GEOTHERMOMETRIE PAR LES PYROXENES ET MISE EN PLACE DU MASSIF ANORTHOSITIQUE D'EGERSUND-OGNA (ROGALAND, NORVEGE MERIDIONALE)

par Robert MAQUIL²⁻³ & Jean-Clair DUCHESNE ³

² Service Géologique du Luxembourg, Bld G.D. Charlotte, 43, Luxembourg (L-1331).

³ Lab. ass .Géologie, Pétrologie, Géochimie. Université de Liège, B-4000 Sart-Tilman.

RESUME

62 couples orthopyroxène-clinopyroxène ont été analysés à la microsonde dans 17 échantillons provenant du massif d'Egersund-Ogna. Ils se répartissent en 3 catégories : (1) lamelles et granules d'exsolution de cpx dans des mégacristaux d'opx alumineux présents dans la partie centrale et la bordure interne du massif, en aggrégats sub-ophitiques avec des plagioclases géants ; (2) association opx-cpx dans les norites finement grenues résultant de la cristallisation de liquides intersticiels dans les dykes pegmatitiques, dans les amas diffus et dans les interstices des aggrégats de mégacristaux ; (3) association opx-cpx dans les gneiss leuconoritiques et les mégacristaux déformés de la bordure interne du massif, équilibrés par recristallisation granoblastique. Les températures d'équilibre entre pyroxènes, calculés par différents géothermomètres (Wood & Banno, 1973 ; Wells, 1977), ainsi que les teneurs en Al des pyroxènes, montrent des variations relatives indiquant : (1) que les exsolutions se sont produites à des températures et des pressions élevées ; (2) que les liquides intersticiels ont cristallisé sur un intervalle de conditions PT ; (3) que les gneiss de la bordure interne ont été forgés sur un intervalle de température relativement étendu, avec un maximum supérieur à la température des liquides intersticiels de la partie centrale du massif et à la température de l'enveloppe métamorphique. Ces données sont compatibles avec une cristallisation de la masse anorthositique le long d'un gradient PT et une mise en place induisant une déformation synintrusive à l'intérieur même de sa masse comme dans son enveloppe.

ABSTRACT.

Microprobe analyses are presented of 62 orthopyroxene-clinopyroxene pairs from 17 samples coming from the Egersund-Ogna anorthositic body. They can be divided into three types : (1) exsolution lamellae and granules of cpx in megacrysts of Al-rich orthopyroxenes, occurring in the central-marginal parts of the body and forming subophitic aggregates with giant plagioclases ; (2) opx-cpx associations in fine-grained norites formed by the crystallization of interstitial liquids in pegmatitic dykes, anastomosed masses, the interstices of the megacrysts, etc ... (3) opx-cpx pairs in foliated leuconorites and deformed mega-opx in the margin of the massif, these having been reequilibrated by granoblastic recrystallization. Equilibrium temperatures, calculated by various opx-cpx geothermo-meters (Wood & Banno, 1973 ; Wells, 1977), as well as the Al-contents of the pyroxenes, show relative variations which suggest : (1) an exsolution process at high temperatures and pressures ; (2) the crystallization of interstitial liquids at various PT conditions ; (3) the recrystallization of the massif and above the regional temperature. These data are consistent with the crystallization of the anorthosite along a PT gradient and the syn-emplacement deformation of the mass itself together with its enveloppe.

INTRODUCTION

Il existe dans la Province Grenville une variété de massifs anorthositiques qui présentent les caractères suivants : contacts concordants avec l'enveloppe de gneiss métamorphiques, parties importantes du massif déformées et transformées en gneiss anorthositiques ou leuconoritiques, plagioclases montrant toujours, même en dehors des parties gneissiques, des déformations et des recristallisations dont certaines sont nettement protoclastiques. Pétrographiquement ces anortho-sites sont associées à des leuconorites et des norites.

Ces massifs, que nous appellerons ici grenvilliens, contrastent avec ceux situés au Labrador dans la Province de Nain. Ces derniers ne sont pas déformés, ils comprennent des termes troctolitiques abondants et un plagioclase plutôt labradoritique. La présence dans ces deux types de massifs d'orthopyroxènes géants (jusqu'à 1 m), contenant des exsolutions de plagioclase - particularité des pyroxènes alumineux que l'on ne rencontre que dans les massifs anorthositiques - , ainsi que le caractère pétrographiquement monotone des roches sur d'immenses étendues, sont en fait les seuls points communs qui permettent de les rattacher à un même phénomène plutonique.

Les anorthosites au Labrador sont paléohélikien-nes (1400 - 1500 Ma.) (Emslie, 1978) et se sont mises en place dans des conditions atectoniques. Ce fait est maintenant universellement admis (cfr. Morse, 1982). L'âge et les conditions tectoniques de mise en place et de déformation des massifs grenvilliens sont beaucoup moins clairs. Un débat reste ouvert entre les partisans de l'hypothèse selon laquelle les anorthosites grenvilliennes seraient des massifs paléohélikiens repris et métamorphisés dans l'orogenèse Grenville (1200-1000 Ma) (cfr. Baer, 1976) et ceux qui pensent qu'elles ont été engendrées et mises en place à l'état magmatique pendant la période grenvillienne (Martignole & Schrijver, 1970). La solution de ce dilemme est fondamentale pour la compréhension des processus orogéniques au Protérozoïque (Dewey & Burke, 1973 ; Windley, 1977 ; Baer, 1981), et ce d'autant que la Province Grenville, particulièrement bien étudiée, est un exemple type de cette orogenèse.

Le massif d'Egersund-Ogna, situé dans la province anorthositique du Rogaland en Norvège méridionale -laquelle constitue la terminaison Est de la Province Grenville en Europe (Falkum & Petersen, 1980) - , est relativement moins déformé que ses massifs frères des Adirondacks ou du Québec, comme le massif de Morin par exemple. Il présente aussi des conditions d'affleurement très favorables à une étude de détail. Le présent travail apporte des données pétrographiques et géothermométriques acquises à l'aide des pyroxènes de ce massif, à divers stades de déformation et de recristallisation. Il a pour but de préciser les conditions de la déformation et de la mise en place du massif.

LE MASSIF D'EGERSUND-OGNA

Ses limites et son évolution géologique d'ensemble ont été établies par P. Michot (1939, 1957, 1960, 1969). Il l'a décrit comme constitué d'une anorthosite massive (Michot, 1960, p. 12) qui s'enrichit vers la bordure en orthopyroxène en même temps que la roche prend une texture gneissique de plus en plus prononcée. La bordure interne du massif est ainsi constituée de gneiss anorthositiques et leuconoritiques sur une épaisseur de 800 à 2000 m. La foliation dans cette bordure interne est concordante avec celle des gneiss charnockitiques de l'enveloppe, tandis que la partie centrale est une anorthosite monotone où localement des mégacristaux d'hypersthène font occurrence.

L'allure d'ensemble est celle d'un dôme coiffé ("mantled gneiss dome" au sens d'Eskola) (Michot, 1957, p. 24). Dans les vues de Michot, Egersund-Ogna est une intrusion syncinématique parce que sa mise en place se déroule pendant plusieurs phases de plissement de l'enveloppe métamorphique. La contemporanéité de la cristallisation et de la déformation ne repose cependant que sur des arguments indirects, d'ordre structural^a, lesquels ne permettent pas de réfuter une autre hypothèse : à savoir, le remaniement tectonique ("tectonic reworking") d'une masse préalablement complètement solidifiée par une phase de déformation d'importance régionale. Nous verrons dans ce qui suit qu'une troisième hypothèse, celle d'une déformation synintru-sive de l'enveloppe et de la bordure interne par la masse éruptive elle-même peut mieux encore rendre compte de l'ensemble des faits.

La découverte par Emslie (1975) de lamelles de plagioclase dans les orthopyroxènes géants du massif a constitué un tournant décisif dans l'évolution des idées. Ces pyroxènes alumineux se seraient en effet formés dans des conditions de température et de pression très largement supérieures à celles qui régnaient au niveau bathymétrique final de mise en place. Cette hypothèse de travail nouvelle allait stimuler la reprise d'une série d'études sur le terrain, en pétrologie et en géochimie. Les résultats ont fait l'objet de publications partielles (Duchesne, 1977 ; Duchesne & Demaiffe, 1978 ; Maquil *et al.*, 1980 ; Maquil, 1978, 1980 ; Duchesne & Maquil, 1981).

La fig. 1 schématise les relations qui découlent d'un levé détaillé (au 50.000ème) du massif (Maquil, inédit ; Duchesne & Maquil, 1984 ; Falkum, 1982). Aux grands traits de la description de Michot, on peut maintenant ajouter les détails suivants :

1. Des mégacristaux d'orthopyroxène alumineux forment généralement avec des plagioclases de dimensions comparables des agglomérats métriques à structure subophitique, emballés dans une matrice anorthositique ou

^a En particulier sur le fait que 'le flanc inverse du pli couché de Roligheden (Michot, 1957, p. 34 ; 1960, pp. 29 à 31) apparaît comme discordant sur l'allure du contact entre la masse magmatique et son enveloppe ; ce qui pour Michot suffit à démontrer le caractère intrusif et par conséquent l'état magmatique d'Egersund-Ogna. Le fait qu'Egersund-Ogna se différencie pour donner par cristallisation le matériel leuconoritique de la bordure interne renforce encore dans les conceptions de Michot l'état largement liquide du magma au moment de sa mise en place.

leuconoritique (Pl. 1 : 1 à 3). Ces agglomérats se concentrent principalement au centre du massif (région de Kalvshagen) et dans la bordure interne. Dans cette dernière, ils sont déformés à des degrés divers (Pl. 1 : 4 à 6). Comme Michot l'avait déjà noté (1960, p. 30), la déformation dans la bordure peut en effet être d'intensité très variable : d'un simple "kinking" (Pl. 2 : 1) à une granulation totale en structure granoblastique (Pl. 2 : 5).

Des enclaves de gneiss anorthositiques, déjà signalées par Michot dans la région d'Ystebröd (1957, p. 27 à 29), se retrouvent ailleurs, notamment dans la région de Veten, non loin de la partie centrale du massif.

3. Une leuconorite moyennement grenue, montrant une foliation fruste, s'étend approximativement à midistance entre le centre et la bordure.

4. Au réseau de pegmatites noritiques à minerais noirs, définit par Michot à Ystebröd (1960, p. 27) et dans la région de Vettaland (p. 28), il faut ajouter des amas et des filons noritiques sans minerais noirs, caractérisés souvent par une variation granulométrique très rapide : en quelques décimètres, on passe d'une structure pegmatitique à une structure finement grenue. On observe fréquemment tous les termes de transition entre un système de filons à bords francs et des amas leuconoritiques à contacts fortement anastomosés et diffus. Ces derniers peuvent contenir des agglomérats de mégacristaux de plagioclase ou de plagioclases et d'orthopyroxènes de dimensions plurimétriques et de forme souvent lenticulaire. Il n'est pas rare d'observer une orientation planaire fruste de ces lentilles, coïncidant avec une structure orientée de la leuconorite enrobante. Ces amas de leuconorite peuvent s'interpréter comme des poches de liquide contenant et transportant des primo-cristaux, l'orientation résultant du flux magmatique.

PETROGRAPHIE DES ECHANTILLONS ANALYSES

Des températures ont pu être calculées à partir des compositions chimiques de 62 couples orthopyroxènes (opx)clinopyroxène (cpx) (tab. 1) répartis dans 17 échantillons (fig. 1). Le cpx est une minéral rare dans le massif d'Egersund-Ogna. Il n'existe pas en mégacristaux au même titre que l'opx alumineux comme c'est le cas dans le massif de Morin (Québec) (Emslie, 1975). Dans les anorthosites et les roches associées qui sont enrichies en minéraux mafiques, c'est généralement l'opx qui est le seul pyroxène. Il a été néanmoins possible par une étude pétrographique minutieuse de sélectionner 17 échantillons où le cpx est présent comme minéral accessoire ou en exsolution.

Ces 17 échantillons se répartissent dans les variétés pétrographiques suivantes (tab. 2 pour la provenance et une description succincte) : mégacristaux d'opx alumineux provenant d'agglomérats dans la partie centrale du massif (éch. 1) ou dans la bordure (éch. 2 et 3) ; association de pyroxènes et d'hémo-ilménite dans un agglomérat de mégacristaux opx-plagioclase (éch. 7) ; gneiss leuconoritiques (métaleuconorites) ou noritiques (métanorites) de la bordure interne (éch. 10, 13, 14 à 17) ; filons de pegmatite noritique à minerais noirs (éch. 5 et 8) ou sans minerais noirs (éch. 9) ; norite à alvéoles ophitiques (éch. 6) ; norite fine (éch. 11 et 12) ; enclave de gneiss leuconoritique (éch. 4).

Le mode d'association du cpx avec l'opx permet de classer les couples mesurés en trois catégories. On distingue le cpx :

1. en lamelles d'exsolution 100 dans les mégacristaux d'opx alumineux et - cas particulier du précédent -en granules d'exsolution dans des zones faiblement déformées de ceux-ci (association du type "solvus");

2. en grains dans les structures granoblastiques résultant de la recristallisation de pyroxènes déformés (association de recristallisation) ;

3. en individus subidiomorphes, dans des poches à structure finement grenue, interprétées, comme on le verra ci-dessous, comme provenant de la cristallisation d'un liquide intersticiel (association "solidus"). Il faut noter que ces divers modes d'association peuvent être trouvés dans un même échantillon ou à l'intérieur d'un seul mégacristal.

1.	RM	79-199.5	Kalvshagen, Route N 40, LK 867-171 (1) : Mégacristal d'opx dans un agglomérat subophitique de plagioclases et d'opx (PL. 2 : 1 et fig. 2).
2.	RM	77-6.14	Saglandsvatn, Route E 18, LK 933-292 : Mégacristal d'opx étiré et à divers stades de recristallisation (fig. 4).
3.	RM	77-6.13	idem éch. 2 : Mégacristal fortement recristallisé.
4.	RM	78-59	S. Veten, LK 890-133 : Pyroxenes partiellement recristallisés dans une enclave de gneiss leuconoritique (fig. 5).
5.	RM	77-33	Nordre Eigeröy, LK 808-184 : Agglomérat d'opx légèrement déformés dans un filon de pegmatite noritique à minerais noirs.
6.	RM	77-25	Nordre Eigeröy, LK 806-184 : Norite pegmatitique à alvéoles ("oikocrysts" de pyroxenes) en amas diffus, avec minerais noir (fig. 3).
7.	RM	79-166	Matiknuten, LK 824-347 : Association de pyroxene et minerais noirs dans un amas leuconoritique (PL. 2:3).
8.	JCD	76-28.4B	Ile de Loyning, LK 807-213 : Pegmatite noritique à minerais noirs en stockwerk (PL. 2 : 2).
9.	RM	79-115	N. Hellevatn, LK 951-165 : Pegmatite noritique sans minerai noir en filon.
10.	RM	77-10.2	idem éch. 2 : Gneiss noritique (PL. 2 : 4).
11.	RM	79-68	E. Matnisdal, LK 985-164 : Norite fine avec minerais noirs, en dyke.
12.	RM	79-158	W. Berland, LK 988-242 : Norite fine en dyke.
13.	RM	77-6.5	idem éch. 2 : Gneiss noritique.
14.	RM	77-10.1 B	idem éch. 2 : Gneiss leuconoritique.
15.	RM	77-91.1	S. Liavatnet, LK 803-337 : idem.
16.	RM	77-75.5	Gaslandvatnet, LK 966-255 : idem.
17.	RM	77-75.4	idem. (PL. 2 : 5).

(1) coordonnées NGU dans la zone 32V.

DESCRIPTION DETAILLEE DE QUELQUES ECHANTILLONS

La description de quelques échantillons typiques ou, au contraire, particuliers illustrera les diverses modalités d'associations opx-cpx.

L'opx représenté à la fig. 2 (éch. 1, RM 79-199.5) fait partie d'un aggrégat de pyroxènes et de plagioclases géants. Il montre des exsolutions grossières (10-25 μ m) de plagioclase dans son plan 100. Ces lamelles, équidistantes de 1 à 2 mm, sont très continues. Les plus larges montrent un zonage inverse (An₆₅ à An₇₂); les plus fines sont plus calciques (An₇₇) mais ne sont pas zonées. Dans les bandes limitées par les lamelles de plagioclase, se disposent de très fines exsolutions de cpx. L'occurrence de ces dernières est relativement exceptionnelle. En effet, les exsolutions de plagioclase sont en général associées à des exsolutions de minerais noirs (Ti-magnétite et hémo-ilménite) (cfr. fig. 4, éch. 2, RM 77-6.14), comme c'est aussi le cas dans d'autres massifs anorthositiques (Emslie, 1975, Morse, 1975). La plage d'opx de la fig. 2, comme celle de la fig. 4, est légèrement déformée en "kink". Dans les zones de "kink", les exsolutions 100 disparaissent progressivement pour faire place à des granules localisés dans la pliure. Ces granules résultent d'une exsolution induite par un état de tension (diffusion "tectono-activée" de Bard, 1980). Dans ces mêmes zones, on observe l'apparition de sous-grains de pyroxène à contacts irréguliers.

L'opx de la fig. 2 n'est pas zone ; dans la bordure tout à fait externe du grain, sur 400 μ m d'épaisseur, on observe toutefois à la microsonde une faible diminution du contenu en Al₂O₃ (de 6 %au centre à 4% environ en bordure) ; le rapport Fe/Mg ne varie pas. Cet opx est de plus entouré de grands cristaux de plagioclase (An₅₀), à macles courbées, parfois protoclasés. Entre ceux-ci se disposent des poches à contours très irréguliers, anastomosés, digités et pénétrant parfois à l'intérieur des grands opx. Ces poches ont une structure grenue (granular texture) dont les grains ont des dimensions semblables, de l'ordre de 100 à 200 μ m. La présence de ces poches granuleuses est commune dans les interstices des agglomérats de mégacristaux, entre les cristaux des pegmatites (Pl. 2:2), ainsi que dans les grands cristaux eux-mêmes. Dans les gneiss de la bordure, on observe ces mêmes poches étirées parallèlement à la foliation. La minéralogie dominante de ces poches granuleuses est leuconoritique, avec parfois du cpx, du minerai noir, des sulfures et plus rarement de l'apatite, de la biotite ou de la hornblende. L'opx présente une forme irrégulière, indentée, tandis que le plagioclase (An₆₀) est plutôt trappu et isogranulaire. La teneur en Al₂O₃ de i'opx varie de 3.2 à 3.8 %, son contenu en enstatite est constant (En₇₁ à En₇₄)

et pratiquement identique à celui de l'opx géant (En₇₁ à En₇₃).

La disposition intersticielle de ces poches, leur structure magmatique et leur minéralogie où des associations typiques de fin de cristallisation peuvent être trouvées, laissent penser que ces poches résultent de la cristallisation de liquides intersticiels, postérieurement ou simultanément à la déformation des grands cristaux (protoclase). Dans ces poches, opx et cpx, quand ils co-existent, forment un couple appelé "couple solidus", car il permet de définir une température en dessous de laquelle la roche est entièrement solide.

Une variante de la cristallisation du liquide intersticiel est donnée par l'éch. 6 (RM 77-25). La fig. 3 représente une alvéole noritique disposée entre les grands plagioclases (An_{47}), décimétriques et légèrement protoclasés, d'une pegmatite noritique.

L'opx (En₆₄) s'y présente sous forme de cristaux poecilitiques ("oikocrysts"), centimétriques, à contacts irréguliers, qui s'insèrent dans les interstices de la charpente des plagiociases de l'alvéole (An_{45_48}). Ces derniers peuvent être automorphes et non déformés. Localement de petites plages de cpx, d'hémo-ilménite, de magnetite et de biotite se disposent dans les interstices. A l'intérieur du grand cristal de plagioclase situé dans la partie droite de la fig. 3, on observe un chapelet d'inclusions noritiques. Celles-ci représentent vraisemblablement des gouttelettes de liquide intersticiel piégées dans des fissures thermiques du plagioclase-hôte. De telles inclusions sont relativement fréquentes dans les grands cristaux (plagioclase et opx). Elles ont été signalées ailleurs (Wilhelm & Martignole, 1979).

Deux échantillons montrent une association de pyroxènes avec du minerai noir. Le premier (éch. 7, RM 79-166) (PL. 2 : 3) provient d'un agglomérat de mégacristaux et est constitué par un fragment d'opx géant morcellé et cimenté par du minerai noir. Celui-ci forme des plages amiboïdes, reliées entre elles par des pédoncules. Le cpx dans ces structures s'associe avec du plagioclase (An₅₂) et se dispose en un mince film entre les plages d'oxydes et le pyroxène. Cette association, banale dans les gisements d'oxydes Fe-Ti, résulte de la cristallisation protoclastique de liquide piégé dans les agglomérats de cristaux géants.

Figure 1.- Carte géologique schématique du massif d'Egersund-Ogna (d'après P. Michot, 1960 ; Duchesne & Maquil, 1984). Légende : 1. Anorthosite massive ; 2. Anorthosite et leuconorite à agglomérats abondants de mégacristaux d'opx et/ou de plagioclase ; 3. Leuconorite moyennement grenue à foliation fruste ; 4. Gneiss anorthositiques et leuconoritiques de la bordure interne ; 5. Gneiss migmatitiques encaissants ; les chiffres indiquent la localisation des différents échantillons analysés.

Figure 2.- Ech. 1, RM 79-199.5 : Orthopyroxène a lumineux provenant d'un agglomérat de cristaux géants d'orthopyroxène et de plagioclase. L'opx contient des lamelles d'exsolution de plagioclase (I.pl.) et de cpx (I. cpx.) En bordure ou dans des zones de "kink", l'opx est morcelé en sous-grains (opx s-g., pointillé lâche). Des poches de leuconorite fine (Ln.i.) à contours irréguliers, sont insérées entre le grand opx et les plagio-clases voisins lP.pl.). L'opx y est représenté par un pointillé serré. La structure grenue est seulement figurée à l'intérieur du cercle. Dessin à la chambre claire d'une lame mince.

Le second échantillon (éch. 10, RM 77-10.2) (PL. 2 : 4) est un gneiss noritique de la bordure dans lequel les lits de plagiociases recristallisés (An₆₀) contournent des lentilles mafiques. A l'intérieur de celles-ci, on observe une pigeonite inversée, granulée localement, mais encore reconnaissable à ses exsolutions caractéristiques, à rapport Fe : Mg de 53 : 47 (fig. 6), en association avec une augite et du minerai noir. Ce dernier, disposé en lentilles, moule les produits granulés. Le contraste est frappant entre le caractère de tectonite donné par la charpente granoblas-tique du piagioclase et le caractère magmatique protoclastique des mafiques. La structure de ces derniers est peut-être une relique du stade magmatique préalable à la déformation, mais il n'est pas non plus exclu que la roche ai contenu des parties encore liquides au moment où elle a été déformée et où sa charpente de plagiociases a été gneissifiée.

Dans les gneiss de la bordure interne à côté des gneiss banaux à texture granoblastique (éch. 10, 13, 14à 17 ; PL. 2 : 5), on peut trouver aussi - nous l'avons déjà vu - des mégacristaux d'opx étirés dans le plan de foliation et montrant une série de stades de déformation. L'éch. 2 (RM 77-6.14) (fig. 4) est constitué par un fragment peu déformé d'un grand opx étiré dans la foliation et totalement granulé dans sa bordure. La fig. 4 montre trois types d'association opx-cpx, qui correspondent à des intensités croissantes de déformation :

a) certaines parties du grain, totalement préservées de la déformation, montrent des exsolutions banales 100 de cpx, de plagioclase (An₄₄) et d'oxydes ;

b) dans une zone de faible déformation, se traduisant par la courbure des lamelles d'exsolution, le cpx se présente sous forme de granules d'exsolution ;

c) dans des zones à déformation intense (zone de "kink"), le pyroxène est morcelé en sous-grains, lesquels sont parfois complètement recristallisés en une mozaïque équigranulaire, riche en points triples (granoblastique), où l'opx coexiste avec des quantités subordonnées de cpx et de plagioclase. Cet échantillon présente donc des associations de pyroxènes de type "solvus" (cas a et b) et de type "recristallisation" (cas c).

Figure 3.- Ech. 6, RM 77-25 : Fragment d'alvéole noritique en contact avec un grand cristal de plagioclase (P.pl.). L'orthopyroxène (opx - pointillé) de l'alvéole se présente sous forme d'un cristal poecilitique - "oikocryst"- enrobant des plagioclases (pl.), dont certains sont idiomorphes et non déformés. De petits grains de cpx (cpx) et d'oxydes (ox), associés à l'opx, sont disposés interstitiellement. Un chapelet d'inclusions noritiques à cpx, apatite (ap - pointillé serré) et oxydes s'observe dans le grand plagioclase de gauche. Dessin à la chambre claire d'une lame mince.

L'éch. 4 (RM 78-59) (fig. 5) provient d'une enclave de gneiss leuconoritique dans l'anorthosite centrale. Il montre une relique peu déformée d'opx et de cpx primaires à exsolutions grossières. L'opx contient de larges exsolutions de plagioclases (An₈₄) et d'oxydes. Il est localement morcelé en sous-grains irréguliers, entre lesquels le plagioclase et l'oxyde ont recristallisé. Le cpx primaire, à larges lamelles d'opx, est également grossièrement morcelé en grains irréguliers. Ces derniers sont mélangés à des grains d'opx, d'oxydes et de plagioclase (An₇₅). Les deux pyroxènes primaires et les produits de leur granulation sont entourés par une couronne externe (couronne noritique) dans laquelle l'opx dominant se présente en grains irréguliers, à côté du cpx, des oxydes et du plagioclase (An₇₅). On doit noter qu'au contact de cette couronne avec le cpx primaire les opx se disposent en une structure en peigne, perpendiculairement au contact. Il semble qu'ils aient pu se développer dans une zone abritée des tensions en prenant comme germe les lamelles d'exsolution du cpx primaire. Le passage de la couronne externe à la leuconorite de l'enclave est rapide. Dans celle-ci, l'opx est intersticiel au plagioclase (An₆₀) et la structure est typiquement granoblastique.

METHODE D'ANALYSE ET CALCULS

Les analyses des pyroxènes ont été réalisées à la microsonde MICROSCAN S (Cambridge Scientific Instrument Ltd) du Grant Institute of Geology de l'Université d'Edinbourg. Les standards utilisés sont de composition chimique simple. Les corrections de temps mort, de nombre atomique, d'absorption et de fluorescence sont essentiellement celles décrites par Sweat-man & Long (1969).

Les calculs thermométriques utilisés ci-dessous font intervenir Fe^{2+} et Fe^{3+} . Les dosages à la microsonde ne fournissant le Fe que sous forme atomique, Fe^{2+} a été simplement calculé en assurant la balance des charges : la formule structurale est d'abord calculée sur la base de 6 oxygènes, puis ramenée à 4 cations ; ia somme des charges est ensuite amenée à 12 par la transformation de Fe^{2+} en Fe^{3+} . Dans un petit nombre de cas, le Fe^{3+} s'est avéré nul ou légèrement négatif. Dans ce dernier cas il a été considéré comme nul.

Figure 4.- Ech. 2, RM 77-6.14 : Fragment de mégacristal déformé d'opx provenant des gneiss leuconoritiques de la bordure. L'opx contient des lamelles d'exsolution de plagioclase et d'oxydes, intimement associées dans les plans 100 de l'opx-hôte (lamelles pl-ox), ainsi que de fines lamelles d'oxydes seuls (l.ox) et de cpx (l.cpx) (détails dans le cercle du bas). La partie droite du méga-opx est déformée, ce que traduit, en haut, des lamelles de plagioclase légèrement courbées et des exsolutions de cpx en granule (g.cpx) (détails dans le cercle du haut). Cette déformation détermine vers le bas un morcellement en sous-grains à contours irréguliers (en bas) et une zone où l'opx recristallise en structure grano-blastique (points triples) (au centre). Du plagioclase (pi), du cpx (cpx) et des oxydes se disposent dans les interstices des grains d'opx. Dessin à la chambre claire d'une lame mince.

THERMOMETRIE

La distribution de Fe et Mg entre des couples d'opx et de cpx est fonction de la température à laquelle l'équilibre a été atteint. Les premiers à avoir montré cette relation ont été Bartholomé (1961) et Kretz (1961). Kretz (1963) a ensuite proposé en se basant sur des occurrences naturelles, une relation entre la température et le coefficient de partage KD du rapport Fe /Mg entre opx et cpx ; il n'était pas tenu compte de la pression dont l'influence est négligeable. La distribution Fe-Mg entre les pyroxènes s'est avérée par la suite plus complexe que celle prévue par Kretz (Davidson, 1963). Elle ne fait pas seulement intervenir un échange entre les deux minéraux mais également un échange entre les sites octaédriques M1 et M2 de ces minéraux. De plus, le Ca qui se distribue entre les sites M2 des pyroxènes modifie aussi la valeur du KD. La solution binaire s'écarte donc de l'idéalité. Pour les opx, l'écart est d'autant plus grand qu'ils sont riches en Fe et Ca.

Wood & Banno (1973) ont recalibré le thermomètre en se basant sur des données expérimentales et quelques assemblages naturels préalablement calibrés par d'autres géothermomètres. Ils ont proposé une méthode empirique pour pallier la non-idéalité de la distribution Fe-Mg : l'activité du Mg est calculée en distribuant respectivement Ca, Na, Mn et Al, Fe³⁺, Ti entre les sites M2 et M1. Mg et Fe²⁺ y sont ensuite ajoutés en respectant le rapport Fe/Mg de la formule structurale. Les formules proposées sont données au tableau 3. Plus récemment Wells (1977) a revu la calibration du thermomètre en utilisant un plus grand nombre de données expérimentales (tab. 3). La méthode de distribution entre sites de Wood & Banno n'est pas modifiée. Comme l'étalonnage s'appuie sur une large gamme de compositions, notamment des teneurs élevées en Al (jusqu'à 10% Al₂O₃ dans le cpx), Wells propose d'étendre son thermomètre aux pyroxenes alumineux. Il admet, comme Wood & Banno, une exactitude de $\pm 70^{\circ}$ C.

La méthode empirique de distribution des éléments entre sites est susceptible d'être améliorée. Ganguly & Ghose (1979) ont montré que l'Al octaédrique a une nette préférence pour le site M1 et que Fe³⁺ et Ti peuvent dans certains cas se répartir entre sites octaédriques et tétraédriques (Huckenhoiz *et al.*, 1969 ; Kosoi *et al.*, 1974). Les méthodes graphiques fondées sur la représentation du solvus opx-cpx dans le quadrilatère des pyroxènes (Ross & Hubner, 1975 ; Lindsley & Andersen, 1983) ne peuvent pas être appliquées, car la teneur en éléments autres que

Fe, Mg et Ca dépasse les limites imposées par les auteurs.

Dans le présent travail, les températures ont été calculées par les méthodes de Wood & Banno et de Wells (tab. 1). Les résultats obtenus sont proches. L'écart entre les deux méthodes varie légèrement avec la teneur en Al des pyroxènes, ce qui est conforme à la méthode d'étalonnage utilisée par Wells. La précision obtenue dans l'évaluation des températures est suffisante pour que des gradients thermiques puissent être mis en évidence.

Figure 5.- Ech. 3, RM 78-59 : Reliques d'orthopyroxène et de clinopyroxène (opx R et cpx R), à exsolutions grossières de plagioclase (pl) dans l'opx et d'opx (opx) dans le cpx, entourées d'une couronne noritique (c.nor.) dans une leuconorite saccharoïde en enclave. Les deux reliques de pyroxène présentent une bordure morcelée en sous-grains de taille et de contours irréguliers (opx g. et cpx g.). On y observe, dans les interstices, du plagioclase (pl) et de l'oxyde (ox), ainsi que des grains d'opx dans les produits de la granulation du grand cpx (cpx g.). Dans la couronne noritique (c.nor.), des quantités subordonnées de cpx intersticiel sont également observées. Dans la région de la couronne qui est en contact direct avec la relique de cpx (en bas, à droite), les opx de la norite ont tendance à se disposer perpendiculairement au contact (structure en peigne). Dessin à la chambre claire d'une lame mince.

COMMENTAIRES

Les analyses (tab. 1) sont reportées à la fig. 6 dans le quadrilatère des pyroxenes où sont aussi représentés quelques joints entre couples opx-cpx. La gamme des rapports Fe : Mg est relativement limitée si on la compare aux tendances classiques (e.g. le Skaergaard et le lopolithe de Bjerkrem-Sogndal - Duchesne, 1972).

Les opx géants du centre et de la bordure du massif sont les plus magnésiens, tandis que les couples solidus occupent la partie la plus riche en fer de la population. Les cpx sont nettement plus riches en Ca qu'au Skaergaard et présentent ainsi des analogies avec ceux du lopolithe de Bjerkrem-Sogndal. On notera cependant que les points se disposent en un nuage plutôt que sur une courbe. Cet étalement est dû au fait que les points se rapportent à des couples solidus (cristallisation de liquides intersticiels à différentes pressions) ainsi qu'à des couples ayant évolué subsolidus (exsolutions et recristallisation). La même remarque vaut aussi pour l'opx mais l'étalement est moins important. Pour la même raison, les valeurs les plus riches en Fe ne se disposent pas sur le palier des pigeonites. Enfin, certains cpx, comme les échantillons 1 et 4, sont nettement moins riches en Ca que les autres. Nous reviendrons plus loin sur cette question.

Le partage de Al_2O_3 entre les deux pyroxènes est exprimé à la fig. 7. L'ensemble des points se situe approximativement sur une droite passant par l'origine. On peut donc en déduire que le coefficient de partage de Al entre opx et cpx est constant dans l'intervalle relativement réduit des températures mesurées et que les différents couples de pyroxènes sont en équilibre.

Tableau 3.- Géothermomètres orthopyroxène-clinopyroxène.

WOOD & BANNO (1973)

$$T^{O}C = \frac{-10102}{\ln k - 7,65 X_{Fe}^{Cpx} + 3.88 (X_{Fe}^{Opx})^{2} - 4,6} - 273$$

avec

$$X_{Fe}^{opx} = (\frac{Fe^{2^{+}}}{Fe^{2^{+}} + Mg})_{opx}$$
 $k = \frac{a_{Mg_2}^{opx}Si_2O_6}{a_{Mg_2}^{opx}Si_2O_6}$

$$a_{Mg_2Si_2O_6} = (\frac{Mg}{AI^{VI} + Ti^{4+} + Cr^{3+} + Fe^{3+} + Fe^{2+} + Mg})_{M_1} (\frac{Mg}{Ca + Na + Mn + Fe^{2+} + Mg})_{M_2}$$

WELLS (1977)

$$T^{O}C = \frac{7341}{3.355 + 2.44 X^{OPX}_{Fe} - \ln k} - 273$$

Il est bien connu depuis Boyd & England (1964), que la teneur en Al des pyroxènes est fonction de la température, de la pression et de la nature de la phase alumineuse en équilibre avec eux, à savoir ici le plagioclase. Les données expérimentales disponibles sur ce système sont très maigres (Emslie, 1975b ; Maquil, 1978) par comparaison avec ce qui existe sur les systèmes spinelle-pyroxènes ou grenat-pyroxènes. Les difficultés expérimentales sont considérables (cinétique très lente dans le système sec, proximité du liquidus). Il est toutefois admis qualitativement que la teneur en Al des pyroxènes augmente avec P et T. L'exsolution du plagioclase et par conséquent la mise en équilibre de l'Ai entre exsolution et phase hôte peut cependant faire intervenir d'autres facteurs. Al entre en effet en solution solide sous forme de tschermakite (CaAl₂Si₂O₆) et de jadéite (NaAlSi₂O₆). Pour former une molécule de plagioclase, il est nécessaire de fournir de la silice. Celle-ci peut provenir du pyroxène même, s'il a au départ une composition supersilicique (Smith, 1982). SiO₂, en excès, est alors directement disponible. La silice peut aussi être produite par l'oxydation de la molécule d'enstatite selon la réaction suivante :

 $3\text{FeSiO}_3 + 0.5 \text{ O}_2 \rightarrow \text{Fe}_3\text{O}_4 + 3 \text{ SiO}_2$

Morse (1975) voit dans ce processus l'origine des exsolutions de minerais noirs (fig. 4) qui accompagnent généralement celles des plagioclases. D'autre part les exsolutions dans l'éch. 1 (fig. 2), qui ne contient pas de minerai noir, peuvent être expliquées par le premier processus. On voit donc que excès de silice, fugacité d'O₂ et mécanisme d'exsolution sont liés. Le contenu en Al du pyroxène ne dépend donc pas seulement de P et T. L'importance quantitative de ces facteurs reste cependant difficile à évaluer et ceci tend à limiter l'application des teneurs en Al comme géothermomètre et géobaromètre. On verra cependant dans ce qui suit que les variations en Al sont très régulières et systématiques et qu'elles ne sont à aucun moment en contradiction avec un modèle de cristallisation le long d'un gradient de pression.

Figure 6 : Quadrilatère des pyroxenes dans lequel sont reportées les compositions chimiques du tableau 1. Quelques joints entre opx et cpx d'un même couple sont reportés. Les numéros renvoient aux échantillons 1 et 10. Les tendances de l'évolution des pyroxenes du Skaergaard (S) (Wager & Brown, 1968) et celles du lopolithe stratiforme de Bjerkrem-Sogndal (Bk-Sg) (Duchesne, 1972), sont également figurées.

THERMOMETRIE

Le fait saillant qui se dégage de l'examen du tableau 1 est la variabilité des températures qui sont mesurées d'un échantillon à l'autre et au sein d'un même échantillon quand celui-ci est un cristal géant déformé. La signification pétrogénétique de ces variations est différente selon le type d'association opx-cpx. Nous les discuterons en tentant de les mettre en relation avec les variations en Al des pyroxènes.

Figure 7 : Variation des teneurs en Al_2O_3 dans les opx par rapport aux cpx associés, a : couples d'exsolution ; b : couples de recristallisation ; c : couples solidus. L'ensemble des points est reporté sur chaque diagramme. Ne sont noircis que les points relatifs au type d'association considérée. Un trait continu entoure les points d'un même échantillon et en porte le numéro.

1.- exsolutions en lamelle ou en granules.

Figure 8 Histogramme des températures mesurées par le thermomètre de Wells pour chacun des couples opxcpx analysés. Chaque mesure porte le numéro de l'échantillon où elle est faite ; elle est portée dans un des diagrammes a, b, ou d, selon le type d'association opx-cpx. Les températures moyennes par roche pour les couples de recristallisation et les couples solidus sont portées respectivement dans les diagrammes c et e. La hauteur du segment indique le nombre de mesures prises en considération dans la moyenne.

La fig. 8a montre la répartition des températures dans les exsolutions sous forme d'histogramme. L'intervalle couvert est important. L'échantillon 1 donne la température la plus haute $(1062^{\circ}C)$ et les teneurs les plus élevées en Al₂O₃ (8.59 % dans le cpx ; 6.08 % dans l'opx) (non représentées à la fig. 7 car largement en dehors de la gamme normale). Dans le quadrilatère des pyroxènes (fig. 6), le cpx est nettement moins riche en Ca que les autres cpx. Linsdley *et al.* (1981) ont montré expérimentalement que l'augmentation de pression élève les températures solidus du système Mg₂SiO₆-CaMgSi₂O₆ et diminue l'écart entre les compositions des deux pyroxènes. L'extrapolation de ces données aux cristaux géants qui sont examinés ici permet de conclure que les exsolutions se sont développées à haute température et à des pressions plus élevées que celles qui régnaient lors de la cristallisation ou de la recristallisation des autres couples de pyroxènes. Le blocage des températures solvus à des valeurs aussi élevées est probablement en relation avec le caractère exceptionnel des exsolutions de cet échantillon (cfr. supra). La première génération d'exsolution est du plagioclase sans oxydes ; la seconde génération, du cpx. L'absence d'oxydation a probablement limité l'exsolution au domaine des températures (et des pressions) les plus élevées.

Parmi les autres échantillons, l'éch. 2 montre une large variation de température, celles relatives aux granules d'exsolution se répartissant de préférence dans les basses températures (840°C), pour des teneurs en Al_2O_3 du cpx de 3.1 %. Par contre, les lamelles donnent des températures un peu plus élevées (870°C et 2.98 % Al_2O_3

dans l'opx). Ces différences dans les températures de blocage peuvent s'expliquer ici par l'hétérogénéité de la déformation, celle-ci activant de façon différente les migrations selon les endroits. Il faut noter aussi que les variations des températures ne sont pas corrélées avec celles des teneurs en AI. Ces dernières sont élevées dans les mégacristaux déformés et beaucoup plus basses dans les couples exsolution-phase hôte des pyroxènes des pegmatites en filon. A nouveau ceci constitue une indication de différences dans les régimes PT de cristallisation et d'évolution des agglomérats de cristaux géants par rapport aux pegmatites.

2.- couples solidus

A la fig. 8d, l'ensemble des températures des couples solidus est bien groupé ; il en est de même à la fig. 8e des moyennes pour chaque roche. Si on excepte l'éch. 7 qui donne des valeurs largement dispersées dont la moyenne est peu significative, on constate que les norites fines 9, 11 et 12, qui emballent les agglomérats de cristaux géants, forment un groupe autour de 900°C, température plus élevée que pour la pegmatite tardive (éch. 8) et des liquides intersticiels (éch. 6) (fig. 8e). Les couples solidus ont par ailleurs des teneurs en Al₂O₃ qui se répartissent dans la zone des faibles teneurs de la fig. 7. Ici aussi, il n'apparaît aucune relation entre la teneur en Al₂O₃ et la température.

Dans ces associations que la Pétrographie indique comme étant d'origine magmatique, l'équilibre entre les deux pyroxènes a été réalisé en présence d'une phase liquide intersticielle. En l'absence, d'une part, de toute déformation ultérieure et, d'autre part, de manifestations deutériques indiquant l'existence d'une phase fluide, il est légitime de supposer que les températures de blocage n'ont pas varié subsolidus. Par ailleurs, comme les températures observées décroissent avec la succession chronologique des manifestations magmatiques, il y a peu de chance que cette relation ait été respectée si un mécanisme de rééquilibre subsolidus était intervenu.

L'amplitude des variations des teneurs en Al_2O_3 (de l'ordre d'un facteur 3 dans le cpx) ne peut pas être imputée aux variations des températures, car celles-ci ne dépassent pas une centaine de degrés. Comme le chimisme de ces roches est globalement noritique, le facteur le plus susceptible d'influencer le partage de Al entre le liquide et les pyroxènes reste donc la pression. En conclusion, l'image la plus plausible que l'on puisse tirer des variations en Al est celle de liquides cristallisant à des pressions différentes.

3.- couples recristallisés

Il s'agit des échantillons où les pyroxènes présentent une structure granoblastique typique, dans les gneiss anorthositiques et leuconoritiques de la bordure (éch. 13 à 17) ainsi que dans les produits de la recristallisation des mégacristaux de pyroxène (éch. 2 à 5).

Les températures mesurées (fig. 8b) sont largement dispersées, les valeurs moyennes par roches se situant entre 850° et 990°C (fig. 8c). Les teneurs en Al se regroupent au centre du diagramme de la fig. 7b, les valeurs relatives aux produits de la recristallisation des opx géants (éch. 2 et 3) étant plus élevées que celles des gneiss banaux. Il faut signaler qu'il n'existe aucune corrélation entre les températures mesurées et les contenus en Al. Ainsi pour les couples entre 820° et 900°C, les teneurs en Al₂O₃ des cpx sont en moyenne 3.5 ± 0.6 % et, pour les couples entre 920° et 1000°C, 3.4 ± 0.7 %. On ne peut donc pas admettre que l'exactitude du thermomètre soit faussée par une quelconque variation du contenu en Al. Les variations de la température peuvent s'interpréter en admettant que les roches ont subi d'abord une déformation à une température élevée, supérieure ou égale à la température maximum observée (éch. 13: 990°C) et qu'ensuite, au cours du refroidissement, les pyroxènes se sont rééquilibrés jusqu'à des températures de blocage différentes ou, autre possibilité, que les roches ont continué à se déformer de façon très hétérogène, de telle sorte que des températures d'équilibre différentes aient pu être atteintes d'un endroit à l'autre de la bordure gneissique.

En tout état de cause, la température maximum qui est obtenue est élevée relativement aux températures mesurées avec le même thermomètre dans les roches de l'enveloppe métamorphique. Jacques de Dixmude (1978) a présenté des données sur une dizaine de métabasites, réparties dans l'enveloppe de l'ensemble des massifs de la province, jusqu'à une distance de l'ordre de 25 km. Les analyses recalculées avec le thermomètre de Wells donnent une moyenne de l'ordre de 900°C et avec celui de Wood & Banno de l'ordre de 845°C. Ces températures ont été confirmées par Wilmart (1982, inédit ^b avec des analyses plus exactes et précises sur quatre métabasites de l'enveloppe du massif anorthositique d'Åna-Sira. Les valeurs obtenues selon Wells sont de 835 \pm 27°C (σ) et, selon Wood & Banno, de 814° \pm 14°C Comme les températures maximum mesurées dans la bordure (éch. 13)

^b WILMART, E., 1982. Série supracrustale, granito-gneiss et charnockites de l'enveloppe métamorphique du massif anorthositique d'Åna-Sira (Norvège méridionale) : étude pétrographique et géochimique. Mém. de licence inédit, Fac. des Sciences, Univ. de Liège.

sont de 987°C (Wells) et 940°C (Wood & Banno), il semble donc bien exister une différence significative de température entre les valeurs régionales et ce maximum.

Il est difficile d'accepter que la déformation et la recristallisation granoblastique des roches de la bordure puissent être engendrées par une déformation régionale dans le facies granulite. Dans ce cas en effet il ne devrait pas exister de différence entre les températures dans les deux ensembles. On est par conséquent conduit à rechercher dans le phénomène intrusif lui-même l'origine non seulement des hautes températures mais aussi de la structure granoblastique des roches de la bordure interne.

La faible variation des teneurs en Al dans les pyroxènes de ces roches constitue de plus une indication que leur recristallisation, quelle que soit la température, s'est produite sur un faible intervalle de pression. Les produits de la recristallisation des opx géants montrent par contre une teneur en Al un peu plus élevée. On peut donc penser que la déformation qui les a engendrés a commencé à une pression plus élevée que dans les gneiss typiques. Les températures maximum dans la bordure sont également supérieures aux températures des couples solidus des norites qui emballent les agglomérats de mégacristaux dans la partie centrale du massif et, a fortiori, dépassent largement les températures de consolidation des dykes terminaux. Il apparaît donc que dans certaines parties du massif, en particulier dans le centre, des liquides pouvaient encore subsister alors que les roches de la bordure étaient déjà consolidées et recristallisées.

CONCLUSIONS

Les pyroxènes du massif d'Egersund-Ogna, en particulier les mégacristaux d'orthopyroxène alumineux, témoignent d'une évolution complexe. Dans des roches voisines ou dans un même échantillon, des couples opxcpx peuvent coexister avec des compositions chimiques différentes. Le partage de Al entre les deux pyroxenes indique que ies couples sont en équilibre. Ces états d'équilibre, atteints lors de l'évolution du massif, ont gardé la mémoire des conditions PT dans lesquelles l'évolution s'est déroulée. Il est donc possible par l'étude pétrographique, la détermination des compositions chimiques à l'échelle des microassociations minérales et le calcul thermodynamique, de reconstituer la succession relative des températures d'équilibre et d'apprécier qualitativement les conditions de pression.

L'ensemble des résultats fait apparaître que :

1) des exsolutions de cpx ont commencé dans les opx géants à des températures élevées et à des pressions plus hautes que celles qui ont régné lors de l'achèvement de la cristallisation et de la recristallisation.

Comme ces opx géants ont cristallisé au liquidus à des conditions PT nécessairement plus élevées encore que celles que mesurent les exsolutions, l'hypothèse d'une cristallisation des agglomérats de mégacristaux à plus grande profondeur que celle de leur mise en place finale peut être admise ;

2) la cristallisation des liquides noritiques tardifs se fait également sur un intervalle PT ; les valeurs maximum de la pression sont cependant plus faibles que lors de la cristallisation des mêgacristaux au liquidus ;

3) les gneiss de la bordure interne se sont équilibrés sur un intervalle de pression relativement faible, dont les valeurs sont en général comprises entre celles des exsolutions dans les mégacristaux et celles des liquides intersticiels. L'intervalle des températures d'équilibre est d'environ 150°C et recouvre les gammes des températures d'exsolution et des couples solidus. Toufefois, les températures maximum enregistrées sont supérieures aux températures de fin de consolidation à l'intérieur du massif. Ces températures maximum sont aussi supérieures de plus de 100°C à la température régionale, estimée à l'aide du même thermomètre dans les métabasites de l'enveloppe métamorphique.

Ces données thermo-barométriques sont en contradiction avec l'hypothèse d'un remaniement tectonique régional, postérieur à la consolidation totale de l'anorthosite. Ce processus ne devrait en effet pas amener de différence de température entre la bordure interne et l'enveloppe. Par contre les données indiquent que cristallisation et déformation sont étroitement liées tout au long de la mise en place. En particulier, la gneissification de la bordure interne a commencé à haute température, alors qu'il restait encore du liquide â l'intérieur de la masse.

Le massif d'Egersund-Ogna peut en définitive s'être mis en place comme une masse anorthositique, à l'état de boue de cristaux lubrifiés par une quantité mineure de liquides intersticiels, et contenant des mégacristaux ou des agglomérats de mégacristaux formés à plus grande profondeur. Cette masse provoque sa propre déformation (protoclase, kinking, granulation, etc.) laquelle conduit même localement à la transformation de certaines parties

marginales en roches complètement recristallisées (gneiss granoblastiques). Ce processus détermine également dans l'enveloppe extérieure de roches métamorphiques une déformation suffisante pour assurer un large degré de concordance dans les contacts (déformation synintrusive). Ce mécanisme de mise en place explique d'autre part l'origine des enclaves gneissiques à l'intérieur de l'anorthosite. Celles-ci sont des fragments détachés de la bordure gneissique et englobés dans la masse avant sa consolidation finale (Duchesne & Maquil, 1981, 1984).

Le massif d'Egersund-Ogna apporte donc un élément important dans le débat sur l'origine de anortho-sites grenvillierines. Il justifie le bien-fondé du paradygme de Martignole & Schrijver (1970) en démontrant que la gneissification de ces massifs n'est pas **nécessairement** liée à une phase de déformation régionale. Quoique déformés, ces massifs **peuvent** donc constituer des manifestations magmatiques atectoniques et de haute température.

REMERCIEMENTS

R. Maquil remercie tout particulièrement les Professeurs M.J. O'Hara et C. Ford du Grant Institute of Geology de l'Université d'Edinbourg, de l'avoir accueilli au Département de Géologie, ainsi que leurs collaborateurs P. Hill et C. Begg, qui l'ont aidé et conseillé pendant ses deux séjours d'étude.

Les auteurs ont bénéficié du soutien du FNRS (crédits aux chercheurs pour J.C. Duchesne et stages à l'étranger pour R. Maquil). R. Maquil remercie aussi l'OTAN pour l'octroi d'une bourse d'études à Edinbourg.

BIBLIOGRAPHIE

BAER. A.J., 1976. The Grenville Province in Helikian times : a possible model for the evolution. Phil. Trans. R. Soc. Lond. A 280 : 499-516.

BAER, A.J., 1981. A Grenville model of Proterozoic plate tectonics, in A. Kroner (Ed.) "Precambrian plate tectonics" Elsevier, 353-385.

BARD, J.P., 1980. Microtextures des roches magmatiques et métamorphiques. Masson, Paris, 192 p.

BARTHOLOME, P., 1961. Co-existing pyroxenes in igneous and metamorphic rocks. Geol. Mag. 48: 346-348.

BARTHOLOME, P., 1962. Iron-Magnesium ratio in associated pyroxenes and olivines, in Engels, A.E.J, *et al.* (Eds), Petrologic studies : a volume in honor of A.F. Budding-ton, 1-20, Geol. Soc. Amer.

BOYD, F.R. & ENGLAND, J.L., 1964. The system enstatite-pyrope. Carnegie Inst. Wash. Yearb. 63: 157-161.

DAVIDSON, L.R., 1968. Variation in ferrous iron-magnesium distribution coefficients of metamorphic pyroxenes from Quairading, Western Australia. Contr. Mineral. Petrol. 19 : 239-259.

DEWEY, J.F. & BURKE, K.C.A., 1973. Tibetan, Variscan and Precambrian basement reactivation : products of continental collision. J. Geol. 81 : 683-692.

DUCHESNE, J.C., 1972. Pyroxenes et olivines dans le massif de Bjerkrem-Sogndal (Norvège méridionale). Contribution à l'étude de la série anorthosite-mapgérite. 24th Intern. Geol. Congress, Montréal, sect. 2: 320-328.

DUCHESNE, J.C, 1977. Orthopyroxènes géants à démixtions de plagioclase dans les anorthosites du Rogaland (Norvège méridionale). Communication à l'Umibel - 7 juin 1977 (Résumé dans Mise. Geol. Belgica, I, 5, mai 77).

DUCHESNE, J.C. & DEMAIFFE, D., 1978. Trace elements and anorthosite genesis. Earth Planet. Sci. Lett. 38 : 249-272.

DUCHESNE, J.C. & MAQUIL, R., 1981. Evidence of syn-intrusive deformation in South-Norwegian anorthosites (résumé). Terra Cognita, Spec. Issue, p. 94.

DUCHESNE, J.C. & MAQUIL, R., 1984. The Egersund-Ogna massif. In "The Precambrian of Southern Norway" (C. Maijer *et al.*, eds) (in press).

 $EMSLIE, R.F., 1975a. \ Pyroxene \ megacrysts \ from \ anorthositic \ rocks: new \ clues \ to \ the \ source \ and \ evolution \ of \ the \ parent \ magmas. \ Can. \ Miner. \ 13: 138-145.$

EMSLIE, R.F., 1975b. High pressure pyroxene megacrysts from anorthositic rocks and their bearing on the genesis of the parent magma (résumé). Geol. Soc. Am. meeting, Abstr. with program. : 752-753.

EMSLIE, R.F., 1978. Anorthosite massifs, Rapakivi granites, and late Proterozoic rifting of North America. Precambrian Res. 7: 61-98.

FALKUM, T., 1982. Geologisk kart over Norge, berggrunns-kart MANDAL 1 : 250.000. Norges geologiske under-sôkelse.

FALKUM, T. & PETERSEN, J.S., 1980. The Sveconorwegian orogenic belt, a case of Late-Proterozoic plate-collision. Geol. Rund. 69 : 622-647.

GANGULY, J. & GHOSE, S., 1979. Aluminous orthopyroxe-ne : order-disorder, thermodynamic properties, and petrological implications. Contr. Miner. Petrol. 69 : 375-385.

HUCKENHOLZ, H.G., SHAIRER, J.F. & YODER, H.S., 1969. Synthesis and stability of ferri-diopside. Miner. Soc. Am. Spec. Paper, 2 : 163-177.

JACQUES de DIXMUDE, S., 1978. Géothermométrie comparée de roches du faciès granulite du Rogaland (Norvège méridionale). Bull. Minerai. 101 : 57-65.

KOSOI, A.L., MALKOVA, L.A. & FRANK-KAMENETSKII, V.A., 1974. Crystal-chemical characteristics of rhombic pyroxenes. Kristallografiya, 19 : 282-288 (trans. Soviet Phys. Crystallogr. 19 : 171-174).

KRETZ, R., 1961. Some applications of thermodynamics to coexisting minerals of variable composition. Examples : orthopyroxeneclinopyroxene and orthopyroxene-garnet. J. Geol., 69 : 361-367.

KRETZ, R., 1963. Distribution of magnesium and iron between orthopyroxene and calcic pyroxene in natural mineral assemblages. J. Geol. 71: 773-785.

LINDSLEY, D.H. & ANDERSEN, D.J., 1983. A two-pyroxene thermometer. Proc. 13th Lunar planet. Sci. Conf., J. Geophys. Res. 88, suppl. A887-A906.

 $LINDSLEY, D.H., GROVER, J.E. \& DAVIDSON, P.M., 1981. The thermodynamics of the Mg_2Si_2O_6 - CaMgSi_2O_6 join : a review and an improved model. Adv. in Phys. Geochemistry, 1 : 149-175.$

MAQUIL, R., 1978. Preliminary investigation on giant ortho-pyroxenes with plagioclase exsolution lamellae from the Egersund-Ogna anorthositic massif (S.W. Norway), in "Progress in Experimental Petrology" NERC London Publ. Série D - 4th report, 1975-1978 : 144-146.

MAQUIL, R.f 1980. Field relations of the Egersund-Ogna anorthosite (résumé). Colloquium high-grade metamorphic Precambrian and its intrusive masses - Utrecht, 8-9 mai.

MAQUIL, R., ROELANDTS, I., HERTOGEN.J. & DUCHESNE, J.C., 1980; Orthopyroxènes géants et plagioclases associés dans l'anorthosite d'Egersund-Ogna (SW Norvège) (résumé). 8e Réunion Ann. Se. de la Terre, Marseille, Soc. Géol. Fr. 238.

MARTIGNOLE, J. & SCHRIJVER, K., 1970a. Tectonic setting and evolution of the Morin anorthosite, Grenville Province, Quebec. Bull. Géol. Soc. Finland, 42 : 165-209.

MICHOT, P., 1939. La couronne d'anorthosite hypersthénifère feuilletée et rubanée du massif anorthositique d'Egersund (Norvège). Ann. Soc. Géol. Belg., 62 : 547-551.

MICHOT, P., 1957. Constitution d'un dôme de gneiss coiffé en milieu catazonal profond. Acad. Roy. Belgique, Bull. Cl. Sci., Série 5, 43 : 23-44.

MICHOT, P., 1960. La géologie de la catazone : le problème des anorthosites, la palingenèse basique et la tectonique cata-zonale dans le Rogaland méridional (Norvège méridionale). Norges Geol. Unders. 212a : 1-54.

MICHOT, P., 1969. Geological environment of the anorthosites of South Rogaland, Norway, *in* Isachsen Y.W. (Ed.) "Origin of Anorthosite and related rocks". N.Y. State Mus. Sci. Mem. 18 : 411-423.

MORSE, S.A., 1975. Plagioclase lamellae in hypersthene, Tikkoatokhakh Bay, Labrador. Earth Planet. Sci. Lett. 26: 331-336.

MORSE, S.A., 1982. A partisan review of Proterozoic anorthosites. Amer. Mineralogist, 67: 1087-1100.

ROSS, M. & HUBNER, J.S., 1975. A pyroxene thermometer based on temperature-composition relationships of naturally occurring orthopyroxene, pigeonite, and augite (résumé). Internat. Conf. on Geothermometry and Geo-barometry, Penn. State Univ., Oct. : 5-10.

SMITH, D.C., 1982. On the characterization and credibility of supersilicic, stoichiometric, and subsilicic pyroxenes (résumé). Terra Cognita 2:223.

SWEATMAN, T.R. & LONG, J.V.P., 1969. Quantitative electron-probe microanalysis of rock-forming minerals. J. Petrol., 10: 332-379.

WAGER, L.R. & BROWN, G.M., 1968. Layered igneous rocks. Oliver and Boyd, Londres, 588 p.

WELLS, P., 1977. Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol. 62: 129-139.

WOOD, B. & BANNO, S., 1973. Gamet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contr. Miner. Petrol., 42 : 109-124.

WILHELM, S.s & MARTIGNOLE, J., 1979. Precipitation of pyroxene during plagioclase growth in anorthosite (résumé) GAC and MAC joint-meeting, Montréal.

WINDLEY, B.J., 1977. The evolving continents. John Wiley, 385 p.

PLANCHE 1

1. Aggrégat de mégacristaux d'orthopyroxène alumineux et de plagioclase. Les contacts rectilignes entre pyroxène et plagioclase dessinent le contour des phénocristaux originels de plagioclase, maintenant complètement granulés. Le manche du marteau est d'environ 1 m de long (Piggstein).

2. Aggrégat de mégacristaux (détail de la partie droite de la photo 1 après rotation de 110° dans le sens des aiguilles d'une montre). Le clivage 100 de l'opx est nettement visible.

3. Aggrégat orienté de mégacristaux. Le pyroxène, non déformé, s'insère dans les interstices de plagioclases déformés et granulés. Il s'agit d'une structure protoclas-tique et d'une orientation magmatique (E. de Matnisdal).

4. Gneiss anorthosito-leuconoritique de la bordure. Bancs leuconoritiques et anor-thositiques de granularité variable. Plan de foliation parallèle au plan de variation chimique (N. de Matnisdal).

5. Gneiss leuconoritique grossier de la bordure. Orthopyroxènes géants granulés et étirés le long de la foliation (Route E. 18, Saglansvatn).

6. Gneiss leuconoritique de la bordure. Orthopyroxènes granulés et dispersés le long du plan de schistosité (Haugsengen).

Planche 1

PLANCHE 2

1. Mégacristal d'opx alumineux à exsolutions de plagioclase, déformé en "kink bands", avec en haut à droite, une partie granulée (RM 79-199.5 ; éch. 1) (niçois croisés).

2. Pegmatite noritique à oxydes de Fe-Ti. Leuconorite antiperthitique à structure finement grenue et pyroxènes en grains ou en baguettes, disposée dans les interstices des grands pyroxènes (avec exsolutions de Schiller) de la pegmatite (JCD 76-28.4B ; éch. 8) (lumière naturelle).

3. Amas leuconoritique. Fragment d'opx géant, morcelé et cimenté par du minerai noir. Un mince film constitué de plagioclase et de cpx se développe au contact entre opx et oxydes (RM 79-166 ; éch. 7) (lumière naturelle).

4. Gneiss noritique de la bordure gneissique. Lentille mafique constituée de plages d'opx avec des granules d'augite (pigeonite inversée granulée). Du minerai noir s'insinue entre les produits de la granulation (RM 77-10.2 ; éch. 10) (lumière naturelle).

5. Gneiss leuconoritique de la bordure. Rubans pyroxéniques à structure granoblas-tique. Mosaïque dominée par l'orthopyroxène, avec accessoirement du clinopyroxène et des petits grains d'opaques et de plagioclase (RM 77-75.4 ; éch. 17) (lumière naturelle).

Planche II

TABLEAUX :

70 11 4 4	Q' 1 1	.1	``	1.
lableau I-I.	Geothermometri	e orthopv	roxene-c	clinopvroxen
I HOIVHH I I.	000000000000000000000000000000000000000	connopy	10200100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ECHANT.	1	100 5	2											
ROCHE	RM79	-199.5	RM77	-6.14	r		2		4		5		4	
COUPLE	1		1		2		3		4		3		4	
	opx hôta	cpx	opx hôta	cpx	opx hôta	срх	opx hôta	cpx	opx hôta	opx	opx hôta	cpx	opx hôta	cpx
SiO	50.84	exs 11 88	10te	40 42	52 14	40 02	10te	40 45	52.21	40 40	52.01	exs 40.43	10te	40 74
TiO ₂	0.19	2 07	52.57	0.93	0.13	49.92	0.13	1 20	0.25	117	52.91	1 21	0.17	0.95
	4.08	8.59	3 04	0.93 4 94	3 3 2	5 48	2.87	5.10	2.85	5 24	3 04	5.21	3.11	5.11
$A_{12}O_3$	0.14	0.25	0.10	0.30	0.10	0.27	0.11	0.28	0.12	0.34	0.11	0.24	0.09	0.14
FeO	15 B2	7.24	19 14	7 42	18 70	8 14	18.83	7 25	18.43	7 34	18 74	7.24	18 47	7 32
MnO	0.20	-	0.34	0.11	0.23	-	0.21	-	0.25	-	0.35	-	0.39	0.14
MgO	24 56	14 47	24.81	13.22	24 70	14 12	25.12	13 28	24 71	13 40	25.14	13 01	25.22	13 24
CaO	0.97	20.01	0.48	22.31	0.74	21.22	0.44	22.91	0.95	22.61	0.79	22.77	0.55	22.49
Na ₂ O	-	0.30	-	0.35	-	0.31	-	-	-	-	-	-	-	0.39
Total	98.80	99.81	100.50	99.02	100.04	100.94	100.83	99.47	99.97	99.43	101.08	99.31	100.95	99.74
			Formul	le struct	urale sur	la base	de 4 cati	ons et 1	2 charge	s				
Si	1840	1730	1911	1851	1902	1834	1915	1849	1907	1847	1909	1840	1905	1849
AL IV	140	270	89	149	98	144	85	151	93	153	91	140	95	151
AL VI	123	103	41	70	44	71	37	73	30	77	38	90	38	72
Ti	5	57	0	24	4	40	4	34	7	33	0	34	5	27
Cr	4	7	3	9	3	8	3	8	3	11	3	7	3	4
Fe3+	3	44	45	43	44	29	38	2	44	0	50	0	45	50
Fe2+	482	157	537	189	524	221	532	225	524	230	515	227	519	177
Mn	4	0	11	3	7	0	4	0	8	0	11	0	12	5
Mg	1340	794	1344	738	1343	773	1355	740	1344	745	1352	727	1358	733
Ca	38	791	19	895	30	835	25	918	37	904	31	914	21	. 903
lia	0	21	0	25	0	22	0	0	0	0	0	0	0	28
Total (1)	4004	4028	4020	4020	4020	4015	4019	4004	4021	4005	4022	3997	4020	4022
					Tempéra	ature (°C	C) calcul	ée						
WOOD et BANNO	1027		877		942		883		904		889		841	
WELLS	1042		844		981		871		900		874		838	
					Pour	centage	molaire							
Wo	2.1	45.4	1.0	49.0	1.5	45.4	1.3	48.7	1.4	48.9	2.0	48.1	1.2	49.7
En	71.8	45.7	70.3	40.4	70.5	42.2	70.7	39.3	70.8	38.9	70.3	39.7	71.1	40.3
Fs (2)	24.1	8.9	28.7	10.4	28.0	12.2	28.0	12.0	27.4	12.2	27.7	12.2	27.7	10.0

(1) somme des cations avant le calcul de Fe3+;

ECHANT.	2 (s	uite)												
ROCHE	RM	77-6.14 (suite)											
COUPLE	7		В		9		10		11		12		13	
	opx	cpx	opx	cpx	opx	cpx	opx	cpx	opx	opx	opx	cpx	opx	cpx
	hôte	g. exs	hôte	g.exs	hôte	g.exs	hôte	g.exs	recr	recr	recr	recr	recr	recr
SiO_2	53.52	50.42	52.79	49.41	52.71	49.41	52.45	50.17	53.42	49.37	53.74	50.12	52.59	50.81
TiO ₂	0.25	1.09	0.17	1.21	0.22	1.22	0.20	1.10	0.12	0.80	-	0.95	0.18	0.80
Al_2O_3	2.79	5.03	3.14	5.35	3.15	5.51	3.30	4.98	2.18	4.00	2.24	4.34	2.43	4.14
Cr ₂ O ₃	0.08	0.12	0.08	0.14	0.09	0.14	0.09	0.14	0.07	0.10	0.04	0.09	0.04	0.09
FeO	18.44	7.57	18.52	4.79	18.49	7.17	18.48	7.08	18.84	7.71	19.01	8.24	18.10	7.48
MnO	0.34	0.10	0.31	-	0.24	-	0.35	0.11	0.30	0.15	0.24	0.17	0.27	0.12
MgO	25.08	13.44	25.15	13.07	24.79	12.89	25.24	13.48	25.34	13.49	25.28	13.80	25.27	13.88
CaO	0.43	23.02	0.41	23.32	0.84	22.91	0.50	22.70	0.40	21.53	0.54	21.44	0.43	22.53
Na ₂ O	-	0.38	-	0.34	-	-	-	0.22	-	0.43	-	-	-	0.30
Total	101.17	101.19	100.77	99.83	100.55	99.25	100.83	99.88	100.89	97.78	101.11	99.35	99.71	100.18
				Formule	structura	le sur la l	base de 4	cations e	t 12 charg	ges				
Si	1932	1848	1910	1852	1913	1852	1902 0P	1843	1940	1969	1940	1877	1920	1879
	40 50	152	90 43	74	07 412	04	9D 43	157	40	131	40 35	125	00 22	40
AL VI	30 7	43	43	24	4D	24	45	21	33	40	35	40 27	5	40
11 C=	2	30 2	3	54	4	34	3	51	2	25	0	27) 11	22
	2	5	2	4	3	4	3	4	2	3	2	3	11	3 25
Fe3+	2	51	35	35	24	0	41	11	19	44	23	0	54	35
Fe2+	541	181	525	1/4	537	225	517	209	551	1/8	551	258	517	197
Mn	11	3	9	0	1	0	11	3	9	5	1	5	8	4
Mg	1350	735	1354	723	1341	720	1341	744	1348	773	1341	770	1375	745
Ca	17	904	24	928	33	920	19	903	14	873	21	848	25	B93
На	0	27	0	24	0	0	0	14	0	32	0	0	0	22
Total (1)	4006	4023	4016	4017	4014 Te	3998 mpératu	4019 re (°C) ca	4009 Iculée	4012	4027	4013	4005	4018	4017
WOOD et BANNO	855		825		875	mperatar	883	leulee	901		932		895	
WELLS	838		792		861		867		889		943		881	
Wa	0.0	40.6	1.2	50.0	10	Pourcent	tage mola	ire	2.1	177	1 1	15 1	14	10 1
WO	0.9	49.6	1.5	50.0	1.8	49.5	1.0	49.4	2.1	4/./	1.1	45.4	1.4	48.4
En	69.6	40.4	70.8	39.8	69.9	38.6	71.3	40.1	70.3	42.3	70.1	40.5	71.5	41.2
Fs (2)	29.5	10.0	27.9	10.2	28.3	12.1	27.7	11.3	28.9	10.0	28.8	13.9	27.2	10.8

 Tableau 1-2 .
 Géothermométrie orthopyroxène-clinopyroxène.

(1) somme des cations avant le calcul de Fe3+; (2) en considérant le Fer total sous Forme de Fe2+.

ECHANT.	2(fin)	(1 4 (C -)	3	7 (12					4 DM79.50	`				
COUPLE	KIVI / /-0	5.14 (11n)	KM /	/-0.13	2		2		KIVI / 8-35	,	2		2	
COULE	14	<i>anx</i>	1	onv	2	onv	3 072	onv	1	onv	2	onv	5	onv
	орх	срх	opx	срх	ops	срх	opx	срх	opx	орх	opx	срх	opx	срх
a:0	recr	recr	recr	recr	recr	recr	recr	recr	hote	exs	hote	exs	zone a	cpx
S1O ₂	53.48	50.14	52.85	50.40	52.75	49.77	52.31	50.37	52.14	49.06	52.37	49.69	52.62	50.69
1102	0.25	0.92	0.22	0.78	0.19	0.75	0.27	0./1	0.13	1.13	0.15	0.94	0.28	0.96
Al_2O_3	2.48	4.19	2.90	3.99	2.19	3.94	2.96	3.96	3.19	4.94	2./1	4.44	2.14	3./4
Cr_2O_3	0.05	0.09	0.03	0.08	-	0.14	0.17	0.18	0.10	0.18	0.11	0.16	-	0.13
FeO	18.15	7.97	17.05	7.21	17.96	7.18	18.59	7.13	19.53	7.96	20.01	8.47	19.70	8.48
MnO	0.37	0.15	0.15	-	0.19	0.15	0.27	0.07	0.40	0.17	0.37	-	0.43	0.21
MgO	25.83	13.50	24.49	13.83	25.77	14.02	26.01	13.96	23.83	13.01	23.89	13.51	24.64	13.57
CaO	0.54	22.05	1.19	22.04	0.52	22.35	0.52	21.94	0.47	22.19	0.56	21.37	0.43	21.67
Na ₂ O	-	0.21	-	0.53	-	0.43	-	0.58	-	0.24	-	0.52	-	-
Total	101.15	99.22	99.08	98.86	99.57	98.73	101.10	98.90	99.79	98.88	100.17	99.10	100.24	99.45
]	Formule s	structurale	e sur la ba	ase de 4 ca	ations et	12 charges	5				
Si	1924	1878	1941	1883	1925	1842	1881	1880	1917	1844	1921	1840	1924	1901
AL IV	74	122	59	117	75	138	119	120	83	154	79	140	74	99
AL VI	29	43	44	59	19	36	6	54	56	65	39	55	16	67
Ti	7	26	6	22	5	21	7	20	4	32	4	26	8	27
Cr	1	3	1	2	0	4	5	5	3	5	3	5	0	4
Fe3+	33	20	0	50	46	87	93	63	17	37	29	65	44	0
Fe2+	513	230	524	176	502	138	466	160	584	213	585	200	558	266
Mn.	11	5	5	0	6	5	8	2	12	5	11	0	13	7
Mg.	1385	754	1352	770	1402	782	1394	777	1306	730	1307	754	1343	759
Ca	21	885	47	882	20	896	20	877	19	895	22	857	17	871
Na	0	15	0	38	0	31	0	42	•0	18	0	38	0	0
Total (1)	4016	4012	3995	4018	4016	4029	4031	4022	4009	4018	4014	4026	4020	3997
					Ten	npérature	(°C) calc	ulée						
WOOD et	1411		894		885		910		944		775		1466	
BANNO														
WELLS	895		883		863		889		871		922		934	
					F	ourcenta	ge molair	e						
Wo	1.1	47.3	2.4	48.3	1.0	48.3	1.0	49.3	1.0	48.5	1.2	47.4	1.0	45.8
En	71.7	40.3	70.1	42.1	73.8	42.7	72.6	43.0	68.0	39.6	67.8	41.6	69.8	39.8
Fs(2)	27.2	12.4	27.5	9.6	25.2	9.0	24.3	7.7	31.0	11.9	31.0	11.0	29.2	14.4

Tableau 1-3.	Géothermométrie	orthonvroxène	-clinopyroxène
Tabicau 1-5.	ocomer momente	or mopy oxene	-cunopyroxene.

(1) somme des cations avant le calcul de Fe3+

Tubleau I I. Geotifermometrie or mopyroxene ennopyroxene.
Tubleau I I. Geomermomente or mopyroxene ennopyroxene

Ta	bleau 1-4. (Géother	mométrie	e orthop	yroxène-	clinopy	roxène.							
ECHANT.	4 (s	uite)												
ROCHE	RM7	78-59												
COUPLE	4		5		4		7		8		9		10	
	opx	cpx	opx	cpx	opx	cpx	opx	cpx	opx	opx	opx	cpx	opx	cpx
	zone à	cpx	zone à	cpx	zone à	cpx	zone à	cpx	c.solidus		c.so	lidus	c.so	lidus
SiO ₂	53.12	50.61	52.94	50.97	52.85	50.58	52.94	50.76	52.19	50.10	52.75	51.22	53.04	51.33
TiO ₂	0.14	0.76	0.27	0.73	-	0.77	-	0.66	0.12	0.82	0.27	0.83	0.15	0.61
Al_2O_3	2.01	3.78	1.85	3.10	2.36	3.64	2.24	3.57	1.76	3.75	1.99	3.24	2.03	3.01
Cr_2O_3	-	-	-	0.15	0.19	-	-	0.12	-	0.13	-	0.19	-	-
FeO	19.66	8.76	19.53	7.62	18.77	7.29	18.91	7.39	19.88	8.22	19.45	7.76	19.48	7.16
MnO	0.43	0.21	0.31	0.17	0.33	0.20	0.37	0.14	0.27	0.15	0.34	0.18	0.31	0.15
MgO	24.10	13.74	24.98	14.10	24.89	13.46	24.79	13.79	24.01	13.38	24.63	13.83	24.84	13.83
CaO	0.63	21.05	0.56	22.57	0.47	23.26	0.64	22.85	0.60	22.33	0.60	22.46	0.68	23.04
Na2O	-	0.28	-	-	-	-	-	0.31	-	0.38	-	0.39	-	-
Total	100.09	99.19	100.44	99.41	99.86	99.20	99.89	99.59	98.83	99.26	100.03	100.10	100.53	99.13
			F	ormule s	tructurale	sur la ba	ase de 4 c	ations et	12 charge	S				
Si	1949	1897	1929	1905	1933	1896	1937	1889	1939	1876	1932	1899	1931	1923
AL IV	51	103	71	95	67	104	63	111	61	124	68	101	69	77
AL VI	36	64	9	4	35	57	33	45	16	41	18	40	18	56
Ti	4	21	7	21	0	22	0	18	3	23	7	23	4	17
Cr	0	0	0	4	5	0	0	4	0	4	0	6	0	0
Fe3+	7	17	47	7	27	4	3	48	38	41	35	37	42	0
Fe2+	597	258	548	231	547	225	548	182	580	196	561	204	551	224
Mn	13	7	10	5	10	6	11	4	8	5	11	6	10	5
Mg	1318	768	1357	786	1357	752	1352	765	1330	747	1345	744	1348	773
Ca	25	845	22	904	18	934	25	911	24	896	24	892	27	925
Na	0	20	0	0	0	0	0	21	0	28	0	28	0	0
Total (1)	4004	4010	4019	4007	4012	4003	4013	4021	4016	4026	4013	4018	4018	3999
					Ten	npérature	('C) calc	ulée						
WOOD et	024		000		0.4.4		0.57		0.40		070		0.47	
BANNO	924		900		844		857		842		872		847	
HELLS	945		897		820		839		B53		842		354	
					Р	ourcenta	ge molair	e						
Wo	1.3	45.1	1.1	44.9	1.0	48.7	1.3	48.9	1.2	48.6	1.1	47.9	1.4	48.0
En	47.5	40.9	70.0	40.8	70.2	39.2	69.8	41.1	68.6	40.5	69.4	41.0	69.6	40.1
Fs (2)	31.2	14.0	28.9	12.3	28.8	12.1	28.9	10.0	30.2	10.9	29.5	11.1	29.0	11.9
(1)	somme des catio	ons avant l	le calcul de	Fe3+;		(2) en con	sidérant le	fer total s	sous forme o	de Fe2+.				

ECHANT.	5 DM2	רב דו											4 DM1	77 75
COUPLE	1	11-33	2		3		4		5		6		1	11-23
COULT	onx	cnx	onx	cnx	onx	cnx	onx	cny	onx	ony	onx	cnx	onx	cnx
	hôte	eve	c sol	idus	C 50	lidus	c sol	lidus	recr	recr	c sol	lidus	0pA	lidus
SiO	52 29	50.62	53 20	51 31	53.43	51 44	52.96	51 17	53.67	51.62	53 24	51 11	52 85	52 24
TiO.	0.17	0.58	0.23	0.48	034	0.54	0.20	0.43	55.07	0.62	0.28	0.62	0.24	0.36
AlaOa	2.31	3 75	2.05	3 19	2.00	2.94	1.86	317	1 74	3 11	2.03	3.09	1 39	2.14
Cr_2O_2		0.25		0.22		0.20	-	0.18	-	0.12	-	0.19	-	0.18
FeO	15 20	8 27	19 59	7 37	19 40	7 35	19.61	8.09	19 59	7 94	19 19	8 90	21 79	7 97
MnO	0.27	-	0.34	0.13	0.33	0.15	0.31	-	0.33	0.23	0.35	-	0.41	-
MgO	24.87	13 76	24 50	14 15	24 56	13.86	24 77	14 32	24 94	13.85	24.88	13.92	23 33	13 68
CaO	0.51	22.26	0.51	22.75	0.77	22.79	0.57	21.78	0.42	22.76	0.34	22.05	0.57	22.89
Na ₂ O	-		-	-	-	0.23	-	0.34	-	0.34	-	0.39	-	-
Total	99.42	99.49	100.42	99.80	100.83	99.50	100.28	99.68	100.69	100.59	100.33	100.27	100.58	99.48
Formule struct	urale sur la	base de	4 cations	s et 12 c	harges									
Si	1918	1893	1943	1909	1943	1918	1935	1902	1951	1905	1942	1B94	1945	1957
AL IV	82	107	57	91	57	82	65	98	49	95	58	106	54	43
AL VI	18	58	31	49	29	47	15	41	26	41	29	29	6	52
Ti	5	16	6	19	9	15	5	18	0	17	8	17	7	10
Cr	0	7	0	6	0	4	0	5	0	4	0	6	0	5
Fe3+	55	8	13	0	9	15	40	42	27	41	14	65	34	0
Fe2+	534	250	585	220	581	214	559	210	573	204	572	211	637	250
Mn	8	0	11	4	10	5	10	0	10	7	11	0	13	0
Mg	1360	747	1334	785	1332	770	1349	793	1352	742	1353	769	1281	764
Ca	20	892	20	907	30	911	22	867	16	900	14	875	22	919
Na	0	0	0	0	0	17	0	24	0	24	0	28	0	0
Total(1)	4008	4006	4006	4003	4005	4009	4017	4018	4011	4068	4007	4026	4017	3994
Température (°	°C) calculé	e												
WOOD et BANNO	918		890		858		924		859		900		865	
WELLS	919		892		848		933		845		902		871	
Pourcentage m	olaire													
Wo	1.1	46.7	1.0	47.1	1.5	47.9	1.2	46.4	0.9	48.1	0.8	47.2	1.2	47.6
En	49.4	40.2	48.4	40.7	68.2	40.5	49.5	42.4	69.3	40.5	69.3	41.5	65.4	39.5
Fs (2)	29.5	13.1	30.1	12.2	30.3	11.4	29.3	11.2	29.8	11.2	29.9	11.3	33.4	12.9

Tableau 1-5.	Géothermométrie	orthopyro	xène-cline	opyroxène.

(1) somme des cations avant le calcul de Fe3+

ECHANT.	6 (si	uite)					7							
ROCHE	RM77-2	5 (suite)					RM7	9-144						
COUPLE	2		3		4		1		2		3		4	
	opx	cpx	opx	cpx	opx	cpx	opx	cpx	opx	opx	opx	cpx	opx	cpx
	c.sol	idus	c.so	lidus	c.so	lidus	recr.	recr.	recr.	c.sol	idus	c.so	lidus	
SiO ₂	53.04	51.08	52.74	51.91	53.08	51.33	53.34	52.43	53.28	52.46	52.79	51.57	53.08	52.85
TiO ₂	0.11	0.49	0.13	0.49	0.20	0.40	0.14	0.53	0.15	0.24	-	0.43	-	0.26
Al_2O_3	1.46	2.65	1.44	2.58	1.47	2.69	1.18	2.22	1.01	1.92	1.05	2.25	1.18	2.13
Cr_2O_3	-	-	-	0.18	-	0.20	-	-	-	-	-	0.24	-	-
FeO	21.81	9.20	22.12	8.48	22.24	8.41	22.46	9.45	21.87	8.77	22.37	10.42	22.26	B.97
MnO	0.47	-	0.41	-	0.32	0.22	0.36	0.24	0.37	0.20	0.32	0.24	0.33	0.25
MgO	23.01	13.57	22.88	13.54	23.14	13.44	23.34	13.99	23.36	13.83	22.72	13.71	22.94	13.78
CaO	0.48	22.36	0.53	23.07	0.56	22.57	0.54	22.06	0.58	22.65	0.31	20.69	0.68	22.51
Na ₂ O						0.28								
Total	100.38	99.35	100.26	100.25	101.01	99.74	100.38	101.32	100.62	100.07	99.56	99.55	100.47	100.75
			Fo	ormule st	ructurale	sur la ba	se de 4 ca	ations et	12 charge	S				
Si	1959	1919	1952	1942	1949	1915	1952	1952	1962	1956	1970	1941	1941	1955
AL IV	41	81	48	68	51	85	48	58	38	44	30	59	39	41
AL VI	23	37	15	45	13	33	2	38	6	40	16	41	12	52
Ti	3	14	4	14	6	11	4	15	4	7	0	12	0	7
Cr	0	0	0	5	0	4	0	0	0	0	0	7	0	0
Fe3+	12	16	26	0	27	14	38	0	24	0	15	0	27	0
Fe2+	441	273	659	264	656	218	649	298	649	273	683	328	660	278
Mn	15	0	13	0	10	7	11	8	12	6	10	8	10	8
Mg	1247	760	1263	751	1267	758	1274	770	1282	769	1264	769	1243	761
Ca	19	900	21	920	22	902	21	872	23	905	12	834	27	894
Na	0	0	0	0	0	20	0	0	0	0	0	0	0	0
Total (1)	4010	4011	4014	4002	4016	4021	4018	4002	4013	4002	4010	4001	4015	3997
					Tem	pérature	('C) calcu	ılée						
WOOD et														
BANNO	888		855		84		904		871		926		879	
WELLS	698		862		852		930		881		969		84	
					Р	ourcentag	ge molair	e						
Wo	1.0	46.6	1.1	47.5	1.2	47.7	1.1	44.8	1.2	46.3	0.7	43.0	1.4	46.0
En	64.5	39.3	64.5	38.8	64.8	40.2	65.1	39.5	65.2	39.3	64.1	39.6	44.4	39.2
Fs (2)	34.5	14.1	34.4	13.7	34.0	11.9	33.8	15.7	33.6	14.4	35.2	17.4	34.2	14.8

Tableau 1-6. Géothermométrie orthopyroxène-clinopyroxène.

(1) somme des cations avant le calcul de Fe3+;

ECHANT.	8								9						
ROCHE	JCD7	6-28.4b						Rm79-115							
COUPLE	1		2		3		4		1		2				
	opx	cpx	opx	cpx	opx	cpx	opx	cpx	opx	opx	opx	cpx			
	hôte	exs	c.solidus		c.solidus		c.solidus		c.solidus		c.solidus				
SiO ₂	52.61	51.74	53.19	51.79	52.53	51.95	52.95	52.14	51.34	52.34	52.06	52.19			
TiO ₂	-	0.28	-	0.15	0.12	0.39	0.22	0.28	0.28	0.27	-	0.17			
Al_2O_3	1.39	2.21	0.80	1.52	1.13	1.75	0.83	1.43	1.10	1.33	1.06	1.47			
Cr_2O_3	-	0.21	-	0.13	-	-	-	-	-	0.11	-	-			
FeO	22.38	8.35	22.80	7.66	22.95	7.91	22.88	8.05	26.01	10.41	25.77	9.98			
MnO	0.36	-	0.30	0.15	0.34	0.14	0.37	-	0.35	-	0.40	0.12			
MgO	22.48	14.02	22.30	13.71	22.28	13.48	22.65	13.83	19.68	13.30	19.66	13.00			
CaO	0.64	22.89	0.38	22.98	0.65	23.16	0.53	22.96	0.69	21.80	0.66	22.45			
Na ₂ O	-	0.24	-	-	-	-	-	-	-	0.29	-	-			
Total	99.86	99.94	99.77	98.09	100.00	98.78	100.43	98.69	99.45	99.85	99.61	99.38			
			Formule	structural	e sur la bas	e de 4 cat	tions et 12	charges							
Si	1958	1923	1986	1944	1957	1941	1963	1948	1956	1943	1979	1971			
AL IV	42	77	14	34	43	39	36	32	44	37	21	29			
AL VI	19	20	22	34	7	39	0	32	6	22	27	36			
Ti	0	8	0	4	3	11	6	8	8	В	0	5			
Cr	0	6	0	4	0	0	0	0	0	3	0	0			
Fe3+	23	52	0	0	29	0	26	0	22	18	0	0			
Fe2+	674	208	712	243	686	250	684	254	807	309	819	315			
Mn	11	0	9	5	11	5	12	0	11	0	13	4			
Mg	1247	777	1242	776	1238	759	1252	778	1118	744	1114	732			
Ca	26	912	15	934	26	937	21	929	28	876	27	908			
Na	0	17	0	0	0	0	0	0	0	21	0	0			
Total (1)	4013	4023	4003	4007	4025	3998	4014	4000	4013	4011	4004	4002			
				Ten	npérature (°	°C) calcu	lée								
WOOD et BANNO	851		823		820		845		843		840				
WELLS	860		826		819		852		904		872				
]	Pourcentag	e molaire									
Wo	1.3	48.1	1.1	47.6	1.4	48.0	1.1	47.4	1.4	45.5	1.4	46.3			
En	63.7	41.0	62.5	39.5	63.1	38.9	63.6	39.7	56.9	38.6	56.4	37.3			
Fs(2)	35.0	10.9	36.4	12.7	35.5	13.1	35.3	13.0	41.7	15.9	42.2	14.4			

 Tableau 1-7.
 Géothermométrie orthopyroxène-clinopyroxène.

(1) somme des cations avant le calcul de Fe3+

ECHANT.	10		11						12 13					
ROCHE	RM7	7-10.2	-10.2			RM79-68			RM7	9-158	RM77-6.5			
COUPLE	1		2		1		2		1		1		2	
	opx	cpx	opx	cpx	opx	cpx	opx	cpx	opx	opx	opx	cpx	opx	cpx
	c.so	lidus	c.so	lidus	c.so	lidus	c.so	lidus	recr	recr	recr	recr	recr	recr
SiO ₂	50.62	51.41	50.73	50.89	52.51	50.87	52.49	50.79	53.03	50.59	52.15	51.19	52.18	50.93
TiO ₂	0.25	0.33	-	0.11	0.25	0.44	0.25	0.44	0.17	0.88	0.24	0.53	0.17	0.72
Al_2O_3	1.00	2.07	1.09	1.74	2.27	3.40	1.87	3.27	2.43	4.20	1.45	2.74	1.51	3.11
Cr ₂ O ₃	-	-	-	-	-	0.14	-	-	0.11	-	-	-	-	-
FeO	31.34	12.85	30.49	12,82	21.07	8.34	20.42	8.99	20.25	8.55	21.94	10.74	22.51	11.50
MnO	0.66	0.24	0.65	0.29	0.44	0.23	0.42	0.32	0.49	0.20	0.48	0.19	0.35	0.21
MgO	15.70	11.06	15.93	11.43	23.04	13.01	23.48	13.87	23.98	13.43	22.46	13.17	22.30	13.44
CaO	0.87	22.01	0.84	21.58	0.90	22.45	0.79	21.39	0.79	21.63	0.91	20.2B	0.75	19,50
Na ₂ O	-	0.28	-	-	-	-	-	0.39	-	0.34	-	-	-	0.39
Total	100.44	100.25	99.93	98.88	100.50	99.30	99.92	99.48	101.45	99.82	99.85	98.86	99.77	99.82
	Formule structurale sur la base de 4 cations et 12 charges													
Si	1944	1944	1972	1954	1932	1914	1938	1894	1923	1885	1940	1944	1944	1910
AL IV	34	54	28	46	48	84	42	104	77	116	40	54	57	90
AL VI	10	39	22	34	31	73	19	37	34	49	13	44	12	48
Ti	7	9	0	3	7	19	7	19	5	25	7	15	5	20
Cr	0	0	0	0	0	4	0	0	3	0	0	0	0	0
Fe3+	12	17	5	4	23	0	29	40	29	22	33	0	32	30
Fe2+	1005	390	993	406	425	242	608	220	584	244	450	342	670	331
Mn	22	8	21	9	14	7	17	10	15	6	15	4	11	7
Mg	90B	424	923	454	1245	730	1292	771	1297	744	1244	744	1240	753
Ca	34	893	35	888	35	905	31	855	31	863	34	825	30	784
Na	0	21	0	0	0	0	0	28	0	25	0	6	0	28
Total(1)	4009	4011	4007	4007	4013	3994	4015	4025	4015	4013	4017	4013	4016	4001
WOOD	5 04				Temp	oérature (°C) calc	ulée	0.02		0.2.4		0.42	
WOOD et	794		829		848		908		903		934		943	
WELLS	833		882		875		925		914		979		994	
					Pc	urcentag	e molair	e						
Wo	1.8	44.7	1.8	45.4	1.8	47.5	1.4	44.1	1.4	46.3	1.8	44.2	1.6	41.8
En	46.0	32.6	44.8	33.4	45.2	38.3	66.5	41.5	67.3	40.1	43.9	38.9	43.5	40.2
Fs (2)	52.2	20.7	51.4	21.2	33.0	14.2	31.9	12.4	31.1	13.6	34.3	16.9	34.9	18.0

 Tableau 1-8.
 Géothermométrie orthopyroxène-clinopyroxène.

(1) somme des cations avant le calcul de Fe3+;

ECHANT.	14				15		14				17			
ROCHE	CHE RM77-10.18			RM77-91.1			RM77-75.5							
COUPLE	1		2		1		1		2		1		2	
	opx	cpx	opx	cpx	opx	cpx	opx	cpx	opx	opx	opx	cpx	opx	cpx
	recr	recr	recr	recr	recr	recr	recr	recr	recr	recr	recr	recr	recr	recr
SiO ₂	52.73	51.24	51.95	50.45	52.48	51.38	52.94	51.08	52.40	51.07	52.50	50.38	52.38	50.80
TiO ₂	-	0.59	0.15	0.49	0.33	0.44	0,14	0.55	-	0.73	0.29	0.72	0.27	0.48
Al_2O_3	1.39	2.97	1.40	2.80	1.42	2.93	1.87	3.28	2.24	4.03	2.32	3.57	2.01	3.42
Cr ₂ O ₃	-	-	-	-	-	0.32	-	0.24	-	0.32	-	0.23	0.14	0.21
FeO	23.75	9.73	23.30	9.44	20.75	8.09	21.02	0.98	20.52	8.97	21.21	9.54	21.12	9.47
MnO	0.33	0.15	0.47	0.15	0.40	0.21	0.44	0.32	0.41	0.22	0.42	0.24	0.37	0.34
MgO	21.39	12.43	21.07	12.51	23.57	13.77	23.05	13.48	22.84	12.72	22.45	13.30	23.30	13.53
CaO	0.79	22.08	0.73	22.34	0.92	22.14	0.83	21.94	1.35	21.99	0.90	20.88	1.19	20.94
Na ₂ O	-	-	-	-	-	0.39	-	-	-	0.27	-	0.36	-	0.34
Total	100.38	99.21	99.07	98.40	100.27	99.89	100.33	99.87	99.96	100.32	100.29	99.20	100.78	99.95
			For	rmule str	ucturale s	sur la bas	e de 4 cat	tions et 1	2 charge	S				
Si	1947	1941	1944	1927	1939	1911	1953	1914	1944	1903	1939	1895	1921	1894
AL IV	37	59	34	73	41	89	47	89	54	97	41	105	79	104
AL VI	28	73	27	53	10	40	34	55	41	80	40	53	8	14
Ti	0	17	4	14	9	18	4	15	0	20	8	20	7	19
Cr	0	а	0	0	0	9	0	7	0	9	0	7	4	4
Fe3+	5	0	1	0	33	31	5	0	15	0	4	31	51	38
Fe2+	735	308	734	307	404	221	414	281	419	280	451	269	596	244
Mn	10	5	15	5	12	7	14	10	13	7	13	В	11	11
Mg	1189	702	1188	710	1294	744	1247	752	1258	707	1247	746	1274	753
Ca	32	894	30	912	34	882	33	879	53	878	36	840	47	838
Na	0	0	0	0	0	28	0	0	0	20	0	26	0	25
Total (1)	4007	3990	4006	4003	4014	4014	4008	4004	4010	4001	4007	4017	4023	4018
					Temp	érature (°C) calcu	lée						
WOOD et BANNO	855		837		874		894		873		909		923	
WELLS	878		853		880		914		881		939		947	
					Ро	urcentag	e molaire							
Wo	1.4	44.8	1.5	47.1	1.9	47.1	1.7	46.0	2.7	46.9	1.8	45.2	2.4	45.0
En	40.4	34.7	60.3	34.7	44.4	40.8	64.8	39.3	64.6	37.7	64.0	40.1	65.0	40.4
Fs (2)	33.0	14.5	38.2	14.2	31.7	12.1	33.5	14.7	32.7	15.4	34.2	14.7	32.6	14.6

 Tableau 1-9.
 Géothermométrie orthopyroxène-clinopyroxène.

(1) somme des cations avant le calcul de Fe3+ $\,$