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Abstract. In the present work we study, both theoretically and experimentally, the temperature 
increase in a bulk high-temperature superconductor subjected to applied AC magnetic fields of large 
amplitude. We calculate analytically the equilibrium temperatures of the bulk sample as a function of 
the experimental parameters using a simple critical-state model for an infinitely long type-II 
superconducting slab or cylinder. The results show the existence of a limit heat transfer coefficient 
(AUlim) separating two thermal regimes with different characteristics. The theoretical analysis predicts 
a “forbidden” temperature window within which the temperature of the superconductor can never 
stabilize when the heat transfer coefficient is small. In addition, we determine an analytical expression 
of two threshold fields Htr1 and Htr2 characterizing the importance of magneto-thermal effects and 
show that a thermal runaway always occurs when the field amplitude is larger than Htr2. The 
theoretical predictions of the temperature evolution of the bulk sample during a self-heating process 
agree well with the experimental data. The simple analytical study presented in this paper enables 
order of magnitude thermal effects to be estimated for simple superconductor geometries under 
applied AC magnetic fields and can be used to predict the influence of experimental parameters on the 
self-heating characteristics of bulk type-II superconductors. 
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1. Introduction 
 
The losses associated with the motion of vortices when type-II superconducting materials are penetrated by a 
variable magnetic field may give rise to a significant temperature increase and a degradation of the 
superconducting properties [1-3]. This potential problem is usually addressed in coated conductor or tape 
applications by sub-dividing the superconductor into “filaments” surrounded by a metallic matrix, which 
reduces significantly losses in the superconductor [4]. In addition, the metal matrix in the vicinity of the 
superconductor serves both to carry away heat generated locally and to distribute current between filaments 
if an individual filament is damaged [5]. A sub-division of the material, however, is not relevant to large, 
single grain bulk melt-processed superconductors, which are fabricated usually in disc or cylindrical 
geometries, for a variety of permanent magnet-like applications [6], such as magnetic bearings [7] and high 
power density rotating machines [8-10] due to their ability to trap large magnetic fields [11,12]. In this case, 
the material is likely to experience transient or periodic variations of the applied magnetic field that are due, 
for example, to vibrations, lateral movement or irregular magnetization of a permanent magnet that may 
interact with the superconductor [13,14]. Although the most severe damages arise when the time-varying 
field perturbations are perpendicular to the initial magnetization [15-17], the vortex motion in parallel 
configuration may also cause large hysteresis losses and possibly considerable self-heating which, in turn, 
may have a detrimental effect on the initial trapped flux of the bulk superconductor [18-28].  
 
The problems of the temperature rise within bulk superconductors subjected to a variable magnetic field H(t) 
may be classified as a function of the time-dependence of H(t) as follows:  
 

(i) Pulsed field magnetization (PFM), involving extremely large sweep rates (~ 100 T/s) during 
short times (~ 1-100 ms);  

(ii) Traditional magnetization procedures, either during field cooled (FC) or after a zero field cooled 
(ZFC) magnetization process (i.e. at low sweep rates ranging typically between 1 and 10 mT/s); 

(iii) AC magnetic fields, mainly at the frequency of the power line (50 or 60 Hz) and amplitudes up 
to ~ 100 mT.  

 
The first situation (pulse field magnetization) leads usually to the most severe effects of self-heating, as 
demonstrated by experimental studies of bulk melt-processed materials [29-30]. For example, temperature 
rises of up to 30 K have been observed, depending on the initial temperature, the amplitude and duration of 
the pulsed field during the magnetization of bulk YBCO [29].  Although much smaller field sweep rates are 
involved, the second situation (magnetization during a FC or after a ZFC procedure), can induce temperature 
rises up to ~ 7 K [19]. These results indicate clearly that the generation of heat is a crucial parameter when 
estimating the field-trapping ability of high performance, bulk superconducting magnets. In the third 
category of experiments, the effects of the application of an AC magnetic field on a bulk melt-processed 
YBCO sample can lead to a significant temperature increase after a few minutes and, if the bulk material is 
magnetized permanently prior to application of the AC field, the losses can result in a severe decay, and even 
a complete collapse, of the trapped magnetic moment [22,23].   
       
The temperature rise of a bulk superconductor subjected to an applied AC magnetic field, as usually 
observed in experiments [24,25] is shown schematically in Fig. 1. The initial temperature of the sample 
cooled cryogenically using liquid nitrogen at atmospheric pressure is represented by T0 (= 77.4 K). The AC 
magnetic field H(t) = Hm sin(ωt) is applied at t = 0. At low field amplitudes Hm, the sample temperature 
increases and reaches a steady-state value that is function of Hm but smaller than the superconducting critical 
temperature Tc.  Thermal runaway occurs on increasing the field amplitude further that results in a sharp 
temperature increase up to an equilibrium value close to Tc. The experimentally observed temperature rise of 
a bulk sample subjected to AC fields of varying amplitude can be described successfully by a simple analysis 
based on the Bean model [31] applied to a type-II superconducting cylinder assuming a linear temperature 
dependence of the critical current density Jc(T) [22,32] and a constant convective heat transfer coefficient 
between the sample and the coolant [24]. In such studies performed, however, the theoretical T(t) curves are 
obtained for a given set of material parameters and heat transfer characteristics that are representative of the 
superconducting sample under study. These parameters are the radius a and volume V of the cylindrical 
sample, the superconducting critical temperature Tc, coolant temperature T0, initial critical current density 
Jc(T0), convective heat transfer coefficient U, contact area between the sample and the coolant A, heat 
capacity cp, field amplitude Hm and frequency of the applied field f. Values for each of these parameters can, 
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of course, be modified in the modelling but the set of T(t) curves generated consequently does not allow the 
most relevant parameters affecting the thermal behaviour of the sample either to be identified or to 
understand how they interact with each other. 
 
The objective of the present work is to investigate further the mechanisms of self-heating of a bulk 
superconductor subjected to an AC field by determining analytical expressions for the sample temperature. 
The purpose of the investigation is to clarify the exact role of the different parameters indicated above. More 
specifically, this study will address the following issues: 
 

(i) Determination of the exact steady-state (equilibrium) temperature of the sample as a function of 
the experimental parameters;  

(ii) Investigation of whether the temperature behaviour illustrated schematically in Fig. 1 is always 
observed when a superconductor is subject to an AC field and whether is it possible to determine 
an analytical expression of the field amplitude separating the low-field (final temperature << Tc) 
and high-field (final temperature ~ Tc) regimes; 

(iii) Establish how the temperature behaviour is modified when the initial sample temperature differs 
from that of the coolant.  

 
The paper is organized as follows. In Section 2, we first investigate the magneto-thermal effects arising in an 
infinite slab subjected to an AC magnetic field and then extend the results to the case of an infinite cylinder. 
In both cases the field is applied parallel to the long direction of the superconductor. The calculations are 
performed within the framework of the one-dimensional Bean model, i.e. finite-size effects and magnetic 
relaxation are neglected. Section 3 describes the experimental details of the temperature measurements 
carried out on a bulk melt-processed sample subjected to AC magnetic fields of large amplitude. The 
theoretical results are analyzed in Section 4 and compared with the experimental data. The conclusions are 
presented in Section 5. 
 
2. Theory 
 
2.1. Magneto-thermal effects for an infinitely long superconductor 
 
In this section we consider an infinitely long type-II superconductor (infinite slab of thickness 2a or infinite 
cylinder of diameter 2a) and determine the magneto-thermal effects resulting from an AC magnetic field 
H(t) = Hm sin(2πf t) applied parallel to the long direction of the sample. The superconductor interacts with 
the cryogenic environment through a heat transfer coefficient U and is assumed to be characterized by a 
thermal conductivity κ much larger than the (U a) product. In such a case the dimensionless Biot number 
Bi = U a / κ is much smaller than unity and the sample temperature T can be taken as uniform [28]. The 
analysis is based on the one-dimensional Bean model for a field-independent critical current density Jc [31]. 
In both cases (slab or cylinder), the full-penetration field Hp(T) at a given temperature T is given by; 
 
      ( ) ( ) aTJTH cp = .     (1) 
 
The hysteresis losses caused by the AC field are usually expressed as a function of the dimensionless 
parameter β  (normalized magnetic field amplitude) defined by; 

p

m
H
H

=β .      (2) 

The superconductor is partially penetrated for β < 1 and fully penetrated for β > 1. The AC losses Qgen 
[expressed in W] generated within a superconductor of volume V for the various approximations are given 
by [3,4]: 
 
In the infinite slab approximation:  
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In the infinite cylinder approximation:  
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In this analysis, the temperature-dependence of Jc is assumed to be linear [22,32], although more refined 
models can be used [33,34]. The Jc(T) law is given by 
 

( ) ⎟⎟
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⎞
⎜⎜
⎝

⎛
−
−

=
0

0 TT
TTJTJ

c

c
cc  ,     (7) 

 
where T0 is the coolant temperature (i.e. 77.4 K), Tc is the critical temperature and Jc0 is the critical current 
density at T = T0. The AC losses Qgen become a function of temperature when the temperature-dependence of 
Jc in Eq. (1)-(6) is introduced to the formulation, as illustrated in Fig. 2 (black curves). It can be seen that the 
losses Qgen(T) between T0 and Tc exhibit a well-defined maximum, above which they decrease down to 0 at 
T = Tc. The AC field amplitude Hm in Fig. 2, is assumed to be smaller than the full-penetration field Hp0 at T0, 
i.e.; 
 
      aJH cp 00 = .      (8) 
 
It should be noted that the partially penetrated (β < 1) and the fully penetrated (β > 1) regimes for an infinite 
slab correspond to parts located on the left and on the right hand-sides of the inflection point appearing in 
Qgen(T) in Fig. 2, whereas the partially and  fully penetrated regimes for the infinite cylinder are delimited by 
the maximum of Qgen(T), i.e. the losses are maximum for β = 1.  
 
The AC losses in the superconductor are associated with heat transfer through the external surface of the 
sample. Previous works have shown the importance of thermal boundary conditions [35]. For simplicity, we 
assume that the heat transfer rate Qout between the superconductor and the cryogenic environment (at 
temperature T0) is given by [22,24] 
 
      ( )0TTAUQout −= ,     (9) 
 
where A represents the contact area between the sample and the coolant [units: m²], U denotes the convective 
heat transfer coefficient [units: Wm-2K-1], and T is the sample temperature. The (AU) product will be 
considered as a single parameter [units: WK-1] in the following analysis, and considered to characterize the 
heat transfer between the sample and the cryogenic fluid. According to Eq. (9), the heat transfer rate Qout(T) 
is a linear function of temperature, and crosses the horizontal axis at T = T0, as shown in Fig. 2. The thermal 
behaviour of the superconductor is then simply predicted by the values of Qgen and Qout, respectively; i.e. if 
Qgen > Qout the sample temperature T increases, if Qgen < Qout, T decreases and the thermal equilibrium 
corresponds to Qgen = Qout. We now examine the various regimes of behaviour illustrated in Fig. 2. 
 
The value of AU (i.e. the slope of the Qout(T) line) in Fig. 2(a) is rather small and such that five different 
regimes are observed, depending on the amplitude of magnetic field Hm. At small field amplitudes 
(Hm < Htr1), the Qgen and Qout curves intersect at some temperature Tinf, slightly above T0. The temperature 
increases up to Tinf (steady-state temperature) if the initial sample temperature is smaller than Tinf, and 
decreases down to Tinf if the initial sample temperature exceeds Tinf. This crossing point corresponds thus to a 
stable thermal equilibrium, since a slight disturbance above this temperature corresponds to Qgen < Qout, i.e. a 
cooling of the sample down to the former temperature Tinf. Similarly, when temperature is slightly decreased 
below Tinf, the Qgen > Qout condition causes the temperature to return to its original value. When the AC field 
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amplitude increases, a second (Tsup , for Hm = Htr1) and a third (Tmed , for Htr1 < Hm < Htr2) intersection points 
occur. It can be readily checked that the temperature Tsup corresponds to a stable equilibrium temperature 
whereas the intersection point at T = Tmed is unstable and cannot be considered as equilibrium temperature 
for the system. At medium field amplitudes (Htr1 ≤ Hm ≤ Htr2), the sample temperature can thus be stabilized 
at two points Tinf and Tsup.  
 
In the common case where the initial sample temperature is equal to that of the cryogenic fluid (i.e. T = T0), 
the AC losses in the superconductor cause the temperature to increase up to Tinf, which corresponds to a 
stable equilibrium. Consequently, the only observed steady-state temperature in this regime is Tinf, provided 
the sample is at an initial temperature of T0. The lower equilibrium temperature disappears (at Hm = Htr2) on 
increasing the magnetic field further, and only one equilibrium temperature remains, i.e. T = Tsup at for field 
amplitudes larger than Htr2.  
 
The different regimes displayed in Fig. 2(a) are separated by two threshold magnetic fields Htr1 and Htr2 that 
are function of the experimental parameters. However, two situations occur when the superconductor is 
placed initially at T0, i.e.; 
 

(i) for Hm < Htr2, the temperature increases up to Tinf 
(ii) for Hm > Htr2, the temperature increases up to Tsup 

 
As a consequence, the relevant magnetic field defining the transition between the two equilibrium 
temperatures is the upper threshold field Htr2. As can be observed in Fig. 2(a), a clear discontinuity arises at 
Hm = Htr2, since the highest possible Tinf is smaller than the smallest Tsup. This indicates that the final 
equilibrium temperature of the superconductor cannot occur within the interval Tinf (Htr2) – Tsup(Htr2); this 
temperature interval is delimited by the vertical dashed lines shown in Fig. 2(a). 
 
The “forbidden” temperature range mentioned above only exists in the case where the heat transfer 
coefficient, AU, is small enough to give rise to the different regimes shown in Fig. 2(a). For large AU values 
(Fig. 2(c)), there is only one intersection point between the Qgen(T) curve the Qout(T) straight line, whatever 
the amplitude of AC field Hm. In this case, the final equilibrium temperature of the superconductor is a 
continuous and increasing function of Hm. This behaviour allows us to define a limit heat transfer coefficient, 
AUlim, separating both situations; the corresponding curves are shown in Fig. 2(b). For AU = AUlim, there is a 
given amplitude of AC field (referred to as “Hlim”) for which the intersection point between Qgen and Qout 
occurs precisely at the inflection point of Qgen(T). This simple property can be used to determine the 
analytical expressions of both AUlim and Hlim, as will be described below. 
 
Having established the different scenario in a general manner, we now turn to determining the analytical 
expressions for the threshold parameters AUlim, Hlim, Htr1 and Htr2, together with the different possible 
equilibrium temperatures. We examine successively the case of an infinite slab (Section 2.2) and of an 
infinite cylinder (Section 2.3). 
 
 
2.2. Threshold parameters and equilibrium temperatures for an infinite slab 
 
In this section, we use the analytical expressions of the losses for an infinite slab [Eq. (3)-(4)] in order to 
determine the different intersection points and regimes illustrated in Fig. (2).  
 
First, the limit field Hlim corresponds to the field amplitude at which the tangent line at the inflection point of 
the Qgen(T) curve cuts the horizontal axis at T = T0. Inserting (7)-(8) into Eq. (3) gives;  
 

( )
22

1 0
0

p
clim

H
aJH == .     (10) 

 
The limit heat transfer coefficient, AUlim, corresponds to the slope of the tangent of Qgen(T) at its inflection 
point, i.e.; 
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It is necessary to calculate the intersection points between the Qgen(T) and Qout(T) curves when AU < AUlim to 
determine the threshold fields Htr1 and Htr2. We introduce dimensionless temperature ( t~ ), magnetic field (x) 
and heat transfer coefficient (α) given by  

 

0

0
TT
TTt~

c −
−

= ,       (12) 

lim

m
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Hx = ,      (13) 

limAU
AU

=α .      (14) 

 
It is also of interest to notice that the normalized heat transfer coefficient α can be expressed as follows; 
  

     ( ) ( )
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where Qout(Tc) is heat transferred when the sample temperature is equal to Tc and Qgen(Hp) denotes the losses 
at a magnetic field amplitude equal the full-penetration field.  
 
The equations corresponding to the equality Qgen(T) = Qout(T) are given by  
 

044 32 =+α−α xt~t~    for t~  ≤ 1 – (x / 2)   (16) 

( ) ( ) ( ) 01314 2 =α+−+α−− t~xt~    for t~  ≥ 1 – (x / 2)    (17) 
 
The normalized lower threshold field xtr1 = (Htr1 / Hlim) corresponds to the value of x for which Eq. (17) has a 
double root and is given by  
 

( )α+α−== 4
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tr
tr H
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Using the expression of Hlim [Eq. (10)], the lower threshold field Htr1 reads 
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Similarly, the x value for which Eq. (16) has a double root corresponds to the normalized upper threshold 
field xtr2 = (Htr2 / Hlim) given by; 
 

312
2 α==

lim

tr
tr H

Hx ,     (20) 

 
which can be rewritten using the expression of Hlim, i.e.; 
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Remarkably, equations (18) and (20) show that the normalized threshold fields can be expressed as a 
function of a single parameter α = AU / AUlim. It can be checked readily that both normalized threshold fields 
are equal to 1 when α = 1.  
 
Now we turn to the determination of the lower and upper equilibrium temperatures Tinf and Tsup. The 
resolution of Eq. (16) in normalized units gives directly; 
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TT
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c
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Equation (22) shows clearly that the normalized lower equilibrium temperature ( inft~ ) is always smaller than 

or equal to 1/2; inft~  it is equal to 1/2 [i.e. Tinf = (T0 + Tc)/2] when the field amplitude equals the upper 
threshold field, i.e. when x = α1/3. At small field amplitudes x << α (Hm << Htr2), the lower equilibrium 
temperature increases as a cubic function of the applied field amplitude, i.e.; 
 

α
≈

4

3xt~inf .      (23) 

 
In a similar manner, the resolution of Eq. (17) gives the normalized upper equilibrium temperature supt~ :  
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At large field amplitudes x >> α (Hm >> Htr2), Eq. (24) can be approximated by 
 

xTT
TT

t~
c
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sup 3

1
0

α
≈

−

−
=− .     (25) 

 
Equation (25) shows that, at large field amplitudes,  the sample temperature follows a hyperbolic function of 
the field amplitude and approaches Tc asymptotically. 
 
 
2.3. Threshold parameters and equilibrium temperatures for an infinite cylinder 
 
In this section, we examine the case of an infinite cylinder (radius a) and determine the same parameters to 
those calculated above for the infinite slab, i.e. the limit heat transfer coefficient and magnetic field AUlim and 
Hlim, the two threshold fields Htr1 and Htr2 and the equilibrium temperatures Tinf and Tsup. Using the same 
procedure as that used for the infinite slab, one finds; 
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The values of Hlim and AUlim for the infinite cylinder [Eq. (26)-(27)] differ from their counterparts determined 
for the infinite slab [Eq. (10)-(11)] by a numerical factor but they exhibit the same dependence with respect 
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with the experimental parameters f, V, Hp0, Tc and T0.  
 
The equations corresponding to the equality Qgen(T) = Qout(T) for an infinite cylinder are given by 
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using the dimensionless variables t~ , x and α defined by Eqs. (12)-(14). The normalized threshold fields 
xtr1 = (Htr1 / Hlim)  and xtr2 = (Htr2 / Hlim)  correspond to the field amplitudes values for which Eq. (28) has a 
double root. The general condition for which a cubic equation  0  d t~c t~b t~a 23 =++ +  has a double root is 
given by [36]; 
 
    0271844 223223 =−+−+− daabcdaccbdb .    (30) 
 
Applying this condition to Eq. (28) leads to; 
 
     04364 22345 =α+α−α−α+ xxxx .    (31) 
 
This polynomial equation has two real (positive) roots for α < 1 that correspond to the normalized threshold 
fields xtr1 and xtr2. The threshold fields for α > 1 do not have physical meaning and Eq. (31) has no real 
positive root. In the particular case of α = 1, Eq. (31) has a double root x = 1, which corresponds to 
Htr1 = Htr2 = Hlim. In the general case, Eq. (31) is not soluble analytically and the threshold fields have to be 
computed numerically. For small values of α, however, approximate analytical solutions can be found. By 
analogy with the exact expressions obtained for the infinite slab [Eq. (18) and (20)], we assume that xtr1 and 
xtr2 for the cylinder follow respectively a α1/2 and a α1/3 dependence for α << 1. Hence approximate 
expressions of the lower and upper threshold fields Htr1 and Htr2 are given by; 
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Now we turn to the determination of the lower and upper equilibrium temperatures, corresponding to the 
roots of Eq. (28) and (29), respectively. The analytical expression of lower equilibrium temperature inft~  is 
not reproduced in this paper but can be obtained from standard formulas for the roots of a cubic function 
[36]. When the field amplitude equals the upper threshold field (x = xtr2), Eq. (28) admits a double root given 
by 
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At small heat transfer coefficients (α << 1), Eq. (33) and (34) show that the lower equilibrium temperature at 
the upper threshold field is equal to inft~  = 1/2 [i.e. Tinf = (T0 + Tc)/2], as is the case for the infinite slab. In the 
particular case α = 1, corresponding to xtr2 = 1, the lower equilibrium temperature at the upper threshold field 
is equal to inft~  = 2/3 [i.e. Tinf = (T0 + 2Tc)/3]. At small field amplitudes, the lower equilibrium temperature 
increases as a cubic function of the field amplitude, i.e.; 
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The analytical expression of the upper equilibrium temperature is obtained by solving Eq. (29), i.e;.  
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At large field amplitudes, x >> α (Hm >> Htr2), Eq. (36) can be approximated by 
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In summary, the equations above allow the characteristics of the thermal behaviour of an infinite type-II 
superconductor subjected to an AC field to be determined. Before analyzing the results, we describe briefly 
the experimental procedure used to measure magneto-thermal effects in bulk melt-processed 
superconductors. 
 
 
3. Experiment  
 
Bulk, melt-processed single domains of YBCO, consisting of a superconducting YBa2Cu3O7-δ (Y-123) 
matrix with discrete Y2BaCuO5 (Y-211) inclusions, were fabricated by top seeded melt growth (TSMG), as 
described in Refs. [37-40]. The present study focuses on a single grain sample (PL1) consisting of a single 
domain pellet of 30 mm diameter and 12 mm thickness. The material is characterized by a critical 
temperature Tc ~ 91.6 K. A Hall probe-mapping experiment carried out above the top-surface of the sample 
reveals a critical current density Jc of ~ 103 A/cm² at 77.4 K. We note that the value of critical current density 
for this sample is below the average level that can be obtained using the TSMG technique [37]. A sample of 
medium quality with uniform superconducting properties was selected specifically for the magneto-thermal 
measurements reported here because, in the partially penetrated state, the AC losses are (to a first 
approximation) inversely proportional to the critical current density Jc [see Eq. (1)-(3)]. A relatively “low” Jc 
ensures that sufficient losses will be generated within the sample at 77.4 K for experimentally accessible 
values of the applied magnetic field amplitude Hm. 
 
Magneto-thermal measurements on this YBCO sample were carried out in a bespoke AC susceptometer 
designed for the characterization of large superconducting samples (up to 32 mm diameter). The apparatus is 
described in details in Ref. [41]; the experimental chamber is schematically illustrated in Fig. 3(a). In this 
system the superconductor is placed in a sample chamber connected to a vacuum rotary pump, enabling a 
medium vacuum (p ~ 2 – 9 10-2 mbar at room temperature) to be achieved. The sample chamber walls are 
made of ultra-high molecular weight polyethylene (PE-UHMW). The sample chamber is immersed directly 
in liquid nitrogen and no helium gas is used in the measurement. In order to minimize the thermal contact 
between the superconductor and the bottom of the sample chamber, the sample is deposited against an 
alumina disk placed on 3 glass spheres (2.4 mm diameter) located at the vertices of a triangle. This 
configuration ensures a small, but reproducible, heat flux rate out of the sample. The temperature of the 
sample is monitored using three type-E thermocouples (chromel-constantan) attached to the top surface at 
various distances from the centre.  
 
The melt-processed sample is initially cooled to 77.4 K in zero applied field (ZFC procedure) in all the 
experiments performed here. This differs from previous studies in which the sample is magnetized 
permanently prior to the application of the AC field [22-24]. The alternating magnetic field is applied 
parallel to the c-axis of the sample and the evolution of temperature with time recorded either with Keithey 
2001 voltmeters (at small dT/dt, typically < 5 K /min) or with AD623 instrumentation amplifiers (when 
dT/dt > 5 K /min) using a PCI 6221 DAQ board from National Instruments. 
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The sample is cooled initially to the lowest possible temperature (i.e. T0 = 77.4 K) in order to determine 
precisely the heat flux rate out of the superconductor in the present experimental system. An AC magnetic 
field H(t) = Hm sin(2π f t) is then applied and magnetic AC losses Qgen(Hm) recorded by the susceptometer. 
The losses induce self-heating which causes the temperature to increase to some equilibrium value Te(Hm) 
that is measured by the thermocouples attached to the sample. The equilibrium condition ensures that the 
magnetic losses and the heat flux rate out of the sample are equal, i.e. Qgen(Hm) = Qout = AU[Te(Hm) – T0]. 
Measurements of Qgen(Hm) and Te(Hm) at several field amplitudes Hm allow the heat transfer coefficient AU to 
be determined by linear regression, as illustrated in Fig. 3(b). Such a procedure leads to AU = 4.94 × 10-

3 W/K, i.e. a convective coefficient U = 1.94 W/m²K, which is 3-4 orders of magnitude lower than the typical 
values of the pool boiling heat transfer coefficient from YBCO to liquid nitrogen [42,43]. The quasi-linear 
behaviour observed between Qgen and Te justifies, a posteriori, the validity of the linear Qout = AU (T-T0) law 
[Eq. (9)]. The very low scatter of the data points (obtained for different measurement runs) also emphasizes 
that the experimental system is characterized by a reproducible heat transfer coefficient. This is direct 
evidence that the apparatus is fully adequate for studying magneto-thermal effects in bulk high-temperature 
superconductors.  
 
 
4. Results and discussion 
 
4.1. Threshold fields as a function of the heat transfer coefficient  
 
Figure 4 shows the analytically calculated threshold fields Htr1 and Htr2 as a function of the heat transfer 
coefficient AU. A log-log scale is used to emphasize the power law behaviour. The heat transfer coefficient 
AU is normalized to the limit value AUlim, whereas both threshold fields are normalized to the limit field Hlim 
defined in Sect. 2.1.  
 
We first consider the threshold fields for the infinite slab, represented by plain lines in Fig. 4. According to 
Eq. (21), Htr2 follows a (AU)1/3 behaviour, as appears by a straight line in Fig. 4. At low values of α = 
AU/AUlim (<<1), the threshold field Htr1 follows roughly a power law with exponent 1/2, as is anticipated 
from Eq. (19). At AU = AUlim, both threshold fields merge into one and their value is equal to Hlim, as 
predicted by the theory. For AU > AUlim, the threshold fields do not have any physical meaning since only 
one self-heating regime occurs. The threshold field values for cylinder, obtained from the numerical 
resolution of Eq. (31) for several α values, are shown by symbols in Fig. 4. The approximations for α <<1 
[Eq. (32) and (33)] appear by dashed lines. As can be seen in Fig. 4, the threshold field values for the slab 
and cylinder geometries are very similar to each other when they are normalized to their “limit” counterparts, 
in spite of different numerical values of AUlim and Hlim. This suggests that the kind of approximation that can 
be used in practice to model the behaviour of a given sample that differs from the slab or cylinder geometry 
(e.g. a parallelepiped) is not crucial; both cylinder and slab approximations yield similar threshold fields. 
 
The variation of Htr2 with AU is of practical relevance for a given experiment, since it allows directly the 
kind of magneto-thermal behaviour to be predicted, depending on the specific values of Hm and AU for the 
particular system. If the applied field amplitude Hm is such that the (Hm, AU) point is located below the Htr2 
vs. AU line, then self-heating effects can be considered to be small and the final equilibrium temperature is 
less than (T0 +Tc) /2 for a slab, and less than (T0 +2Tc) /3 for a cylinder. When the (Hm, AU) point is located 
above the Htr2 vs. AU line, however, magneto-thermal effects are significant and the equilibrium temperature 
is close to (but slightly smaller than) Tc. If the (Hm, AU) point is located on the right-hand side of the Htr2 vs. 
AU line, i.e. for AU > AUlim, the final sample temperature is an increasing continuous function of the field 
amplitude Hm. Note that, unless extremely high AC field amplitudes are used, self-heating effects in this 
regime are expected to be minor since the heat transfer coefficient, indicative the cooling efficiency, is 
assumed to be high. 
 
4.2. Equilibrium temperature of the superconductor as a function of AC field amplitude 
 
In this section we use the analytical expressions derived in Section 2 to characterize the magneto-thermal 
behaviour of an infinite type-II superconducting slab subjected to an AC magnetic field H(t) = Hm sin(2π f t). 
Fig. 5 shows the final temperature (thermal equilibrium) attained by a superconductor having a Tc of 92 K 
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when it is placed at an initial temperature T0 = 77.4 K. The amplitude of magnetic field is normalized to the 
upper threshold field Htr2 and three situations are considered, depending on the heat transfer coefficient AU 
with respect to the limiting value AUlim. The equilibrium temperature for AU < AUlim, is shown to exhibit a 
discontinuity at Hm = Htr2, as predicted in Section 2(a). This indicates a “forbidden” temperature range in 
which the superconductor temperature can never stabilize. The final temperature in the “low temperature 
range” (Hm < Htr2) exhibits a quasi-cubic law behaviour, as predicted by Eq. (23). The final temperature in 
the “high temperature range” (Hm > Htr2) approaches asymptotically the critical temperature Tc, as shown by 
Eq. (25). Strictly speaking, the theory predicts that the final equilibrium temperature is always smaller than 
Tc, even at large field amplitudes. This is consistent with experimental observations [26,44] of the existence 
of small, but finite, AC losses in this regime. 
 
The “forbidden” temperature window apparent in Fig. 5(a) narrows as the heat transfer coefficient AU 
increases and eventually vanishes at AU = AUlim (Fig. 5(b)). A continuous field-dependence of the 
equilibrium temperature is observed above AUlim (Fig. 5(c)). We note further that, for given a normalized 
field amplitude, the steady-state temperature is a decreasing function of the heat transfer coefficient, as 
expected intuitively.   
 
4.3. Comparison with experimental results 
 
Figure 6(a) shows the theoretical equilibrium temperature of an infinitely long cylindrical sample as a 
function of the AC field amplitude, using the experimental parameters given in Table 1. The heat transfer 
coefficient AU is the value determined experimentally in Section 3 (4.94 × 10-3 W/K) and is smaller than the 
limit value AUlim determined from experimental parameters in Eq. (27), i.e. AUlim = 41.7× 10-3 W/K. The 
corresponding threshold field µ0Htr2 is equal to 19.8 mT. The data shown in Fig. 6(a), corresponding to 
AU < AUlim, indicate the existence of two equilibrium regimes separated by the upper threshold field Htr2, as 
well as the forbidden temperature range within which the sample temperature cannot stabilize.  
 
Figure 6(b) shows the magnetic field dependence of the steady-state temperature of a bulk, melt-processed 
YBCO disc (sample PL1) subjected to an AC magnetic field. The experimental parameters are, again, those 
listed in Table 1. It can be seen that the experimental data show all the qualitative features predicted 
theoretically and which are evident in Fig. 6(b): (i) two equilibrium regimes are visible, separated clearly by 
a threshold field determined experimentally here to be 26.95 mT; (ii) the equilibrium temperature for 
Hm < Htr2 increases with increasing AC field amplitude and follows closely a cubic law; (iii) the equilibrium 
temperature for Hm > Htr2 is close to the sample critical temperature Tc. Remarkably, the experimental 
equilibrium temperature in this regime reveals an unambiguous correlation with the amplitude of the applied 
field, as shown by the data in the inset of Fig. 6(b). This behaviour is in good agreement with the theoretical 
predictions shown in Fig. 6(a)for the infinite cylinder. Note that from an experimental point of view, the 
temperature resolution achieved via the thermocouple readings is approximately 0.02 K, corresponding to a 
voltage resolution of ~ 0.5 µV. Such sensitivity explains the scatter of the data in the inset of Fig. 6(b) and 
underlines the great care required observe meaningfully magneto-thermal effects in which DC thermocouple 
voltages are recorded in the presence of a large (parasitic) AC magnetic field.  
 
Although both theoretical and experimental results agree qualitatively, the experimental threshold field 
(26.95 mT) is found to differ from the theoretical prediction (19.8 mT for the infinite cylinder 
approximation) by a factor of 1.73. This feature is likely to be attributed to three factors. Firstly, the true 
geometry of the sample, i.e. a cylindrical disc of aspect ratio height/diameter = 0.4 differs from an infinite 
cylinder. The consequence of this is that the AC magnetic field penetration occurs not only from the lateral 
surface of the sample but also from its top and bottom circular surfaces, as is well established for thin or flat 
superconductors in perpendicular orientation [45-48]. It should be noted that the presence of surface in a 
superconducting cylinder of finite height is also beneficial in terms of cooling efficiency since it increases 
the contact area A between the sample and the coolant. This latter point might be predominant in the present 
case since the experimental threshold field is larger than the theoretical value. The second point to be 
considered is that the theoretical predictions presented here are based on a critical current density Jc value 
(103 A/cm²) extracted from the experimental magnetic field distribution measured above the top surface of 
the sample (Hall probe mapping experiment), as described in Ref. [49,50]. Although both top and bottom 
faces of the sample exhibit similar flux distributions profiles, which would suggest a uniformly distributed 
Jc, some underestimation of the true critical current density of the sample by this measurement technique is 
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likely in view of the small, but finite, distance between the Hall probe and the surface of the sample. The 
theoretical predictions indicate that the threshold field Htr2 is, to the first order, proportional to (Jc)1/3 [cf. Eq. 
(8) and (21)], so an increase of Jc by a factor 2 yields an increase in Htr2 by a factor ~ 1.26. An 
underestimation of Jc is therefore not sufficient to explain the observed difference between theory and 
experiment in this study. The third point is that the model assumes a field-independent Jc. In practice, 
however, all bulk melt-processed materials exhibit some Jc(B) dependence [51] which is sometimes 
noticeable at field amplitudes of a few tens of mT [52]. In addition, the effects of magnetic field on Jc 
increase as the sample temperature increases towards the critical temperature Tc, which is precisely the case 
in magneto-thermal experiments described here. The Jc(B) dependence should therefore ideally be taken into 
account in the model in order to reconcile experimental and theoretical data. 
 
The three arguments outlined above are likely to explain the observed quantitative difference between the 
measurement and the theoretical predictions. Despite of this difference, the theoretical and the experimental 
data yield a threshold field and equilibrium temperatures that are of a similar order of magnitude and which 
display similar features. Note also that our model assumes a homogeneous sample temperature distribution, 
which is expected to arise when the thermal conductivity κ is much larger than the (U a) product, such as the 
dimensionless Biot number Bi = U a / κ is much smaller than unity. Using the experimentally determined U 
et a values (cf. Table 1) and assuming a lower bound for the thermal conductivity of YBCO at 77 K (κ ~ 
1.5 W/m K) [53-57], the Biot number is equal to 0.02. Unlike other studies where non-uniform temperature 
distributions were observed [58,59], the sample temperature can thus be considered as uniform in the present 
case, which explains the excellent qualitative agreement between the model and the experiment. This shows 
that the simple model used here based on the Bean model for an infinite (one-dimensional) geometry might 
be used to obtain an order of magnitude estimate of heat flow rates and hence to determine whether magneto-
thermal effects in a given experimental arrangement are likely to be significant. 
 
4.4 Two successive field amplitudes 
 
The following experiment was performed to illustrate the existence of two equilibrium temperatures for a 
sample characterized by a convective heat transfer coefficient AU smaller than AUlim and subjected to a 
magnetic field amplitude Hm between Htr1 and Htr2. The sample was initially cooled to T0 = 77.4 K in a zero 
field cooling (ZFC procedure) and then subjected to a large magnetic field Hm = 3.75 Htr2 for a given time 
interval (87 s) in order to allow the thermal steady state to be reached. The corresponding average sample 
temperature was 91.3 K in this process. The magnetic field amplitude was subsequently lowered to 0.82 Htr2. 
A new steady-state was observed after ~15 s, which corresponded to an average sample temperature equal to 
91.12 K.  
 
The application of an AC field amplitude equal to 0.82 Htr2 to the sample cooled initially to T0 should yield 
sample temperature close to 83 K; i.e. the lower equilibrium Tinf, as shown in Fig. 6. In the present case, 
however, the initial sample temperature is already close to the critical temperature Tc. As a result, the 
equilibrium temperature resulting from the application of 0.82 Htr2 is the upper equilibrium Tsup. This is in 
excellent agreement with the theoretical analysis presented in Section 2(a): two equilibrium temperatures can 
arise for a given AC field amplitude Hm, depending on the sample temperature prior to the application of the 
AC field. This experiment confirms that the equilibrium temperature of a type-II superconductor subjected to 
an AC field is not determined in a unique manner but is a function of the initial temperature, which results 
ultimately from the history of the application of AC fields (i.e. from the magnetic history of the 
superconductor).   
 
4.5. Final comments on the role played by the different parameters 
 
In summary, this study has shown that the central parameter characterizing the importance of magneto-
thermal effects is the upper threshold field Htr2, roughly given by;  
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where the numerical factor γ is equal to (3/8) for an infinite slab and equal to (3/16) for an infinite cylinder. 
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The value of Htr2 should be as large as possible in order to minimize self-heating effects. This can be 
achieved by (i) a large heat transfer coefficient U, (ii) an initial temperature T0 much smaller than Tc, (iii) a 
large critical current density Jc0 and (iv) a small frequency. Equation (38) above shows that the sample 
external area A, radius a and volume V combine into a single dimensionless parameter ζ = Aa / V. Although 
Eq. (38) holds for an infinite geometry (i.e. of infinite external area A and volume V), it is instructive to 
express the parameter ζ = Aa / V for a finite cylinder or radius a and height h as follows;  
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A large value of Htr2 is therefore achieved for a small aspect ratio (h/a) of the cylinder. Equation (39) 
suggests also that two cylindrical samples of different radii but displaying the same aspect ratio should be 
characterized by identical Htr2 values. 
 
Finally, it should be noted that the analytical expressions derived for Htr2 provide insight of the combined 
influence of several parameters. As an example, multiplication of the convective heat coefficient U and the 
frequency f by the same factor is shown to have no effect on the parameter Htr2. In addition, due to the 1/3 
exponent, none of the parameters appearing in the analytical expressions appears to play a crucial role in the 
analysis, since doubling any value yields a modification of Htr2 by factor of 21/3 or (1/2)1/3, which is a relative 
change only of the order of 20-25%. 
 
5. Conclusions 
 
We have analyzed both theoretically and experimentally the magneto-thermal effects arising in a bulk high-
temperature superconductor subjected to an AC magnetic field. The calculations are based on the critical 
state model applied to an infinitely long type-II superconducting slab or cylinder, with field-independent Jc 
and constant heat transfer coefficient AU. We have derived analytical expressions for the equilibrium 
(steady-state) temperature attained by the superconductor. We have defined a limit heat transfer coefficient 
AUlim and two specific threshold magnetic fields Htr1 and Htr2. The AUlim value corresponds to the heat 
transfer coefficient below which two equilibrium temperatures exist in the system. The relevant threshold 
field to consider is Htr2 in the common case where the sample is placed at a constant cryogenic fluid 
temperature T0 and then subjected to an AC field. Once the applied field amplitude exceeds Htr2, the steady-
state temperature of the superconductor switches from a “low” equilibrium to a “high” equilibrium 
temperature. The “low” equilibrium temperature is always smaller than (T0 + Tc)/2 for a slab, and smaller 
than (T0 + 2Tc)/3 for a cylinder, whereas the “high” equilibrium is close to, but slightly smaller than, the 
critical temperature Tc. At small heat transfer coefficients AU < AUlim, a large temperature “window” is 
forbidden as equilibrium temperature of the superconductor. The theoretical characteristics of the self-
heating of a type-II superconductor were confirmed experimentally using magneto-thermal measurements on 
a bulk melt-processed YBCO sample placed in an AC susceptometer allowing large alternating magnetic 
fields (~ 80 mT) to be applied. The experimental system is characterized by a reproducible heat transfer 
coefficient AU that could be determined precisely. The experimental results have shown a correlation 
between the “high” equilibrium temperature and the amplitude of magnetic field. We have also investigated 
how the results are modified when the initial sample temperature differs from that of the coolant. We have 
shown that, in some cases, an AC magnetic field amplitude smaller than the threshold field Htr2 can give rise 
to an equilibrium temperature close to Tc. The agreement between the experimental data and the analytical 
expressions suggests that time-expensive thermal numerical modelling can be replaced conveniently by a 
simple analytical analysis to yield the right orders of magnitude for simple superconductor geometries and to 
predict the role played by the experimental parameters on the self-heating characteristics of the 
superconductor. 
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Table 
 
 
Table 1. Numerical value of parameters used for the experimental characterization 
of the magneto-thermal behaviour of a cylindrical bulk melt-processed YBCO 
sample.  
 

Parameter  
Critical temperature Tc 91.6 K 
Initial temperature T0 77.4 K 

Initial critical current density Jc0  103 A/cm² 
Sample radius a 15 mm 
Sample height h 12 mm 

Sample volume V 8.48 × 10-6 m³ 
Heat transfer coefficient AU 4.94 × 10-3 W/K 

Convective coefficient U  1.94 W/m² K  
Frequency of applied field f 56 Hz 

Amplitude of applied field µ0Hm from 0 to 100 mT 
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Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic illustration of the self-heating behaviour of a bulk type-II superconductor subjected to 
an AC magnetic field H(t) = Hm sin (ωt), according to the set of experimental data available in the literature. 
At low field amplitudes Hm , the temperature rises up to an equilibrium temperature depending on Hm but 
being much smaller than the critical temperature Tc. On increasing the field amplitude further, a thermal 
runaway occurs and the sample temperature rises quickly up to an equilibrium temperature that is nearly 
field-independent and close to Tc. 
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Figure 2 
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Figure 2. Temperature dependence of the AC losses Qgen(T) generated within a type-II superconducting 
sample placed initially in a cryogenic environment at a temperature T0 and subjected to an AC magnetic field 
H(t) = Hm sin (ωt), compared to the heat flux rate leaving the sample by convection Qout = AU (T - T0). Three 
different scenarios are investigated, depending on the convective heat transfer coefficient AU with respect to 
the limit value AUlim (see text). (a) AU < AUlim : from top to bottom, five increasing field amplitudes are 
considered, corresponding to different numbers of intersections between the Qgen(T) and the Qout(T) curves. 
(b) Intermediate case (AU = AUlim) for which Qgen(T) and Qout(T) intersect at one point and for which the 
Qgen(T) curve at some amplitude Hm = Hlim is tangential to the Qout(T) straight line. (c) AU > AUlim: each of 
the Qgen(T) curves (from top to bottom : increasing field amplitude) intersect the Qout(T) straight line in one 
single point and none of them is tangential to Qout(T). 
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Figure 3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. (a) Schematic illustration of the bottom of the experimental chamber of the AC susceptometer used 
for magneto-thermal experiments (b) Experimental data of the AC losses Qgen within sample PL1 (bulk melt-
processed YBCO disc, 30 mm diameter and 12 mm thickness) as a function of the equilibrium temperature 
Te of the sample. The superconductor is inserted in the sample chamber of the AC susceptometer and its 
temperature is stabilized at T0 = 77.4 K prior to applying the AC magnetic field. 
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Figure 4 
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Figure 4. Influence of the heat transfer coefficient AU on the threshold fields Htr1 and Htr2 determined 
analytically for a type-II superconducting slab (plain lines) or numerically for a type-II superconducting 
cylinder (symbols) whose infinite direction is parallel to the applied AC field.  The threshold fields are 
normalized to the limit field Hlim; the convective heat transfer coefficient AU is normalized to the limit value 
AUlim (see text). The dashed lines are approximations of the threshold fields for an infinite cylinder that are 
given by equations (32) and (33). 
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Figure 5 
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Figure 5. Theoretical predictions of the steady-state temperature of a type-II superconducting slab subjected 
to an AC magnetic field H(t) = Hm sin (ωt) parallel to its surface. The initial temperature of the slab before  
application of the AC field is 77.4 K and the critical temperature Tc is equal to 92 K. The heat transfer 
coefficient AU is either (a) smaller than (b) equal to or (c) larger than the limit value AUlim. The applied field 
amplitude is normalized to the threshold field Htr2. The inset in Fig. 5(a) shows an enlargement of the 
equilibrium temperature for Hm > Htr2. 
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Figure 6 
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Figure 6. (a) Theoretical predictions of the equilibrium (steady-state) temperature as a function of the AC 
field amplitude for an infinite type-II superconducting cylinder; the parameters are those listed in Table 1. (b) 
Measured equilibrium temperature of sample PL1 subjected to an AC magnetic field H(t) = Hm sin(ωt). For 
both plots, the vertical line shows the experimental threshold field Htr2. The inset shows the equilibrium 
temperature for Hm > Htr2.    
 
 
 
 
 
 


