4.3.4.1.2. Coordinated Verb Phrases

 In coordinated verb phrases we make sure that the arglist is appropriate to both conjuncts. For
instance, in

He looked at and liked the girl

the phrase the girl is the arglist of both LOOK AT and LIKE .

 The check is implemented by feeding the arglist predicate the same word list. In our example, the
girl is parsed as arglist of LOOK AT and then reparsed as arglist of LIKE. An additional problem arises
out of the presence of the preposition or particle, which remains close to its verb, instead of joining the
arglist. Indeed, we do not have

* He looked and liked at the girl

We must therefore make sure that the particle is found to the immediate right of the first coordinated verb.
The following piece of code takes care of the example:

/* 1 he looked at and liked the girl */
verbphrase(P0,P4,subject(SUBJ,Semsubj2),Gap,Pref,
 [pred_arg_mod_structure,
 prop(vce:V,asp:A,mod:Modality,tns:Tense),
 [and_predicate,VERB1,VERB2],SParse],
 Rel,Intrel,Type,Tense,aspect(Aspect),Modality,
 Number,Person,Voice,nsubject(NSUBJ,Nsem2)):-
 verb(P0,P1,Class1,VERB1,Type,Tense,Number,
 Person,Semsubj1,Args1) ,
 Args1 = [string(X,Y,Z)|Rest],
/* X is Status, Y is posprec and Z is the string itself in list format, e.g. [away,with] */
 append(Z,[and|P2],P1),
/* the string + and + the remainder is what follows the verb */
 verb(P2,P3,Class2,VERB2,Type,Tense2,Number,Person,Semsubj2,Args2),
 arglist(P3,P4,Gap,Status1,Pref1,Preclist1,Rel,
 Intrel,Voice,Parse1,vp,
 Rest,Func,subject(SUBJ,Semsubj1),
 nsubject(NSUBJ,Nsem1),
 Class1),
 arglist(P3,P4,Gap,Status2,Pref,Preclist,Rel,
 Intrel,Voice,Parse2,vp,

 Args2,Func,subject(SUBJ,Semsubj2),
 nsubject(NSUBJ,Nsem2),
 Class2),
/* note P3,P4 twice: the same list must satisfy both the remaining args of the first verb and those of the
second */
 (nonvar(Aspect); var(Aspect),A = none),
 (Aspect = [] , A = none; Aspect \= [],A = Aspect),
 (nonvar(Modality); var(Modality),Modality = none),
 (nonvar(Tense); var(Tense), Tense = present),
 (nonvar(Voice), V = Voice; var(Voice),V = active),
 append([NSUBJ],Parse2,AParse2),
 insort(AParse2,SParse), /* to get canonical word order */
 Status1 = Status2. /* the two Status values must unify */

 Note that the verb class (Class1 and Class2) is passed as an argument to arglist, but cannot be
used as the basis on which to determine whether the two verbs can be coordinated: we need to parse the
remaining word list. It would be counter-productive to have to assign the same word class to two verbs
merely on the basis of the observation that the two verbs can be coordinated. In our example we do not
want to assign LOOK AT and LIKE to the same word class, as this would go against the spirit of
consistency checks and template sharing that we might want to place on the lexicon.

4.3.4.2. Generation

 Generating the verbal group divides naturally into two tasks: generation of the auxiliary group
(whose membership may be nil) and generation of the main verb.

4.3.4.2.1. The Auxiliary Group

 We shall first consider the generation of the auxiliary group. The gen predicate dedicated to this
task needs to have access to the Property field (voice, aspect, modality and tense), and to agreement
values of the subject, i.e. Person (NP1 in the code cited below) and Number (NP2). It returns a list of
auxiliaries.

 This gen predicate must also be sensitive to the required auxiliary order in the clause: modality,
aspect (perfect), aspect (progressive) and voice, as in:

He may have been being interviewed.

 Once we have generated a candidate auxiliary list, we check that the first auxiliary agrees in
person and number with the subject. If it does not, we have to backtrack, but we can skip the part between
snips ([! !]) (snips are a useful Arity Prolog extension to standard Prolog: the predicates between the two
snips are skipped on backtracking[13]). Here attempting to redo the list appending would be useless, and
attempting to redo the list flattening would lead to trouble.

 The relevant piece of code is the following:

gen(prop(vce:Voice,asp:Asp,mod:Mod,tns:Tns),NP1,NP2,Alist2):-

gen(Mod,Tns,Modaux,Req1), /* Modality */
genasp1(Asp,Aspaux1,Req1,Req2), /* Aspect: perfect */
genasp2(Asp,Aspaux2,Req2,Req3), /* Aspect: progressive */
gen(Voice,Voiceaux,Req3,Req4), /* Voice */
/* the Required feature of the preceding Aux is found in last position but one in the next, i.e. the one
housing its Type */

[! append([Modaux],[Aspaux1],List1),
append([Aspaux2],[Voiceaux],List2),
append(List1,List2,List3),
flatten(List3,Auxlist),
first(Auxlist,Auxfirst) !] ,
getagr(Auxfirst,Auxfirstagree,Tns,To),
/* the last argument indicates whether a TO is needed in front of the auxiliary list */
[! append(To,Auxlist,Alist),
flatten(Alist,Alist2) !] ,
agree(NP1,NP2,Auxfirstagree).

 Various predicates need to be explained. Let us begin with the ones generating the auxiliaries.

 Modal auxiliaries are very easy to generate. We call the gen predicate with four arguments: the
first is the parse tree of the auxiliary (it reduces to a simple string indicating the lexemic value of the
auxiliary: both might and may will yield may, and differ as to tense); the second is tense, the third will
house the generated string and the fourth is the type required. In the case of modal auxiliaries, this value
is always finite .

 We need to cater for the value none, which generates the empty list:

gen(none,_,[],_).

 If the parse tree is not none, we get the appropriate form from the lexicon:

gen(Mod,Tns,Modaux,Req1):-
 aux([Modaux|_],_,Mod,_,Req1,_,_,Tns).

 We have two predicates for the generation of aspectual auxiliaries, genasp1 and genasp2.
This is due to the fact that the perfect auxiliary (HAVE) needs to be generated before the progressive
auxiliary (BE). Of course, neither need be present.

 Genasp1 looks for the value perfect in the aspect value list. It may be the only value in the field
(there is no progressive), or it may be the first of two, or the second of two. We therefore have three
clauses, which we could easily reduce to one by testing if perfect is a member of the list passed as first
argument. It is this new version of the predicate that we give here:

genasp1(Asplist,Auxform,Req1,en_active):-
 inlist(perfect,Asplist),
 aux([Auxform|X],X,have,Req1,en_active,_,_,_).

 Note that Req1 points to the type that aspectual have is required to have (for instance, infinitive
after a modal auxiliary), and that en_active is the type it requires of the next auxiliary in the chain, and
will therefore appear in the preceding slot in the next call in the generation of the auxiliary list, as in this
fragment:

genasp1(Asp,Aspaux1,Req1,Req2), /* Aspect: perfect */
genasp2(Asp,Aspaux2,Req2,Req3), /* Aspect: progressive */

 We also need a clause for the case where there is no perfect auxiliary:

genasp1(_,[],Req,Req).

 Note the anonymous variable in the first slot, which makes it clear that rule ordering is relevant
here.

 The generation of the progressive auxiliary runs parallel, and will not be discussed here.

 Generating the voice auxiliary is an easy task. If voice is active, we do not generate anything. If it
is passive, we look in the lexicon for the appropriate form of BE:

gen(active,[],Req,Req).

gen(passive,Auxform,Req1,en_passive):-
 aux([Auxform|X],X,be,Req1,en_passive,_,_,_).

 The next predicate that deserves our attention is getagr, whose job is to get the agreement
feature of the first auxiliary in the auxiliary list, since this is the only auxiliary that needs to agree with
the subject, being the only finite one.

 We must bear in mind that we have used the tense feature to indicate restriction on the whole
verb group in dealing with raising and control, using it to indicate for instance that the whole group must
be an infinitive or ing group. For instance, consider the following definition of oraising, the predicate
taking care of subject to object raising:

oraising([H1,[pred_arg_mod_structure,Prop1,
 [predicate(Pred1,AgrPred1)],
 [[object,[clause,
[pred_arg_mod_structure,Prop2,[predicate(P,agr(Agr))],
 [[Subject|Rest]|Otherargs]]]]|R1]]],
[H1,[pred_arg_mod_structure,Prop1,
 [predicate(Pred1,AgrPred1)],
 [[object|Rest],
 [object,[clause,
[pred_arg_mod_structure,Propnew2,[predicate(P,agr(Agr))],
 [Otherargs]]]]|R1]]]):-

allsubject(Subject),
second_header(H1) ,
oraise(Pred1,Requires),
nonfinite(Agr),
Prop2 = prop(Voice,Aspect,Mod,Tns),
Propnew2 = prop(Voice,Aspect,Mod,tns:Requires).

 The oraise predicate makes a direct call on the lexicon, as we shall see. The call
oraise(Pred1,Requires) checks that Pred1 is a subject-to-object raising predicate, but it also
determines the nature of the verbal group left after the subject of the lower clause has been promoted to
object of the higher one.

 The code for oraise is the following:

oraise(Oraisingverb,to):-
m_verb(vinf ,_,Oraisingverb,_,_,_,_,_,_,_,_,_,_,
 [np(_,_,surf_object,_),
 np_vp(oblig,to_inf,object)]).

oraise(Oraisingverb,to):-
m_verb(vinf ,_,Oraisingverb,_,_,_,_,_,_,_,_,_,_,
 [np(_,_,subject_inf,_),
 np_vp(oblig,to_inf,object)]).

oraise(Oraisingverb,ing):-

m_verb(ving,_,Oraisingverb,_,_,_,_,_,_,_,_,_,_,
 [np(_,_,subject_ing,_),
 np_vp(oblig,ing,object)]).

 From this we see that the second argument of oraise houses a property of the remaining non-
finite clause after the promotion of its subject to the higher clause: it is either infinitive (bare infinitive or
infinitive preceded by TO) or gerundive.

 In the code for oraising, we see that this property overwrites the tense value in Prop2 to yield
Propnew2, the property list associated with the lower clause. In dealing with the agreement feature of the
first auxiliary in the auxiliary list, we also take into account the restriction that the tense feature slot can
have been made to bear.

 Tense occupies the third slot of getagr. The first is the auxiliary and the second the agreement
property of the auxiliary (the one that needs to concord with the Person and Number values percolated
from the subject; it is read off the lexicon). The fourth slot is a list, which will either be left empty or will
house the infinitive particle TO.

 Of course, it may be the case that there is no first auxiliary, simply because the auxiliary list is
empty. In that case, getagr returns noaux as auxiliary agreement feature. The agree predicate will have
to be able to deal with this value.

 Here is the code for getagr:

/* there is an aux */

getagr(Aux,Auxagree,Tns,[]):-
 Tns \== to,
 Tns \== bare,
 Tns \== ing,
 aux([Aux|X],X,_,finite ,_,_,Auxagree,Tns).

getagr(Aux,Auxagree,to,[to]):-
 aux([Aux|X],X,_,infinitive ,_,_,Auxagree,_).

getagr(Aux,Auxagree,bare,[]):-
 aux([Aux|X],X,_,infinitive ,_,_,Auxagree,_).

getagr(Aux,Auxagree,ing,[]):-
 aux([Aux|X],X,_,ing,_,_,Auxagree,_).

/* there is no aux */

getagr([],noaux,Tns,[]):-
 Tns \== to,
 Tns \== bare,
 Tns \== ing,!.

getagr([],noaux,to,[to]).
getagr([],noaux,bare,[]).
getagr([],noaux,ing,[]).

 Note that if Tns really houses a tense value, the auxiliary needs to be finite . Note also that we do
not really need four clauses when there is no auxiliary (two would do), but we have chosen to preserve
code parallelism.

 The code for agree is similar to the one used in analysis, but we need a clause for noaux, which
we place at the end of the clause packet, and which succeeds no matter how the first two arguments
(percolated from the subject) are instantiated:

/* agree(Personnp,Number,Personvp) */

agree(first,sing,firstsg).
agree(first,plural,other).
agree(second,sing,other).
agree(second,plural,other).
agree(third,sing,thirdsg).
agree(third,plural,other).
agree(_,_,noaux).

 In YES-NO questions we use a special predicate to generate the auxiliary list (genyesno). The
reason is that a form of DO needs to be generated in YES-NO questions when voice is active and there is
no modal or aspectual auxiliary (and recall that what follows a non-subject WH-group is also generated as
a YES-NO question). We call on the lexicon to provide us with a finite form of DO and then call on
agree to check whether it is in agreement with the subject:

genyesno(prop(vce:active,asp:none,mod:none,tns:Tns),
 Person,Number,[Aux|[]]):-
 aux([Aux|_],_,do,finite,_,_,Agraux,Tns),
 agree(Person,Number,Agraux),!.

 Note that the form of DO is returned as first element of a list (with empty tail), in conformity with
the pattern used in the generation of auxiliaries in declarative clauses. If we do not need to generate a
form of DO, genyesno can simply fall back on the version of the gen predicate as used in declarative
clauses:

genyesno(prop(vce:Voice,asp:Asp,mod:Mod,tns:Tns),Person,Number,Auxlist):-
 gen(prop(vce:Voice,asp:Asp,mod:Mod,tns:Tns),Person,Number,Auxlist).

4.3.4.2.2. The Main Verb

 The generation of the last element of the verb group, i.e. the main verb, is in most cases simply a
matter of retrieving the verb form on the basis of the lexeme value and the agreement functor. However,
we also need to call on the macro m_verb clause to retrieve the particle that should accompany the verb,
since it is amalgamated to the lexeme in the parse tree returned by horatio. For instance, He looked it up
will have a parse tree where up is no longer an independent element, but appears only in the lexeme
value, which will be look_up_1, i.e. the first (and at present only) reading of a lexeme LOOK UP . It
would also be possible to retrieve the particle by a string operation on the lexeme value in the parse tree,
but this is felt to be too tightly tied to the string structure of the lexeme value to be a reasonable way of
getting at the particle. We prefer to have it as a separate argument in the lexicon, even if it will often be
left uninstantiated.

 The default clause for the generation of the main verb runs as follows:

gen([predicate(Lex,Agr)],Vform,P):-
verb([Vform|_],_,_,[predicate(Lex,Agr)],_,_,_,_,_,_),
m_verb(Class,Part,Lex,_,_,_,_,_,_,_,_,_,_,_),
(var(Part),P=[]; nonvar(Part),P=[Part]).

 If Part is left uninstantiated in the lexicon, we return an empty list as particle value (last argument
of the gen predicate); otherwise, we return the particle. As a matter of fact, the particle as read off the

lexicon is more than the string value of the particle. It is a couple made of a particle type and a string
value. And particle is to be understood in an extended sense, as covering various types of fixed strings
associated with verbs. Consider the m_verb clause for LOOK UP :

m_verb(vphr,part1:up ,look_up_1,look,look,look,looks,looking,
 looked,looked,looked,trans,human,
 [part(oblig,posprec(1,2),up),
 np(oblig,posprec(1,Wnp),object,abstract)]).

/* she looked it up */

 In the couple part1:up , the first element, the particle type, is used to determine the position of the
particle with respect to other elements, such as the verb's arguments. This is accomplished in the standard
way, by associating a certain weight with particles and other constituents.

 The relevant code is that of the poids predicate (poids is French for weight):

poids([part0:_],0).
poids([part1:_],2).

poids([F1,[nounphrase,_,_,ppro(_,_,_)]],1):-
 (F1 = object; F1 = indirect_object; F1 = indirect_object_2).
/* personal pronouns filling these functions must stay close to the verb */

poids([F1,R1],W):- assoc(F1,W).
/* general case: we read the value in the assoc table */

 Part0 particles are given the lightest possible weight, and so will have to remain attached to the
verb. For instance, we will assign part0 as particle type to the string place in the mwu take place. We
have no problem regarding place as a particle, in an extended sense at least, where the word particle
refers to fixed string elements. In the section on mwu's (see page 21) we argued that place in take place
should not be considered an np or even a noun, but should be regarded as a string, from which viewpoint
its resistance to morphological variation and syntactic manipulation is readily explained.

 Part1 particles are given a weight of 2, and can therefore follow very light nps such as personal
pronouns, which receive a weight of 1. This explains why we generate He looked it up, and not * He
looked up it.

 The assoc table will be further discussed on p. 80. The generation version differs slightly from
the analysis version. Here is the code for generation:

assoc(subject,1).
assoc(subject_pass,1).
assoc(subject_inf,1).
assoc(object,3).
assoc(indirect_object,2).
assoc(indirect_object_2,2).
assoc(cplt_s,6).
assoc(subject_attribute,4).
assoc(object_attribute,4).
assoc(pp_arg,3).
assoc(vp_modifier,5).

 Two special cases precede the default case in main verb generation. They deal with the TO that
must follow bareinf verbs when used in the passive voice (They saw him take it vs. He was seen to take
it), and with the TO that must precede the verb when its agreement functor registers the need for it (value

toinfinitive). The code for these cases runs as follows:

gen([predicate(Lex,agr(en_passive))],Genpred,P):-
verb([Vform|_],_,_,[predicate(Lex,agr(en_passive))],_,_,_,_,_,_),
m_verb(vbareinf,Part,Lex,_,_,_,_,_,_,_,_,_,_,_),
(var(Part),P=[]; nonvar(Part),P=[Part]),
append([Vform],[to],Genpred).

gen([predicate(Lex,agr(toinfinitive))],Genpred,P):-
verb([Vform|_],_,_,[predicate(Lex,agr(toinfinitive))],_,_,_,_,_,_),
m_verb(Class,Part,Lex,_,_,_,_,_,_,_,_,_,_,_),
(var(Part),P=[]; nonvar(Part),P=[Part]),
append([to],[Vform],Genpred).

4.4. Modifiers

 In horatio modifiers can take the form of prepositional phrases. The main difference with
argument pps is in the preference value assigned to the phrase: arguments are preferred to modifiers,
according to the densest match first principle.

 As to the internal structure of modifier pps, we distinguish between prepositions that can head
modifier pps assigned to nps and those that can head modifier pps assigned to vps. Of course, some
prepositions can head both np and vp modifier pps. The predicates modppvp and modppnp are used to
implement the distinction. We have the following definitions for these predicates:

/* availability of preps in np and vp modifiers */

/* vp */

modppvp(on).
modppvp(in).
modppvp(at).
modppvp(with).
modppvp(for).
modppvp(about).

/* np */

modppnp(of). /* a book of importance */
modppnp(on). /* a book on each table */
modppnp(in). /* a bird in the tree */
modppnp(with). /* a book with a black cover */
modppnp(for). /* a book for mary */
modppnp(about) /* a book about the economic situation in Great-Britain */

 Modifier pps are parsed by calls to the xprepphrase predicate. The reader is referred to the
section on prepositional phrases, p. 62. We give here the code for np modifier pps:

modifier(P0,P1,np,Gap,Prefgen,posprec(1,Precpp),
 Rel,Intrel,Tree,subject(SUBJ,Sem)):-
 xprepphrase(P0,P1,Gap,index(J),npindex(I),Pref,Precpp,

 Prepform,Rel,
 Intrel,np_modifier,
 Tree,PPsem,PPsemnp),
 modppnp(Prepform),
 Prefgen is Pref + 1.

 Np modifiers can also be clauses, either ING -clauses or EN-clauses (passives). Examples are:

the man reading a book is good
the book read by the man is good

 These modifier clauses are parsed by calls to the xverbphrase predicate. The head noun must
be passed to the ING or EN clause, where it will play the part of subject (active, ING-clause) or object
(passive, EN-clause). Here is the code for modifier ING clauses:

modifier(P0,P1,np,Gap,Prefgen,posprec(1,_),Rel,Intrel,
 [np_modifier,Tree],
 subject([Function,[Cat,Index|Rest]],Sem)):-

 xverbphrase(P0,P1,subject([Function,[Cat,Index|VAR]],Semsubj),Gap,
 Pref,Tree,Rel,Intrel,
 ing,Tense,
 aspect(Aspect),Modality,
 Number,Person,
 Voice,nsubject(NSUBJ,Nsem)),
 sfok(Semsubj,Sem),
 Prefgen is Pref + 1.

 The third argument to the modifier clause indicates that such modifiers are restricted to np
modifiers. Note also that the body of the subject NP (Rest) is ghosted in the tree returned by the call to
the xverbphrase predicate. Only the index is retained, to show coindexing. A semantic check is
performed between the restriction placed on the subject of the verb phrase and the semantic feature list
percolated from the head noun to its ING-modifier via the subject functor.

 Such percolation is accomplished by a call to the satisfylist predicate. Remember that this
predicate will also parse modifiers (the difference being that in the case of a modifier the noun's arglist is
left untouched), so that modifiers have access to the subject functor:

corenounphrase(P0,P3,Gap,index(I),Pref,Weight,Rel,Intrel,
 Function,
 [Function,[nounphrase,index(I),
 agr(third,Number),DET,N,Parse]],
 Number,third,Sem):-
 determiner(P0,P1,DET,Number,Rel1,Intrel1) ,
 xnoun(P1,P2,N,Number,Sem,Arglist),
 satisfylist(P2,P3,Gap,Status,Pref,Prec,Rel2,Intrel2,_,
 Parse,np,Arglist,Func,
 subject([subject,[nounphrase,index(I),
 agr(third,Number),DET,N]],
 Verbsem)),
 sfok(Verbsem,Sem),
 (var(Rel1),var(Intrel1),Rel=Rel2,Intrel=Intrel2;
 nonvar(Rel1),nonvar(Intrel1),Rel=Rel1,Intrel=Intrel1),
 ifthenelse(var(Status),Weight=2,Weight=3).

 In the case of an EN-clause as modifier, we likewise use the subject functor in the clause. The

clause is passive, and therefore the passive subject will come to occupy object position in the tree when
passivization is undone in the EN-clause. The semantic check is therefore between the Sem feature list
passed to the subject functor in the modifier clause and the new subject returned by the passive clause
(nsubject functor; this would house the restriction on the object of READ, in our example).

modifier(P0,P1,np,Gap,Prefgen,posprec(1,_),Rel,Intrel,
 [np_modifier,Tree],
 subject([Function,[Cat,Index|Rest]],Sem)):-
 xverbphrase(P0,P1,
 subject([Function,[Cat,Index|VAR]],Semsubj),
 Gap,Pref,Tree,Rel,Intrel,
 en_passive,Tense,
 aspect(Aspect),Modality,Number,Person,
 passive,nsubject(NSUBJ,Nsem)),
 sfok(Nsem,Sem),
 Prefgen is Pref + 1.

 In generation, modifier EN-clauses need a slightly special treatment: we must make sure that we
do not generate the passive auxiliary. In fact, we DO generate it when we generate the passive clause, but
we drop it from the string we return at the highest level, i.e. as second argument of the gen predicate:

/* written by students */

gen([[np_modifier,[pred_arg_mod_structure,prop(vce:passive,B,C,D)|R]]], Tail):-
 prepgen([clause,[pred_arg_mod_structure,prop(vce:passive,B,C,D)|R]], Prepmod),
 gen(Prepmod,Mod),
 flatten(Mod,[H|Tail]).

/* we return only the Tail; the Head (H) is the auxiliary, which does not appear in the modifier: written by
students, * is written by students */

4.5. Canonical Order and Athematic Arguments

 In the parse trees returned by horatio the arguments appear in a canonical order, and athematic
arguments are excluded. This is achieved by a number of predicates. We begin by considering insort,
which is simply an insertion sort that we perform on the arglist. Insort calls insert, which itself
calls before. Insort also calls drop, which decides whether the argument is athematic and should be
dropped.

insort([H|T],S):- drop(H),
 insort(T,S).

insort([H|T],S):- not(drop(H)),
 insort(T,L),
 insert(H,L,S).

insort([],[]).

 If the head of the list to be sorted is an athematic element, it is dropped and insort calls itself
recursively on the tail. It the head is a thematic argument, the tail is sorted and then the head is inserted at
its proper place by insert, whose code is the following:

insert(X,[H|T],[H|L]):-
 before(H,X),
 !,
 insert(X,T,L).

insert(X,L,[X|L]).

 The element is inserted in the tail of the list if the head of the list comes before the element to be
inserted; otherwise, the new element is inserted in front. The predicate before determines whether its
first argument should come before its second argument. The decision is taken on the basis of the
argument's function, which is always the head of the list representing it in the parse:

before([F1,R1],[F2,R2]):-
 assoc(F1,Rank1),
 assoc(F2,Rank2),
 Rank1<Rank2.

 The predicate assoc associates a given rank with each thematic function:

assoc(subject,1).
assoc(object,2).
assoc(indirect_object,3).
assoc(indirect_object_2,3).
assoc(cplt_s,4).
assoc(subject_attribute,5).
assoc(object_attribute,6).
assoc(pp_arg,7).
assoc(vp_modifier,8).

 It remains to look at the list of athematic functions, the ones that appear as arguments of the
drop predicate :

drop([surf_subject,Rest]).
drop([surf_object,Rest]).
drop([subject_inf,Rest]).
drop([subject_ing,Rest]).

5. Semantics
 horatio is very poor on semantic features. The values are organized in a hierarchy by means of
Prolog clauses very much like the well-known parent/ancestor predicates. The semantic checks are of
course performed by unification. It should be noted that nouns have lists of semantic features, whereas
verbs place restrictions by means of single semantic features (one per argument, including the subject).
The use of lists for nouns enables the lexicographer to maintain the principle of one macro-clause per
reading. Consider the entries for COMPUTER and BOOK:

m_noun(computer_1,computer, computers,[thing,human],[]).
m_noun(book_1,book, books,[thing,abstract],[pp(opt,n:topic)]).

 These entries allow us to deal with sentences such as the following where the verb or another
predicative element places restrictions on the np whose head is a realization of the lexeme COMPUTER:

1) The computer thinks that the problem is hard to solve.
2) The computer should be repaired.

(if we accept that THINK requires a [+HUMAN] subject, and REPAIR a [+THING] object)

5.1. GF Level

 It is obvious that semantic checks should not be applied at surface level, but at the GF level,
where the grammatical functions corresponding to the specifications of the item's arglist have been
retrieved.

 A case in point is passives. In a sentence such as The book has been read by the teacher,
passivization has demoted the subject to by-phrase status, and promoted the object to subject status. In
the lexicon, however, the semantic restrictions imposed by the verb read are placed on the arguments as
they appear before passivization reorganizes the arglist (to express things in chronological terms, a
harmless metaphor so long as we keep in mind that for horatio passives and actives are simply related,
without any priority being given to either).

 Let us track the subject of the passive clause. The predicate reog (whose behaviour has been
studied in the section on passives, p. 36) puts the object into the slots of the nsubject functor, which is
passed on to the arglist predicate and ends up in the verbphrase predicate:

arglist(P0,P2,Gaps,ArgOrModFound,
 Pref,Posprec1,Rel,
 Intrel,Voice,Parse,NpOrVp,List,
 Func,subject(SUBJ,Semsubj),
 nsubject(NSUBJ,Nsem),
 Class):-
 reog(Voice,Class,subject(SUBJ,Semsubj),List,
 nsubject(NSUBJ,Nsem),Nlist,Func),
 satisfylist(P0,P2,Gaps,ArgOrModFound,Pref,Posprec1,
 Rel,Intrel,Voice,Parse,NpOrVp,Nlist,
 Func,subject(NSUBJ,Nsem)).

 verbphrase(P1,P3,subject(SUBJ,Semsubj),Gap,Pref,
 [pred_arg_mod_structure,
 prop(vce:V,asp:A,mod:Modality,tns:Tense),
 VERB,SParse],
 Rel,Intrel,Type,Tense,aspect(Aspect),Modality,
 Number,Person,Voice,nsubject(NSUBJ,Nsem)):-
 verb(P1,P2,Class,VERB,Type,Tense,
 Number,Person,Semsubj,Args) ,
 arglist(P2,P3,Gap,Status,Pref,Preclist,Rel,
 Intrel,Voice,Parse,vp,
 Args,Func,subject(SUBJ,Semsubj),
 nsubject(NSUBJ,Nsem),
 Class),
 (nonvar(Aspect); var(Aspect),A = none),
 (Aspect = [] , A = none; Aspect \= [],A = Aspect),
 (nonvar(Modality); var(Modality),Modality = none),
 (nonvar(Tense); var(Tense), Tense = present),
 (nonvar(Voice), V = Voice; var(Voice),V = active),

 append([NSUBJ],Parse,AParse),
 insort(AParse,SParse).

 At sentence level, the check is performed between the subject np and the semantic restriction
specified by the nsubject functor:

sentence(P0,P2,Gaps,Prefs,[clause,VP],Type,Personvp,
 Number,Voice):-
append(Gapnp,Gapvp,Gaps),
xnounphrase(P0,P1,Gapnp,index(I),Prefnp,Weight,Rel1,
 Intrel1,subject,SUBJ,Number,Personnp,Semsubjnp) ,
var(Rel1),
agree(Personnp,Number,Personvp),
xverbphrase(P1,P2,subject(SUBJ,Semsubjvp),
 Gapvp,Prefvp,VP,Rel2,
 Intrel2,Type,Tense,aspect(Aspect),Modality,
 Number,Personvp,
 Voice,
 nsubject(NSUBJ,Nsemsubjvp)),
var(Rel2),
sfok(Nsemsubjvp,Semsubjnp),
accu(Prefs,[Prefnp,Prefvp,4]).

5.2. Inheritance

 In horatio semantic features are organized hierarchically into classes, subclasses, sub-subclasses,
etc. A subclass is meant to be able to satisfy a semantic requirement expressed in terms of its parent class.

 The class/subclass relation is expressed by the predicate up1. Its first argument is the subclass, its
second the parent class. We find:

up1(animal,living).
up1(human,living).

 These two clauses are meant to convey the information that animals and humans are both living
entities. More formally, that the class animal is a subclass of the class living , and that the class human is
also a subclass of the class living .

 The hierarchy is traversed upwards by the predicate up, whose definition is similar to that of the
ancestor predicate, to be found in introductory tutorials on Prolog. The parent predicate's role is
similarly played by the up1 predicate:

up(X,Y):- up1(X,Y).
up(X,Y):- up1(X,Z),up(Z,Y).

 When a semantic restriction is checked, the up predicate is called to see whether we do not have a
subclass of the class we are looking for, in which case the semantic requirement is satisfied:

sfok(Sem,Semlist):- up(Sem1,Sem),inlist(Sem1,Semlist).

5.3. Percolation

 Percolation can be defined as the copying up or down the tree of feature values. In Prolog this
copying is of course done by unification . For instance, we need to be able to refer to the head noun's
semantic feature list at the level of the whole noun phrase. Similarly, we sometimes need to refer to the
semantic feature list of a noun phrase within a prepositional phrase.

 Let us look at the first of these two examples of feature percolation. In the relevant defining clause
for the corenounphrase predicate the two occurrences of the semantic feature list appear in bold
type:

corenounphrase(P0,P3,Gap,index(I),Pref,Weight,Rel,Intrel,
 Function,
 [Function,[nounphrase,index(I),
 agr(third,Number),DET,N,Parse]],
 Number,third,Sem):-
 determiner(P0,P1,DET,Number,Rel1,Intrel1) ,
 xnoun(P1,P2,N,Number,Sem,Arglist),
 satisfylist(P2,P3,Gap,Status,Pref,Prec,Rel2,Intrel2,_,
 Parse,np,Arglist,Func,
 subject([subject,[nounphrase,index(I),
 agr(third,Number),DET,N]],
 Verbsem)),
 sfok(Verbsem,Sem),
 (var(Rel1),var(Intrel1),Rel=Rel2,Intrel=Intrel2;
 nonvar(Rel1),nonvar(Intrel1),Rel=Rel1,Intrel=Intrel1),
 ifthenelse(var(Status),Weight=2,Weight=3).

 The xnoun predicate is itself defined in terms of the predicate noun:

xnoun(V1,V2,V3,V4,V5,V6):- noun(V1,V2,V3,V4,V5,V6).

 The predicate noun itself is a macro-expansion of the lexical predicate m_noun:

noun([Singular|X],X,[noun(Lex,agr(sing))],sing,Sem,Arglist):-
m_noun(Lex,Singular,Plural,Sem,Arglist).

 Here is an example of a m_noun clause, with the semantic list (fourth argument) in bold type:

m_noun(explanation_1,explanation,explanations,[abstract],[]).

5.4. From Semantic to Lexical Classes

 Consider the phrase PAY ATTENTION TO . Attention is modifiable, and the np whose head it
is plays a functional role, namely that of object of the verb PAY:

You should pay more attention to the problems he has mentioned.
Too much attention has been paid to these pseudo-problems.

 Nevertheless PAY ATTENTION TO is a multi-word unit: the preposition is lexically determined
and the sense of PAY is not assignable without considering the object.

 The solution adopted for such mwu's in horatio is to use the slot reserved for semantic
restrictions to code lexical restrictions. We have one entry for PAY (where the lexeme value is the phrase
pay_attention_1) where we specify that the object must bear the semantic feature attention. We also
have a reading of attention which bears the required feature in its semantic feature list:

m_verb(vobjfreepp,_,pay_attention_1,pay,pay,pay,pays,paying,
 paid,paid,paid,trans,human,
 [np(oblig,posprec(1,Wnp),object,attention),
 pp(oblig,posprec(1,Wpp),pp_arg,_,_,to)]).

/* they should pay attention to the problem he has seen */

m_noun(attention_1,attention,[attention],[]).

 By the side of the entry for pay_attention_1 given above, we need another one, where attention
to is parsed as a particle attached to the verb. This is achieved by including the string value attention to
in the arglist. This entry is needed to account for passives such as The problem was paid attention to,
where the object is not attention, but the problem, i.e. the object argument in the arglist for this second
entry (cf. the section on double analysis, p. 19):

m_verb(vtrphrprep,part0:'attention to', pay_attention_to_1_a,
 pay,pay,pay,pays,paying,
 paid,paid,paid,trans,human,
 [string(oblig,posprec(1,0),[attention,to]),
 np(oblig,posprec(2,Wnp),object,_)]).

/* the problem should be paid attention to */

 We would also need another entry for ATTENTION to account for its uses outside the mwu PAY
ATTENTION TO . The following would be appropriate:

m_noun(attention_2,attention,[abstract],[]).

 Note that here abstract is a true semantic feature, not a lexical one.

5.5. Performing the Checks

 SFOK is used to check that a semantic restriction placed by a verb or an adjective is satisfied by
the noun phrase filling the verb's argslot or by the noun modified by the adjective.

 CHECKSEM is used when the two values are both semantic restrictions. They are checked for
compatibility, i.e. it is ascertained whether they meet somewhere by going up the semantic trees they
belong to.

5.5.1. Sfok

 To understand sfok, it is necessary to recall that nouns have semantic feature lists, whereas verbs
and adjectives place semantic restrictions by means of single semantic features. For instance, the noun
BOOK has the following entry in the lexicon:

m_noun(book_1,book,books,[thing,abstract] ,[pp(opt,n:topic)]).,

[thing,abstract] being its semantic feature list.

 On the other hand, the verb READ has the following entry:

m_verb(verbtr,_,read_1,read,read,read,reads,reading,
 read,read,read,trans,human,
 [np(opt,posprec(1,Wnp),object,abstract)]).

/* she was reading */

where human is the semantic restriction on its subject, and abstract on its object.

 To check whether a semantic restriction is satisfied, we try to find the feature embodying the
semantic restriction placed by the verb on one of its arguments among the semantic feature list associated
with the np or pp filling the argument position. The necessary list traversal is accomplished by inlist,
which is basically a deterministic version of the member predicate:

inlist(X,X):- !.

inlist(Sem,[norestriction]):- !.

inlist(Sem,[Sem|X]):- !.

inlist(Sem,[_|X]):- inlist(Sem,X).

 The first clause takes care of the cases where one of the two arguments, or both, is an
uninstantiated variable. In such a case the test must succeed.

 The second clause takes care of the special semantic feature list [norestriction] which is used
with certain relative and interrogative pronouns. Here too the test succeeds, no matter what the semantic
restriction placed by the verb or the adjective is.

 The third and last clauses code a deterministic version of the well-known member predicate.

 Sfok similarly opens with a number of clauses taking care of the special cases:

sfok(Sem,Sem):- !.

/* this clause is used to assign a value to a variable; necessary when the NP is a gap; the semantic
restriction in the VP will be projected onto the gap; it also takes care of cases where both arguments are
variables, e.g. checking the semantic features of an optional argument that is not realized in the S to be
parsed */

sfok(norestriction,X):- !.

sfok(X,norestriction):- !.

sfok([],X):- !.

 The last two clauses call inlist to accomplish the list traversal of the semantic feature list
associated with the np or pp argument. The last one calls up, whose role, as we have seen, is to permit
inheritance:

sfok(Sem,Semlist):- inlist(Sem,Semlist),!.

sfok(Sem,Semlist):- up(Sem1,Sem) ,
 inlist(Sem1,Semlist).

5.5.2. Checksem

 As already said, we use checksem instead of sfok when we have two semantic restrictions, and
want to know if they are compatible. This will be the case in the analysis of such sentences as the man
wants to read the book, where what is passed on to the infinitive clause to read the book is the restriction
that wants places on its subject. Consider the following piece of code:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
 [Function,[clause,Tree]],
 np_vp(Type,to_inf,Function),
 subject([Sfunction,Treesubj],Semsubj1),
 subject([Sfunction,Treesubj],Semsubj1)):-
 xverbphrase(P0,P1,subject([subject,Treesubj],Semsubj2),
 Gap,Pref,Tree,Rel,
 Intrel,infinitive,Tense,
 aspect(Aspect),Modality,
 Number,Person,Voice,
 nsubject(NSUBJ,Nsem)),
 checksem(Nsem,Semsubj1),
 Prefgen is Pref + 4.

 The xverbphrase predicate will put its semantic requirement on its subject in the Nsem
variable in the nsubject functor (remember that it can be submitted to such argument reshuffling
transformations as passive). The Semsubj1 variable in the subject functor of the satisfy predicate
records the semantic restriction on the subject of the verb that has already been parsed, wants in our case.
We need to verify whether the two semantic restrictions are compatible, and we use checksem for this
purpose.

 The code for checksem is the following.

 If we have one or two uninstantiated variables, or if the two variables are unifiable, checksem
succeeds:

checksem(X,X):- !.

 It may be the case that the second argument of checksem points to a list of features (this may
happen through unification of semantic features), in which case we simply use sfok:

checksem(X,Y):- sfok(X,Y), !.

 If both arguments refer to semantic restrictions, they must be compatible, i.e. must meet - be
identical - somewhere on the up path in the hierarchy:

checksem(X,Y):- up(X,X1),
 checksem(X1,Y),
 !.
/* X is more restrictive than Y */

checksem(X,Y):- up(Y,Y1),

 checksem(X,Y1).

 /* Y is more restrictive than X */

 Note that in the case of subject-to-subject raising we do not use checksem, because such
raising verbs (such as SEEM) do not place restrictions on their subjects. We simply pass the restriction
placed by the infinitive on its subject to the higher level (by percolation), and leave the sentence
predicate to make the appropriate call on sfok:

satisfy([to|P0],P1,Gap,Prefgen,Posprec,Rel,Intrel,
 [Function,[clause,Tree]],
 vp(Type,Function),
 subject([Sfunction,Treesubj],Semsubj1),
 subject([Sfunction,Treesubj],Semsubj1)):-
 xverbphrase(P0,P1,subject([subject,Treesubj],Semsubj2),
 Gap,Pref,Tree,Rel,
 Intrel,infinitive,Tense,
 aspect(Aspect),Modality,
 Number,Person,Voice,
 nsubject(NSUBJ,Semsubj1)),
 Prefgen is Pref + 2.

6. Parsing Issues

6.1. Dealing with Flexible Word Order

 English is characterized by a word order that is neither wholly free nor entirely fixed. We shall
therefore call it flexible. The first task is to isolate the relevant factors determining word order. For the
cases dealt with in horatio, these are two: argument canonical order as specified in an item's arglist,
and structural weight.

 Structural weight has priority over argument order, although the exact weighting of these two
factors is not easy to determine, and a good deal of it is heuristics, i.e. trying various possibilities and
seeing how well they fit the data.

 Argument order as determined in the lexical clause specifying the arglist is undoubtedly a factor.
Consider the phrases built around the skeleton consider x y. If x and y have the same structural weight, x
needs to refer to the object and y to the object's complement, not the other way round. In an interpretation
where motorists is the object and criminals the complement, we can have

I consider motorists criminals

but not

* I consider criminals motorists

 However, if the object is weightier than the complement, it will follow:

I consider criminals the motorists who drink and drive.

 Sticking to the argument order specified in the rule would yield a much less acceptable sentence,

also on account of the unintended object link between drive and criminals:

? I consider the motorists who drink and drive criminals.

 In horatio, we use the posprec structure to house both the argument order and to leave room for
the weight, to be filled when the argument is actually parsed. Consider again the entry for ALLOW, third
reading, repeated here for convenience:

m_verb(vio,allow_3,allow,allow,allow,allows,allowing,
 allowed,allowed,allowed,trans,human,
 [np(oblig,posprec(2,Wnp1),object,thing),
 io(oblig,posprec(1,W2),indirect_object,human,_)]).

 The first value in posprec can be determined in the argument list itself. Here, it is meant to
convey the information that the indirect object should precede the direct object. The second value in
posprec is left as a variable in the argument list. It will be instantiated when the actual object np and io
(indirect object) are parsed. It reflects the weight of the element. For instance, a prepositional phrase will
be assigned a certain weight, nps will differ in the weight they are assigned (for instance, an np
consisting of a personal pronoun is very light, an np consisting of a head followed by a relative clause is
heavy, etc.).

 As already said, priority is given to the second value over the first in posprec, to allow for end
placing of heavy elements. The relative importance to be assigned to the two values of the posprec
structure is a matter for investigation[14].

 The approach sketched here does not run into the problems that the CLE one (Core Language
Engine) is confronted with (see Pulman 1992, in his section on subcategorization, p. 62 and foll.). He
points out the the GPSG approach, as well as the CLE approach, does not "allow for the possibility of
optional modifiers like PP or AdvP to appear between elements on a subcat list" . To remedy this problem
CLE has "a version of the subcategorization schema that splits the list of complements and allows a
modifying structure to intervene". In Alshawi et al. 1992 we are given no further information on this
splitting scheme. I believe that we should look for a solution that takes into account both arg order and
weight. As has been said already, the crux lies in the weighting of these two factors.

6.2. Computing Preferences

 In horatio, each parse is assigned a preference, expressed by a positive number. The greater the
number, the higher the preference. The preference of a parse is a function of the preferences assigned to
its constituents. The preference mechanism is built around the time-honoured principle of the redundancy
of natural language, i.e. the densest match - best match principle. In practice, it means that arguments
are preferred to modifiers.

 Consider the following two predicate definitions. They both deal with the parsing of
prepositional phrases. In the first case we have a pp as argument, in the second case as modifier .

satisfy(P0,P1,Gap,Prefgen,posprec(Pos,Precpp),Rel,Intrel,Tree,
 pp(Type,posprec(Pos,Precpp),
 Function,PPsemnp,PPsemvp,Prepform),
 subject(SUBJ,Semsubj),
 subject(SUBJ,Semsubj)):-
 xprepphrase(P0,P1,Gap,index(J),npindex(I),
 Prefpp,Precpp,Prepform,
 Rel,Intrel,Function,Tree,
 PPsem,PPsemnp),
 sfok(PPsemvp,PPsem),

 Prefgen is Prefpp + 4.

modifier(P0,P1,vp,Gap,Prefgen,posprec(1,Precpp),
 Rel,Intrel,Tree,subject(SUBJ,Sem)):-
 xprepphrase(P0,P1,Gap,index(J),npindex(I),Prefpp,Precpp,
 Prepform,Rel,
 Intrel,vp_modifier,
 Tree,PPsem,PPsemnp),
 modppvp(Prepform),
 Prefgen is Prefpp + 2.

 Prefgen records the preference assigned to the phrase. In the first case (argument), it is the
preference returned by the xprepphrase predicate plus 4. In the second case (modifier), the added
value is only 2.

 Consider now how the preference value is computed at the highest level, i.e. for whole sentences.
Here is the relevant definition of the sentence predicate:

sentence(P0,P2,Gaps,Prefs,[clause,VP],Type,Personvp,
 Number,Voice):-
append(Gapnp,Gapvp,Gaps),
xnounphrase(P0,P1,Gapnp,index(I),Prefnp,Weight,Rel1,
 Intrel1,subject,SUBJ,Number,Personnp,Semsubjnp) ,
var(Rel1),
agree(Personnp,Number,Personvp),
xverbphrase(P1,P2,subject(SUBJ,Semsubjvp),
 Gapvp,Prefvp,VP,Rel2,
 Intrel2,Type,Tense,aspect(Aspect),Modality,
 Number,Personvp,
 Voice,
 nsubject(NSUBJ,Nsemsubjvp)),
var(Rel2),
sfok(Nsemsubjvp,Semsubjnp),
accu(Prefs,[Prefnp,Prefvp,4]).

 The preference value for the whole S (Prefs) results from the accumulation (accu predicate) of the
preference values of the subject np (Prefnp) and the verb phrase (Prefvp). But an S is more than the
concatenation of an np and a vp. The np must be able to function as subject of the vp (in this sentence
pattern) and this is ensured by the grammatical and semantic agreement checks (agree and sfok
predicates). This link is the reason for the addition of the value 4 to the accumulated np and vp preference
values. How do we find out that 4 is the appropriate value to add here ? The computing of preference
values, like that of precedence values, is very much a question of heuristics, i.e. finding out by experiment
which values give the best results.

 Accu is a simple predicate which returns in its first argument the sum of the values listed in its
second argument, which must be a list. The mode is the following:

accu(-Totalvalue,+Valuelist).

 Accu is defined as follows:

accu(0,[]).

accu(Res,[Head|Tail]):-
 nonvar(Head),

 accu(Respart,Tail),
 Res is Head + Respart.

accu(Res,[Head|Tail]):-
 var(Head),
 accu(Res,Tail).

 The first clause is the non-recursive case: an empty value list yields a total value of zero.

 The second clause calls accu recursively on the tail of the value list, and adds the value of the
head to the result, provided the head is instantiated.

 The third clause takes care of uninstantiated heads: they are simply dropped, and accu is called
on the tail of the list to return the final result.

6.3. Hard Coordination

 horatio can deal with certain types of so-called hard coordination. The reader is referred to the
last two sample parses (see Appendix F, page 155). The main principle is that only like elements can be
conjoined, but the problem consists in determining the conditions that must be fulfilled for two elements
to be regarded as similar enough to be coordinated. Here the argument list plays a crucial part, and its
availability in the lexical entries themselves is a crucial condition for the strategies developed here to
work.

 In order to exemplify the approach taken in horatio, we shall look at coordination at the sentence
level. We first deal with the easiest case: the two clauses do not display any gap. The only requirement is
that they be of the same Type, either finite or non-finite.

 For each linguistic phrase (from the clause level down) that can be coordinated, we define a super-
predicate (by convention its name should begin with x), itself defined as a call to the simpler predicate,
the parsing of a conjunction, and a recursive call on the complex predicate (the rules are therefore right -
recursive). Of course, the second defining clause of the complex predicate defines it as a call on the
simpler predicate, to get out of the recursion. In this way, we avoid the well-known problem of left-
recursive rules (e.g. np --> np coord np) for a top-down parser as the one used in horatio.

 At the clause level, we therefore have the following piece of code, where xsentence is the
complex predicate and c_sentence the simpler one. Note that the gap value (third argument) is set to
the empty list: the two clauses do not feature any gap.

xsentence(P0,P2,[] ,Prefs,[and_sentence,S1,S2],Type,Person,
 Number,Voice):-
inlist(and,P0),
c_sentence(P0,[and|P1],[] ,Pref1,S1,Type,Person,Number,
 Voice),
xsentence(P1,P2,[],Pref2,S2,Type,Person2,Number2,Voice2),
accu(Prefs,[Pref1,Pref2]).

/* getting out of the recursion */
 xsentence(A,B,C,D,E,F,G,H,I):-
 c_sentence(A,B,C,D,E,F,G,H,I).

 We also note the simplistic call on inlist. It checks that the word AND is a member of the
remaining word list[15]. This call is for efficiency only, and would have to be revised or dropped in a
version of horatio that attempted to deal with other coordinating conjunctions than AND (recall that the

comma is the coordinating conjunction of choice when the coordination has more than two members).

 We next consider the case where we have a gap. It needs to be shared by the two conjoined
clauses. Consider:

The linguistics which he thinks he teaches and she likes ...

 The italicized bit is a conjunction of two S's sharing the same gap, namely the relative pronoun.
Sharing the gap implies here that the gap is of the same type (np or pp) and points to the same antecedent
(and also, of course, has the same index). We therefore have the following piece of code:

xsentence(P0,P2,
 [gap(_,_,_,_,FunctioninS2,_,index(I),_)],
 Prefs,[and_sentence,S1,S2],Type,Person,Number,Voice):-
 inlist(and,P0),
 c_sentence(P0,[and|P1],
 [gap(Ref,Gaptype,_,_,FunctioninS1,_,index(I),_)],
 Pref1,S1,Type,Person,Number,Voice),
 nonvar(FunctioninS1),
 xsentence(P1,P2,
 [gap(Ref,Gaptype,_,_,FunctioninS2,_,index(I),_)],
 Pref2,S2,Type,Person2,Number2,Voice2),
 nonvar(FunctioninS2),
 accu(Prefs,[Pref1,Pref2]).

 Note here the calls on nonvar, to make sure that the gaps are real. Function assignment can only
happen in the clause itself: if the function value is not left uninstantiated, it is evidence that a piece of
structure was missing, since a function was assigned to its place-holder (the gap).

 The next case we consider is that of a gap that is filled somewhere to the right (the gaps in the
previous case were filled on the left, as in interrogative or relative clauses). An example is

John likes and Mary reads the book

which we will analyse as two gapped S's (1: John likes GAP; 2: Mary reads GAP) followed by the gap
filler (the book).

 Here we require that the gap fill the same function in the two coordinated S's (the object function
in the example), and we check that the gap filler is semantically OK for both gaps. The gap functor has
two positions for semantic restrictions (one for np gaps and one for pp gaps) and we carry out the check
between the appropriate slot in the gap functor and the semantic feature list associated with the noun
phrase or prepositional phrase filling the gap. Here is the code in the case of np gaps:

xsentence(P0,P3,[] ,Prefs,[and_sentence,S1,S2,NP],Type,
 Person,Number,Voice):-
 inlist(and,P0),
 sentence(P0,[and|P1],
 [gap(NP,npgap,Npsem1,_,FunctioninS1,_,index(I),_)],
 Pref1,S1,Type,Person,Number,Voice),
 nonvar(FunctioninS1),
 sentence(P1,P2,
 [gap(NP,npgap,Npsem2,_,FunctioninS2,_,index(I),_)],
 Pref2,S2,Type,Person2,Number2,Voice2),
 nonvar(FunctioninS2),
 FunctioninS1=FunctioninS2,
 xnounphrase(P2,P3,[],index(I),Pref,Weight,Rel,

 Intrel,FunctioninS1,NP,Numbernp,Personnp,Sem),
 sfok(Npsem1,Sem),
 sfok(Npsem2,Sem),
 accu(Prefs,[Pref1,Pref2]).

 Note that at the highest level the clause resulting from the coordination of the two gapped clauses
and the gap filler must feature an empty list as gap value. This is in contrast with the preceding case
where the gap was percolated to the resulting clause.

 The most complex case is that of clauses which are gapped in their main verb, such as

Mary teaches linguistics and John mathematics.

 Matsumoto 1991 leaves such cases to be dealt with by a device which does not belong to the main
parsing scheme, the Extra-Grammatical Sentence Module. He writes (page 10): "Because the Extra-
Grammatical Sentence Module is activated only when no sentence structure is found, the gap type of
coordination handling is never tried if there is at least one possible parse obtained from the input". One of
the sentences he discusses is the following:

John will cook the meals today and Barbara tomorrow (missing vp in the second S).

If the 'cannibalistic' reading is not rejected, it will preclude finding the 'gapped' reading. Matsumoto is
aware of this danger (p.11), although he has not seen that the interpretation of one of his example
sentences falls prey to it.

 The treatment of such gapped S's in horatio crucially depends on the availability of frame
information in the lexicon. As a matter of fact, we need to go into the structure returned by the parsing of
the first clause, get at the Class and Lex value for the verb, call the corresponding macro-clause
(m_verb) to get at the Args required by the predicate, and attempt to parse what follows the subject of
the second clause with a call to the arglist predicate, to which the required Args and Class values are
passed. The m_verb clause also yields the semantic restriction on the subject and we use it to make sure
that the subject of the second clause is semantically appropriate to its (gapped) verb. The following is the
commented code for this more complex case:

xsentence(P0,P4,[],Prefs,
 [and_sentence,
 [clause, [pred_arg_mod_structure,
 prop(vce:V,asp:A,mod:Modality,tns:Tense),
 [predicate(Lex,Agr)],
 SParse]],
 [clause, [pred_arg_mod_structure,
 prop(vce:V,asp:A,mod:Modality,tns:Tense),
 [predicate(Lex,_)],
 SParse2]]
],
 Type,Person,Number,V):-
 inlist(and,P0),
 xnounphrase(P0,P1,[],index(I),Prefnp1,Weight1,Rel1,
 Intrel1,subject,SUBJ,Number,Personnp,Semsubjnp) ,
/* e.g. Mary */

 var(Rel1),
 agree(Personnp,Number,Person),
 verbphrase(P1,[and|P2],subject(SUBJ,Semsubj),[],Prefvp1,
 [pred_arg_mod_structure,
 prop(vce:V,asp:A,mod:Modality,tns:Tense),

 [predicate(Lex,Agr)],
 SParse],
 Relvp1,Intrelvp1,Type,Tens,aspect(Aspect),Mod,
 Number,Person,Voice,nsubject(NSUBJ,Nsem)),
/* e.g. teaches linguistics */

/* P2,P3: subject of the second S, e.g. John */

 xnounphrase(P2,P3,[],index(I2),Prefnp2,Weight2,Rel2,
 Intrel2,subject,NP,Number2,Personnp2,Sem),
 var(Rel2),
 m_verb(Class,_,Lex,
 ,,_,_,_,_,_,_,_,
 Semsubj,Args),

/* P3,P4: argument list in the second S */
/* e.g. mathematics */

 arglist(P3,P4,[],Status,Prefvp2,Preclist,Relvp2,
 Intrelvp2,Voice,Parse2,vp,
 Args,Func,subject(NP,Semsubj),
 nsubject(NSUBJ2,Nsem),
 Class),
 nonvar(Status),
 append([NSUBJ2],Parse2,AParse2),

/* the append predicate is used to append the subject at the beginning of the parse tree produced by
arglist, from which the subject is excluded */

 insort(AParse2,SParse2),
 sfok(Nsem,Sem),
 accu(Prefs,[Prefnp1,Prefvp1,Prefnp2,Prefvp2]).

A Note on Generation

 The generation of coordinate structures is straightforward: we generate the first conjunct, append
the coordinating conjunction AND, and then generate the second conjunct (recall that horatio knows only
about one coordinator, AND). But there is one case that is slightly more complex. It is due to the fact that
sometimes the parser factors out a piece of information, such as for instance the Property field (modality,
aspect, voice, tense) in the case of coordinated YES-NO questions. We therefore need to redistribute the
factored out information. We first make sure that factorisation has taken place by checking that the
factored out element is uninstantiated at the places where it will have to be redistributed. The
redistribution is accomplished by the following piece of code:

gen([yes_no_question,[clause,[and_pred_arg_mod_structure,Properties,
[pred_arg_mod_structure,Vprop1|Rest1],
[pred_arg_mod_structure,Vprop2|Rest2]]]],
Sentence):-
 var(Vprop1),
 var(Vprop2),
 gen([yes_no_question,[clause,[pred_arg_mod_structure,
 Properties|Rest1]]],S1),
 gen([yes_no_question,[clause,[pred_arg_mod_structure,
 Properties|Rest2]]],S2),
 append(S1,[and],S1and),
 append(S1and,S2,Sentence).

 Such redistribution also applies to the Function value in the case of coordinated nps:

gen([Function,[and_nounphrase,NP1,NP2]],Gennp):-
 gen([Function,NP1],NP1gen),
 gen([Function,NP2],NP2gen),
 append([NP1gen],[and],L1),
 append(L1,[NP2gen],Gennp).

6.4. Long Distance Dependencies

 The treatment of long distance dependencies is similar to that suggested in GPSG (Generalized
Phrase Structure Grammar) and MLG [16] (Modular Logic Grammar) . Gap threading is used (via
APPEND, not via difference list techniques). In horatio we use two types of gaps: np gaps and pp gaps.
Consider:

The house in which he lives is nice.
The house he lives in is nice.

 In the first relative clause (he lives) we have a pp gap filled in by the relative prepositional phrase
in which (a relative prepositional phrase is a prepositional phrase which contains a relative np). In the
second relative clause (he lives in) we have an np gap filled by the zero relative pronoun. Coindexing will
ensure that the np within the pp in the first case is coindexed with the antecedent the house; in the second
case the zero relative will likewise be coindexed with the antecedent the house.

 Np gaps come into existence when an argbearer misses an np argument in the word list it is
attempting to parse, i.e. cannot satisfy it as a regular np and calls on the relevant clause in the
nounphrase predicate, which returns something without consuming anything in the input list (hence
the P0,P0 values as input and output lists in the code quoted below). When the gap is parsed, the only
value that is set is that of the function played by the gap. This is the reason why we often check whether
this value is instantiated: if it is, we can be sure that the argbearer has missed one of its arguments. All
the other values may come to be instantiated by unification , as will become clear when we discuss the
percolation of the features in the gap functor. Here is the clause for the parsing of noun phrase gaps:

nounphrase(P0,P0,
 [gap(Antecedent,npgap,Npsem,_,Function,_,index(I),_)],
 index(I),0,0,Rel,Intrel,Function,
 [Function,
 [nounphrase,index(I),agr(third,Number),NP]],
 Number,third,Npsem).

 The zero values are the Weight and Preference values. Note that in the parse tree of a gapped np,
only the function, index and agreement value are kept; it should be noted that NP is an uninstantiated
variable, not a copy of the antecedent.

 The gap functor holds the following features:

Antecedent: this feature can hold a full copy of the antecedent of the gap;

gap type: npgap or ppgap;

Npsem: semantic restriction on the np;

PPsem: semantic restriction on the pp;

Function: function filled by the gap in clause structure;

Prep : preposition, if any;

Index: we keep an index, so that we do not need a full copy of the antecedent to show the coindexing
relation;

NPindex: indexes the np within a pp; necessary for such pps as about whom, where the np whom must be
coindexed with its antecedent.

 A pp gap is similar. Here is the relevant clause for the prepphrase predicate:

prepphrase(P0,P0,
 [gap(Antecedent,ppgap,Semnp,Sempp,Function,Prep,index(I),npindex(J))],
 index(I),npindex(J),0,0,Prep,Rel,Intrel,Function,
 [Function,[prepphrase,index(I),_,_]],
 Sempp,Semnp).

 Note that the two index values are kept distinct. Only the index value for the whole pp is
preserved in the parse tree.

 If, apart from Function, the values in the gap functor do not come from the parsing of the missing
np or pp, where do they come from? In order to show the instantiation of the values carried out by
unification (of which percolation is a special case, being unification up or down a tree), we shall examine
the treatment of relative clauses.

 The passing of values is to be found at two places:

1) in a defining clause for nounphrase which accounts for nps governing a relative clause, we
percolate the features from the antecedent to the gap functor carried by the relative clause predicate;

2) in the defining clauses for relative clauses, we percolate the values from the gap functor in the relative
clause to the xsentence predicate that parses the body of the relative clause. It follows that the
xsentence predicate must also bear a gap functor (the gap may come from the subject or from an
argument in the arglist of an argbearer that is a constituent of the S).

 Two things need to be kept in mind. The first is that even if we like to think of a direction in the
percolation process, it has none. It is a relation between values, not even a process, and certainly not a
copy from one place to another. We have already seen that the Function value could not be assigned
before the parsing of the gap.

 The second is that in the process just outlined, it is the gap functor carried by the relative clause
predicate which provides the link between the antecedent and the sentence (with a missing arg) which
makes up the body of the relative.

 Let us consider first the nounphrase clause which takes care of nps governing a relative clause.
We have already looked at it (in the section on nps, see p.55), but this time we shall concentrate our
attention on the unification pattern between antecedent and gap functor in the relative clause predicate.
Here is the code:

nounphrase(P0,P2,[],index(I),
 Preftop,3,_,_,Function,
 [Function,Newrest],
 Number,third,Sem):-
 corenounphrase(P0,P1,[],index(I),
 Pref,Weight,Rel,Intrel,Function,

 [Function,Rest],
 Number,third,NounSem),
 (var(Intrel); Intrel \= int), /* not an interrogative */
 var(Rel),
 xrelclause(P1,P2,Prefrel,RELCL,
 [gap(_,_,Npsem,_,_,_,index(I),_)],
 Personinrel,Funcinrel,NounSem,Number),
 sfok(Npsem,NounSem),
 append(Rest,[RELCL],Newrest),
 accu(Preftop,[Pref,Prefrel]).

 The shared information covers the index, which is the means of indicating coindexing
relationships in horatio. Note that the semantic feature list of the antecedent np (NounSem) is not copied
to the gap functor. The latter will hold a semantic restriction (Npsem), and the call to sfok will make
sure that the antecedent fits the semantic restriction placed in the relative clause.

 We also see that Number and Nounsem are transferred from the antecedent to the relative clause
predicate (xrelclause), but are not part of the gap functor. We shall understand the rationale behind
such transfer when we look at the xrelclause predicate.

 Let us take one type of relative clause to follow the fate of the percolated features: we shall look at
relative clauses which feature a relative pronoun (non-zero relative) and an np gap. We should bear in
mind that the last two features of the relclause predicate are copied from the antecedent: antecedent
semantic feature list and antecedent number, in that order.

 The code is the following:

/* the man whom the woman likes
 the man the book about whom the woman likes */

relclause(P0,P2,Prefrel,[relative_clause,NP,S],
 [gap(_,npgap,Semrel,_,_,_,index(J),_)],
 Personrel,Functioninrel,NounSem,Numberant):-
 nounphrase(P0,P1,[],index(I),Prefnp,Weight,Semrel,
 rel(J),Functioninrel,
 NP,Number,third,Semwholenp),

/* bear in mind that the structure spanned by nounphrase is NOT the antecedent, but the relative pronoun
(e.g. which) or the noun phrase containing a relative element (e.g. a book about whom) */

/* I and J can be the same, but need not: in a book about whom you have read I would refer to book, J to
whom */

 nonvar(Semrel), /* the np must have a rel feature */
 sentence(P1,P2,
 [gap(_,npgap,Npsem,_,Functioninrel,_,index(I),_)],
 Prefs,S,finite,Personrel,Numberrel,Voice),
 nonvar(Functioninrel),
 (Weight \= 1 , sfok(Npsem,Semwholenp),
 ifthen((Functioninrel=subject),
 agree(third,Number,Personrel))
;
 Weight = 1 , sfok(Npsem,NounSem),
 ifthen((Functioninrel=subject),
 agree(third,Numberant,Personrel))) ,
 accu(Prefrel,[Prefnp,Prefs]).

/* checking the Weight value is a slightly roundabout way of getting to know whether we have a relative
pronoun alone (such as whom - Weight is 1) or an np containing a relative (such as a book about whom -
Weight is heavier than 1). */

 The only feature that is directly shared between the gap functor in the relclause predicate and
that in the sentence predicate is the gap type: here both gaps need to be np gaps. However, the sharing
of values is more extensive if one considers the features in the nounphrase predicate (parsing the
relative pronoun, or the noun phrase containing a relative pronoun). First of all, an index is shared: the
index of the relative element within the noun phrase (J) is to be found at the relclause level. Second, the
Semrel at the relclause level is shared by the nounphrase predicate. Semrel will be the same as
Semwholenp when the noun phrase consists only of a relative pronoun. The relevant piece of code for the
parsing of relative pronouns is repeated below:

nounphrase(P0,P1,[],index(I),
 0,1,Semnp,rel(I) ,Function,
 [Function, [nounphrase,index(I),agr(third,Number),Tree]],
 Number,third,[Semnp]):-
 relative(P0,P1,Tree,Semnp,Sempp,np).

 We see that here the rel index and the index for the whole np are also shared. The semantic
feature is shared, but inserted as a one-element list to conform to np semantics, which is always in list
format.

 At the level of the sentence predicate, the semantic restriction on the gap is expressed in the
Npsem feature. If we have a noun phrase that consists of a relative pronoun only (the man whom he
likes), its weight will be 1, and the semantic check can be carried out between the semantic restriction
placed by the sentence predicate on the gap (Npsem) and the semantics of the antecedent itself, which
is housed in the last argument but one of the relclause predicate (NounSem). If the noun phrase
contains a relative pronoun, but is not limited to such a pronoun (as in the man a book about whom I
have read), its weight will be different from 1, and the semantic test is to be carried out with the
semantics of the whole np as second argument (Semwholenp).

 If the noun phrase consists of a relative pronoun only (Weight equals 1), and that relative is
subject in the relative clause, we need to check subject-verb agreement in the relative clause. We can do
so because the number of the antecedent has been percolated as last argument of the relclause
predicate (Numberant), and the person feature is percolated to sentence level in the sentence
predicate (Personrel). The relative pronoun is always third person[17], so we have a check where the first
two arguments (the np ones) are third and Numberant (the number of the antecedent) and the third
argument (the verbal one) is Personrel carried by the sentence predicate.

 On the other hand, if the subject of the relative clause is a whole np containing a relative pronoun
(Weight is different from 1), as in The genius a book about whom has just been published, we need to
check agreement with the second argument representing the number of the whole np, not that of the
relative pronoun within it. We therefore have

agree(third, Number, Personrel),

where Number is the number of the whole np, returned by the nounphrase predicate.

 To illustrate pp gaps we shall look at interrogative clauses. We take as illustration finite
interrogative clauses featuring a pp gap, as in

He knew in whose library she lived.

 We analyse the interrogative clause as a prepositional phrase followed by a sentence featuring a
pp gap, and we rely on unification to relate the pp with the pp gap. The code is the following:

intclause(P0,P2,Prefint,[interrogative_clause,PP,S]):-
 xprepphrase(P0,P1,[],index(I),npindex(J),Prefpp,
 Weight,Prep,
 Semrelint,int,Function,
 PP,PPsem,Semnp),
 nonvar(Semrelint),
 sentence(P1,P2,
 [gap(PP,ppgap,Npsem,PPsem,Function, P_Prep,index(I),npindex(J))],
 Prefs,S,finite,Personint,Numberint,Voice),
 nonvar(Function),
 accu(Prefint,[Prefpp,Prefs]).

 In order to understand the need for two indices in pps (index and npindex), we return to the
treatment of relative clauses similar to the interrogative clause we have just looked at. Consider

the man in whose library she lived

We need to establish a link between whose and the man. This link will be carried by the rel(X) functor
within the pp.

 First, we must recall the structure of the lexical clause accounting for relative whose:

 determiner([whose|X],X,[det(whose),index(I)],_,norestriction,rel(I)).

 The last argument (rel(I)) has a variable position for an index - I - which will be instantiated so as
to keep track of the relation between whose and its antecedent. Note that this index is also returned in the
parse tree associated with determiner whose.

 Second, note that the rel(I) functor is percolated from the determiner to the noun phrase level
when the np is parsed. It is called Intrel1 at the determiner level in the piece of code below, and Intrel
at the np level.

corenounphrase(P0,P3,Gap,index(I),Pref,Weight,Rel,Intrel ,
 Function,
 [Function,[nounphrase,index(I),
 agr(third,Number),DET,N,Parse]],
 Number,third,Sem):-
 determiner(P0,P1,DET,Number,Rel1,Intrel1) ,
 xnoun(P1,P2,N,Number,Sem,Arglist),
 satisfylist(P2,P3,Gap,Status,Pref,Prec,Rel2,Intrel2,_,
 Parse,np,Arglist,Func,
 subject([subject,[nounphrase,index(I),
 agr(third,Number),DET,N]],
 Verbsem)),
 sfok(Verbsem,Sem),
 (var(Rel1),var(Intrel1),Rel=Rel2,Intrel=Intrel2;
 nonvar(Rel1),nonvar(Intrel1),Rel=Rel1,Intrel=Intrel 1),
 ifthenelse(var(Status),Weight=2,Weight=3).

 From the np it will be percolated to the pp:

prepphrase(P0,P2,Gap,index(J),
 npindex(I),Prefnp,3,PREP,Rel,Intrel ,Function,

 [Function,[prepphrase,index(J),prep(PREP),NP]],
 Sempp,Semnp):-
 prep(P0,P1,[prep(PREP)],Sempp) ,
 nounphrase(P1,P2,Gap,index(I),Prefnp,Precnp,Rel,
 Intrel ,np_arg_of_prep,NP,Number,Person,Semnp).

 We can now look at the defining clause for relative clauses where the gap is a pp gap:

relclause(P0,P2,Prefrel,[relative_clause,PP,S],
 [gap(_,ppgap,Semrel,PPsem,_,Prep,index(J),npindex(I2))],
 Personrel,Function,NounSem,Numberant):-
 xprepphrase(P0,P1,[],index(I),npindex(I2),
 Prefpp,Weight,Prep,
 Semrel,rel(J),
 Function,
 PP,PPsem,Semnp),
 nonvar(Semrel),
 sentence(P1,P2,
 [gap(PP,ppgap,Npsem,PPsem,Function,P_Prep, index(I),npindex(I2))],
 Prefs,S,finite,Personrel,Numberrel,Voice),
 nonvar(Function),
 accu(Prefrel,[Prefpp,Prefs]).

 The index of the rel functor at the pp level must be the same as that of the index functor in the
relclause gap, i.e. point to the antecedent. In our example sentence, I would refer to the whole pp (in
whose library), I2 would refer to the np within the pp (whose library), and J to the antecedent (the man).

7. Generation Issues
 There is some research in generation with unification grammars which tends towards the ideal of
reversibility: the same grammar is made use of in analysis and generation (cf. Isabelle et al. 1988;
Dymetman and Isabelle 1990). By same grammar is meant here the same code embodying the
grammar, not just the same linguistic concepts.

 horgen, the generation counterpart of horatio, does not use the same grammar. The reason is that
parses are supposed to be fully unambiguous and therefore generation ought to be much simpler than
analysis, which is faced with potentially and actually ambiguous inputs.

 In this piece of research generation is used mainly as a test, to make sure that the surface text is
retrievable from the parses produced by the analyzer. Such a property of parses is crucial in machine
translation.

 In horgen generation is not backtrackable. Only one surface string is produced per parse. The
non-backtrackability of generation implies that the clause order of the generation predicates is significant,
and that the model exceptions first, general case last can be used without necessarily making use of the
cut.

7.1. Freezing the Variables in the Parses

 The parses produced by horatio account for coindexing by means of shared variables in the
index(VAR) functors. We need to convert them to strings before we start generating from them, to
prevent generation from running wild. The conversion of variable to string is achieved by a small script
applied to the parses before feeding them to horgen.

 This script is a Kornshell script executable under the MKS implementation of Unix utilities for
OS/2 and MS-DOS. It runs as follows:

sed -E -e "s/index\(_(....)\)/index\(\$\1\$\)/g" $1 > tmp.tmp
if [-s tmp.tmp]
 then
 mv tmp.tmp $1
 else
 echo "Error !!!"
fi

 SED is a call to the UNIX stream editor. The command is to perform a global (g) substitution (s)
of the source pattern index(_....), where the dots stand for alphanumeric characters. The target pattern
includes the 4 alphanumeric characters (the digit 1 in the target pattern refers to the first parenthesized
expression in the source pattern). They appear between dollar signs, the string delimiter in Arity Prolog.
The variable marker (the underscore) in the source pattern is not copied to the target pattern. The net
result is to transform variables into strings. An example is given below in the section on the cycle.

7.2. The Cycle

 horatio produces parses in which the gf's (grammatical functions) are deep, i.e. correspond to the
specifications in the arglist of the predicate, the argument bearer. To retrieve the surface string, this work
must be undone. Since the days of standard transformational grammar, it has been known that the control
relations (i.e. the control of the subjects of subordinate clauses by higher nps in argument functions), and
transformations such as passive and raising, apply cyclically, to the more deeply embedded clauses first.

 Even if we do not wish to stick to a transformational treatment, this insight of TG is still crucial.
To retrieve the surface string, we will need to undo the work done by horatio in cyclic fashion. Hence the
title of the appropriate section in the horgen code: The Cycle.

 Consider the parse corresponding to the surface string:

I believe him to have been killed.

 Schematically, it looks like this:

I believe [VAR has killed him].

 We first need to apply the passive predicate in generation mode, whose job is to move the
object into subject position and to create a by-phrase for the subject (here this by-phrase will not lead to
the generation of anything, since it has no lexical material in the np slot). We obtain something along the
lines of:

I believe [he has been killed]

 We now apply subject to object raising: the subject of the subordinate clause is raised to object
position in the main clause. At the same time the main verb of the subordinate clause is turned into an
infinitive with TO:

I believe him [he to have been killed]

 Control will now take care of ghosting (i.e. depriving of lexical content) the controlled subject.

I believe him [VAR to have been killed]

 Generating the VAR will yield the empty list, which will later disappear by the list flattening and
appending operations which complete the generation process:

I believe him to have been killed.

 We will now consider the generation of the resulting sentence in somewhat more detail, as a way
of illustrating the cycle principle in action.

 We start from what the parser gives us. The pretty-printed parse looks like this:

 12
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(believe_1,agr(finite,present,sing,first))
 subject
 nounphrase
 index(_0398)
 agr(first,sing)
 ppro(first,sing,_041C)
 object
 clause
 pred_arg_mod_structure
 prop(vce: passive,asp: [perfect],mod: none,tns: present)
 predicate(kill_1,agr(en_passive))
 object
 nounphrase
 index(_0580)
 agr(third,sing)
 ppro(third,sing,masc)

 We see that the object of believe is clausal, and that kill has an object and no subject (passive has
been undone; but the agr functor and the property list record that we have a passive clause).

 Of course, the generator does not work on pretty-printed objects. Here is the raw object produced
by the parser. It is a Prolog term (carriage returns have nonetheless been added to improve readability):

[12,[clause,[pred_arg_mod_structure,
prop(vce: active,asp: none,mod: none, tns: present),
[predicate(believe_1,agr(finite,present,sing,first))],
[[subject,[nounphrase,index(_0398),agr(first,sing),ppro(first,sing,_041C)]],
[object,[clause,[pred_arg_mod_structure,
prop(vce: passive,asp: [perfect],mod: none,tns: present), [predicate(kill_1,agr(en_passive))],
[[object,[nounphrase,index(_0580),
agr(third,sing),ppro(third,sing,masc)]]]]]]]]]].

 We note that two of the three uninstantiated variables appear as arguments of the index functor.
These are the ones that we need to freeze. We do so by converting them into strings, as explained in the
preceding section. The result is as follows:

[12,[clause,[pred_arg_mod_structure,
prop(vce: active,asp: none,mod: none,tns: present),
[predicate(believe_1,agr(finite,present,sing,first))],
[[subject,[nounphrase,index(0398),agr(first,sing),ppro(first,sing,_041C)]],
[object,[clause,[pred_arg_mod_structure,
prop(vce: passive,asp: [perfect],mod: none,tns: present),
[predicate(kill_1,agr(en_passive))],
[[object,[nounphrase,index(0580),
agr(third,sing),ppro(third,sing,masc)]]]]]]]]]].

 We have two clauses, with the controlled clause in second position in the arglist of the
controlling clause. The following defining clause for prepgen therefore applies:

prepgen([H2_cl1,[pred_arg_mod_structure,Prop1,Pred1,[Firstarg_cl1,
 [H1_cl2,[clause|Rcl2]|R2]|R1]]],
Res4):-
second_header(H2_cl1),
first_header(H1_cl2),
passive([clause|Rcl2],Res1),
control([H2_cl1,[pred_arg_mod_structure,Prop1,Pred1,[Firstarg_cl1,
 [H1_cl2,Res1|R2]|R1]]],Res2),
oraising(Res2,Res3),
passive(Res3,Res4).

 The first job carried out by prepgen is to check the clause headers, to make sure that we are in
the right environment to apply the processes defined in passive, control, and oraising. Let us
look at the check second_header. It will be instantiated in the following way when the call is made:

second_header(clause).

 The call will succeed because it is a fact recorded in the packet of clauses for the predicate
second_header, listed below:

second_header(clause).
second_header(np_modifier).
second_header(adj_arg).
second_header(arg).
second_header(noun_arg).

 The next check, first_header, will consist of the following call

first_header(object).

and will also succeed, for a similar reason.

 Passive will then try to apply in the controlled clause. The instantiation is the following when
the call is made:

passive([clause,[pred_arg_mod_structure, prop(vce:passive, asp:[perfect], mod:none, tns:present),
[predicate(kill_1,agr(en_passive))],
[[object,[nounphrase, index(0580),agr(third,sing),ppro(third,sing,masc)]]]]],_2888).

_2888 will get instantiated to the following term:

[clause,[pred_arg_mod_structure, prop(vce:passive, asp:[perfect], mod:none, tns:present),
[predicate(kill_1,agr(en_passive))],
[[subject,[nounphrase, index(0580),agr(third,sing),ppro(third,sing,masc)]]]]

 We see that the (deep) object has been turned into a (surface) subject. The job was performed by
the following clause for passive:

passive([H1,[pred_arg_mod_structure,prop(vce:passive,B,C,D),Pred1,
 [[object,O]|Otherargs]]],
[H1,[pred_arg_mod_structure,prop(vce:passive,B,C,D),Pred1,
 [[subject,O]|Otherargs]]]):- second_header(H1).

 Note that the job is carried out in the head of the clause, the body consisting only of a header
check.

 The next predicate to be called is control, which gets the whole structure as argument, but with
the result of the call to passive instead of the original controlled clause. The instantiation when the call
is made is the following:

control([clause,[pred_arg_mod_structure,
prop(vce:active,asp:none, mod:none,tns:present),
[predicate(believe_1,agr(finite,present,sing,first))],
[[subject, [nounphrase,index(0398),agr(first,sing), ppro(first,sing,_041C)]],
[object,[clause,[pred_arg_mod_structure,
prop(vce:passive, asp: [perfect],mod:none, tns:present),
[predicate(kill_1,agr(en_passive))],
[[subject, [nounphrase, index(0580), agr(third,sing,masc)]]]]]]]]],_28A8).

 As a result of the call, _28A8 is instantiated to the following term:

[clause,[pred_arg_mod_structure,
prop(vce:active,asp:none, mod:none,tns:present),
[predicate(believe_1,agr(finite,present,sing,first))],
[[subject, [nounphrase,index(0398),agr(first,sing), ppro(first,sing,_041C)]],
[object,[clause,[pred_arg_mod_structure,
prop(vce:passive, asp: [perfect],mod:none, tns:present),
[predicate(kill_1,agr(en_passive))],
[[subject, [nounphrase, index(0580), agr(third,sing,masc)]]]]]]]]]

i.e. the same ! Control had no work to do, because the controller does not occur in the controlled
clause, and so does not need to be ghosted. Control succeeded doing nothing on account of the
following of its defining clauses:

control(X,X).

 The next predicate to be applied is oraising. Since control has not modified the structure,
we get the following call:

oraising([clause,[pred_arg_mod_structure,
prop(vce:active,asp:none, mod:none,tns:present),
[predicate(believe_1,agr(finite,present,sing,first))],
[[subject, [nounphrase,index(0398),agr(first,sing), ppro(first,sing,_041C)]],
[object,[clause,[pred_arg_mod_structure,
prop(vce:passive, asp: [perfect],mod:none, tns:present),

[predicate(kill_1,agr(en_passive))],
[[subject, [nounphrase, index(0580), agr(third,sing,masc)]]]]]]]]],_2910).

 Oraising does change the structure. The defining clause that applies is the following:

oraising([H1,[pred_arg_mod_structure,Prop1,
 [predicate(Pred1,AgrPred1)],
 [Arg1,
 [object,[clause,
[pred_arg_mod_structure,Prop2,[predicate(P,agr(Agr))],
 [[Subject|Rest]|Otherargs]]]]|R]]],

H1,
[pred_arg_mod_structure,Prop1,
 [predicate(Pred1,AgrPred1)],
 [Arg1,
 [object|Rest],
 [object,[clause,
[pred_arg_mod_structure,Propnew2,[predicate(P,agr(Agr))],
 [Otherargs]]]]|R]]]):-

allsubject(Subject),
second_header(H1) ,
oraise(Pred1,Requires),
nonfinite(Agr),
Prop2 = prop(Voice,Aspect,Mod,Tns),
Propnew2 = prop(Voice,Aspect,Mod,tns:Requires).

 Allsubject is, like second_header, a check on the environment of the rule. It requires that
the variable named Subject cover a subject function. The code for allsubject is the following:

allsubject(S):- subject(S),!.
allsubject(S):- subject_active(S).

subject(subject).
subject(subject_pass).
subject_active(subject).
subject_active(subject_inf).

 The call succeeds in the present case since Subject is instantiated to subject.

 Next, the oraise predicate checks that the verb of the main clause belongs to the right class, and at
the same time it instantiates the Requires feature, which will tell us whether what will remain of the
controlled clause should be infinitive or gerundive. The call here is the following:

oraise(believe_1,X),

which succeeds and instantiates X to to. Oraise calls on the macro m_verb clause:

oraise(Oraisingverb,to):-
m_verb(vinf ,_,Oraisingverb,_,_,_,_,_,_,_,_,_,_,
 [np(_,_,surf_object,_),
 np_vp(oblig,to_inf,object)]).

 The m_verb responsible for the success of oraise is the lexical clause for the relevant reading
of BELIEVE, namely:

m_verb(vinf ,_,believe_1,believe,believe,believe,believes,believing,
 believed,believed,believed,trans,human,
 [np(oblig,posprec(1,Wnp),surf_object,_),
 np_vp(oblig,to_inf,object)]).

/* he believes him to teach linguistics */

 Next is the check on the agreement value of the predicate in the controlled clause; it cannot be a
finite clause, to which subject to object raising could not apply. In this case the call is:

nonfinite(en_passive)

which succeeds.

 Oraise then proceeds to copy the Property field of the controlled clause to a new variable, but
replaces the value for tense (of no application in non-finite clauses) with the Requires feature, i.e. to,
which will indicate to the relevant clause of the generator that an infinitive with to vp should be
generated as the remaining vp in the controlled clause.

 Let us now look at the structure returned by oraising. We see that the subject of the controlled
clause is moved to the controlling clause, and its function changed to object. The controlled clause is
returned as second object, but now misses its subject. Finally, the new property field is assigned to the
controlled clause, which is thereby untensed. In the case of our example sentence, the arglist for the
matrix clause has the following two objects:

[object,[nounphrase,index(0580), agr(third,sing), ppro(third, sing, masc))),
[object,[clause,[pred_arg_mod_structure,
prop(vce:passive,asp:[perfect], mod:none, tns:to],
[predicate(kill_1, agr(en_passive))],[[]]]]]]

 Returning to prepgen, we find that there is another call to passive, this time on the matrix
clause. This call will succeed trivially, since passive does not apply there:

passive([H1,[pred_arg_mod_structure,prop(vce:active,B,C,D)|R1]|R2],
 [H1,[pred_arg_mod_structure,prop(vce:active,B,C,D)|R1]|R2]):-
second_header(H1),
!.

 Prepgen has now finished, and the generator will take the results it has delivered and attempt to
generate a string from them:

generate(Tree,Sentence):-
 prepgen(Tree,Treeprep),
 gen(Treeprep,List),
 flatten(List,Sentence).

Sentence will be instantiated to [i,believe,him,to,have,been,killed] and output as:

i believe him to have been killed.

Appendix A. Non-Standard Arity Prolog
Predicates
 This appendix briefly describes the pre-defined Prolog predicates that are specific to Arity Prolog
(or at least non-standard) and have been made use of in horatio and/or horgen. Note that + in front of an
argument indicates that it should be instantiated when the call to the predicate is made; a - sign indicates
that the variable should still be uninstantiated.

Execution Control

[! P1, P2, ...!]: the snip symbol ([!!]) isolates code (a set of goals, the Ps here) to be skipped in the event
of backtracking. Example from horatio on page 69.

abort(1): with 1 as argument, abort returns to the operating system

ifthenelse(Condition,YesAction,NoAction): If Condition succeeds, YesAction is attempted; otherwise,
NoAction is. Ifthenelse can be simulated by a disjunction of goals: (Condition, Yesaction;
not(Condition), NoAction).Example from horatio on page 56.

String Manipulation

concat(+String1, +String2, -String3): String3 results from the concatenation of String1 and String2.
Example from horatio:

 concat(Output,$.ter$,Outterm),
 concat(Output,$.lst$,Outlist),

used to produce the names of the output files: .ter (raw Prolog terms) and .lst (pretty-printed terms)

File Operations

create(-Handle, +Filename): a file named Filename is created and associated with handle Handle.
Example from horatio:

 dealwith(Input,_):-
 Input=stdin,
 create(HandleIn,'bidon'),
 close(HandleIn),!.

open(-Handle, +Filename, +Mode): Mode is r for reading, w for writing or a for appending; a file with
name Filename is opened and associated with handle Handle, for the operation specified in Mode.
Example from horatio:

 dealwith(FileIn,HandleIn):-
 open(HandleIn,FileIn,r).

close(+Handle): the file associated with handle Handle is closed. Example from horatio:

 dealwith(Input,_):-
 Input=stdin,

 create(HandleIn,'bidon'),
 close(HandleIn),!.

read_line(+Handle, -String): Handle 0 is standard input; String is read as a one-line string from the
input stream associated with Handle (the end of the string is indicated by a carriage return). Read_line
offers minimal editing facilities (backspacing for deletion). Example from horatio:

 start(Outterm,Outlist,_,stdin):-
 open(Y,Outterm,w),
 open(Z,Outlist,w),
 repeat,
 nl,
 write($Please key in your sentence or stop. to stop$),
 nl,
 read_line(0,S),
 open(HandleIn,'bidon',w), /* for writing */
 write(HandleIn,S),
 close(HandleIn),
 open(Handlenew,'bidon',r), /* for reading */
 getsentence(Sentence,Handlenew),
 close(Handlenew),
 nl,
 write(Sentence),
 process(Sentence,Y,Z).

Appendix B. File Organization and Compilation
Directives

File Organization

 Both the parser (horatio.exe) and the generator (horgen.exe) result from compiling and linking
several source files. The compiling and linking is achieved by calls to the Arity Prolog Compiler and the
Microsoft Linker by two .BAT or .CMD files, i.e. batch files for MS-DOS or for OS/2. Except for the
file name extension the files are the same for DOS and OS/2

Moratio.cmd

 Moratio.cmd is an OS/2 batch file used to generate and link the object modules, to create
horatio.exe, the executable file for the parser; horatio.ari , lexatio1.ari, lexatio2.ari, lexatio3.ari are text
files containing the source code of the program; horatio.ari is the grammar proper, lexatiox.ari are the
files holding the lexicon; the full commented source is available on the companion disk.

apc horatio,,/n

/* compiling the grammar, generating the data base */

/* APC.EXE is the Arity Prolog compiler */

/* horatio.ari contains the grammar for the parser */

/* it is compiled and produces horatio.idb as data base */

/* /n indicates that a new Prolog data base needs to be created; its name defaults to that of the source file,
but the extension is .idb instead of .ari , the default file extension for Arity Prolog source code */

/* the object file's name defaults to horatio.obj, since the second argument is left empty (hence the two
commas with nothing in between) */

apc lexatio1,,horatio

/* compiling the lexicon (part 1), adding to the same data base (last argument) */

apc lexatio2,,horatio /* idem (part 2) */
apc lexatio3,,horatio /* idem (part 3) */
link code lexio1 lexio2 lexio3 horatio lexatio1 lexatio2 lexatio3, horatio,, arity doscalls,,

/* linking the code modules; horatio.obj , lexatio1.obj, lexatio2.obj, lexatio3.obj result from the
compiling process carried out in the preceding lines by the Arity Prolog compiler. Code is part of the
Arity Prolog delivery and is to be used as the first object module for all Arity Prolog applications; lexio1
to 3 are cloned (with the utility clone.exe, also part of the Arity Prolog delivery) so as to be able to make
use of far Prolog. Arity and doscalls are the libraries. Under DOS there is no need for the doscalls
library. The second argument is the name of the .exe file; here it is horatio.exe */

Morgen.cmd

/* similar to MORATIO.CMD; the first lexicon file (lexgen1.ari) differs slightly from the one used in
analysis, namely lexatio1.ari; the executable file for the generator is called horgen.exe */

apc horgen,,/n
apc lexgen1,,horgen
apc lexatio2,,horgen
apc lexatio3,,horgen
link code lexio1 lexio2 lexio3 horgen lexgen1 lexatio2 lexatio3, horgen,, arity doscalls,,

Arity Prolog Compilation Directives

 When several files are meant to be compiled and linked together to yield a single executable file,
the first code file to be compiled needs a declaration for a predicate called main, of zero arity and to be
declared public. We therefore find in the file horatio.ari :

:- public main/0.

 The main predicate is itself defined by a call to the go predicate, which provides the GO step.

 All lexical clauses in both the parser and the generator are declared external and far . For instance,
in horatio.ari , we have compilation directives such as

:- extrn verb/10:far.

 This means that the predicate verb is to be found in an external file (in casu lexatio2.ari), has
arity 10 (needs 10 arguments), and is to be compiled as far [18] code.

 In the file lexatio2.ari, we find the following compilation directive

:- public verb/10:far.

making the predicate verb public, i.e. callable from other modules.

 Besides, each module containing far code needs to have its own segment declaration. For
instance, in lexatio2.ari we find

:- segment(lexio2).

Lexio2.obj is obtained by an appropriate call on the clone.exe program, part of the Arity package, namely

clone lexio2

Appendix C. Input and Output

Input

 In horatio input is either from the keyboard (standard input, stdin in horatio code), or from a text
file. In the latter case, the text must be pure ASCII , with one sentence per line, the end of the file being
marked by a line containing only the word stop.

 In the former case, the input is read by the predicate read_line (which provides minimal
editing facilities, such as the use of backspace to delete characters already entered at the keyboard) and
saved into a dummy file called bidon. Then the dummy file is opened and input proceeds in the way
described in the previous paragraph.

 The read_line predicate is an Arity Prolog extension to standard Prolog. It takes two
arguments: the first is the read handle, which is 0 in the case of standard input. The second is the string to
be read from the input stream associated with the handle. The string is read as a single line.

 The next job in input is to convert the string to a word list. This is achieved by a standard string to
word list converter program. We use the one given in Bratko 1990.

 The resulting word list is then submitted to the parsing process.

 It should be noted that in horatio input is within a loop. We keep reading in sentences until we hit
the word list [stop], resulting from the end-of-file marker stop. When we do, we call the abort
predicate to return to the operating system.

 In parsing we need to get at all the possible parses in the case of ambiguous input. This is why we
fail at the end of the parsing process for a given sentence, whereas in generation we succeed (the
generator does not backtrack once it has produced a string corresponding to a given parse).

 In the generator horgen input is never from the keyboard, as the expected input is a parse. Such
parses are read in with the standard Prolog read predicate, which is able to read any well-formed Prolog
term.

Output

 In horatio we need to produce two types of output:

1) raw objects: these are the Prolog terms which result from the parsing process. They are feedable to the

generator horgen (after a transformation into strings of the uninstantiated variables in the index functors -
this transformation is described above, on page 107). Such parses go into a file with a .ter extension (for
terms). The file name is created by concatenating the extension .ter to the base file name elicited from the
user. We make sure that the parses end with a dot, so that they can be read in by the read predicate in
the generator.

2) pretty-printed objects: these are meant to be examined by the grammar-designer for debugging and
other purposes. They are collected into a file which gets an .lst extension. The pretty-printer used is
elementary and standard. It is a slight adaptation of the one to be found in Clocksin and Mellish 1981
(the adaptation concerns the pretty-printing of uninstantiated variables).

 horgen produces strings as output. It is a trivial extension to add the capability of capitalizing the
first word of the output, as well as proper names occurring in the string. It is equally trivial to ensure that
questions end with a question mark. These extensions are left as exercises for the reader.

Appendix D. Selective Lexicon Downloading
Getvoc.awk

BEGIN {RS="."}

{ if (FILENAME==ARGV[1])
 for (i=1;i<=NF;i++) x[tolower($i)]= tolower($i)
}

{ if (FILENAME==ARGV[2]) { RS= "@";FS=",";
 for (i=2;i<=10;i++)
 {
 if (tolower($i) in x && !($0 in y))
 {print > "voc.ari"
 y[$0]="in"
 }
 }
 }
}

 The first argument is the text to be parsed, the second the lexicon to be searched. In the first file
(the text to be parsed) we use a period (.) as record separator (RS is set to dot). In the second file (the
lexicon to be used) we separate records with an @, which we therefore assign as new value for RS.

 The individual words are saved into the x array, and the lexicon is then searched for matches in
the lexeme and morphological variant fields. The selected entries are saved to a file, voc.ari; the second
condition in the last IF clause prevents repetitions in the voc.ari file. A batch procedure will then take
care of the compilation of voc.ari, and of the linking of the resulting object code with that produced for
the grammar files, in order to build the required executable. Under OS/2, the batch file is the following:

echo %1. %1. >filin
awkl -f getvoc.awk %1 lex.ari
copy lexdcl.ari+voc.ari lexsel.ari
apc lexsel,,horatio
link code lexio1 lexio2 horatio lexatio1 lexsel , horex,,arity doscalls,,
horex < filin

(%1 stands for the text file; awkl invokes the large model of awk in the MKS OS/2 implementation[19];

lex.ari houses the complete horatio lexicon; lexdcl.ari contains the necessary compiler declarations for
Arity Prolog; apc calls the Arity Prolog compiler; the linker (link) produces the executable file horex,
which is fed the name of the text file twice, so that it can produce a %1.lst and a %1.ter file, the latter
containing the raw objects, and the former the pretty-printed ones).

Appendix E. Importing Lexical Entries from
Ldoce

Introduction

 It should be stated from the outset that a certain familiarity with at least the published version of
LDOCE is presupposed in this appendix. A whole book (namely Boguraev and Briscoe 1989) has
recently been devoted to computer applications of this dictionary data base, and the reader is referred to
the first four chapters of that book, and the references given there, for more information on LDOCE,
particularly on its grammar coding system. The published version of LDOCE contains explanatory
prefatory material and a table of the grammar codes used in the dictionary, but does not explain the
semantic or field codes used in the computer tape.

 There is now a lot of interest in the reuse of available lexical resources. However, much of the
available literature on the topic is speculative and programmatic in nature. This appendix, on the contrary,
is unashamedly pragmatic. It reports on an experiment that has been carried out, going down to the level
of specifying the queries on the data base and the awk[20] programs used to reformat the imported data.

 The application programs for retrieving material from the lexical data base and the awk programs
all run on a PC under MS-DOS.

Description of the Liège Ldoce Data Base

 LDOCE in Liège is in relational data base format. The retrieval software is made up of a series of
application programs written in Clipper , whose data definition and query language can be defined as an
enhanced dBase language. The next section looks at the major tables and their fields. The data base
design and the transformation of the LDOCE computer tape into the relational tables was carried out by
Jacques Jansen. The application programs were written by the author.

Ldoce Data Base Design

Lemma Data Base: Coword

Field Name Type Nature Width

ENTRYKEY Char shared by all LDOCE-derived dbf as a link to this
dbf

4

HEADCLAS Char simple, compound or run-on: S,C,R 1

DEFINUM Char for run-on entries: link to the relevant definition
number in the main entry

2

VARISUF Char flag: is there a variable suffix? (e.g.. ic/ical, ise/ize) 1

FLAGCV Char included in LDOCE's controlled vocabulary ? 1

FLAGIF Char does final consonant redoubling apply
(red -> redder)?

1

POS Char Part of speech: up to five different POS, each coded
in one byte

5

NOTE Char reference to grammatical note 3

WORD Char lemma 34

Structure for ncoword.dbf

Ncoword is similar to coword, but also includes lexicographical WEIGHT of the lemma, measured in
terms of number of definitions, examples, different grammatical codes and idiomatic structures associated
with the entry.

 DEFNU Num Number of definitions associated with the entry 2

 IDIONU Num Number of idioms associated with the entry 2

 EXNU Num Number of examples associated with the entry 3

 GRNU Num Number of grammatical codes associated with the
entry

 3

Definition Data Base: Codefi

Field Name Type Nature Width

ENTRYKEY Char cf coword 4

HEADCLAS Char I identifies an idiomatic structure 1

DEFINUM Char sequential number of the definition 2

DEFILET Char small letter associated with a given definum:
a, b, c, ...

1

DEFIMAT Char field codes: a four-byte field; codes the subject
matter(s) (1 or 2) to which the lexical item under the
given definition belongs

4

DEFISEM Char semantic codes: a ten-byte field; codes such
properties as the semantic requirements to be placed
on the deep subject (byte 5) and objects of verbs
(bytes 10 and 8); also codes inherent semantic
properties for nouns and selection restrictions for
adjectives (byte 5)

10

LINECNT Char sequential value of definition line (each defiline is
76 char long, and several may be needed to cover a

1

single definition; the @ sign identifies the first line)

DEFILINE Char text of one line of a given definition 76

Idiom Data Base: Coidio

Field Name Type Nature Width

ENTRYKEY Char cf coword 4

HEADCLAS Char I identifies idioms or idiomatic structures 1

DEFINUM Char cf codefi 2

VARISUF Char cf coword 1

IDIOM Char text of the idiom 60

Example Data Base: Coexam

Examples are associated with definitions and idioms

Field Name Type Nature Width

ENTRYKEY Char cf coword 4

HEADCLAS Char cf codefi 1

DEFINUM Char cf codefi 2

DEFILET Char cf codefi 1

EXAMNUM Char sequential number of the example (associated with a
given word sense or idiom)

2

DCODNUM Char hand-coded: relation between example and
grammatical code

2

LINECNT Char cf codefi 1

EXAMLINE Char line of example text 76

Grammatical Code Data Base: Codcod

Field Name Type Nature Width

ENTRYKEY Char cf coword 4

HEADCLAS Char cf codefi 1

DEFINUM Char cf codefi 2

DCODNUM Char sequential number of grammatical code associated
with a given definition

2

LEFTLINK Char type of link: optional, 'esp.', obligatory; this field
codes the cohesiveness of the link between the
lexical item and its lexical left environment

1

LEFTTYPO Char type of font: italic , bold,...: this field can be used to
retrieve the nature of the coded lexical left
environment; for instance, prepositions will be
coded italic and adverbial particles bold

1

LEFTCTX Char word or word group specified as lexical left en-
vironment

3

GRAMCODE Char three-byte grammatical code; consult the LDOCE
Table of Codes (in the printed form of the dic-
tionary)

3

RGHTLINK Char cf leftlink 1

RGHTTYPO Char cf lefttypo 1

RGHTCTX Char cf leftctx 3

GRAMCOMM Char grammatical comment (partly formalized) 3

 It might be useful to look at the representation of a given lexical item in the Liège LDOCE data
base, so that the reader can build for himself a more concrete picture of what the data base looks like. I
have taken the entry for the verb believe, because it is short and illustrates the results of the decompaction
process that has been applied to the LDOCE grammar fields, a process that needed to be carried out if the
data base was to prove usable for the retrieval of grammatical information, as illustrated in this appendix.
The need for a decompaction procedure is also discussed in Michiels 1982.

Believe in Ldoce

believe / pron / v [Wv6] 1 [I0] to have a firm religious faith 2 [T1] to consider to be true or honest: to
believe someone | to believe someone's reports 3 [T5a,b;V3;X (to be) 1, (to be) 7] to hold as an
opinion; suppose: I believe he has come. | He has come, I believe.| "Has he come?" "I believe so" | I
believe him to have done it. | I believe him (to be) honest -- see unbelief (USAGE)

In the Liège data bases:

In COWORD

Entrykey B@ZV

Headclas S

Flagcv 1

Flagif 0

Pos v

Word believe

In CODCOD

Entrykey B@ZV B@ZV B@ZV B@ZV B@ZV B@ZV B@ZV

Headclas S S S S S S S

Definum 1 2 3 3 3 3 3

Dcodnum 1 1 1 2 3 4 5

Gramcode I0 T1 T5a T5b V3 X1e X7e

In CODEFI

Entrykey B@ZV B@ZV B@ZV

Headclas S S S

Definum 1 2 3

Defimat RLRN[21]

DefisemH.....[22]H....X[23]H....T[24]

Linecnt @ @ @

Defiline to have a firm re-
ligious faith

to consider to be true
or honest

to hold as an opinion,
suppose

In COEXAM

(first three examples only)

Entrykey B@ZV B@ZV B@ZV

Headclas S S S

Definum 2 2 3

Examnum 1 2 1

Dcodnum 1 1

Linecnt @ @ @

Examline to believe someone to believe some-
one's reports

I believe he has
come

 A good deal of criticism has been leveled recently against the use of the relational data base model
for the implementation of lexical data bases. It is pointed out that the restrictions of the relational model
(fixed number of fields, fixed field length) make it extremely difficult to implement a lexical data base in
such a model. For instance, lexical items have different number of homographs; homographs have
different numbers of associated definitions; definitions have different numbers of associated examples;
definitions and examples are of varying length, from a single word to a full sentence. However, it is in the
very essence of the relational model to work with a series of tables, rather than a single one.
Consequently, the fact that one definition has one example, whereas the following has six, is not really a
problem if the definition table and the example table are distinct tables related by one or several common
fields, as they are in the Liège LDOCE data base.

 Clearly, efficiency considerations make the relational model unusable for real time retrieval in
NLP tasks such as machine translation. But then again, the full power of the relational model is not
necessarily needed in such cases, as retrieval is most often to be carried out on the basis of the
morphological variant or lemma, and not on the basis of the complex queries on grammatical, semantic
and field code information that the relational model can handle. The power of the latter, however, can be
put to good use in a lexicographer's workbench.

The Importation Process from Ldoce into Horatio's Lexicon

 In its present state of development, horatio works with 18 verb classes. The formats of the classes
selected for the importation experiment are briefly described below. For each verb class, the filter used on
the Liège LDOCE data base is described, as well as the raw data from the Liège data base and the AWK
program used to convert to the format used by horatio .

 An essential feature of horatio is that it goes down to the level of reading, i.e. a selected
interpretation of a lexical item according to properties of its environment. Such a level of delicacy is
crucial for most NLP tasks, machine translation being a prime example. As can be guessed from the
sample entries reproduced in this appendix, the importation from LDOCE concerns mainly entries
beginning with a, and no effort has been made to select entries on the basis of frequency, lexicographical
weight or membership of a domain-related sublanguage (lexicographical weight could have been assessed
on the basis of the information contained in ncoword and domain-relatedness captured by means of the
subject field codes in defimat in codefi).

 We shall concentrate on showing how the m_verb clauses for various verb classes (indicated by
the first argument of the m_verb clause) can be derived fom LDOCE by a three-step process:

a) obtain the relevant material from LDOCE (this is accomplished by EXPORT, a Clipper application
which enables the linguist to select lexical entries - at the reading level - according to entry-level,
semantic and grammatical properties; irregular inflectional morphology is taken care of by retrieval from
a specialized data base; regular inflectional morphology is generated by a procedure belonging to
EXPORT)

b) reformat the material obtained in a) by means of the appropriate AWK program

c) hand-check the results (the assignment of LDOCE semantic codes is often debatable; inflectional
variants also have to be checked)

Intransitive Verbs

A. FILTERS ON LDOCE

on ENTRIES (coword)

 'v' $ pos .and. headclas ="S"

(the POS field includes (operator $) "v" - i.e. it is a verb - and headclas is "S"- i.e. it is not a compound,
multi-word unit or a run-on entry - "C" or "R" values)

on SEMANTICS (codefi)

 headclas # "I"

Headclas must be different from (# operator) "I", i.e. must not be an idiom.

on GRAMMAR (codcod)

 gramcode= "I0 " .and. rghtlink = " "

Gramcode is a three-byte code; rghtlink gives the nature of the link with a lexical element attached to
the item on the right. By specifying an empty rghtlink we make sure that we do not select prepositional
or phrasal verbs (for which see below, p. 138 and 141).

B. RAW IMPORTED MATERIAL

 As pointed out above, the application programs include a rather elementary generator of
inflectional variants; this generator has access to a data base of irregular forms and uses the flag for
consonant redoubling of coword (FLAGIF field - see above, p. 126).

(Rnu = LDOCE reading number)

LEX Vs Ving Ved Ven Pos Gr Sem Rnu
abate abates abating abated abated v I0 T..... 1
DEF (of winds, storms, disease, pain, etc.) to become less strong; decrease
EX The ship waited till the storm abated before sailing out to sea

abrade abrades abrading abraded abraded v I0 Z....5 1a
DEF (esp. of skin) to wear away by hard rubbing; to cause (esp. skin) to wear away by hard rubbing

accelerate accelerates accelerating accelerated accelerated v I0 Z....Z 1
DEF to (cause to) move faster

accept accepts accepting accepted accepted v I0 H....Z 1
DEF to take or receive (something offered or given), esp. willingly; receive with favour
EX I cannot accept your gift. He asked her to marry him and she accepted (him)

C. AWK PROGRAM TO CONVERT RAW MATERIAL TO HORATIO FORMAT

 The if -clauses test the value of the fifth byte in the 10-byte field allocated to the semantic codes;
this byte houses the restrictions on the subject: J codes "Movable and Solid", deemed to roughly
correspond to the feature "thing" in horatio; H is "human" and T is "abstract"; absence of semantic
restriction on the subject is coded in horatio by means of Prolog's anonymous variable (_).

BEGIN {nu=1}

nu is the entry counter

{ semsubj="_"

 # semsubj is assigned the anonymous variable unless J, H or T is found at the appropriate place in
 # the semantic info field

 if (substr($8,5,1)=="J") semsubj = "thing"
 if (substr($8,5,1)=="H") semsubj = "human"
 if (substr($8,5,1)=="T") semsubj = "abstract"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)

 # the first part of the IF clause deals with definition and example lines; these appear as comments
 # in the Prolog clauses

 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(verbintr,%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,intrans,%s,\n[]).\n",
 $1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubj)

 # $1 = Lex
 # $9 = Rnu
 # $2 = Vs
 # $3 = Ving
 # $4 = Ved
 # $5 = Ven

 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(verbintr,abate_1,abate,abate,abate,abates,abating,
abated,abated,abated,intrans,abstract,
[]).
/* DEF (of winds, storms, disease, pain, etc.) to become less strong; decrease */
/* EX The ship waited till the storm abated before sailing out to sea */

Note

/* The T feature transcribed as abstract is made more precise by the list of typical subjects headed by
OF; such lists are best read as lists of thesauric heads; they are hard to make use of */

/* NU 2 */
m_verb(verbintr,abrade_1a,abrade,abrade,abrade,abrades,abrading,

abraded,abraded,abraded,intrans,_,
[]).
/* DEF (esp. of skin) to wear away by hard rubbing; to cause (esp. skin) to wear away by hard rubbing
*/

Note

/* The Z value transcribed as the anonymous variable is hardly what we need: the selectional restriction
is very strong, but is once again buried in the OF list */

/* NU 3 */
m_verb(verbintr,accelerate_1,accelerate,accelerate,accelerate,accelerates,accelerating,
accelerated,accelerated,accelerated,intrans,_,
[]).
/* DEF to (cause to) move faster */

/* NU 4 */
m_verb(verbintr,accept_1,accept,accept,accept,accepts,accepting,
accepted,accepted,accepted,intrans,human,
[]).
/* DEF to take or receive (something offered or given), esp. willingly; receive with favour */
/* EX I cannot accept your gift. He asked her to marry him and she accepted (him) */

 The main problem with intransitive verbs is how to distinguish them from transitive verbs that can
have a zero (understood) object, either definite or indefinite.

Mono-Transitive Verbs

A. FILTERS ON LDOCE

ENTRY LEVEL 'v' $ pos .and. headclas = "S"

SEMANTICS headclas # "I"

GRAMMAR gramcode = "T1 " .and. rghtlink = " "

B. RAW IMPORTED MATERIAL

abandon abandons abandoning abandoned abandoned v T1 H....T 1
DEF to leave completely and for ever; desert
EX The sailors abandoned the burning ship

abandon abandons abandoning abandoned abandoned v T1 ..D.H....H 2
DEF to leave (a relation or friend) in a thoughtless or cruel way
EX He abandoned his wife and went away with all their money

abandon abandons abandoning abandoned abandoned v T1 H....T 3
DEF to give up, esp. without finishing
EX The search was abandoned when night came, even though the child had not been found

abate abates abating abated abated v T1 T....T 2
DEF lit to make less
EX His pride was not abated by his many mistakes

abate abates abating abated abated v T1 H....T 3

DEF law to bring to an end (esp. in the phr. abate a nuisance)

 C. AWK PROGRAM

 Note that byte 10 in defisem (field 8) codes the semantic restriction on the object of a transitive
verb.

BEGIN {nu=1}
{ semsubj="_"
 if (substr($8,5,1)=="J") semsubj = "thing"
 if (substr($8,5,1)=="H") semsubj = "human"
 if (substr($8,5,1)=="T") semsubj = "abstract"

 semobj = "_"
 if (substr($8,10,1)=="J") semobj = "thing"
 if (substr($8,10,1)=="H") semobj = "human"
 if (substr($8,10,1)=="T") semobj = "abstract"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)
 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(verbtr,%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,
%s,\n[np(oblig,posprec(1,Wnp),object,%s)]).\n",$1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubj,semobj)
 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(verbtr,abandon_1,abandon,abandon,abandon,abandons,abandoning,
abandoned,abandoned,abandoned,trans,human,
[np(oblig,posprec(1,Wnp),object,abstract)]).
/* DEF to leave completely and for ever; desert */
/* EX The sailors abandoned the burning ship */

Note

/* The T value giving rise to the abstract value results from a miscoding on the part of the LDOCE
lexicographers */

/* NU 2 */
m_verb(verbtr,abandon_2,abandon,abandon,abandon,abandons,abandoning,
abandoned,abandoned,abandoned,trans,human,
[np(oblig,posprec(1,Wnp),object,human)]).
/* DEF to leave (a relation or friend) in a thoughtless or cruel way */
/* EX He abandoned his wife and went away with all their money */

/* NU 3 */
m_verb(verbtr,abandon_3,abandon,abandon,abandon,abandons,abandoning,
abandoned,abandoned,abandoned,trans,human,
[np(oblig,posprec(1,Wnp),object,abstract)]).
/* DEF to give up, esp. without finishing */
/* EX The search was abandoned when night came, even though the child had not been found */

/* NU 6 */
m_verb(verbtr,abate_2,abate,abate,abate,abates,abating,
abated,abated,abated,trans,abstract,
[np(oblig,posprec(1,Wnp),object,abstract)]).
/* DEF lit to make less */
/* EX His pride was not abated by his many mistakes */

/* NU 7 */
m_verb(verbtr,abate_3,abate,abate,abate,abates,abating,
abated,abated,abated,trans,human,
[np(oblig,posprec(1,Wnp),object,abstract)]).
/* DEF law to bring to an end (esp. in the phr. abate a nuisance) */

Note
/*The T feature is again much too general */

Prepositional Verbs

Examples: look at, listen to: strongly bound preposition

A. FILTERS ON LDOCE

ENTRY 'y' $ pos .and. headclas ="C"

('y' is the POS assigned to prepositional verbs; headclas is now "C", i.e. compound (more than one
word))

SEM headclas # "I"

GRAMMAR substr(gramcode,1,2) ="T1"

B. RAW IMPORTED MATERIAL

abide by abides abiding abided abided y T1 H....T 1
DEF to be faithful to; obey (laws, agreements, etc.)
EX If you join the club you must abide by its rules
abide by abides abiding abided abided y T1 H....T 2
DEF to wait for or accept
EX You must abide by the results of your mistakes
account for accounts accounting accounted accounted y T1 H...YT 1 -I to
DEF to give a statement showing how money or goods left in one's care have been dealt with
EX He has to account to the chairman for all the money he spends
account for accounts accounting accounted accounted y T1 H....T 2 -I to
DEF to give an explanation or reason for
EX He could not account for his foolish mistake
account for accounts accounting accounted accounted y T1 ..I.H....O 3
DEF infml to kill, shoot, or catch
EX I think I accounted for 3 of the attackers

C. AWK PROGRAM

This program generates two clauses for each selected reading, in accordance with Quirk et al.'s concept of
multiple analysis for such verbs, to which the reader is referred (see Quirk et al. 1985, §§ 2.61, 16.5 and
here p. 19).

BEGIN {nu=1}
{ semsubj="_"
 if (substr($9,5,1)=="J") semsubj = "thing"
 if (substr($9,5,1)=="H") semsubj = "human"
 if (substr($9,5,1)=="T") semsubj = "abstract"

 semobj = "_"
 if (substr($9,10,1)=="J") semobj = "thing"
 if (substr($9,10,1)=="H") semobj = "human"
 if (substr($9,10,1)=="T") semobj = "abstract"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)
 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(vtrprep,%s_%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,
%s,\n[pp(oblig,posprec(1,Wpp),pp_arg,%s,_,%s)]).\n",
 $1,$2,$10,$1,$1,$1,$3,$4,$5,$5,$6,semsubj,semobj,$2)

$2 is the preposition
 printf("m_verb(vtrprep,%s_%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,%s,\n
[string(oblig,posprec(1,0),[%s]),\nnp(oblig,posprec(2,Wnp),object,%s)]).\n",
 $1,$2,$10,$1,$1,$1,$3,$4,$5,$5,$6,semsubj,$2,semobj)
 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(vtrprep,abide_by_1,abide,abide,abide,abides,abiding,
abided,abided,abided,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,abstract,_,by)]).
m_verb(vtrprep,abide_by_1,abide,abide,abide,abides,abiding,
abided,abided,abided,trans,human,
[string(oblig,posprec(1,0),[by]),
np(oblig,posprec(2,Wnp),object,abstract)]).
/* DEF to be faithful to; obey (laws, agreements, etc.) */
/* EX If you join the club you must abide by its rules */

Note
/* Here too the specification of the thesauric type of the object is much more precise than the T code */

/* NU 2 */
m_verb(vtrprep,abide_by_2,abide,abide,abide,abides,abiding,
abided,abided,abided,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,abstract,_,by)]).
m_verb(vtrprep,abide_by_2,abide,abide,abide,abides,abiding,
abided,abided,abided,trans,human,
[string(oblig,posprec(1,0),[by]),
np(oblig,posprec(2,Wnp),object,abstract)]).
/* DEF to wait for or accept */
/* EX You must abide by the results of your mistakes */

/* NU 5 */
m_verb(vtrprep,account_for_1,account,account,account,accounts,accounting,

accounted,accounted,accounted,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,abstract,_,for)]).
m_verb(vtrprep,account_for_1,account,account,account,accounts,accounting,
accounted,accounted,accounted,trans,human,
[string(oblig,posprec(1,0),[for]),
np(oblig,posprec(2,Wnp),object,abstract)]).
/* DEF to give a statement showing how money or goods left in one's care have been dealt with */
/* EX He has to account to the chairman for all the money he spends */

/* NU 6 */
m_verb(vtrprep,account_for_2,account,account,account,accounts,accounting,
accounted,accounted,accounted,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,abstract,_,for)]).
m_verb(vtrprep,account_for_2,account,account,account,accounts,accounting,
accounted,accounted,accounted,trans,human,
[string(oblig,posprec(1,0),[for]),
np(oblig,posprec(2,Wnp),object,abstract)]).
/* DEF to give an explanation or reason for */
/* EX He could not account for his foolish mistake */

/* NU 7 */
m_verb(vtrprep,account_for_3,account,account,account,accounts,accounting,
accounted,accounted,accounted,trans,human,
[pp(oblig,posprec(1,Wpp),pp_arg,_,_,for)]).
m_verb(vtrprep,account_for_3,account,account,account,accounts,accounting,
accounted,accounted,accounted,trans,human,
[string(oblig,posprec(1,0),[for]),
np(oblig,posprec(2,Wnp),object,_)]).
/* DEF infml to kill, shoot, or catch */
/* EX I think I accounted for 3 of the attackers */

Transitive Phrasal Verbs

Examples: look up, put off : transitive phrasal verbs: look it up, *look up it

A. FILTERS ON LDOCE

ENTRY 'z' $ pos .and. headclas = "C"

('z' is the pos associated with phrasal verbs in LDOCE)

SEM headclas # "I"

GRAMMAR substr(gramcode,1,2) ="T1"

B. RAW IMPORTED MATERIAL

act out acts acting acted acted z T1 H....T 1
DEF to express (thoughts, unconscious fears, etc.) in actions and behaviour rather than in words
add up adds adding added added z T1 H....T 2
DEF to add (numbers) together to get a total

C. AWK PROGRAM

BEGIN {nu=1}

{ semsubj="_"
 if (substr($9,5,1)=="J") semsubj = "thing"
 if (substr($9,5,1)=="H") semsubj = "human"
 if (substr($9,5,1)=="T") semsubj = "abstract"

 semobj = "_"
 if (substr($9,10,1)=="J") semobj = "thing"
 if (substr($9,10,1)=="H") semobj = "human"
 if (substr($9,10,1)=="T") semobj = "abstract"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)
 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(vphr,%s_%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,
%s,\n[part(oblig,posprec(1,2),[%s]),\nnp(oblig,posprec(1,Wnp),object,%s)]).\n",
 $1,$2,$10,$1,$1,$1,$3,$4,$5,$5,$6,semsubj,$2,semobj)
 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(vphr,act_out_1,act,act,act,acts,acting,
acted,acted,acted,trans,human,
[part(oblig,posprec(1,2),[out]),
np(oblig,posprec(1,Wnp),object,abstract)]).
/* DEF to express (thoughts, unconscious fears, etc.) in actions and behaviour rather than in words */

/* NU 2 */
m_verb(vphr,add_up_2,add,add,add,adds,adding,
added,added,added,trans,human,
[part(oblig,posprec(1,2),[up]),
np(oblig,posprec(1,Wnp),object,abstract)]).
/* DEF to add (numbers) together to get a total */

Note
/* In both these entries the bracketed material in the definition is again much more precise than the
semantic code; the two cases are different, however: in act_out, the list is open-ended and has
exemplificatory value only; in add_up, the one-member list is best read as head of a thesauric class */

Verbs Taking an Object and an Object Complement

A. Object complement is a noun phrase

Example: consider: he considers the teacher a genius

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"

SEM headclas # "I"

GRAMMAR gramcode="X1 " .or. gramcode="X1e"

(in the Liège LDOCE data base, X1e corresponds to X (to be) 1 in the printed version of LDOCE)

B. RAW IMPORTED MATERIAL

acclaim acclaims acclaiming acclaimed acclaimed v X1 H..T.H 2
DEF to declare to be or publicly recognize as, esp. with loud shouts of approval or praise
EX They acclaimed him as the best writer of the year. They acclaimed her their leader
account accounts accounting accounted accounted v X1 H....Z 1
DEF to consider
EX He was accounted a wise man. He accounted himself lucky to be alive
acknowledge acknowledges acknowledging acknowledged acknowledged v X1eH....H 2
DEF to recognize, accept, or admit (as)
EX He was acknowledged to be the best player. He was acknowledged as their leader. They
acknowledged themselves (to be) defeated

C. AWK PROGRAM

BEGIN {nu=1}
{ semsubj="_"
 if (substr($8,5,1)=="J") semsubj = "thing"
 if (substr($8,5,1)=="H") semsubj = "human"
 if (substr($8,5,1)=="T") semsubj = "abstract"

 semobj = "_"
 if (substr($8,10,1)=="J") semobj = "thing"
 if (substr($8,10,1)=="H") semobj = "human"
 if (substr($8,10,1)=="T") semobj = "abstract"

 # semattr houses restrictions on the object complement
 semattr = "_"
 if (substr($8,8,1)=="J") semattr = "thing"
 if (substr($8,8,1)=="H") semattr = "human"
 if (substr($8,8,1)=="T") semattr = "abstract"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)
 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(vcomp,%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,
%s,\n[np(oblig,posprec(1,Wnp),object,%s),\nnp(oblig,posprec(2,Wnp2),object_attribute,%s)]).\n",
 $1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubj,semobj,semattr)
 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(vcomp,acclaim_2,acclaim,acclaim,acclaim,acclaims,acclaiming,
acclaimed,acclaimed,acclaimed,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
np(oblig,posprec(2,Wnp2),object_attribute,abstract)]).
/* DEF to declare to be or publicly recognize as, esp. with loud shouts of approval or praise */
/* EX They acclaimed him as the best writer of the year. They acclaimed her their leader */

/* NU 2 */

m_verb(vcomp,account_1,account,account,account,accounts,accounting,
accounted,accounted,accounted,trans,human,
[np(oblig,posprec(1,Wnp),object,_),
np(oblig,posprec(2,Wnp2),object_attribute,_)]).
/* DEF to consider */
/* EX He was accounted a wise man. He accounted himself lucky to be alive */

/* NU 3 */
m_verb(vcomp,acknowledge_2,acknowledge,acknowledge,acknowledge,acknowledges,acknowledging,
acknowledged,acknowledged,acknowledged,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
np(oblig,posprec(2,Wnp2),object_attribute,_)]).
/* DEF to recognize, accept, or admit (as) */
/* EX He was acknowledged to be the best player. He was acknowledged as their leader. They
acknowledged themselves (to be) defeated */

Note
/* The [hu] feature on the object is too restrictive: The problem was acknowledged one of the hardest in
the field */

B. Object complement is an adjective phrase

Example: consider: he considers the teacher very intelligent

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"

SEM headclas # "I"

GRAMMAR gramcode="X7 " .or. gramcode="X7e"

(in the Liège LDOCE data base, X7e corresponds to X (to be) 7 in the printed version of LDOCE)

B. RAW IMPORTED MATERIAL

account accounts accounting accounted accounted v X7 H....Z 1
DEF to consider
EX He was accounted a wise man. He accounted himself lucky to be alive
acknowledge acknowledges acknowledging acknowledged acknowledged v X7eH....H 2
DEF to recognize, accept, or admit (as)
EX He was acknowledged to be the best player. He was acknowledged as their leader. They
acknowledged themselves (to be) defeated

C. AWK PROGRAM

BEGIN {nu=1}
{ semsubj="_"
 if (substr($8,5,1)=="J") semsubj = "thing"
 if (substr($8,5,1)=="H") semsubj = "human"
 if (substr($8,5,1)=="T") semsubj = "abstract"

 semobj = "_"
 if (substr($8,10,1)=="J") semobj = "thing"
 if (substr($8,10,1)=="H") semobj = "human"
 if (substr($8,10,1)=="T") semobj = "abstract"

 semattr = "_"
 if (substr($8,8,1)=="J") semattr = "thing"
 if (substr($8,8,1)=="H") semattr = "human"
 if (substr($8,8,1)=="T") semattr = "abstract"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)
 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(vcomp,%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,
%s,\n[np(oblig,posprec(1,Wnp),object,%s),\nadjp(oblig,posprec(2,W),object_attribute,%s)]).\n",
 $1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubj,semobj,semattr)
 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(vcomp,account_1,account,account,account,accounts,accounting,
accounted,accounted,accounted,trans,human,
[np(oblig,posprec(1,Wnp),object,_),
adjp(oblig,posprec(2,W),object_attribute,_)]).
/* DEF to consider */
/* EX He was accounted a wise man. He accounted himself lucky to be alive */

/* NU 2 */
m_verb(vcomp,acknowledge_2,acknowledge,acknowledge,acknowledge,acknowledges,acknowledging,
acknowledged,acknowledged,acknowledged,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
adjp(oblig,posprec(2,W),object_attribute,_)]).
/* DEF to recognize, accept, or admit (as) */
/* EX He was acknowledged to be the best player. He was acknowledged as their leader. They
acknowledged themselves (to be) defeated */

Ditransitive Verbs

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"

SEM headclas # "I"

GRAMMAR gramcode="D1 "

B. RAW IMPORTED MATERIAL

accord accords according accorded accorded v D1 ..F.H..T.H 2 -I to
DEF fml to give; allow
EX He was accorded permission to use the library
afford affords affording afforded afforded v D1 ...BZ....T 3
DEF fml & lit to provide with; supply with; give
EX The tree afforded us shelter from the rain
allocate allocates allocating allocated allocated v D1 H..TAU 2

DEF to give as a share
EX We allocated the society some money
allocate allocates allocating allocated allocated v D1 H...AT 3
DEF to set apart for somebody or some purpose
EX That space has already been allocated for building a new hospital

C. AWK PROGRAM

 Paul Procter's memorandum to the LDOCE editors dated 16/9/1974 specifies that byte 10 of what
is for us defisem should be used to place semantic restrictions on the first object or nominal complement
of a ditransitive verb. Byte 8 should be used for the second object. However, there is some ambiguity in
these specifications, in so far as the indirect object can be positionally the first object, but conceptually
the second. As a matter of fact, the LDOCE lexicographers have been rather inconsistent in their coding
of semantic restrictions on vio verbs. The awk program caters for the most frequent type of coding, i.e.
byte 8 for the direct object and byte 10 for the indirect one.

BEGIN {nu=1}
{ semsubj="_"
 if (substr($8,5,1)=="J") semsubj = "thing"
 if (substr($8,5,1)=="H") semsubj = "human"
 if (substr($8,5,1)=="T") semsubj = "abstract"

 semiobj = "_"
 if (substr($8,10,1)=="J") semiobj = "thing"
 if (substr($8,10,1)=="H") semiobj = "human"
 if (substr($8,10,1)=="T") semiobj = "abstract"

 semobj = "_"
 if (substr($8,8,1)=="J") semobj = "thing"
 if (substr($8,8,1)=="H") semobj = "human"
 if (substr($8,8,1)=="T") semobj = "abstract"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)
 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(vio,%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,
%s,\n[np(oblig,posprec(2,Wnp1),object,%s),\nio(opt,posprec(1,W2),indirect_object,%s,_)]).\n",
 $1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubj,semobj,semiobj)
 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(vio,accord_2,accord,accord,accord,accords,according,
accorded,accorded,accorded,trans,human,
[np(oblig,posprec(2,Wnp1),object,abstract),
io(opt,posprec(1,W2),indirect_object,human,_)]).
/* DEF fml to give; allow */
/* EX He was accorded permission to use the library */

/* NU 2 */
m_verb(vio,afford_3,afford,afford,afford,affords,affording,
afforded,afforded,afforded,trans,_,

[np(oblig,posprec(2,Wnp1),object,_),
io(opt,posprec(1,W2),indirect_object,abstract,_)]).
/* DEF fml & lit to provide with; supply with; give */
/* EX The tree afforded us shelter from the rain */

Note
/* The T feature is misplaced: it should be placed on the direct object, not the indirect one */

/* NU 3 */
m_verb(vio,allocate_2,allocate,allocate,allocate,allocates,allocating,
allocated,allocated,allocated,trans,human,
[np(oblig,posprec(2,Wnp1),object,abstract),
io(opt,posprec(1,W2),indirect_object,_,_)]).
/* DEF to give as a share */
/* EX We allocated the society some money */

/* NU 4 */
m_verb(vio,allocate_3,allocate,allocate,allocate,allocates,allocating,
allocated,allocated,allocated,trans,human,
[np(oblig,posprec(2,Wnp1),object,_),
io(opt,posprec(1,W2),indirect_object,abstract,_)]).
/* DEF to set apart for somebody or some purpose */
/* EX That space has already been allocated for building a new hospital */

Note
/* Again, T is misplaced */

Verbs Taking an Object and a That-Clause

Example: tell: he told the teacher that he had taught linguistics

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"

SEM headclas # "I"

GRAMMAR substr(gramcode,1,2) = "D5"

B. RAW IMPORTED MATERIAL

advise advises advising advised advised v D5 H..T.X 1
DEF to tell (somebody) what one thinks should be done; give advice to (somebody)
EX I advise waiting till the proper time. I will do as you advise. I advised her that she should wait. I
advised her where to stay. I advise you to leave now

advise advises advising advised advised v D5 ..F.H..T.X 2
DEF fml to give notice to; inform
EX I have advised her that we are coming. Will you advise us (of) when the bags should arrive?

assure assures assuring assured assured v D5aH..Z.H 1
DEF to try to cause to believe or trust in something; promise; try to persuade
EX I assure you that this medicine cannot harm you. He assured us of his ability to work
assure assures assuring assured assured v D5aH..Z.H 2
DEF to make (oneself) sure or certain

EX Before going to bed she assured herself that the door was locked

C. AWK PROGRAM

BEGIN {nu=1}
{ semsubj="_"
 if (substr($8,5,1)=="J") semsubj = "thing"
 if (substr($8,5,1)=="H") semsubj = "human"
 if (substr($8,5,1)=="T") semsubj = "abstract"

 semiobj = "_"
 if (substr($8,10,1)=="J") semiobj = "thing"
 if (substr($8,10,1)=="H") semiobj = "human"
 if (substr($8,10,1)=="T") semiobj = "abstract"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)
 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(viothat,%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,
%s,\n[io(opt,posprec(1,W2),indirect_object,%s,np),\ns(oblig,posprec(2,W),object]).\n",
 $1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubj,semiobj)
 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(viothat,advise_1,advise,advise,advise,advises,advising,
advised,advised,advised,trans,human,
[io(opt,posprec(1,W2),indirect_object,_,np),
s(oblig,posprec(2,W),object]).
/* DEF to tell (somebody) what one thinks should be done; give advice to (somebody) */
/* EX I advise waiting till the proper time. I will do as you advise. I advised her that she should wait. I
advised her where to stay. I advise you to leave now */

/* NU 2 */
m_verb(viothat,advise_2,advise,advise,advise,advises,advising,
advised,advised,advised,trans,human,
[io(opt,posprec(1,W2),indirect_object,_,np),
s(oblig,posprec(2,W),object]).
/* DEF fml to give notice to; inform */
/* EX I have advised her that we are coming. Will you advise us (of) when the bags should arrive? */

/* NU 3 */
m_verb(viothat,assure_1,assure,assure,assure,assures,assuring,
assured,assured,assured,trans,human,
[io(opt,posprec(1,W2),indirect_object,human,np),
s(oblig,posprec(2,W),object]).
/* DEF to try to cause to believe or trust in something; promise; try to persuade */
/* EX I assure you that this medicine cannot harm you. He assured us of his ability to work */

/* NU 4 */
m_verb(viothat,assure_2,assure,assure,assure,assures,assuring,

assured,assured,assured,trans,human,
[io(opt,posprec(1,W2),indirect_object,human,np),
s(oblig,posprec(2,W),object]).
/* DEF to make (oneself) sure or certain */
/* EX Before going to bed she assured herself that the door was locked */

Note
/* This second reading should be restricted to assure oneself */

Verbs Taking an Object and a Prepositional Object

A. FILTERS ON LDOCE

ENTRY 'v' $ pos .and. headclas = "S"

SEM headclas # "I"

GRAMMAR substr(gramcode,1,2) = "T1" .and. righttypo="I"

(if righttypo = "I " (italics) then there is a lexical item in the righthand-side environment and it is a
preposition: recall that particles are in bold and prepositions in italics in the rghtctx field)

B. RAW IMPORTED MATERIAL

abandon abandons abandoning abandoned abandoned v T1 H....H 4 -I to
DEF to give (oneself) up completely to a feeling, desire, etc.
EX He abandoned himself to grief. abandoned behaviour
abet abets abetting abetted abetted v T1 H....X 1 -I in
DEF to encourage or give help to (a crime or criminal)
EX He abetted the thief in robbing the bank
absent absents absenting absented absented v T1 ..F.H....H 1 -I fro
DEF to keep (oneself) away
EX He absented himself from the meeting
absolve absolves absolving absolved absolved v T1 X....H 2 -I fro
DEF to free (someone) from fulfilling a promise or a duty, or from having to suffer for wrongdoing
abstract abstracts abstracting abstracted abstracted v T1 H....C 1 -I fro
DEF tech to remove by drawing out gently; separate
abstract abstracts abstracting abstracted abstracted v T1 ..E.H....C 2 -I fro
DEF euph to steal
acclaim acclaims acclaiming acclaimed acclaimed v T1 H..T.H 2 -I as
DEF to declare to be or publicly recognize as, esp. with loud shouts of approval or praise
EX They acclaimed him as the best writer of the year. They acclaimed her their leader

C. AWK PROGRAM

Here the semantic restrictions on the direct object are in byte 10; byte 8 codes restrictions on the
prepositional object.

BEGIN {nu=1}
{ semsubj="_"
 if (substr($8,5,1)=="J") semsubj = "thing"
 if (substr($8,5,1)=="H") semsubj = "human"
 if (substr($8,5,1)=="T") semsubj = "abstract"

 semobj = "_"

 if (substr($8,10,1)=="J") semobj = "thing"
 if (substr($8,10,1)=="H") semobj = "human"
 if (substr($8,10,1)=="T") semobj = "abstract"

 # sempobj houses semantic restrictions on the prepositional object
 sempobj = "_"
 if (substr($8,8,1)=="J") sempobj = "thing"
 if (substr($8,8,1)=="H") sempobj = "human"
 if (substr($8,8,1)=="T") sempobj = "abstract"

 # the following if-clauses expand the abbreviations used for prepositions in the right context field
 if ($11 == "fro") $11="from"
 if ($11 == "wit") $11="with"
 if ($11 == "til") $11="till"
 if ($11 == "unt") $11="until"
 if ($11 == "int") $11="into"
 if ($11 == "amo") $11="among"
 if ($11 == "bet") $11="between"
 if ($11 == "ouf") $11="out_of"
 if ($11 == "uon") $11="upon"

 if (($1 ~ /DEF/ || $1 ~ /EX/) && NF>1)
 printf("/* %s */\n",$0)
 else
 { if (NF>1)
 {printf("\n/* NU %d */\n",nu)
 printf("m_verb(vobjfreepp,%s_%s,%s,%s,%s,%s,%s,\n%s,%s,%s,trans,
%s,\n[np(oblig,posprec(1,Wnp),object,%s),\npp(oblig,posprec(1,Wpp),pp_arg,%s,_,%s)]).\n",
 $1,$9,$1,$1,$1,$2,$3,$4,$4,$5,semsubj,semobj,sempobj,$11)
 nu++}}
 }

D. SAMPLE ENTRIES IMPORTED FROM LDOCE

/* NU 1 */
m_verb(vobjfreepp,abandon_4,abandon,abandon,abandon,abandons,abandoning,
abandoned,abandoned,abandoned,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,to)]).
/* DEF to give (oneself) up completely to a feeling, desire, etc. */
/* EX He abandoned himself to grief. abandoned behaviour */

Note
/* The adjective abandoned is best dealt with as a separate entry; the entry here should be abandon
oneself to */

/* NU 2 */
m_verb(vobjfreepp,abet_1,abet,abet,abet,abets,abetting,
abetted,abetted,abetted,trans,human,
[np(oblig,posprec(1,Wnp),object,_),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,in)]).
/* DEF to encourage or give help to (a crime or criminal) */
/* EX He abetted the thief in robbing the bank */

/* NU 3 */
m_verb(vobjfreepp,absent_1,absent,absent,absent,absents,absenting,

absented,absented,absented,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,from)]).
/* DEF to keep (oneself) away */
/* EX He absented himself from the meeting */

Note
/* The entry should read absent oneself from; He absented her from the meeting is jocular at best*/

/* NU 4 */
m_verb(vobjfrepp,absolve_2,absolve,absolve,absolve,absolves,absolving,
absolved,absolved,absolved,trans,_,
[np(oblig,posprec(1,Wnp),object,human),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,from)]).
/* DEF to free (someone) from fulfilling a promise or a duty, or from having to suffer for wrongdoing */

/* NU 5 */
m_verb(vobjfreepp,abstract_1,abstract,abstract,abstract,abstracts,abstracting,
abstracted,abstracted,abstracted,trans,human,
[np(oblig,posprec(1,Wnp),object,_),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,from)]).
/* DEF tech to remove by drawing out gently; separate */

/* NU 6 */
m_verb(vobjfreepp,abstract_2,abstract,abstract,abstract,abstracts,abstracting,
abstracted,abstracted,abstracted,trans,human,
[np(oblig,posprec(1,Wnp),object,_),
pp(oblig,posprec(1,Wpp),pp_arg,_,_,from)]).
/* DEF euph to steal */

/* NU 7 */
m_verb(vobjfreepp,acclaim_2,acclaim,acclaim,acclaim,acclaims,acclaiming,
acclaimed,acclaimed,acclaimed,trans,human,
[np(oblig,posprec(1,Wnp),object,human),
pp(oblig,posprec(1,Wpp),pp_arg,abstract,_,as)]).
/* DEF to declare to be or publicly recognize as, esp. with loud shouts of approval or praise */
/* EX They acclaimed him as the best writer of the year. They acclaimed her their leader */

Appendix F. Sample Parses
 The backbone of the parses is the predicate-argument-modifier model. Properties of the clause
(voice, aspect, modality, tense) are recorded in the prop structure. The arguments are given in canonical
order according to their deep gf. Athematic elements do not appear in the parses. The sharing of the
variable within the index structure is used to indicate coindexing.

1. He was eager to back down.

/* control */
/* mwu */
Parse:
[he,was,eager,to,back,down]

 7 /* preference index */
 clause

 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: past)
 /* Voice, Aspect, Modality, Tense */
 predicate(be,agr(finite,past,sing,third))
 subject
 nounphrase
 index(_02B0) /* shared: used to indicate coreference */
 ppro(third,sing,masc)
 subject_attribute
 adjectivephrase
 adjective(eager_1)
 adj_arg
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(back_down_1,agr(infinitive))
 subject
 nounphrase
 index(_02B0) /* shared: used to indicate coreference */
 ppro(third,sing,masc)

2. They took the problems he had seen into account.

/* mwu */
/* linear precedence */
/* long distance dependencies */
Parse:
[they,took,the,problems,he,had,seen,into,account]

 16
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: past)
 predicate(take_into_account_1,agr(finite,past,plural_or_second))/* mwu */
 subject
 nounphrase
 index(_0360)
 ppro(third,plural)
 object
 nounphrase
 index(_0544)
 det(the)
 noun(problem_1,agr(plural))
 relative_clause
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: [perfect],mod: none,tns: past)
 predicate(see_1,agr(en_active))
 subject
 nounphrase
 index(_06BC)
 ppro(third,sing,masc)
 object
 gapped_nounphrase
 index(_0544)

3. John wants to appear to be loved by Mary.

/* control and raising */
 /* passive */
Parse:
[john,wants,to,appear,to,be,loved,by,mary]

 14
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(want_1,agr(finite,present,sing,third))
 subject
 nounphrase
 index(_0334)
 noun(john,agr(sing))
 object /* the object of WANT is clausal */
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(appear_1,agr(infinitive))
 subject /* the subject of APPEAR is clausal */
 clause
 pred_arg_mod_structure
 prop(vce: passive,asp: none,mod: none,tns: present)
 predicate(love_1,agr(en_passive))
 subject /* passive undone */
 nounphrase
 index(_08AC)
 noun(mary,agr(sing))
 object
 nounphrase
 index(_0334)
 noun(john,agr(sing))

4. John appears to want to be loved by Mary.

/* control and raising */
/* passive */
Parse:
[john,appears,to,want,to,be,loved,by,mary]

 14
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(appear_1,agr(finite,present,sing,third))
 subject
 clause /* the subject of APPEAR is clausal */
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(want_1,agr(infinitive))
 subject
 nounphrase
 index(_0334)
 noun(john,agr(sing))
 object
 clause /* the object of WANT is clausal */

 pred_arg_mod_structure
 prop(vce: passive,asp: none,mod: none,tns: present)
 predicate(love_1,agr(en_passive))
 subject /* passive is undone */
 nounphrase
 index(_08AC)
 noun(mary,agr(sing))
 object
 nounphrase
 index(_0334)
 noun(john,agr(sing))

5. The genius a book about whom he has read teaches mathematics.

/* long distance dependencies */
Parse:
[the,genius,a,book,about,whom,he,has,read,teaches,mathematics]

 19
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(teach_1,agr(finite,present,sing,third))
 subject
 nounphrase
 index(_03C8) /* coref 1 */
 det(the)
 noun(genius_1,agr(sing))
 relative_clause
 object
 nounphrase
 index(_051C) /* coref 2 */
 det(a)
 noun(book_1,agr(sing))
 np_arg_of_prep
 prepphrase
 index(_0668)
 prep(about)
 np_arg_of_prep
 nounphrase
 index(_03C8) /* coref 1 */
 relative(whom)
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: [perfect],mod: none,tns: present)
 predicate(read_1,agr(en_active))
 subject
 nounphrase
 index(_075C)
 ppro(third,sing,masc)
 object
 gapped_nounphrase
 index(_051C) /* coref 2 */
 object
 nounphrase
 index(_0B68)

 det(zero)
 noun(mathematics_1,agr(sing_uncountable))

6. I am reading in the library a book the students want me to read.

/* linear precedence */
/* control */
/* long distance dependencies */
Parse:
[i,am,reading,in,the,library,a,book,the,students,want,me,to,read]

 26
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: [progressive],mod: none,tns: present)
 predicate(read_1,agr(ing))
 subject
 nounphrase
 index(_03E0)
 ppro(first,sing)
 object
 nounphrase
 index(_06E0)
 det(a)
 noun(book_1,agr(sing))
 relative_clause
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(want_1,agr(finite,present,plural_or_second))
 subject
 nounphrase
 index(_0860)
 det(the)
 noun(student_1,agr(plural))
 object
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(read_1,agr(infinitive))
 subject
 nounphrase
 index(_0A98)
 ppro(first,sing)
 object
 gapped_nounphrase
 index(_06E0)
 vp_modifier
 prepphrase
 index(_056C)
 prep(in)
 np_arg_of_prep
 nounphrase
 index(_05C0)
 det(the)
 noun(library_1,agr(sing))

7. The teacher has been given a book and the students a library.

/* gapping */
/* passive */
Parse:
[the,teacher,has,been,given,a,book,and,the,students,a,library]

 8
 and_sentence
 clause
 pred_arg_mod_structure
 prop(vce: passive,asp: [perfect],mod: none,tns: present)
 predicate(give_1,agr(en_passive))
 object
 nounphrase
 index(_075C)
 det(a)
 noun(book_1,agr(sing))
 indirect_object
 nounphrase
 index(_049C)
 det(the)
 noun(teacher_1,agr(sing))
 clause
 pred_arg_mod_structure
 prop(vce: passive,asp: [perfect],mod: none,tns: present)
 /* gapped v */
 predicate(give_1,_0494)
 object
 nounphrase
 index(_0A7C)
 det(a)
 noun(library_1,agr(sing))
 indirect_object
 nounphrase
 index(_04CC)
 det(the)
 noun(student_1,agr(plural))

8. She likes the books that I have written and you have put into the library.

/* coordination with across-the-board deletions */
Parse:
[she,likes,the,books,that,i,have,written,and,you,have,put,into,the,library]

 28
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: none,mod: none,tns: present)
 predicate(like_1,agr(finite,present,sing,third))
 subject
 nounphrase
 index(_0434)
 ppro(third,sing,fem)
 object
 nounphrase

 index(_05EC) /* coref */
 det(the)
 noun(book_1,agr(plural))
 and_relative_clause
 relative_clause
 object
 nounphrase
 index(_05EC) /* coref */
 relative(that)
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: [perfect],mod: none,tns: present)
 predicate(write_1,agr(en_active))
 subject
 nounphrase
 index(_0844)
 ppro(first,sing)
 object
 gapped_nounphrase
 index(_05EC) /* coref */
 relative_clause
 clause
 pred_arg_mod_structure
 prop(vce: active,asp: [perfect],mod: none,tns: present)
 predicate(put_1,agr(en_active))
 subject
 nounphrase
 index(_0B2C)
 ppro(second)
 object
 gapped_nounphrase
 index(_05EC) /* coref */
 pp_arg
 prepphrase
 index(_0D74)
 prep(into)
 np_arg_of_prep
 nounphrase
 index(_0DC8)
 det(the)
 noun(library_1,agr(sing))

Appendix G. Test Suites

For Analysis

Designed for Horatio

They failed.
He was eager to back down.
Do the facts allow the explanation he gave to the students ?

They should back up the teacher.
They should back the good teachers up.
They should back up the teacher they like.
The teacher should have been backed up.
She must allow that John is a good teacher.
She must allow John is a bad teacher.
You must allow for the oversimplifications he has made.
The teacher allows the boys money for books.
He told her that he loved Mary.
She told him what to see.
John has alienated the students from the teacher.
He allowed the students into the library.
The students he had allowed into the library were reading books.
They are teachers.
He is reluctant to go into the library.
The problem is that she knows him.
We have been in the library.
He has become a good teacher.
The books belong in the library.
The girl went to the library.
He brought the books he had liked to the library.
He brought to the library the books he liked.
He considers the claim she has made an oversimplification.
They declared the claim valid.
They will decide where to go.
They did away with the bad teachers.
They want him to kick the bucket.
They should pay attention to the problems he saw.
Great attention was paid to the problems he had seen.
The students had been put at risk.
They took the problems he had seen into account.
They took into account the problems they had seen.
He should take them into account.
The workshop will take place in the library.
They were shooting the breeze.
They allowed her to teach linguistics.
She was allowed to teach linguistics.
They wanted to teach linguistics.
He wanted them to put the workshop off.
John tried to teach linguistics.
* John tried them to teach linguistics.
They persuaded her to teach linguistics.
She was persuaded to teach linguistics.
They expected her to teach linguistics.
She was expected to teach linguistics.
Mary is expected to be elected.
She promised to teach linguistics.
She promised them to teach linguistics.
She seems to have taught linguistics.
It seems that she has taught mathematics.
The book seems to have been read by the students.
The book was expected to have been read.
She is eager to teach.
She is easy to please.
She is an easy woman to please.
The teacher was seen to read a bad book.

The students saw John teach mathematics.
Teachers avoid reading books.
She wants to avoid their reading bad books.
They believed him to have killed a student.
He was believed to have killed a student.
* The book seems to read.
The book seems to be read.
The book seems to have been read by the student.
* The book was seen to read.
The book is believed to have been read.
The man is believed to have read the book.
* The man is believed to have been read.
Mary tends to be annoyed by John.
John tends to annoy Mary.
John tries to annoy Mary.
Mary tries to be annoyed by John.
John wants to appear to be loved by Mary.
John appears to want to be loved by Mary.
When Mary saw John she told him that she wanted him to meet the teacher.
He warned her that she had been seen before she went to the library.
If he saw her he must have seen her before she went into the library.
The teacher who teaches linguistics is good.
The workshop that he wants to put off will fail.
The genius a book about whom he has read teaches mathematics.
She likes the town in which she lives.
She likes the town which she lives in.
She likes the town that she lives in.
She likes the town she lives in.
She likes the town where she lives.
The teacher whose books she likes thinks that she is a good student.
I know the university which she tells him she knows he wants her to go to.
Who knew that John expected her to break down ?
What might the man have been looking at ?
On which table has he put the books ?
Which table has he put the books on ?
Where did he go ?
Have you met Mary ?
Do I know him ?
Are they the teachers who taught you linguistics ?
I knew where he wanted to go.
You must decide which books the students should read.
I told him where to go.
He must have been told where to go.
Might he have been writing a book ?
Does he believe her to have gone in for linguistics ?
Have you read the letter to the teacher about the library ?
The problem with you is that you know me.
Do you back up the decision to give him money ?
They are easy to teach.
John is reluctant to teach linguistics.
John is black.
John has seen a black dog.
He is sure to tell them what to read.
He is sure I will tell them what to read.
Mary is an easy woman to please.
The man reading a book in the library is a teacher.

I want to read a book written by a student.
He went to the library with Mary.
Mary was reading a book about linguistics in the library.
The woman is reading a book in the library.
* The woman is reading in the library a book.
I am reading in the library a book the students want me to read.
She gave books to the students.
* She gave to the students books.
She gave the students good books.
* She gave books the students.
She gave the students the books she wanted them to read.
The teacher took the problems into account.
The teacher took into account the problems.
The teacher took them into account.
* The teacher took into account them.
The teacher took into account the problems the students had seen.
Do you like books about linguistics ?
The man reading a book in the library is a good teacher.
He considers the claim she made an oversimplification.
The students were persuaded to read the books in the library.
He had been looked down on.
Mary has been given a book.
A good book has been given to Mary.
A book has been given to Mary by the student.
The students are expected to read books about linguistics.
The teacher was seen to read a book about women.
Books should be read.
The student was declared a genius.
The problems were paid attention to.
Great attention was paid to the problems the students had seen.
The books they said they liked were put in the library.
He had been told where to meet her.
He was believed to have killed a bad student.
The good books seem to have been read by the students.
The teacher whose books I told her I liked knows the university I have persuaded her to go to.
The students like the books the teacher wants them to read.
What does the teacher think the student is learning ?
Who is the man the woman has been looking for listening to ?
On which table might the man have put the books ?
Which table might the man have put the books on ?
I decided what to tell her I believed her to like.

With coordination:

Mary teaches linguistics and John is learning mathematics.
Mary teaches linguistics and John mathematics.
Mary is and John wants to be in the library.
Mary is in and John wants to be in the library.
Mary went to the library and John to the workshop.
The teacher has been given a book and the students a library.
John and the students want to put off the workshop.
John likes dogs and black cats.
He looked at the teacher and the students.
She made a valid and true claim.
The teacher turned up and broke down.
She declares and considers him a genius.

She told him where to go and what to see.
He can and should see her.
He relied on and liked the students.
He liked and relied on the students.
He backed up and liked the decision to give them money.
He liked and backed up the decision to give them money.
She likes the books that I have written and you have put into the library.
They had been tripping the light fantastic and shooting the breeze.
They tripped the light fantastic and shot the breeze.
They may trip the light fantastic and shoot the breeze.

Based on Flickinger et al. 1987

Abrams works.
Abrams hired Browne.
Abrams showed the office to Browne.
Abrams showed Chiang the office.
Abrams became competent.
Abrams became a manager.
* Abrams became in the office.
* Abrams became working.
Abrams is interviewing an applicant.
Abrams is interviewing.
Abrams is working for Browne.
Abrams is working.
Abrams works for Browne.
* Abrams works of Browne.
Abrams approves of Browne.
* Abrams approves for Browne.
She hired him.
He hired her.
* She hired he.
* He hired she.
* Her hired he.
* Him hired she.
* Her hired him.
* Him hired her.
He showed it to her.
He showed her it.
He showed her an office.
He showed it to Chiang.
* He showed Chiang it.
He interviewed them.
* He interviewed they.
They interviewed him.
* Them interviewed him.
I interviewed Abrams.
Abrams interviewed me.
* Me interviewed Abrams.
* Abrams interviewed I.
We interviewed Abrams.
Abrams interviewed us.
* Us interviewed Abrams.
* Abrams interviewed we.

You interviewed Abrams.
Abrams interviewed you.
She and I interviewed Abrams.
I and she interviewed Abrams.
* Me and her interviewed Abrams.
* Her and me interviewed Abrams.
* Her and I interviewed Abrams.
* She and me interviewed Abrams.
* Me and she interviewed Abrams.
* I and her interviewed Abrams.
Abrams interviewed her and me.
* Abrams interviewed she and I.
Abrams interviewed me and her.
* Abrams interviewed I and she.
* Abrams interviewed her and I.
* Abrams interviewed she and me.
* Abrams interviewed me and she.
* Abrams interviewed I and her.
Whom does she work for ?
Who does she work for ?
For whom does she work ?
Who hired Browne ?
* Whom hired Browne ?
A manager works.
Managers work.
* A manager work.
* Managers works.
I work.
* I works.
You work.
* You works.
He works.
* He work.
We work.
* We works.
They work.
* They works.
They list women who have bookcases.
* They list women which have bookcases.
* They list bookcases who women have.
They list bookcases which women have.
A manager is an employee.
Managers are employees.
Managers are a problem.
Abrams may hire Browne.
Abrams might hire Browne.
Abrams can hire Browne.
Abrams shall hire Browne.
Abrams should hire Browne.
Abrams will hire Browne.
Abrams would hire Browne.
Abrams must hire Browne.
Abrams has hired Browne.
Abrams is hiring Browne.
Abrams could have hired Browne.
Abrams could be hiring Browne.

Abrams could have been hiring Browne.
Browne was interviewed by Abrams.
Browne could be interviewed by Abrams.
Browne has been interviewed by Abrams.
Browne is being interviewed by Abrams.
Browne could have been interviewed by Abrams.
Browne could be being interviewed by Abrams.
Browne has been being interviewed by Abrams.
Browne could have been being interviewed by Abrams.
* Abrams could hired Browne.
* Abrams could hiring Browne.
* Abrams has hire Browne.
* Abrams has hiring Browne.
* Abrams is hire Browne.
* Abrams is hired Browne.
* Abrams has could hire Browne.
* Abrams is coulding hire Browne.
* Abrams is having hired Browne.
* Abrams has could be hiring Browne.
* Abrams could be having hired Browne.
* Abrams could may hire Browne.
* Abrams has had hired Browne.
* Abrams is being hiring Browne.
* Abrams did could hire Browne.
* Browne is could interviewed by Abrams.
* Browne is had interviewed by Abrams.
* Browne did be interviewed by Abrams.
* Browne is did interviewed by Abrams.
* Browne is been interviewed by Abrams.
Abrams knew who to hire.
Abrams knew who Browne hired.
Abrams knew that Browne hired Chiang.
Abrams laid off a programmer.
Abrams laid a programmer off.
Abrams managed to hire Browne.
Abrams promised Browne to hire Chiang.
Abrams promised Browne to be interviewed by Chiang.
Browne was promised by Abrams to hire Chiang.
Browne was promised to hire Chiang.
Abrams urged Browne to hire Chiang.
Browne was urged to hire Chiang.
Abrams urged Browne to be interviewed.
Abrams was urged to be interviewed.
Abrams failed to hire Browne.
Abrams failed to be interviewed by Browne.
Abrams was hired by Browne.
Abrams was hired.
He was hired by her.
* Him was hired by her.
* He was hired by she.
An office was shown to Abrams by Chiang.
An office was shown to Abrams.
An office was shown by Abrams to Browne.
Devito was shown an office by Abrams.
An office was shown Chiang by Abrams.
Abrams was urged to hire Browne by Chiang.

Abrams was urged by Devito to hire Browne.
Abrams was urged to hire Browne.
Abrams was known to be interviewing Browne.
Abrams was known by Chiang to be interviewing Browne.
Abrams was approved of by Chiang.
Abrams was approved of.
Abrams is competent.
Abrams is a manager.
Abrams is in the office.
Abrams hired a woman who was competent.
Abrams hired women who were competent.
* Abrams hired a woman who were competent.
* Abrams hired women who was competent.
Abrams hired women whose manager was competent.
Abrams hired a woman who Browne interviewed.
Abrams hired a woman who Browne approved of.
Abrams hired a woman who Browne knew Chiang interviewed.
Abrams has a bookcase which is heavy.
Abrams has a bookcase that is heavy.
* Abrams has a bookcase what is heavy.
Abrams has an office that Browne showed Chiang.
Abrams has an office which Browne showed Chiang.
Abrams has an office Browne showed Devito.
Abrams has an office that Browne showed to Devito.
Abrams interviewed a woman who Browne showed an office to.
Abrams has an office Devito showed to Chiang.
Abrams hired a woman that was competent.
Abrams hired a woman was competent.
Abrams hired a woman that Browne interviewed.
Abrams hired a woman Browne interviewed.
Abrams hired a woman that Browne approved of.
Abrams hired a woman Devito approved of.
Abrams hired a woman that Browne knew Chiang interviewed.
Abrams hired a woman Browne knew Devito interviewed.
Abrams hired a woman interviewed by Chiang.
Abrams hired a woman working for Chiang.
Abrams hired a woman of whom Chiang approved.
Abrams has a bookcase of which Chiang approved.
Abrams hired a woman the manager of whom Chiang had interviewed.
Abrams hired a woman whose manager Chiang had interviewed.
Abrams interviewed programmers whose manager was Chiang.
* Abrams interviewed programmers whose manager were Chiang.
* Which project is Abrams a programmer and the manager of ?
* Which project does Abrams manage the department and ?
* Which manager did Abrams have an office that Chiang showed to ?
* Which projects does Abrams know who had worked on ?
* Which managers does Abrams know which offices Browne had shown to ?
* Which programmer did Abrams know which office had ?
* Which programmer was that Abrams had interviewed known by Browne ?
Is Abrams a manager ?
Is Abrams competent ?
* Are Abrams competent ?
Does Abrams work for Browne ?
Could Abrams work for Browne ?
Is Abrams working for Browne ?
Has Abrams worked for Browne ?

Could Abrams be working for Browne ?
Could Abrams have worked for Browne ?
Has Abrams been working for Browne ?
Could Abrams have been working for Browne ?
* Has been Abrams working for Browne ?
* Has Abrams is working for Browne ?
* Has Abrams be working for Browne ?
* Have Abrams could be working for Browne ?
Could Abrams have been interviewed by Browne ?
Has Abrams been interviewed by Browne ?
Was Abrams interviewed by Browne ?
Was Abrams interviewed ?
Was Abrams being interviewed by Browne ?
* Did Abrams be interviewed by Browne ?
* Was Abrams been interviewing by Browne ?
Who works for Chiang ?
Who is a manager ?
Who will be a manager ?
Who is managed by Abrams ?
What was shown to Browne ?
Which programmer works for Abrams ?
Which programmer is a manager ?
Which programmer will be a manager ?
Which programmer was hired by Abrams ?
Who does Chiang employ ?
What did Abrams show Browne ?
What did Abrams show to Chiang ?
What was Abrams shown ?
Which programmer did Abrams interview ?
What project does Abrams manage ?
Which office was Abrams shown ?
Where does Abrams work ?
Where was Abrams interviewed ?
Who does Abrams work for ?
Which office does Abrams work in ?
Whom did Abrams show an office to ?
Who is Browne managed by ?
Which department does Abrams know the manager of ?
Whose department does Abrams work in ?
Of whom does Abrams approve ?
In which office does Abrams work ?
To whom did Abrams show an office ?
Who did Abrams show an office ?
Who was shown an office by Abrams ?
By whom is Browne managed ?
Of which department is Browne the manager ?
In whose department does Chiang work ?
Whose manager did Abrams hire ?
* Whose did Abrams hire manager ?
Abrams knows who hired Browne.
Abrams knows who was hired by Browne.
Abrams knows which managers interviewed Browne.
Abrams knows who Browne hired.
Abrams knows who showed Browne an office.
Abrams knows who Browne was hired by.
Abrams knows whom Browne was hired by.

Abrams knows by whom Browne was hired.
Abrams knows which programmers Browne hired.
Abrams knows where Browne works.
The managers of the projects are trustworthy.
The consultants to the managers were hired by Abrams.
The programmer who was hired by Abrams manages the project.
Abrams manages the project that has consultants.
* Abrams manages the project has consultants.
* The programmer was hired by Abrams manages the project.
The programmer whom Browne hired manages the project.
Abrams works on the project that Browne manages.
Abrams works on the project Browne manages.
Abrams works for a competent manager.
Browne hired a competent programmer who Abrams interviewed.
It appears that Chiang interviewed Browne.
Programmers are hard to interview.
* Programmers are hard to interview engineers.
* Programmers is hard to interview.
Chiang was hard to show an office to.
Offices are hard to show to Chiang.
Devito was hard to show an office.
Offices are hard to show Devito.
He worked.
He was working.
He had worked.
He had been working.
He is working.
He has worked.
He has been working.
He will work.
He will be working.
He will have worked.
He will have been working.
Abrams hired a programmer before Devito interviewed an engineer.
Abrams hired a programmer after Devito interviewed an engineer.

With coordination:

Chiang is a manager and Devito is a programmer.
Chiang and Devito work.
* Chiang and Devito works.
Chiang hired Devito and Devito manages Browne.
Chiang hired Devito and manages Browne.
* Chiang hired Devito and manage Browne.
Abrams was interviewed and Browne was hired.
Abrams interviewed programmers and Browne was hired.
Abrams interviews programmers and is managed by Browne.
Abrams was interviewed and was hired.
Abrams was interviewed by Browne and hired by Devito.
Abrams was interviewed and hired by Browne.
Abrams was interviewed and hired.
Chiang works and manages programmers.
* Chiang work and manages programmers.
* Chiang work and manage programmers.
Chiang interviewed programmers and showed Browne an office.
Chiang hired and manages Devito.

* Chiang hired and manage Devito.
Devito works for Devito and with Browne.
Devito works for and with Chiang.
An old and trustworthy employee manages Devito.
* An old and trustworthy employee manage Devito.
Devito is old and trustworthy.
The managers and programmers are employees.
Devito manages a programmer who Abrams interviewed and Browne hired.
Devito manages a programmer Abrams interviewed and Browne hired.
Devito is the manager who interviewed Abrams and hired Browne.
Did Abrams interview a programmer and hire an engineer ?
Who did Abrams interview and Browne hire ?
Who was interviewed by Abrams and hired by Browne ?
* Who does Devito manage and Chiang work for ?
* Who does Devito manage and Chiang works for ?
* Who does Devito manages and Chiang works for ?
* Who does Devito manage Browne and Chiang work for ?
Who was Abrams interviewed by and hired by ?
* Who was Abrams interviewed by Browne and hired by ?
* Who does Devito manage and Chiang work for Browne ?
Devito is the manager with whom and for whom Chiang works.

For Generation

(the following are generatable from the corresponding parses produced by horatio)

they failed
he was eager to back down
do the facts allow the explanation he gave the students
they should back up the teacher
they should back up the good teachers
they should back up the teacher they like
the teacher should have been backed up
she must allow john is a good teacher
she must allow john is a bad teacher
you must allow for the oversimplifications he has made
the teacher allows the boys money for books
he told her he loved mary
she told him what to see
john has alienated the students from the teacher
he allowed the students into the library
the students he had allowed into the library were reading books
they are teachers
he is reluctant to go into the library
the problem is she knows him
we have been in the library
he has become a good teacher
the books belong in the library
the girl went to the library
he brought the books he had liked to the library
he brought the books he liked to the library
he considers the claim she has made an oversimplification

they declared the claim valid
they will decide where to go
they did away with the bad teachers
they want him to kick the bucket
they should pay attention to the problems he saw
great attention was paid to the problems he had seen
the students had been put at risk
they took into account the problems he had seen
they took into account the problems they had seen
he should take them into account
the workshop will take place in the library
they were shooting the breeze
they allowed her to teach linguistics
she was allowed to teach linguistics
they wanted to teach linguistics
he wanted them to put off the workshop
john tried to teach linguistics
they persuaded her to teach linguistics
she was persuaded to teach linguistics
they expected her to teach linguistics
she was expected to teach linguistics
mary is expected to be elected
she promised to teach linguistics
she promised them to teach linguistics
she seems to have taught linguistics
she seems to have taught mathematics
the book seems to have been read by the students
the book was expected to have been read
she is eager to teach
she is easy to please
she is an easy woman to please
the teacher was seen to read a bad book
the students saw john teach mathematics
teachers avoid reading books
she wants to avoid them reading bad books
they believed him to have killed a student
he was believed to have killed a student
the book seems to be read
the book seems to have been read by the student
the book is believed to have been read
the man is believed to have read the book
mary tends to be annoyed by john
john tends to annoy mary
john tries to annoy mary
mary tries to be annoyed by john
john wants to appear to be loved by mary
john appears to want to be loved by mary
when mary saw john she told him she wanted him to meet the teacher
if he saw her he must have seen her before she went into the library
the teacher who teaches linguistics is good
the workshop that he wants to put off will fail
the genius a book about whom he has read teaches mathematics
she likes the town in which she lives
she likes the town which she lives in
she likes the town that she lives in
she likes the town she lives in

she likes the town where she lives
the teacher whose books she likes thinks she is a good student
* i know the university which she tells him she knows he wants she go to
who knew john expected her to break down
what might the man have been looking at
on which table has he put the books
which table has he put the books on
where did he go
have you met mary
do i know him
are they the teachers who taught you linguistics
i knew where he wanted to go
you must decide which books the students should read
i told him where to go
he must have been told where to go
might he have been writing a book
does he believe her to have gone in for linguistics
have you read the letter to the teacher about the library
the problem with you is you know me
do you back up the decision to give him money
they are easy to teach
john is reluctant to teach linguistics
john is black
john has seen a black dog
he is sure to tell them what to read
he is sure i will tell them what to read
mary is an easy woman to please
the man reading a book in the library is a teacher
i want to read a book written by a student
he went to the library with mary
mary was reading a book about linguistics in the library
the woman is reading a book in the library
i am reading a book the students want me to read in the library
she gave the students books
she gave the students good books
she gave the books she wanted them to read the students
she gave the students the books she wanted them to read
the teacher took into account the problems
the teacher took them into account
the teacher took into account the problems the students had seen
do you like books about linguistics
the man reading a book in the library is a good teacher
he considers the claim she made an oversimplification
the students were persuaded to read the books in the library
he had been looked down on
mary has been given a book
mary has been given a good book
mary has been given a book by the student
the students are expected to read books about linguistics
the teacher was seen to read a book about women
books should be read
the student was declared a genius
the problems were paid attention to
great attention was paid to the problems the students had seen
the books they said they liked were put in the library
he had been told where to meet her

he was believed to have killed a bad student
the good books seem to have been read by the students
the teacher whose books i told her i liked knows the university i have persuaded her to go to
the students like the books the teacher wants them to read
what does the teacher think the student is learning
who is the man the woman has been looking for listening to
on which table might the man have put the books
which table might the man have put the books on
i decided what to tell her i believed her to like

Appendix H. Prolog Predicates
 The predicates covered in this appendix are the nonpredefined Prolog predicates used in horatio
and horgen and described in the body of the text. Each predicate is assigned one or several class(es),
which reflect(s) the area and/or job it is mainly used for. The list of classes is the following:

CHECK: used for checking purposes

DATA BASE: defined by a set of facts (no rules)

EXPANSION: expands a lexical macro-clause

GENERATION: used by the generator

LEXICAL: belongs to the vocabulary files

MACRO: macro-clause for the vocabulary

PARSING: used by the parser

UTIL: utility predicate

 The purpose section describes what the predicate is used for in horatio and/or horgen. It is not a
description of the purpose of the predicate in general terms. The argument pattern section is likewise
geared towards the application in hand. The list of arguments describes any or all of the typical args used
in the predicate argument structure. It should be noted that the parsing predicates implement difference
list parsing and therefore open up with two arguments concerned with the word list: the first is the word
list on entry, and the second the word list on exit. These two arguments are called InputWordList and
OutputWordList in argument patterns. The parsing predicates often also include the following
arguments:

 Gaplist, which houses the list of gaps to be passed up and down in the treatment of long distance
dependencies.

 Preference, a number reflecting the preference to be assigned to the parse (a tree with a higher
preference is to be preferred over one with a lower precedence)

 Weight, a number reflecting the structural complexity of a phrase, to account for end placement of
weightier elements

accu
 Class: UTIL
 Purpose: accumulates the preference indexes of the constituents in order to compute the
preference index for the whole S

 Argument pattern: accu(Total, ListofValues)
 List of arguments: Total: sum of the list of values contained in ListofValues
 ListofValues: values to be added up

adverb_sentence
 Class: PARSING
 Purpose: parses an adverbial clause attached to a main declarative S
 Argument pattern: adverb_sentence(InputWordList, OutputWordList, Gaps, Preference, Parsetree,
Finiteness, Person, Number, Voice)
 List of arguments: Gaps is set to the empty list
 Finiteness is set to finite

adj
 Class: LEXICAL / EXPANSION
 Purpose: expands the macro-clause m_adj for adjectives
 Argument pattern: adj(InputWordList, OutputWordList, LexicalTree, SemRestr, Arglist)
 List of arguments: SemRestr is the semantic restriction the adjective places on the noun it
modifies
 Arglist is the adjective's argument list; it may be empty

agree
 Class: PARSING / CHECK
 Purpose: checks subject-verb agreement
 Argument pattern: agree(Personnp, Numbernp, VpAgr)
 List of arguments: Personnp: person of subject NP
 Numbernp: number of subject NP
 VpAgr: one of /firstsg, thirdsg, other/

allopt
 Class: CHECK
 Purpose: checks that all remaining args in the arglist are optional (allopt is called after
satisfylist has applied to the arglist)
 Argument pattern: allopt(Arglist)
 List of arguments: Arglist is the list of remaining arguments, after satisfylist has worked
through it

allsubject
 Class: CHECK / GENERATION
 Purpose: checks that the function passed as argument is a subject
 Argument pattern: allsubject(SubjectFunction)
 List of arguments: SubjectFunction: subject, subject_inf, subject_pass, ...

append
 Class: UTIL
 Purpose: standard list appending
 Argument pattern: append(L1, L2, L3)

arglist
 Class: PARSING
 Purpose: modifies, if necessary, the list of arguments to be satisfied. It does so by calling reog to
deal with arg-changing transformations such as passive or raising
 Argument pattern: arglist(InputWordList, OutputWordList, Gaps, Status, Preference, Precedence,
RelStat, RelorInt, Voice, Parsetree, Nature, Arglist, PromotedFunction, SubjectFunctor1,
SubjectFunctor2, Class)
 List of arguments: Status indicates whether an argument or a modifier has been found; it is

set to 1 if the answer is yes
 RelStat shows whether a relative or interrogative pronoun or determiner has
been found
 RelorInt is used to keep relatives and interrogatives apart
 Nature shows whether we have an np or a vp arglist
 PromotedFunction is the function promoted to subject
 SubjectFunctor1 is a subject functor showing the running subject before
satisfaction of the arglist predicate
 SubjectFunctor2: running subject after satisfaction of the arglist
predicate
 Class is the predicate class of the arg-bearing predicate

assoc
 Class:UTIL / DATA BASE
 Purpose: associates a rank with a grammatical function (used to give args in canonical order in the
parse)
 Argument pattern: assoc(Gf, Rank)
 List of arguments: Gf: a grammatical function (subject, object, ...)
 Order: a number reflecting the position of the arg in the canonical order

aux
 Class: LEXICAL
 Purpose: lexical predicate for auxiliaries
 Argument pattern: aux(InputWordList, OutputWordList, LexemeValue, Type, TypeRequired,
Number, AgreementValue, Tense)
 List of arguments: Type: inflectional type of the aux
 TypeRequired: inflectional type of the next aux to the right

before
 Class: UTILITY / CHECK
 Purpose: checks that an argument tree precedes another in canonical order
 Argument pattern: before[F1,R1], [F2,R2]
 List of arguments: the arguments are lists whose first member is a grammatical function (object,
pp_arg, ...)

c_sentence
 Class: PARSING
 Purpose: parses main declarative clauses, with or without on either side or on both adverbial
subordinate clauses
 Argument pattern: c_sentence(InputWordList, OutputWordList, Preference, ParseTree, Finiteness,
Person, Number, Voice)
 List of arguments: Finiteness is set to finite : we are dealing with main declarative clauses

checkaux3
 Class: PARSING
 Purpose: records relationships between aspect, voice and auxiliary type
 Argument pattern: checkaux3(AspectList, InflectionalSpec, Voice)
 List of arguments: Aspectlist is a list, possibly empty; members are progressive and
perfect
 InflectionalSpec is an inflectional specification on the next verb to the right
 Voice is either passive or uninstantiated (interpreted as active voice)

checksem
 Class: SEMANTICS

 Purpose: checks that two semantic restrictions are compatible
 Argument pattern: checksem(Semrestriction1, Semrestriction2)

control
 Class: GENERATION
 Purpose: takes care of deleting the controller element in the controlled clause; the controller is
always the subject in that clause; its index is retained but the body of the np is ghosted
 Argument pattern: control(DeeperTree, MoreSurfacyTree)

controller
 Class: GENERATION / CHECK / DATA BASE
 Purpose: checks that the grammatical function is one that can control the governed subordinate
clause, i.e. act as subject
 Argument pattern: controller(Function)
 List of arguments: Function: subject, object, subject_inf, indirect_object, ...

corenounphrase
 Class: PARSING
 Purpose: parses typical, 'core' nps
 Argument pattern: corenounphrase(InputWordList, OutputWordList, Gaplist, Index, Preference,
Weight, Rel, IntRel, Function, ParseTree, Number, Person, Semantics)
 List of arguments: see nounphrase

cv
 Class: LEXICAL / CHECK / GENERATION
 Purpose: checks that a verb belongs to the class of control verbs. Such verbs have an arg which
plays the role of subject in a nonfinite complement clause (infinitive or ing clause) which is itself an arg
of the control verb
 Argument pattern: cv(ControlVerb, Required)
 List of arguments: Required: one of /to, bare, ing /, indicating the type of nonfinite complement
clause

determiner
 Class: LEXICAL
 Purpose: provides lexical entries for determiners
 Argument pattern: determiner(InputWordList, OutputWordList, LexicalParseTree, Number,
Semantics, Index)
 List of arguments: Semantics is a semantic restriction used for relative and interrogative
determiners
 Index is an index functor (rel(Index)) used for indexing purposes in
relative clauses; Index is set to the string int for interrogative determiners

drop
 Class:UTILITY
 Purpose: removes athematic arguments from the list of arguments to appear in the parse tree
 Argument pattern: drop([AthematicFunction, RestofTree])
 List of arguments: the arg to drop is the list corresponding to the tree for the athematic argument,
whose head is the name of the athematic function (surf_object, subject_inf, ...)

expos
 Class: LEXICAL / GENERATION
 Purpose: checks that a predicate belongs to the class of extraposition verbs (such as seem as used
in It seems that ...)
 Argument pattern: expos(Extraposverb, to)
 List of arguments: to is the infinitive particle to

extrapos
 Class: GENERATION
 Purpose: extraposes the subject clause to the right and fills the surface subject position with place-
filler IT (It seems that John likes linguistics)
 Argument pattern: extrapos(DeeperTree, MoreSurfacyTree)

first
 Class: UTIL
 Purpose: generates the first auxiliary in an auxiliary list
 Argument pattern: first(List, FirstElement)

first_header
 Class: CHECK / GENERATION
 Purpose: checks on the environment in generation
 Argument pattern: first_header(String)
 List of arguments: String: object, cplt_s, ...

flatten
 Class: UTIL
 Purpose: flattens a list (code is borrowed from Bratko 1990, p.572)
 Argument pattern: flatten(List, FlattenedList)

gen
 Class: GENERATION
 Purpose: central predicate in generation
 Argument pattern: gen(ParseTreeList, GeneratedStringList)
 List of arguments: ParseTreeList is a list representing a parse tree
 GeneratedStringList is a list of generated words

genasp1
 Class: GENERATION
 Purpose: generates aspectual auxiliaries (genasp1 takes care of perfect HAVE)
 Argument pattern: genasp1(AspectSlotInParseTree, GeneratedAux, RequiredType1,
RequiredType2)
 List of arguments: RequiredType1 is the inflectional type of the aux
 RequiredType2 is the inflectional type of the next aux to the right

genasp2
 Class: GENERATION
 Purpose: cf. genasp1, but deals with the generation of progressive aux BE
 Argument pattern: cf. genasp1

generate
 Class: GENERATION
 Purpose: generates strings from parse trees; it is higher than gen, because it first calls prepgen
to undo the results of passive, raising, etc. and then gen to perform the actual generation
 Argument pattern: generate(ParseTreeList, GeneratedStringList)
 List of arguments: cf. gen

genlist
 Class: GENERATION
 Purpose: help predicate for gen; it generates from a list by calling gen on the head and then itself
on the tail
 Argument pattern: genlist(ParseTreeList,GeneratedStringList)

 List of arguments: cf. gen

genyesno
 Class: GENERATION
 Purpose: generates auxiliaries in yes-no questions; it inserts DO when necessary
 Argument pattern: genyesno(ClausePropertyList, Person, Number, GeneratedAuxList)
 List of arguments: ClausePropertyList is the prop functor to be found at clause level

getagr
 Class: GENERATION
 Purpose: fills in the agreement feature in the first auxiliary
 Argument pattern: getagr(Auxiliary, Auxagree, Tense, ToOrNotTo)
 List of arguments: Tense: to, bare and ing are also possible values, by the side of proper
tense values (present / past)
 ToOrNotTo: either a one-element list ([to]) or an empty list ([])

inlist
 Class: UTIL / CHECK
 Purpose: nondeterministic check that an element belongs to a list
 Argument pattern: inlist(Element, List)

insert
 Class: UTIL
 Purpose: inserts an element into a list (used by insertion sort)
 Argument pattern: insert(Element, List, NewList)

insort
 Class: UTIL
 Purpose: sorts the args in canonical order for outputting in the parse, dropping athematic args from
the list (see drop)
 Argument pattern: insort(List, SortedList)

interrogative
 Class: LEXICAL
 Purpose: provides lexical entries for interrogatives
 Argument pattern: interrogative(InputWordList, OutputWordList, Tree, Semrestric, PPsemantics,
PpOrNp)
 List of arguments: Semrestric: semantic restriction for interrogative nps
 PPsemantics: a list of semantic features for interrogatives playing the part
of an adverbial (why, when, how, ...)
 PpOrNp: indicates whether the interrogative plays the part of an np or an
adverbial (who vs when)

m_adj
 Class: LEXICAL / MACRO
 Purpose: provides lexical entries (macro-clauses) for adjectives (expanded by adj)
 Argument pattern: m_adj(Lexeme, Adjective, Semrestric, Arglist)
 List of arguments: Lexeme: includes a reading number, e.g. black_1
 Adjective: the positive degree of the adjective, e.g. black
 Semrestric: the semantic restriction placed by the adjective on the noun it
modifies
 Arglist: the adjective's argument list, possibly empty

m_noun
 Class: LEXICAL / MACRO

 Purpose: provides lexical entries (macro-clauses) for nouns (expanded by noun)
 Argument pattern: Two patterns, the first one for countable nouns, the second for uncountable
ones:
 m_noun(Lexeme, Sing, Plural, Semantics, Arglist)
 m_noun(Lexeme, Noun, Semantics, Arglist)
 List of arguments: Lexeme: includes a reading number, e.g. patience_1
 Sing, Plural: inflectional variants
 Noun: invariant form (for uncountables)
 Semantics: noun semantics is a list of semantic features
 Arglist: the noun's argument list, possibly empty

m_verb
 Class: LEXICAL / MACRO
 Purpose: provides lexical entries (macro-clauses) for verbs (expanded by verb)
 Argument pattern: m_verb(Verbclass, Particle, Lexeme, Infinitive, Firstp, Secondp, Thirdp, Ing,
FirstOrThirdPast, SecondOrPluralPast, En, Transitivity, Semrestric, Arglist)
 List of arguments: Verbclass: provides a handle for the lexicographer, and is used by the
parser and the generator as a check
 Particle: the type and form of the particle attached to the verb, if any, e.g.
part0:down
 Lexeme: includes a reading number, as in look_down_on_1
 Infinitive: bare infinitive form, e.g. look
 Firstp: first person singular present tense
 Secondp: second person present tense, plural present tense (all persons)
 Thirdp: third person singular present tense
 Ing: ing-form
 FirstOrThirdPast: first or third singular past tense
 SecondOrPluralPast: second person past tense; plural past tense (all
persons)
 En: en-form
 Transitivity: transitivity feature
 Semrestric: semantic restriction on the deep subject
 Arglist: the verb's argument list

modifier
 Class: PARSING
 Purpose: parses modifiers, strings in the input list that do not match lexical args as provided in the
predicate's arglist
 Argument pattern: modifier(InputWordList, OutputWordList, Type, Gaplist, Preference,
Precedence, Rel, Intrel, ParseTree, SubjectFunctor)
 List of arguments: Type: to distinguish vp from np modifiers
 Rel, Intrel: to keep track of relatives or interrogatives inside the modifier
 SubjectFunctor: to provide a subject to be used for vps within the modifier

modppnp
 Class: CHECK / DATA BASE
 Purpose: checks that a given preposition can head an np modifier
 Argument pattern: modppnp(Preposition)

modppvp
 Class: CHECK / DATA BASE
 Purpose: checks that a given preposition can head a vp modifier
 Argument pattern: modppvp(Preposition)

myappend

 Class: UTIL
 Purpose: does list appending; is able to deal with the value none sometimes used in the property
list of the clause
 Argument pattern: cf. append

nonfinite
 Class: CHECK / GENERATION / DATA BASE
 Purpose: checks that the inflectional specification of the wordform is non-finite
 Argument pattern: nonfinite(InflectionSpec)
 List of arguments: InflectionSpec: ing, toinfinitive, en_active, ...

noun
 Class: LEXICAL
 Purpose: expands macro-clause for nouns, i.e. m_noun
 Argument pattern: noun(InputWordList, OutputWordList, ParseTree, Number, Semlist, Arglist)
 List of arguments: cf. m_noun

nounphrase
 Class: PARSING
 Purpose: parses non-coordinate nps
 Argument pattern: nounphrase(InputWordList, OutputWordList, Gaplist, Index, Preference,
Weight, Rel, Intrel, Function, ParseTree, Number, Person, Semantics)
 List of arguments: Index: used for coindexing purposes
 Rel, Intrel: used in the treatment of relative and interrogative nps
 Number, Person: percolated from the head noun
 Semantics: a list of semantic features percolated from the np head

nsubject
 Class: PARSING / CHECK
 Purpose: checks that the np which bears the function passed as arg can be the subject of further
vps to the right (the running subject, used in control relations)
 Argument pattern: nsubject(Function)
 List of arguments: Function: a grammatical function, such as subject_inf, object, ...

oraise
 Class: LEXICAL / GENERATION
 Purpose: checks that a verb belongs to the class of object-raising verbs
 Argument pattern: oraise(Verb, Requires)
 List of arguments: Requires is set to the particle to, indicating that oraise verbs are followed by a
to-infinitive (I believe him to have taught linguistics)

oraising
 Class: GENERATION
 Purpose: carries out subject-to-object raising in generation: the subject in the controlled clause is
extracted and made the object of the matrix clause (the control predicate will take care of deleting the
subject of the controlled clause through ghosting)
 Argument pattern: oraising(DeeperTree, MoreSurfacyTree)

parse
 Class: PARSING
 Purpose: main predicate for the parser. Parse parses main declarative clauses, yes-no questions
and wh-questions
 Argument pattern: parse(InputWordList, OutputWordList, ParseTree)

passive

 Class: GENERATION
 Purpose: restores the surface subject and produces a by-phrase for the deep subject
 Argument pattern: passive(DeeperTree, MoreSurfacyTree)

pick
 Class: UTIL
 Purpose: non-deterministic selection of an element in a list
 Argument pattern: pick(List, Element, RemainderOfList)

poids
 Class: UTIL
 Purpose: computes the rank of a parse subtree according to a given canonical order. It calls on
assoc
 Argument pattern: poids(ParseTree, Rank)
 List of arguments: Rank is numeric; the smaller it is, the nearer to the verb the argument whose
structure is reflected in the subtree has to be

pp
 Class: LEXICAL
 Purpose: provides lexical clauses for personal pronouns
 Argument pattern: pp(InputWordList, OutputWordList, AgreementFunctor, Person, Number,
Gender, Function, SemFeatureList)
 List of arguments: AgreementFunctor is ppro(Person, Number, Gender)
 SemFeatureList is a list of semantic features (the list format is selected to
maintain coding conformity with other nps)

precede
 Class: PARSING
 Purpose: in a list of instantiated args and modifiers, checks that the weight of an element is not
greater than the one of the next element to its right
 Argument pattern: precede(PosprecLeft, PosprecRight)
 List of arguments: PosprecLeft and PosprecRight are posprec functors:
posprec(PositionInLexicalArglist, Weight), where PositionInLexicalArglist is the standard position of
the element as specified in the lexical entry for the arg-bearer, and Weight is to be computed in situ (i.e.
while parsing the clause) to account for the end-placement of heavier constituents

prep
 Class: LEXICAL
 Purpose: provides lexical clauses for prepositions
 Argument pattern: prep(InputWordList, OutputWordList, Tree, SemList)
 List of arguments: Semlist is a list of possible semantic values to be associated with the pp
governed by the prep, e.g. [direction, location, topic] for ON

prepgen
 Class: GENERATION
 Purpose: undoes the subject assignments produced by the parser to account for raising, passive,
extraposition, ... and calls on passive, control, oraising, sraising and extrapos
 Argument pattern:prepgen(DeeperTree, MoreSurfacyTree)

prepphrase
 Class: PARSING
 Purpose: parses prepositional phrases
 Argument pattern: prepphrase(InputWordList, OutputWordList, Gaplist, Index, NPIndex,
Preference, Weight, Preposition, Rel, Intrel, Function, ParseTree, SemPP, SemNP)
 List of arguments: Index: index of the whole pp

 NPIndex: index of the np inside the pp
 Rel, Intrel: keep track of relatives and interrogatives inside the pp
 SemPP: inherited from the prep
 SemNP: inherited from the np within the pp

priority
 Class: PARSING
 Purpose: determines person priority in coordinate structures (you and I --> we, etc.)
 Argument pattern: priority(Person1, Person2, WhoWins)
 List of arguments: WhoWins is the lower of Person1 and Person2

psubject
 Class: PARSING / CHECK
 Purpose: checks that the arg bears a function which enables it to be turned into the subject of the
corresponding passive
 Argument pattern: psubject(Function)
 List of arguments: Function: indirect_object, object, etc.

relative
 Class: LEXICAL
 Purpose: provides lexical clauses for relative pronouns
 Argument pattern: relative(InputWordList, OutputWordList, ParseTree, SemNP, SemPP,
NPOrPP)
 List of arguments: SemNP: a semantic feature or the string norestriction (associated with
np relatives such as who, which, that)
 SemPP: a list of semantic features (associated with adverbial relatives such
as how, why, where, when)
 NPOrPP: marker to indicate whether the relative is np or pp-like

relclause
 Class: PARSING
 Purpose: parses relative clauses
 Argument pattern: relclause(InputWordList, OutputWordList, Preference, ParseTree, GapList,
Person, FunctionInRel, NounSem, NumberAntecedent)
 List of arguments: FunctionInRel: function of the relative pronoun within the relative
clause
 NounSem, NumberAntecedent: these two values are inherited from the
antecedent

reog
 Class: PARSING
 Purpose: keeps track of deep subject under passive and other subject-changing transformations
 Argument pattern: reog(Voice, Class, SubjectOnEntry, Arglist, SubjectOnExit, NewArgList,
PromotedFunction)
 List of arguments: Class: predicate class as specified in the lexical entry
 SubjectOnEntry and SubjectOnExit are subject functors of the form
(n)subject(ParseTree,Semantics)
 PromotedFunction points to a function in the active S that can be promoted
to subject of the passive

satisfy
 Class: PARSING
 Purpose: matches an element in the lexical predicate's arglist with a string in the input word list
 Argument pattern: satisfy(InputWordList, OutputWordList, GapList, Preference, Precedence, Rel,
IntRel, ParseTree, Arg, SubjectOnEntry, SubjectOnExit)

 List of arguments: Rel, IntRel are used to keep track of relatives and interrogatives
 Arg: the lexical argument to be matched
 SubjectOnEntry: subject functor for the running subject on entering
satisfy
 SubjectOnExit: subject functor for the running subject on exiting satisfy

satisfylist
 Class: PARSING
 Purpose: matches the arguments in the predicate's arglist against the input word list; calls
satisfy
 Argument pattern: satisfylist(InputWordList, OutputWordList, ArgOrModFound, Preference,
Weight, Rel, IntRel, Voice, ParseTreeList, NporVp, Arglist, Func, SubjectFunctor)
 List of arguments: cf satisfy +
 ArgOrModFound: flag to indicate whether a match has been found (either
an argument or a modifier)
 NpOrVp: flag to indicate whether the arglist belongs to an np or a vp
 Func: grammatical function in the active that can be promoted to subject of
passive
 SubjectFunctor: subject functor for the running subject

second_header
 Class: GENERATION / CHECK / DATA BASE
 Purpose: checks the environment in generation
 Argument pattern: second-header(Header)
 List of arguments: Header: clause, np_modifier, adj_arg, ...

sentence
 Class: PARSING
 Purpose: parses declarative clauses
 Argument pattern: sentence(InputWordList, OutputWordList, GapList, Preference, ParseTree,
Type, PersonVp, Number, Voice)
 List of arguments: Type: finite / nonfinite
 PersonVp: the person is inherited from the vp
 Voice: uninstantiated if the voice is active

sfok
 Class: SEMANTICS
 Purpose: checks that nps and pps satisfy the semantic requirements of verbs - the feature required
by the verb must belong to the list of semantic features associated with the noun, or must be reachable
from one of them through feature implications (up) materializing a feature hierarchy
 Argument pattern: sfok(SemRestric, ListOfFeatures)
 List of arguments: SemRestric is a semantic restriction
 ListOfFeatures is a list of semantic features

sraise
 Class: LEXICAL / GENERATION
 Purpose: checks that a verb is a subject-to-subject raising verb
 Argument pattern: sraise(SraisingVerb, to)
 List of arguments: to is the infinitive particle to used in generating the nonfinite complement
clause (John seems to teach linguistics)

sraising
 Class: GENERATION
 Purpose: takes care of subject-to-subject raising
 Argument pattern: sraising(DeeperTree, MoreSurfacyTree)

subject_active
 Class: GENERATION / CHECK / DATA BASE
 Purpose: checks that the arg which bears the function passed as arg to subject_active can be
the subject of a clause in the active voice
 Argument pattern: subject_active(Function)
 List of arguments: Function must be either subject or subject_inf if the predicate is to succeed

up
 Class: SEMANTICS
 Purpose: explores a semantic hierarchy to exploit semantic inheritance relations (just like the
ancestor predicate)
 Argument pattern: up(SubClass, BiggerClass)

up1
 Class: SEMANTICS / DATA BASE
 Purpose: builds up an ako relation in a semantic hierarchy (just like the parent predicate)
 Argument pattern: up1(SubClass, BiggerClass)

verb
 Class: LEXICAL / EXPANSION
 Purpose: expands m_verb clauses (macro-clauses for verbs)
 Argument pattern: verb(InputWordList, OutputWordList, Class, ParseTree, Finiteness, Tense,
Number, Agreement, SemSubj, Args)
 List of arguments: Class: provides a handle for the lexicographer and is used for various
checks in the parser and generator
 Agreement: the agreement value of the verb
 SemSubj: the semantic restriction placed by the verb on the (deep) subject
 Args: the verb's argument list

verbphrase
 Class: PARSING
 Purpose: parses verb phrases
 Argument pattern: verbphrase(InputWordList, OutputWordList, SubjectOnEntry, Gap,
Preference, ParseTree, Rel, Intrel, Type, Tense, Aspect, Modality, Number, Person, Voice,
SubjectOnExit)
 List of arguments: SubjectOnEntry is a subject functor (subject(Tree, Sem)) giving the
running subject on entering the procedure
 Rel, Intrel: used in the treatment of relatives and interrogatives inside the vp
 Type: finite / nonfinite
 SubjectOnExit is a nsubject functor (nsubject(Tree,Sem)) giving the
running subject on exiting the procedure

whquestion
 Class: PARSING
 Purpose: parses wh-questions as main clauses
 Argument pattern: whquestion(InputWordList, OutputWordList, Preference, ParseTree)

The predicates whose names begin with an x deal with coordinate structures; they have the same
argument pattern and argument list as their simpler equivalents. They are:

xadjphrase
xaux
xnoun
xnounphrase

xprepphrase
xrelclause
xsentence
xverbphrase

yesnoquestion
 Class: PARSING
 Purpose: parses yes-no questions
 Argument pattern: yesnoquestion(InputWordList, OutputWordList, Preference, ParseTree)

Index to Prolog Predicates
PA points to a predefined predicate specific to Arity Prolog, or at least not standardly available in the
family of Edinburgh Prologs. For the non-PA predicates the last reference generally points to the
appendix on Prolog predicates.

A

abort(PA), 116

accu, 94; 179

adj, 179

adjphrase, 62

adverb_sentence, 33; 179

agree, 35; 73; 179

allopt, 31; 179

allsubject, 113; 180

append, 180

arglist, 29; 38; 83; 180

assoc, 76; 80; 180

aux, 50; 65; 181

B

before, 80; 181

C

c_sentence, 33; 95; 181

checkaux3, 49; 66; 181

checksem, 89; 90; 181

close(PA), 117

concat(PA), 116

control, 42; 112; 182

controller, 42; 182

corenounphrase, 56; 61; 78; 85; 106; 182

create(PA), 117

cv, 42; 182

D

determiner, 105; 182

drop, 81; 183

E

expos, 183

extrapos, 48; 183

F

first, 183

first_header, 111; 183

flatten, 183

G

gen, 43; 51; 59; 60; 69; 70; 71; 74; 76; 79; 99; 183

genasp1, 70; 184

genasp2, 70; 184

generate, 54; 115; 184

genlist, 60; 184

genyesno, 74; 184

getagr, 73; 184

I

ifthenelse(PA), 56; 116

inlist, 88; 185

insert, 80; 185

insort, 80; 185

intclause, 105

interrogative, 185

M

m_adj, 185

m_noun, 63; 82; 86; 87; 186

m_verb, 15; 16; 17; 19; 22; 28; 40; 43; 44; 47; 75; 86; 87; 92; 114; 186

modifier, 32; 77; 78; 79; 93; 187

modppnp, 77; 187

modppvp, 77; 187

myappend, 49; 66; 187

N

nonfinite, 114; 187

noun, 85; 187

nounphrase, 57; 58; 59; 100; 102; 104; 188

nsubject, 41; 188

O

open(PA), 117

oraise, 71; 72; 113; 114; 188

oraising, 71; 112; 113; 188

P

parse, 32; 188

passive, 38; 111; 114; 188

pick, 30; 189

poids, 75; 189

pp, 59; 189

precede, 189

prep, 189

prepgen, 110; 190

prepphrase, 63; 101; 106; 190

priority, 36; 190

psubject, 37; 190

R

read_line(PA), 117; 121

relative, 57; 58; 190

relclause, 103; 106; 191

reog, 37; 38; 45; 191

S

satisfy, 27; 30; 40; 41; 44; 45; 47; 62; 63; 89; 90; 93; 191

satisfylist, 30; 31; 192

second_header, 110; 111; 192

sentence, 34; 35; 84; 93; 192

sfok, 85; 87; 88; 192

sraise, 46; 193

sraising, 46; 193

subject, 113

subject_active, 113; 193

U

up, 84; 193

up1, 84; 193

V

verb, 17; 193

verbphrase, 29; 66; 68; 194

W

whquestion, 52; 53; 194

X

xnoun, 85

xnounphrase, 36

xprepphrase, 64

xsentence, 33; 95; 96; 97; 98

Y

yesnoquestion, 49; 50; 194

References
1. Prolog

a) Bratko, I., Prolog Programming for Artificial Intelligence, Addison-Wesley, 1990, second edition

b) Clocksin, W. F. and Mellish, C. S., Programming in Prolog, Third Edition, Springer-Verlag, 1987

c) Marcus, C., Prolog Programming, Addison-Wesley, 1986

d) Ross, P., Advanced Prolog, Addison-Wesley, 1989

e) Sterling, L. and Shapiro, E., The Art of Prolog, Advanced Programming Techniques, The MIT Press,
1986

2. Prolog and NLP

a) Covington, M. A., Natural Language Processing for Prolog Programmers, Englewood Cliffs, Prentice
Hall, 1993

b) Gal, A, et al., Prolog for Natural Language Processing, Wiley, Chichester, 1991

c) Gazdar, G. and Mellish, Ch., Natural Language Processing in PROLOG, Addison-Wesley, Reading,
Mass., 1989.

d) Pereira, F.C.N. and Shieber, S.M., Prolog and Natural-Language Analysis, CSLI Lecture Notes, Nr
10, 1987

e) Walker, A. et al., Knowledge Systems and Prolog, Addison-Wesley, Reading, Mass, 1987.

3. Linguistics

Shieber's book is a succinct, but very informative introduction to the concept of unification in grammar,
which plays a crucial role in contemporary linguistic theories.

Shieber, S., An Introduction to Unification-Based Approaches to Grammar, Chicago University Press,
Chicago, 1986

On linguistic theories belonging to the generative framework, the following two introductions stand out:

Sells, P, Lectures on Contemporary Syntactic Theories, CSLI Lecture Notes Nr 3, Chicago University
Press, Chicago, 1985

Horrocks, G., Generative Grammar, Longman, London, 1987

The four main models are described in the following books, which do not aim at pedagogical
presentation:

1) Lexical Functional Grammar (LFG)

Bresnan, J. W., Kaplan, R. M., Lexical Functional Grammar, in Bresnan, J.W. (ed.), The Mental
Representation of Grammatical Relations, Cambridge, Mass., MIT Press, 1982

2) Generalized Phrase Structure Grammar (GPSG)

Gazdar, G., Klein, E., Pullum, G., Sag, I., Generalized Phrase Structure Grammar, Basil Blackwell,
Oxford, 1985

3) Head-Driven Phrase Structure Grammar (HPSG)

Pollard, C. J, Sag, I. A., Information-based Syntax and Semantics, Vol. 1: Fundamentals, CSLI Lecture
Notes nr 13, Chicago University Press, Chicago, 1987; Vol.2: Agreement, Binding, and Control, 1991.

4) Government and Binding (GB)

Chomsky, N., Lectures on Government and Binding, Foris, Dordrecht, 1982

Eclectic and fairly comprehensive:

Quirk, R, Geenbaum, S, Leech, G., Svartvik, J., A Comprehensive Grammar of the English Language,
Longman, 1985

Dictionary:

LDOCE = P.Procter (ed.), Longman Dictionary of Contemporary English, Longman, London, 1978

Other publications referred to:

Aho et al. 1988 = Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, The AWK Programming
Language, Addison-Wesley, Reading, Mass., 1988

Alshawi et al. 1992 = Alshawi, H. et al., The Core Language Engine, The MIT Press, Cambridge, Mass.
and London, 1992

Boguraev and Briscoe 1989 = Boguraev, B. and Briscoe, T. (eds) ,Computational Lexico-graphy for
Natural Language Processing, Longman, London and New York, 1989

Bresnan 1981 = Bresnan, J., A Realistic Transformational Grammar , in Halle, M., Bresnan, J. and
Miller, G.A. (eds), Linguistic Theory and Psychological Reality, The MIT Press, Cambridge, Mass., 1981

Dahl and Abramson 1984 = Dahl, V. and Abramson, H., On gapping grammars, Proceedings Second
Logic Programming Conference, Uppsala, 1984

Dymetman and Isabelle 1990 = Dymetman, M. and Isabelle, P., Grammar bidirectionality through

controlled backward deduction, in Saint-Dizier and Szpakowicz 1990, pp. 275-293

Flickinger et al. 1987 = Flickinger, D., Nerbonne, J., Sag, I., and Wasow, T., Toward evaluation of
NLP systems, Workshop paper at the 25th Int. Mtg. of the Assoc. for Computational Linguistics, Stanford
University, Cal., USA

Hirschman and Dowding 1990 = Hirschman, L. and Dowding, J., Restriction Grammar: a logic
grammar, in Saint-Dizier and Szpakowicz 1990, pp. 141-167

Isabelle et al. 1988 = Isabelle, P., Dymetman, M. and Mackiovitch, E., CRITTER: a translation system
for agricultural market reports, Proceedings of the 12th International Conference on Computational
Linguistics, Budapest, 1988

Matsumoto 1991 = Matsumoto, Y., Handling Coordination in a Logic-based Concurrent Parser, in
Brown, C. and Koch, G. (eds), Natural Language Understanding and Logic Programming III , Elsevier
Science Publishers, 1991, pp. 1-12

Matsumoto et al. 1983 = Matsumoto, Y., Tanaka, H., Hirakawa, H., Miyoshi, H. and Yasukawa, H.,
BUP: a bottom-up parser embedded in Prolog, New Generation Computing, 1(2), 1983

Michiels 1982 = Michiels, A., Exploiting a Large Dictionary Data Base, Unpublished PhD Thesis,
University of Liège, Liège, 1982

McCord 1982 = McCord, M. C., Using slots and modifiers in logic grammars for natural language,
Artificial Intelligence, Vol. 18, pp. 327-367

McCord 1987 = McCord, M. C., Chapter 5 of Walker et al. 1987

McCord 1989a = McCord, M. C., A New Version of the Machine Translation System LMT, Journal
of Literary and Linguistic Computing, 4, pp. 218-229

McCord 1989b = McCord, M. C., LMT and Slot Grammar , paper read at the IBM Europe Institute,
August 1989, Garmisch-Partenkirchen

McCord 1990 = McCord, M. C., SLOT GRAMMAR: A System for Simpler Construction of
Practical Natural Language Grammars, in Studer, R. (ed), International Symposium on Natural
Language and Logic, Lecture Notes in Computer Science, Springer-Verlag

Pereira 1981 = Pereira, F.C.N., Extraposition Grammars, American Journal of Computational
Linguistics, Vol.9, Nr 4, 1981

Pereira and Warren 1980 = Pereira, F.C.N, and Warren, D.H.D., Definite clause grammars for
language analysis: a survey of the formalism and comparison with augmented transition networks,
Artificial Intelligence, 13 (3), 1980

Saint-Dizier and Szpakowicz 1990 = Saint-Dizier, P. and Szpakowicz, S., (eds), Logic and Logic
Grammars for Language Processing, Ellis Horwood, Chichester, 1990

Saint-Dizier et al. 1990 = Saint-Dizier, P., Toussaint, Y., Delaunay, C., Sebillot, P., A natural language
processing system based on the government and binding theory, in Saint-Dizier and Szpakowicz
1990, pp. 108-140

Tomita 1991 = Tomita, M., Why Parsing Technologies, in Tomita, M. (ed), Current Issues in Parsing
Technology, Kluwer Academic Publishers, Boston, 1991

[1] We follow Alshawi et al. 1992 (p.1) in distinguishing between analysis (using only linguistic knowledge) and
interpretation (applying contextual knowledge)

[2] The companion disk includes the following :

- the grammar files for the analysis and generation components of horatio

- the vocabulary files

- the CMD(OS/2) and BAT(DOS) files for compiling and linking the program

- the AWK program used for the selective downloading of the lexicon

- the SED program used for manipulating the Prolog terms to make them suitable for the generator

- the test suites used to demonstrate the capabilities of the system for parsing and generation

- some sample parses highlighting some of the capabilities of the system

All files are documented and ready to be compiled or run, on both DOS and OS/2.

[3] Arity Prolog is produced by Arity Corporation, Damonmill Square, Concord, Massachusetts, USA.

[4] McCord 1987 = Chapter 5 (Natural Language Processing in Prolog) of Adrian Walker (ed), Knowledge Systems and
Prolog, Addison-Wesley, Reading, Mass., 1987

[5] It should be emphasized here that horatio has never been part of 'standard' Eurotra, but has always remained a sideline.
More information on Eurotra can be found in the various volumes in the Studies in Machine Translation and Natural
Language Processing series published by the Commission of the European Communities in Luxemburg, especially in Volumes
I and II, 1991 (I : The Eurotra Linguistic Specifications ; II : The Eurotra Formal Specifications). Both volumes are edited by
C. Copeland, J. Durand, S. Krauwer and B. Maegaard.

[6] In agreement with McCord (see McCord 1987, p. 338), I do not include the subject in the predicate's argument list. As
McCord writes, "Since every verb has a subject (in a finite clause), we will not actually list the subject slot by name, but will
just put the subject marker in a separate argument of the lexical entry" (in McCord's system a marker is a semantic
restriction).

[7] satisfy is similar to fill in McCord's Modular Logic Grammar (see McCord 1987, p. 344 and foll.)

[8] Satisfylist is similar to postmods in McCord's MLG (see McCord 1987, p. 344 and foll.)

[9] Pick is defined by the following code :

 pick([Head|Tail],Head,Tail).
 pick([Head|Tail],Elem,[Head|Ntail]) :-
 pick(Tail,Elem,Ntail).

[10] Cf the theme in McCord's MLG (see McCord 1987, p. 346)

[11] Note that this is the same SEEM as the sraising one.

[12] An easy question for you to answer is dealt with below.

[13] Covington 1992 (p. 300) defines a predicate once in standard Prolog whose semantics is the same as that of the snips.

[14] McCord (see McCord 1987, p. 348 and following) has designed a similar system for precedence relations. His predicate
precede inspired the treatment in horatio.

[15] Matsumoto 1991 has a similar check: "The rules for coordination handling are activated only when a coordinate
conjunction appears in the input" (p. 10).

[16] Cf. the section on left extraposition in McCord 1987 (p. 351 and foll.).

[17] At least in the subset of English that horatio attempts to cover, which does not include Our Father, which art in Heaven ...

[18] FAR code can be housed in other memory segments than the 64K segment automatically allocated to Arity Prolog code. In
the segmented memory model used in this version of Arity Prolog, such declarations are necessary in middle-sized and large
grammars.

[19] MKS (Mortice Kern Systems, Ontario, Canada) produce implementations of the Unix utilities for the DOS and OS/2
operating systems, including awk (for which the OS/2 implementation provides a large version - awkl - which allows longer
records to be treated).

[20] The reader is assumed to know this UNIX utility; see Aho et al. 1988.

[21] RLRN is the conjunction of two field (i.e. subject matter) codes:

 RL : Religion (not Bible) (Christian and/or Jewish)

 RN : Religion (other than Christian and Jewish)

[22] H in byte 5 : deep subject has feature [+ HUMAN]

[23] X in byte 10 : deep object has feature [+ ABSTRACT] or [+ HUMAN]

[24] T in byte 10 : deep object has feature [+ ABSTRACT]

