
Numerical modeling of hydro-mechanical fracture behavior 

C. Guiducci 
Scuola Normale Superiore di Pisa – Italia (Italy) 

A. Pellegrino 
Eni - Agip Division - Italia (Italy) 

J.P. Radu, F. Collin, R. Charlier 
Département GéomaC – Université de Liège – Belgique (Belgium) 

 
 

1 INTRODUCTION 

The present paper lies its aim in the oil reservoir 
problems staying at the boundary between geome-
chanics and numerical methods. Moving from the 
observation that lots of the last exploited hydrocar-
bon reservoirs are naturally fractured, oil companies 
are becoming more aware that the behavior of frac-
tured reservoirs is dependent on the good description 
of its hydro-mechanical behavior during the injec-
tion/production rate. 

The description of a single fracture hydraulic and 
mechanical behavior is a subject of central impor-
tance in petroleum engineering applications. This is 
the basic building block of realistic models repro-
ducing fractures system behavior and it’s the subject 
of the present paper.  

As we know, during the last years the main char-
acteristics of the behavior of rock fractures have 
been studied by analyzing the experimental investi-
gations of many authors like Barton (1976), Bandis 
& al (1981). A large amount of fracture modeling 
work is available in the literature. Goodman & al 
(1968; 1972), Plesha (1995), Barton & al (1985) and 
Bart (2000) are some of the numerous investigators 

who have derived the basic equations describing 
fracture behavior. Their numerical investigations 
have been the basis of our research, which have led 
to the conception of the proposed model. 

A constitutive model is presented in the paper to 
simulate the coupled behavior of fractures. The main 
purpose is to be able to offer, through the description 
of fractures and of fracture interactions with rock 
matrix, a good representation of fractured oil reser-
voir during the injection/production rate. 

The numerical model presented reproduces a non-
linear coupled fracture behavior when normal effec-
tive stresses are applied. The coupling is realized 
combining the cubic law, used to describe the fluid 
flow into the fracture, with a non-linear deformation 
function (hyperbolic) suggested to describe the 
stress-closure/opening curves of the fractures. Also 
the coupling behavior under tangential effective 
stresses is taken into account through the simple 
Mohr/Coulomb linear relation. 

The proposed constitutive model was introduced 
as interface contact element behavior model in a fi-
nite element code. 

To synthesize the work done, the present paper is 
mainly divided into six parts dealing with: 1) the 
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theoretical aspects of the model; 2) the numerical as-
pects of the finite element LAGAMINE code with 
particularly attention to the contact element; 3) an 
academic application of the model describing a sim-
ple geometry oil reservoir; 4) comparison of the re-
sults from the improved model and a not coupled 
fracture model; 5) sensitivity studies; 6) conclusions. 

2 INTERFACE CONSTITUTIVE MODEL 

2.1 Mechanical law 
A particular constitutive law was introduced in the 
finite element LAGAMINE code to describe the 
links between the contact stress rate and the contact 
strain rate of the interface element. 

This relation, deduced by Goodman’s experi-
ments, showed that the fracture closure ∆Vj changes, 
under increasing normal stress (σn), in a non-linear 
way closing resembling a hyperbola. A characteris-
tic example is illustrated in Figure 1. The non-
linearity in the σn-∆Vj relation was also recognized 
by other authors. 

From a physical point of view this behavior can 
be explained with the progressive mobilization of 
the fracture asperities. At the beginning of the test, 
few points are in contact and the deformations re-
lated to small normal stress are important. With the 
progressive fracture closure the increasing augmen-
tation of contact between asperities lets the relative 
displacements becoming smaller, until an asymptotic 
fracture closure value is reached for very high values 
of applied stress. 

 

Figure 1. Normal stress-deformation relations of fractured 
rock. 

 
In this paper the non-linearity in the σn-∆Vj rela-

tion is taken into account through the empirical hy-
perbolic function proposed by Bart (2000) (Fig. 1): 
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where: 
- Kni is the normal initial stiffness of the fracture; 
- D0 is the asymptotical fracture opening, related 

to the fracture when stresses equal to zero are ap-
plied; 

- γ is an empirical coefficient variable between 2 
and 6, it’s value is increasing with the fracture 
roughness. Bandis et al. (1983) proposed a value 2 
to give a correct description of the mechanical beha-
vior of the fracture. 

The Kni parameter can be obtained as the initial 
slope of the hyperbola of figure 1; its value can be 
estimated from the rock matrix damaged stiffness.  

2.2 Flow laws 
In this paper, water flows through the interface ele-
ment is described in an anisotropic way. So, accord-
ing to the definition of a transverse transmissivity Tt, 
two transverse fluid flows ft1 and ft2 can be described 
from the following relations: 
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where pf
F, pf

S and pf
I are respectively the pressures 

on the two sides of the rock interface and the pres-
sure inside the interface (at a mid position between 
its boundaries) (see fig. 4). 

If the interface longitudinal permeability kl is not 
nil, the longitudinal fluid mass flow fl is assumed 
analogous to laminar flow between two perfectly 
smooth parallel plates. This leads to the so-called 
“cubic law” (Tsang and Witherspoon, 1981): 
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where the volume flow rate fl varies as the cube of 
separation d between the two plates; µf is the fluid 
viscosity; ∇pf is the fluid pressure gradient along the 
fracture and ρf is the fluid density. In this case the 
hydraulic conductivity of a fracture with aperture d 
is given by: 

ffl gdk µρ 12/2=  (4) 

3 INTERFACE FINITE ELEMENT 

3.1 General concept of a contact problem 
Consider two deformable solids (or domains) ΩU 
and ΩD with boundaries ∂ΩU and ∂ΩD (Fig. 2). They 
are contacting through boundaries ∂ΩU

C and ∂ΩD
C. 
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Figure 2. Contact between 2 deformable solids. 

 
At any point S of the contact surface, a local triad 

(e1,e2,e3) can be defined for each solid as in figure 2. 
The e1 axis is normal to the contact whereas the e2 
and e3 axes are tangent. In this local referential, for a 
plane or axisymmetrical problem, the stress tensor in 
each solid reduces to a contact stress vector σC de-
fined by two components: 
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with p pressure and τ shear stress. As this stress vec-
tor is defined in a local referential attached to a 
solid, it is independent of rigid body rotation, i.e. ob-
jective (Charlier & Cescotto, 1988). Perfectly stick-
ing contact condition is enforced numerically using 
the classical penalty method which allows a small 
relative velocity between points SU and SD, i.e. a 
small penetration of the two solids and a relative 
sliding between them.  
The contact stress vector σC is associated with the 
relative displacement velocity εc defined as the time 
derivative of the distance vector u between ∂ΩU

C 
and ∂ΩD

C (Fig. 3): 
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where the objective distance vector u is given by: 

( )UD xxRu −=  (7) 

and where R represents the rotation matrix (Char-
lier & Cescotto 1988) between the triad (x1,x2,x3) 
and (e1,e2,e3). Note that through the second term of 
equation (6), the relative velocity of the surfaces is 
function of the rotation rate of the local triad, which 
preserves objectivity. 
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Figure 3. Parabolic interface finite elements (λU<0, i.e. no con-
tact). 

The contact side of each body ΩU and ΩD is dis-
cretised with interface isoparametric elements that 
are compatible with the solid finite elements discre-
tising the corresponding body (Fig. 3). The frictional 
interface elements are based on mixed variational 
(Cescotto & Charlier, 1993): contact stresses are 
computed at contact element integration points 
whereas displacements of the solid boundary are 
computed at nodal points. This formulation leads to 
a smoother contact condition then the one based on 
nodal contact conditions. 

The contact condition is simply obtained locally 
from geometrical computation of the distance λC be-
tween the two contact interfaces ∂ΩU

C and ∂ΩD
C 

with λC =u.e1: - λC <0 no contact (Fig. 3); - λC ≥ 0 
there is contact. For more details see (Habraken & 
Cescotto, 1996). 

3.2 Description of the interface element 
A 2D large strain finite element has been imple-
mented in the LAGAMINE code. It is an 
isoparametric element (Fig. 4), with 2 (linear) or 3 
(parabolic) nodes describing the interface element 
side, with 3 degrees of freedom (d.o.f) per node (2 
mechanical displacements u v, and pf

S fluid pressure 
on structure side). To describe the seepage flow in-
side the interface, 2 or 3 further nodes are added 
with only 1 d.o.f. per node, the fluid pressure pf

I in-
side the interface; these nodes are thus the same co-
ordinates that the corresponding nodes on the inter-
face element. Of course, the foundation side is de-
fined by 2 or 3 nodes, with also 3 d.o.f per node (u, 
v, pf

F fluid pressure on foundation side). 
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Figure 4. Description of a 2-D parabolic interface element. 

 
With that element formulation, the equivalent nodal 
forces and the stiffness matrix in the Newton-
Raphson sense will have, for a parabolic element, 
the following forms respectively given in (8) and 
(9): 
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where the indexes S, I and F respectively refer to 
the solid side, the interior interface and the founda-
tion side. 

4 APPLICATION 

4.1 Boundary and initial conditions 
Using the presented interface element some applica-
tions were developed. In particular, a fluid depletion 
of a reservoir interested by a horizontal fracture is 
modeled. The well is situated on the left boundary of 
the reservoir. For simplicity the fluid in the reservoir 
is considered to be water and the rock matrix is 
chalk. The reservoir is modeled in plane strain con-
ditions the dimension being 2500 m of length by 300 
m of height. The initial fracture opening value is 
≈0.2 mm (Fig. 5). 

The initial stress field is obtained, neglecting 
gravity effects, applying 62 MPa overburden load 
and a 62 MPa horizontal stress imposed on the well 
boundary. Initial fluid pressure of the reservoir is 
48.7 MPa (Fig. 6). 

A production phase was modeled starting from 
those initial conditions. A first step of 15 MPa fluid 
pressure decrease is applied for 7.5 years at the well 
boundary. A following second step lasting 12.5 
years is perceived keeping fluid pressure constant. 
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Figure 5. Mechanical boundary conditions. 

 

∆Ptot=
=15Mpa

Pin=48.7 Mpa

Pin=48.7 Mpa

 
Figure 6. Hydraulic boundary conditions. 

 

4.2 Results 
Results regarding fluid pressure and fluid flow 
variation along the fracture are presented in the Fig-
ures 7-8. The curves are related to the pressure and 
flow evolution after 7.5 and 20 years of simulation. 
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Figure 7. Fluid pressure along the fracture after 7.5 and 20 
years of simulation. 
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Figure 8. Fluid flow trend along the fracture after 7.5 and 20 
years of simulation. 

 
The important hydraulic role of the fracture is 

underlined through the flow rate evolution results 
(Fig. 9). The biggest flow rate outgoing from the 
well boundary is due to the fracture contribution. 
After 7.5 years of depletion a fracture flow rate 
maximum is reached while after, keeping pressure 
constant for the following 12.5 years of simulation, a 
small decrease is observed. 

It is also observed (Fig. 9) that the contributions 
related to the average of the flow rate outgoing from 
the two rock matrix to the well are coincident and 
negligible compared to the flow rate associated to 
the fracture. 
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Figure 9. Outgoing flow rate variation with time increasing. 
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Figure 10. Fracture opening variation after 7.5 and 20 years of 
simulation. 

 
Fracture coupled behavior is then put in evidence 

from the following results. Due to the observed frac-
ture fluid pressure decrease, progressive fracture 
closure is achieved during the calculation. After 7.5 
and 20 years of production simulation, Figure 10 
shows that in the well nearby zone a 50% reduction 
of the initial fracture opening is achieved, the per-
turbation fading with the distance from the well is in 
agree with pressure variation trend. 

As shown in Figure 10, the model succeeds in the 
representation of fracture hydro-mechanical behav-
ior bounding pressure variation to fracture deforma-
tion. The importance of a good fracture description 
is underlined by comparisons between the presented 
fracture coupled model and a non-coupled fracture 
model where opening fracture is maintained constant 
during all the simulation time. 

4.3 Comparisons 
Two different fracture models were applied for the 
description of the same reservoir production phase. 
In particular, results from the precedent computation 
are compared with those ones obtained from the ap-
plication of a non-coupled fracture model on the 
same reservoir schematization using the same initial 
and boundary conditions. From the comparisons ap-
pears that the fracture closure variation, described by 
the coupled model, heavily influences all the hy-
draulic parameters.  
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Figure 11. Fluid pressure – comparison between coupled and 
non-coupled fracture model. 
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Figure 12. Flow rate trend comparison using a coupled and a 
non-coupled fracture model. 

 
More in detail, comparisons with the non-coupled 

model show that the progressive fracture closure is 
responsible of: 1) a slower fluid pressure decrease 
along the fracture (Fig. 11) and a lower fluid flow 
value along all the fracture; 2) a smaller quantity of 
flow rate outgoing from the fracture to the well 
boundary (Fig. 12). 

4.4 Sensitivity study 
Two different sensitivity studies were performed in 
the following to test the correct description given by 
the presented coupled model. Both studies were per-
formed starting from the same reservoir configura-
tion of the previous simulations. Keeping the same 
initial conditions, different essays were developed 
applying different boundary hydraulic conditions. In 
the first study (Fig. 13) a fluid pressure depletion of 
10 MPa was applied at different time intervals (6 
months, 1, 7.5 and 15 years). In the second study 
three essays are developed using three different fluid 
pressure depletions respectively of 5, 10 and 20 MPa 
applied at the same time step of 7.5 years (Fig. 13). 
During both studies, after the respectively depletion 
phase, pressure is maintained constant until 20 years 
of simulation time. 

Results about the first study show that the highest 
flow rate peak value is achieved for short time step 
(6 months) of 10 MPa depletion, while the lowest 
value is obtained for a ∆p =10 MPa applied during a 
time step of 15 years. So, to faster applications of 
the fluid pressure variation at the well boundary, it’s 
observed, in the flow rate curves, the presence of 
higher peaks reached in shorter times (Fig. 14). It’s 
also observed that, at long terms, the different flow 
rate curves trends related to this study reach more or 
less the same value. 
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Figure 13. Hydraulic boundary condition for the first sensitiv-
ity case (Left) and the second one (Right). 
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Figure 14. First sensitivity study results - Different flow rate 
path applying a 10 MPa depletion respectively in 6 months, 1, 
7.5 and 15 years. 

 
Further results on fracture opening illustrate, once 

more, the direct proportionality between the ∆p ap-
plication velocity and the closure fracture variation. 

Second sensitivity study results show, this time, 
the existence of a non-proportional correspondence 
between both ∆p applied steps with flow rate curves 
(Fig. 15) and ∆p with fracture closure variation (Fig. 
16). 
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Figure 15. Second sensitivity study results - Different flow rate 
path for 5, 10 and 20 MPa imposed pressure variation. 

5 CONCLUSIONS 

A coupled fracture model was developed in this pa-
per to predict the influence of the hydro-mechanical 
fracture behavior in the oil reservoir exploitation. It 
combines the cubic law with a non-linear deforma-
tion fiunction (hyperbolic) suggested to describe the 
stress-closure/opening curves of the joints.  

Then the model was implemented in the finite 
element code LAGAMINE in order to be validated. 

Academic simulations and comparisons using a 
non-coupled model were performed to show the two 
main advantages of the presented methodology. First 
one, the innovative description of the fracture behav-
ior obtained by taking into account both the hydrau-
lic and mechanical aspect. This is in contrast with 
the actual oil companies tendency to consider frac-
tures influence on the reservoir only from an hydrau-
lic point of view. Second one, the attempt to offer a 
representative description of fractured oil reservoirs 

through a finite element schematization where only 
the main fractures were reproduced. These tools 
avoid the difficulties for a numerical code to repro-
duce a complex and non-homogeneous fracture 
field. 

Further applications to real fractured oil reservoir 
geometry will be developed in the future. 
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Figure 16. Second sensitivity study results - Closure fracture 
variation after 7.5 years. 
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