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ABSTRACT. This paper is the basis for a course dedicated to geomechanics for energy production. A number of different coupling are discussed, with respectively the fluid flow (saturated and unsaturated) and the thermal transfers in deformable porous media. Eventually some aspects on the numerical modelling with the finite element method are discussed. 

RÉSUMÉ. Cet article est la base d’un cours relatif à la géomécanique appliquée à la production d’énergie. Divers couplages avec des écoulements de fluides en régime saturé ou non et avec les transferts thermiques sont pris en compte dans des milieux poreux déformables. Enfin, certains aspects spécifiques relatifs à la modélisation aux éléments finis sont discutés.
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1. Introduction

This paper is intended as the basis for a course on coupled poromechanics processes and their numerical modelling with the finite element method. The paper is concerned with some application in geomechanics for energy production: mainly oil and gas reservoir engineering, but also concrete for energy transformation structures (power plants), nuclear waste disposal (lot of developments have been published), geothermal energy production …

The following aspects will be successively treated: 

· Poroelasticity, following the Biot pioneering work;

· Non-linear multiphysics coupling (hydromechanics, thermomechanics, thermo-hydro-mechanics, partial saturation …)

· Coupled constitutive models

· Strain localisation and failure, joints and fractures 

· Finite element modelling of coupled processes

Few constitutive models will be presented hereafter. Numerous other valuable models have been published and are of interest. This paper is only an introduction to constitutive modelling.

The ALERT Autumn Schools 2001 and 2005 have been devoted to Multiphysics coupling in geomaterials. The comprehensive courses notes have been published (Laloui, Charlier & Pijaudier-Cabot, 2005) and (Gens & Charlier, 2001). The reader may find much more details then in this paper which party a synthesis from these books. 

2. Poroelasticity

Soils and rocks are generally considered as porous materials filled by one or several fluids. Interactions between the porous skeleton and the fluid phases are very important in many engineering problems. These coupling effects are the key issue in petroleum engineering, if we want to understand phenomena like reservoir compaction, oil recovery operations, casing collapse … It is therefore necessary to develop numerical tools able to model these multiphasic materials. Different approaches have been proposed in the past to tackle such kind of problems. The first one is the general theory of porous media (based on a mixture theory) which could be referred to the works of Bowen (Bowen, 1980) ), Hutter et al. (1999) and de Boer (De Boer, 2000). Using an averaging theory (Hassanizadeh et al., 1979a, 1979b), Lewis and Schrefler (2000) propose the general equations for multiphasic media. Finally, a third approach follows the pioneer ideas of Biot (1941) on poroelasticity and has been developed by Coussy (1995, 2004) in the framework of thermodynamics of irreversible processes.

Geomaterials like soils, rocks and concrete are porous media generally considered as the superposition of several continua (Coussy, 1995): the solid skeleton (grains assembly) and the fluid phases (water, air, oil, gas). In this section, our analysis is restricted to isothermal saturated conditions. It is assumed that there are two immiscible phases: the porous skeleton and one fluid (water in the usual case), their respective behaviour remains elastic. Phase changes like evaporation and dissolution are not considered. 

Based on averaging theories, Lewis and Schrefler (2000) proposed the governing equations for the full dynamic behaviour of a partially saturated porous medium. Hereafter, these equations are restricted for quasi-static problem in saturated conditions. In the following developments, the balance equations of the coupled problem are written in the current solid configuration denoted Ωt. Therefore the reference configuration is changing all along the modelling

2.1. Balance equations and state equations

Two kinds of balance equations are necessary to describe the poromechanical behaviour of a porous medium (in isothermal conditions): the momentum and the mass balance equations. They can be written separately for the two phases or alternatively for the whole mixture on one hand and another phase on the other hand. Moreover it is necessary to define the state equation of the fluid and the solid skeleton..

Mass balance equation

Since the current configuration used is defined following the skeleton movement, the mass balance equation of the solid skeleton is necessarily met. For a given mixture volume Ωt, solid mass balance equation reads:
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where s,t is the solid grain density, nt is the porosity defined by the ratio of the void volume Ωvt and the mixture volume Ωt, and t is the time.

From Equation 1, the evolution of the porosity can be computed:
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Fluid mass balance equation includes fluid flows contribution and a sink/source term. For a unit mixture volume, fluid mass balance equation reads:
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where w,t is the fluid density, jw is the fluid mass flow (jw = w,t qw) and f w is a mass rate of production/injection of fluid. In the following the fluid mass will be denoted mw = w,tnt.
qw is the relative fluid flow with respect to the solid phase and is given by the well known Darcy’s law:
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where 
[image: image5.wmf]w

k

 is the intrinsic permeability tensor, w is the fluid viscosity, pw is the fluid pressure and g is the gravity vector.

Momentum balance equation

In the mixture balance of momentum equation, the interaction forces between fluid phase and grain skeleton cancelled. In a strong form, this equation reads:
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where ij is the total stress tensor and G is the body force vector.

State equations

To ensure the closure of the balance equations, it is necessary to define the constitutive behaviour of each constituent. As far as a saturated porous medium is considered in the following, the different constituents are the fluid phase, the solid grains and the solid grain skeleton. 

The fluid is a compressible material and the following relationship holds:
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where kw is the fluid compressibility modulus.

When grains are assumed as a compressible material, their density depends on the fluid pressure and the stresses acting on the solid grains. The following state equation is proposed (Lewis et al., 2000):
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where ks is the solid grain compressibility modulus and ’TZ is the Terzaghi’s mean effective stress. 

Even if the grains are incompressible, the solid skeleton can deform due to grains arrangement. In poroelasticity, an elastic constitutive law is used to link the strain tensor to the effective stress tensor. Note that we do not specify for the moment what kind of effective stress we use:
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where K is the bulk modulus and G is the shear modulus.

It should be pointed out that the bulk modulus defined above is a drained modulus. This means that this property is measured during an experiment in drained conditions without any overpressure of the pore fluid.

Equations [3] and [5] may not solve independently because strong interactions exist between fluid flow and the mechanical behaviour. The numerical treatment of this system of equations will be described in section 6. Coupling effects are present on one hand in the storage term of the mass balance equation and in the computation of the total stress tensor on the other hand. Another coupling effect can also be taken into account: the influence the material damage on the permeability. In order to exhibit these effects, two cases are considered in the following with an increasing complexity.

2.2. Case 1: Incompressibility of the solid grains

In soil mechanics, it is commonly admitted that the solid grains are incompressible for the applied stress state. Under this assumption, the porosity evolution reduces to the following relationship:
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where the contribution of the solid grain compressibility vanishes. The porosity variation is then only due to the solid skeleton rearrangement. 
Moreover, most problems in geotechnics are solved under the hypothesis of the Terzaghi postulate (Terzaghi, 1943):
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where ( denotes the total stress, (’ the effective stress and pw the pore pressure. This postulate may be justified by different ways, among which the simple equilibrium scheme:
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Figure 1.  Schematic view of Terzaghi postulate concepts for a granular (after Schlosser, 1988)
From the previous equations, it comes that the fluid mass evolution and the total stress tensor have the following expressions:
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This allows solving the poromechanical problem under the assumption of grain incompressibility.

2.2. Case 2: Compressibility of the solid grains

At higher stress level, the solid phase (grains) is no more incompressible. (Biot, 1941) formulated first the equations of the coupled problem in this latter case. (Detournay & Cheng, 1993) and (Coussy, 2004) founded their works on this theory. The Biot’s effective stress is used in poromechanics instead of the Terzaghi’s one. The following definition holds:
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where b is the so-called Biot’s coefficient, which is defined as follow:
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where K is the drained bulk modulus and ks is the solid grain bulk modulus.

The porosity evolution includes thus two contributions: the skeleton and the solid grain compressibility. Using equations [2] and [7], the porosity evolution has the following expression under the assumption of an elastic behaviour for the skeleton: 
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From the previous equations, it comes that the fluid mass evolution and the total stress tensor have the following expressions:
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where M is the Biot’s modulus defined as follow:
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Note that the Hook tensor Ce relies here the strain increment to the Biot’s effective stress increment, instead of the Terzaghi’s effective stress in the previous section.

2.3. Extension to poroplasticity

When the solid grains are incompressible, the extension to poroplasticity is straightforward because it is only necessary to replace the Hook matrix by an elastoplastic tensor in the equation [12], which gives the relation between total stress increment and the strain increment.

However, Biot’s theory has been developed only for elastic materials and the final formulation of the fluid mass evolution is only valid under this assumption. Extension to elastoplasticity is thus not straightforward. Coussy (1995) proposes a thermodynamic framework for poroplasticity. However such developments remain matter of questions. 
3. Plasticity for coupled processes: Partial saturation
3.1. Introduction 

Most oil reservoir rocks have experimented different fluids: they may have deposited under sea, and so saturated by (salted) water. Later, they have been covered by a quite impervious (clayey, argillaceous) rock-sealing layer. Oil and gas were migrating from the mother rock to the reservoir rock, pushing partly out of the pores the water. The reservoir rock pores may then be partly saturated by residual (sea) water, by oil and by gas. The wetting fluid (indices w, often water) is in full contact with the rock skeleton, while the non-wetting fluid (indices nw, often oil) remains captive in bubbles, or in a continuous phase, depending of the saturation degree, whose boundary are stable thanks to superficial tensions and capillary menisci. 
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Figure 2. Schematic view of granular  geomaterial with two fluids 

These superficial tensions are related to the so-called suction s:
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Suction is not only due to capillary effects (called matrix suction) but also to osmotic effects and more generally to chemical disequilibria. 

The superficial tensions are attracting the soil grains and creating an additional inter-granular stress. During reservoir production (oil production, water injection), the saturation variation and the depletion induce a variation of suction, of internal stress state and of strain. 

Figure 3 (Laloui & Nuth, 2005) shows a representation of the possible stress paths that the material may experience (respecting the traditional soil mechanics sign convention: compression being positive). In addition to the usual triaxial plane expressed in terms of mean effective stress, p’, and deviatoric stress, q, a third axis is added to capture the variations of suction s.
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	Figure 3. Possible stress paths in (p’,q, s) space
	Figure 4. Volume fractions : distribution of solid, wetting and non-wetting fluids in unsaturated soil


Assuming the volume distribution in the porous medium as illustrated in Figure 4, these concepts have been formalised for a long time by e.g. by Bishops (1959), who proposed to write the effective stress as:  
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The effective stress parameter  takes into account the volume ratio between the phases (degree of saturation Sr) as well as their compressiblities and surface tensions. A simplified version of this Bishop’s effective stress was proposed by Schrefler (1984): 
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A wetting process (e.g. a water injection) corresponds to a suction decrease. Following equations [20] or [21], at a constant total stress level, the Bishop’s effective stress decreases and the strain is a dilatation or a swelling one in the case of the poroelasticity, what is already observed for soils and rock at a given stress conditions (e.g. reduced stress level). For other stress conditions (e.g. higher stress level), the wetting strains are compressive ones, what is generally called collapse strains. To explain the collapse in the framework of Bishop effective stress, this latter should be coupled to a poroplastic constitutive behaviour. Such collapse strain could probably explain some reservoir subsidence, among which the Ekofisk one (Charlier et al, 2001). 

To properly describe the role of the effective stress parameter Fredlund and Morgenstern (1977) suggested adopting, instead the Bishop effective stress, two independent stress variables among the total stress, the pore wetting and pore non-wetting stresses. Alonso et al. (1990) have first proposed an integrated elastoplastic model for taking into account such wetting – collapse behaviour using the net stress (total stress minus the pore non-wetting stress) and the suction. Their model, also called Barcelona Basic Model, is shortly described in the following.

Elastoplasticity is considered, i.e. strain supports an additive decomposition into reversible – elastic and irreversible – plastic parts:
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Strain variations are induced by either stress variation (denoted by m exponent) or by a variation of the suction (denoted by s exponent). The strain rate writes:
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3.2. Elasticity 

The elastic strain induced by the coupling variable s rate is a purely volumetric one:
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It may be a non-linear relation, i.e. Ks may depend on the stress and coupling variable states. Often, for clayey materials, an oedometer like law is considered, but this has to be adapted to the actual material answer:
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3.3. Plasticity 

As shown in figure 5, on an isotropic stress path, elastic as well as plastic strains appear. Generally, for clays, the preconsolidation stress, i.e. the yield stress, and the plastic slope depends on the suction level. This gives the shape of the yield surface (elastic domain) in the p (net stress)-s (suction) space.  
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Figure 5. Isotropic mechanical loading at constant suctions: determination of the Loading Collapse (LC) yield curve in the (p-s) plane.

The yield surface has to take into account three types of mechanical behaviours: 

· Nearly isotropic compression, characterised by a pre-consolidation pressure as plasticity threshold  p0 ;

· Deviatoric shear failure based on internal friction model and friction angle or p (mean stress) – q (second invariant of the stress tensor) slope M;

· Traction strength t , isotropic traction ps or cohesion c.

A schematic view of such a yield surface is given in figure 6-a. In the p-q invariant plane, it is composed of an elliptic cap, a friction line and a traction cut-off. 
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Figure 6. Yield surface for purely mechanical problems (a) and for Mechanical – environmental coupling (b).
This yield surface writes here:
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The slope M may depend on the Lode angle, as proposed e.g. by Van Eekelen (1980). Additionally, a specific plasticity threshold may be written for the suction variable:
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The mechanical – suction coupling is schematised for the yield surface in the figure 5 and Figure 6-b, where the coupling between the suction and respectively the pre-consolidation pressure p0, and the traction strength t are expressed (Collin et al., 2005).

Generally speaking, it appears the following suction dependences of the plastic material parameters, more precisely the yield surface parameters:

· The pre-consolidation pressure p0 is highly dependent on the suction (Laloui et al, 2001; Laloui & Nuth, 2005)

· The friction angle at the critical state  seems quite independent of the suction (Laloui et al., 2001)

· The cohesion c and the traction strength t depend on the suction.  However the know-how on these aspects is not highly developed. 

Following these observations, most papers have been devoted to the cap of the yield surface, i.e. the Cam-Clay equation f1 (see Equation [26]), and to the pre-consolidation pressure suction evolution. The hardening law will govern this evolution. It depends on two internal variables:
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where p0* is the p0 value when the suction vanishes. Classically, p0* evolves with the volumetric plastic strain, following the Cam-Clay concept:
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But any other hardening law may be used. The plastic strain rate derives from a flow potential, which often differs from the yield surface (non-associative plasticity) in the stress plane (figure 6-a) but generally coincides with the yield surface in the coupling plane (figure 6-b). Once again the coupling term is a purely volumetric one. This writes:
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Deriving equation [28] with respect to the time:
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The preconsolidation pressure rate depends on the plastic volumetric strain vp and on the suction. If one considers a plastic loading where the stresses do not vary, following the consistency condition:
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then the plastic strain rate induced by a purely suction loading writes:
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3.4. Fluid transfers 

Two or more fluids flow in the pore space. It is generally considered that each one follows a Darcy like equation, generalised by Richards for the water – air mixture. The relative fluid velocity qw writes:
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where the subscript (i) indicates the fluid (wetting versus non-wetting, oil versus gas, oil versus water…), q is the fluid Darcy velocity, p the pressure,  the fluid viscosity, ρ the fluid density and g the gravity vector. The intrinsic permeability tensor is noted k(i). The main change in the Darcy law for partial saturation is a dependency of the permeability k(i) on the saturation degree Sr(i) :
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Fluid mass balance equation includes classically fluid flows contribution and a sink/source term. For a unit mixture volume, fluid mass balance equation reads:
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where j is the fluid mass flow (j =  q) and f is a mass rate of production/injection of fluid. The fluid storage Sr(n depends on the saturation degree, on the fluid density and on the change of the pore volume, i.e. on the strain.
The porosity evolution is a term coupling the mechanics and the flow. If the fluid density changes, it has to be added in the storage evolution. The saturation degree depends itself on the suction: 
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This function is highly non-linear. A typical curve is given in figure 7. Moreover, wetting and drying paths give different curves. In soil mechanics, a number of expressions have been given for eq. [39] by various authors.
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Figure 7. Oil-water retention of Lixhe Chalk (Priol et al. 2004)

4. Plasticity for coupled processes: Thermoplasticity 

4.1. Introduction 

The development of the thermoplasticity follows intentionally a framework as similar as possible to the unsaturated elastoplasticity of §3. Effectively, the two formalisms are very similar, for the transfer problem and for the constitutive law itself (Collin et al, 2005). 

The geological layers are at higher temperature at great depth then at surface. For example, the Ekofisk reservoir temperature is about 130°C. The Ekofisk clayey capping rock layers are also at high temperature. When drilling a well, a mud is circulated to transport the cutting to the surface and to cool the drilling head. This mud is often at surface temperature and induces a temperature gradient. Also when stimulating a reservoir by seawater injection, cold water at surface temperature is injected in hot deep geological layers. For these two cases a thermal transfer arrives. What is its effect on the rock mechanical behaviour? Most published research on thermo-mechanics of geomaterials concerns water saturated clay material. What follows is partly issued from a synthesis done by Laloui et al (2005). 

When saturated geomaterials are heated, all of the solid and fluid constituents dilate. In the case of cohesive soils (silt and clay), this dilation produces a decrease in the strength of the adsorbed layers and a modification of the distance between the clay particles (Fleureau, 1979). In normally consolidated conditions (NC), the cohesive soils contract when they are heated and a significant part of this deformation is irreversible upon cooling. This thermal contraction is an unusual behaviour for any material. It is related to the microstructure and to the equilibrium of absorbed water layers. Figure 8 illustrates such results: the response to a thermal heating-cooling cycle at constant isotropic stress of a sample of saturated, drained clay (Cekerevac, 2003).
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Figure 8. Typical thermal behaviour of fine soils during a thermal heating-cooling cycle – Kaolin clay (Cekerevac, 2003)
As introduced in the section 3.3, preconsolidation pressure, p0, is considered here as the stress yield limit which separates “elastic” pre-yield from “plastic” post-yield behaviour in isotropic or oedometer conditions. Several results from the literature show a decreasing of preconsolidation pressure with increasing temperature, figure 9 (Laloui & Cekerevac, 2003). 
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Figure 9. Influence of temperature on the preconsolidation pressure. 

The thermal strain rate tensor, 
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4.2. Thermo-elasticity 

The thermo-elastic strain,
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where 
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 is the thermo-elastic volumetric strain rate (
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in which
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 is the isotropic thermal expansion coefficient at a reference temperature, 
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4.3. Thermo-plasticity 

Generally speaking, the yield surface for an isotropic loading may be written as:
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this means that two isotropic hardening mechanisms exist, a thermal one and a mechanical / strain one. These processes are not coupled but only combined through a multiplicative function. The mechanical hardening takes the classical form for cohesive soils, as indicated in oedometer tests:
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is the plastic compressibility modulus. A dependency law for the thermal evolution of the preconsolidation pressure,
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, is introduced to take into account the thermal effect on the yield limit (Laloui & Cekerevac, 2003):
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where 
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is the value of the preconsolidation pressure at the reference temperature and 
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 a material parameter. The expression of the isotropic thermo-plastic yield limit is thus given by:
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Equation [47] contains two material parameters: 
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 expressing the evolution of mechanical hardening and 
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controlling the evolution of thermal hardening. This latter one defines the shape of the yield limit as shown in Figure 10.
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Figure 10. Isotropic thermo-plastic yield limit and its dependency on the parameter
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The plastic multiplier, 
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, is determined using the consistency equation.

Few results exist on a friction angle dependency on temperature (Laloui, 2001). Some results indicate that the cohesion depends probably on the temperature. However, no clear results have been presently published on these parameters temperature dependency (Cekerevac & Laloui, 2004).

4.4. Heat transfers 

Heat transfer in solids follows a Fourier’s like model for conduction. The conduction heat flux q writes:
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where T denotes the temperature. The conductibility is noted λ. It may be a tensor if the anisotropy has to be taken into account. It depends on the saturation degree and can be evaluated based on a kind of mixture formula between the phases (solid and fluids). It depends on the temperature:
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In rocks saturated by one or two moving fluids, heat is also transported by fluid (flux q(i)), this is the advection process.
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H is the fluid enthalpy, which depends on the temperature and on the saturation degree. The total heat flux is then:
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The heat balance equation writes classically:
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Heat transfer in soils and rocks is generally not as nonlinear as the fluid flow or the solid mechanics. Then numerical convergence is easier. Moreover the coupling of mechanics and fluid flow on heat transfer is lower then the coupling in the opposite direction. Heat transfer has then to be analysed first.  

5. Strain localisation, rupture, faults and fractures

5.1. Introduction – strain localisation 

When considering the hydromechanical coupling, the permeability dependency on the mechanical strains may be described by the Kozeny Carman equation or any equivalent. However, the permeability variations obtained under large strain are not very large, generally under one order of magnitude. Higher variations of strains or of relative displacement are obtained in narrow zones (where strain localised) or in fracture (where strains have fully localised). Such significant evolution of permeability becomes an important subject of researches, for, e.g. characterisation of the Excavated Damaged Zone – EDZ around tunnels (especially for underground storage of nuclear wastes), or for evaluation of an oil reservoir evolution. 

Strain localisation is a bifurcation of the stress and strain path. The bifurcation has been analysed e.g. by Rice and co-authors. The result is the so-called Rice criterion, which indicates if a shear band localisation is possible:

	
[image: image99.wmf]0

)

det(

£

k

i

ijkl

n

n

C


	[54]


In this equation, Cijkl is the constitutive tensor, which depends on the stress state, and ni is the normal to the shear band.

On the one hand, only some constitutive models allow the Rice criterion to be met. Among elastoplasticity, non-associated models and strain softening models allow strain localisation. Hypoplastic models and damage models allow it also.

On the other hand, if the criterion [54] is verified for some stress states, the direction of the potential shear bands is given. In such (2D) case, the criterion reduces to a fourth order equation in the tangent of the band direction. 

The criterion gives the band potentiality but not effectiveness. Only a map of strains, strain rate, relative strain rate, or velocity may give information about an actual banding. 

Strain localisation depends on fluid pressure. Desrues (2005) has shown experimental results on undrained sand samples and numerical models. Charlier  and Radu (1997) and Sanavia et al (2005) have shown finite element modelling of shear banding with hydromechanical coupling and partial saturation.  Large strain finite element codes (Charlier & Radu 1997) allow to models very large strains in shear bands (over 100%). 

However, with classical finite element, the strain intensity in shear bands depends on the mesh size. Similarly the load – displacements curve depends also on the mesh size. To avoid such pathological dependency, it is needed to improve the constitutive model: non-local models (as for concrete damage models, Bazant et al 1984, Pijaudier-Cabot et al 1987) or models with microstructure (micro-stresses and micro-strains, Chambon et al, 2001, Collin et al, 2006) or Cosserat models (1909). 

5.2. Fracture model for hydromechanical coupling 

The ultimate state of a shear band in rock material, after very high strain level, is a fracture, a joint, or any other discontinuity. Most oil/gas reservoir contains a number of such discontinuities. This section is devoted to the fracture / discontinuities modelling. The basic idea is to consider the fracture as an interface where two rock parts contact. Then one can evaluate the contact stresses and their evolution, and the fluid flow through the interface. In some sense, this is a derivation of a unilateral contact with friction model. The hereunder formalism is not the only one for fracture modelling. Other kinds of joint element have also been proposed in the literature (Goodman et al, 1968 & 1974). 

Interface laws – Mechanical law

A particular constitutive law describes the links between the contact stress rate and the contact strain rate of an interface element subjected to normal loading. This relation, firstly deduced by Goodman’s experiments, shows that the fracture closure (Vj changes, under increasing normal stress ((n), in a non-linear way, closing resembling a hyperbola. A characteristic example is illustrated in Figure 11. 

From a physical point of view this behaviour can be explained with the progressive mobilization of the fracture asperities. At the beginning of the compression, few points are in contact and the deformations related to small imposed stress are important. With the progressive fracture closure, with the increasing augmentation of contact between asperities, the relative displacements become smaller with progressing stress applied, until an asymptotic fracture closure value is reached for very high values of stress.

The present behaviour can be attributed to the influence of different factors:

a) initial actual contact area and vertical distribution of the aperture between fracture walls;

b) strength and deformability of asperities;

c) fracture wall roughness;

d) thickness and physical properties of the unfilling material, if present.
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Figure 11. Normal stress-deformation relations of intact and fractured rock 

The fracture non-linearity in the ((n-(Vj relation doesn’t take into account the effect of fracture wall aperture, strength, roughness and unfilled materials. Then, the strength-deformation relation is expressed through the empirical hyperbolic function proposed by Bart (2000) (Fig. 11.):
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where:

· Kni is the normal initial stiffness associated to the fracture; 

· D0 is the asymptotical fracture opening, related to the fracture when stresses equal to zero are applied; 

· ( is an empirical coefficient ranging between 2 and 6, its value is increasing with the fracture roughness. For that parameter Bandis et al. (1983) proposed the value 2 that seems giving a correct description of the mechanical behaviour of the fracture.

Interface laws – Flow law 
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Figure 12. Flow and displacements in a 2-D parabolic interface element.

To model the hydraulic behavior of a loaded fracture, an anisotropic description of water flows through the interface element is proposed. The fluid flow is described in its transversal and longitudinal path referred to the fracture. According to the definition of a transverse transmissivity Tt; two transverse fluid flows ft1 and ft2 can be described by the following relations (Fig. 12):
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describing respectively with ft1 the fluid path from one fracture wall to the internal element I describing the interface and with ft2 the fluid path from the internal element to the other fracture wall (flow moving from one boundary to the other transversally to the fracture).

At the same time, if the interface longitudinal permeability kl is not nil, the longitudinal fluid mass flow fl must be considered. In particular, longitudinal flow through fractures can be assumed analogous to laminar flow between two perfectly smooth parallel plates separated by a uniform distance. This assumption is based on the observation that most natural fractures are approximately planar on the scale of the fracture length. So for laminar flow between two parallel plates, the longitudinal fluid flow referred to the fracture is given by the so called “cubic equation” (Tsang and Witherspoon, 1981):
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where fl varies as the cube of the distance between the plates d; (f is the fluid viscosity, (f the constant fluid density and (h is the change in hydraulic head across the boundaries of the flow domain. As it can be seen in this case the hydraulic conductivity of a fracture with aperture d is given by:
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In this case, to describe the fluid flow distribution into the fracture, equations [56] and [57] are introduced into the Reynolds equation, this leads to the following expression:
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Interface finite element – General concept of a contact problem

Consider two deformable solids (or domains) (U and (D with boundaries ((U and ((D (Fig. 13). They are contacting through boundaries ((CU and ((CD.
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Figure 13. Contact between 2 deformable solids 

In the local referential plane (e1,e2,e3) (Fig. 13), for a plane or axi-symmetrical problem, the stress tensor in each solid reduces to a contact stress vector C defined by two components :
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where p and ( are the pressure and the shear objective stress vector (Charlier & Cescotto, 1988). The perfectly sticking contact condition is enforced numerically using the classical penalty method, which allows a small relative velocity between points SU and SD.
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Figure 14. Parabolic interface finite elements ((U<0, i.e. no contact).

The contact stress vector C is associated with the relative displacement velocity 
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 (through the interface mechanical constitutive law) defined as the time derivative of the distance vector u between ((CU and ((CD (Fig. 14). The contact side of each body (U and (D can be discretised with interface isoparametric elements, which are compatible (same degree and common nodes) with the solid finite elements used to discretise the corresponding body (Fig. 14). The frictional interface elements used here are based on mixed variational formulation (Cescotto & Charlier 1993): contact stresses are computed at contact element integration points whereas displacements of the solid boundary are computed at nodal points

The contact normal strain is simply obtained locally from geometrical computation of the distance (C between the two contact interfaces ((CU and ((CD with 
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. For more details see (Habraken & Cescotto 1996). 2-D finite element are isoparametric elements (Fig. 14), with 2 (linear) or 3 (parabolic) nodes describing the interface element, the rock side, with 3 degrees of freedom (d.o.f) per node (2 mechanical displacements u and v, and the fluid pressure on the structure side pfS). To describe the seepage flow inside the interface pfI, 2 or 3 further nodes are added with only 1 d.o.f. per node, the fluid pressure inside the interface; these nodes are thus the same co-ordinates that the corresponding nodes on the interface element. 

6. Finite element for coupled processes

This paragraph is part of (Charlier et al, 2001).

6.1. Finite element modelling: monolithical approach

Modelling the coupling between different phenomena should imply to model each of them and, simultaneously, all the interactions between them. A first approach consists in developing new finite elements and constitutive laws especially dedicated to the physical coupled problem to be modelled. This approach allows taking accurately all the coupling terms into account. However there are some drawbacks that will be discussed in a later section.

Constitutive equations for coupled phenomena will be shortly discussed in the following sections. The number of basic unknowns and following the number of degrees of freedom – dof per node are increased. This has a direct effect on the computer time used for solving the equation system (up to the third power of the total dof number). Coupled problems are highly time consuming. Isoparametric finite element will often be considered. However some specific difficulties may be encountered for specific problems. Nodal forces or fluxes are computed in the same way as for decoupled problems. However stiffness matrix evaluation is much more complex, as interactions between the different phenomena are to be taken into account. Remember that the Newton – Raphson stiffness or iteration matrix is the derivative of internal nodal forces / fluxes with respect to the nodal unknowns (displacements / pressures / temperature…). The complexity is illustrated by the following scheme of the stiffness matrix, restricted to the coupling between two problems:

	Derivative of problem 1 nodal forces with respect to problem 1 nodal unknowns
	Derivative of problem 1 nodal forces with respect to problem 2 nodal unknowns

	Derivative of problem 2 nodal forces with respect to problem 1 nodal unknowns
	Derivative of problem 2 nodal forces with respect to problem 2 nodal unknowns


The part of the stiffness matrix in cells 1-1 and 2-2 are similar or simpler to the ones involved in uncoupled problems. The two other cells 1-2 and 2-1 are specific to coupling and may be of certain complexity. Remember also that the derivative consider internal nodal forces / fluxes as obtained numerically, i.e. taking into account all numerical integration / derivation procedures. On the other hand, large difference of orders of magnitude between different terms may cause troubles in solving the problem and so need to be checked.

Numerical convergence of the Newton – Raphson process has to be evaluated carefully. It is generally based on some norms of the out-of-balance forces / fluxes. However, coupling implies often mixing of different kinds of dof, which may not be compared without precaution. Convergence has to be obtained for each basic problem modelled, not only for one, which would then predominate in the computed indicator.

6.2. Physical aspects: various terms of coupling

A large number of different phenomena may be coupled. It is impossible to discuss here all potential terms of coupling, and we will restrict ourselves to some basic cases. In the following paragraphs, some fundamental aspects of potential coupling are briefly described. 

6.2.1 Hydromechanical coupling

Number of dof per node : 3 (2 displacements + 1 pore pressure) for 2D analysis and 4 (3 displacements + 1 pore pressure) for 3D analysis.

Coupling mechanical deformation of soils or rock mass and one fluid flow in pores is a frequent problem in geomechanics. The first coupling terms are related to the influence of pore pressure on mechanical equilibrium through the Terzaghi's postulate 
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with the effective stress tensor (’ related to the strain rate tensor thanks to the constitutive equation, and the unity tensor I.
The second type of coupling concerns the influence of the solid mechanics behaviour on the flow process, which comes first through the storage term. Storage of water in saturated media is mainly due to pores strains, i.e. to volumetric changes in soil / rock matrix :
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Another effect, which may be considered, is the permeability change related to the pore volume change, which may for example be modelled by the Kozeni – Carman law as a function of the porosity k = k(n). This effect is much more significant for fractures (see next paragraph).

The time dimension may cause some problems. First implicit scheme are used for the solid mechanics equilibrium and various solutions are possible for the pore pressure diffusion process. Consistency would imply to use fully implicit schemes for the two problems. Moreover, it has been shown that time oscillations of the pore pressure may occur for other time schemes. Associated to the Terzaghi's postulate, oscillations could appear also on the stress tensor, what can quickly degrade the numerical convergence rate for elastoplastic or elastoviscoplastic constitutive laws. 

When using isoparametric finite elements, the shape function for geometry and for pore pressure are identical. Let us consider for example a second order finite element. As the displacement field is of second order, the strain rate field is linear. For an elastic material, the effective stress tensor rate is then also linear. However the pore pressure field is quadratic. Then the Terzaghi's postulate mixes linear and quadratic field, which is not highly consistent. Some authors have then proposed to mix in one element quadratic shape functions for the geometry and linear shape functions for pore pressure. But then problems arrive with the choice of spatial integration points (1 or 4 Gauss points?).

Numerical locking problems may also appear for isoparametric finite element when the two phases material (fluid + rock) is quite incompressible, i.e. for very short time steps with respect with the fluid diffusion time scale. Specific elements have to be developed for such problems.

6.2.2. Two fluids flow in rigid porous media coupling

Flow in partly saturated rigid media is here considered. Flow in oil or gas reservoirs two or three fluids among oil, gas, condensates and water. Partial solving or mixture between different fluids is sometimes possible. Then two or more dof per node are to be considered. The permeability and storage equation of each phase are depending on the suction or saturation level, and so the problem may be highly non-linear. However, coupling is not difficult to numerically be developed, as the formulation is similar for each phase.

6.2.3. Diffusion and transport coupling

Heat and one fluid flow in a rigid porous media are concerned here. The fluid specific weight and viscosity is depending on the temperature, and the heat transport by advection – diffusion process is depending on the fluid flow. Then a diffusion process and an advection – diffusion process have to be solved simultaneously.

Number of dof per node: 2 (fluid pore pressure and salt concentration of temperature). 

6.2.4. Thermo-hydro-mechanical coupling

The phenomena considered here are much more complex as they associate multiphase fluid flow, hydromechanical coupling and temperature effects. All the features described in the preceding sections are to be considered here, associated to some new points.

Heat diffusion has to be modelled. Temperature variation affects fluid flow, by a modification of the fluid specific weight or viscosity. Moreover, if the two fluids concerned are a liquid and a gas (e.g. water and air), then equilibrium between the phases has to be modelled: dry air – vapour equilibrium. 

Heat transfer is governed not only by conduction but also by advection by the liquid and gas movements. Similarly transfers of vapour and gas species in the gas phase are governed by diffusion and gradient of species density, but also by advection with the global gas movements. If the concerned geomaterials has a very low permeability (like clay for capping barriers), then the diffusion effects will predominate and advection doesn’t necessitate specific formulation (Collin et al, 1999).

Finally the total number of dof per node is 5 for a 2D problem: 2 displacements, 2 fluid pore pressures and the temperature.

6.3. Finite element modelling: staggered approach

Monolithical approach of coupled phenomena implies identical space and time meshes for each phenomenon. This is not always possible, for various reasons. The coupled problems may have different numerical convergence properties, generally associated to different physical scales or non-linearity. For example, a coupled hydromechanical problem may need large time steps for the fluid diffusion problem, in order to allow, in each step, fluid diffusion along distance of the order of magnitude of the finite elements. In the same time, strong non-linearity may occur in solid mechanics behaviour (strong elastoplasticity changes, interface behaviour, strain localisation…) and then the numerical convergence needs short time – loading steps, which should be adapted automatically to the rate of convergence. Then it is quite impossible to obtain numerical convergence for identical time and space meshes.

Research teams of different physical and numerical culture have progressively developed different problems modelling. As an example, fluid flow has been largely developed using the finite difference method for oil reservoir engineering taking multiphase fluid flow (oil, gas, condensate, water …) into account. Coupling such fluid flow with geomechanics in a monolithical approach would imply to implement all the physical features already developed respectively in finite elements and finite differences codes. The global human effort would be very important.

Coupled problems are generally presenting a higher non-linearity level then uncoupled ones. Then inaccuracy in parameters or in the problem idealisation may cause degradations of the convergence performance.

How can we solve such problems and obtain a convincing solution? First of all, a good strategy would be to start with the uncoupled modelling of the leading process, and to try to obtain a first not too bad solution. Then one can add a first level of coupling and complexity, followed by a second one… until the full solution is obtained.

However such trick is not always sufficient. Staggered approaches may then give an interesting solution. In a staggered scheme, the different problems to be coupled are solved separately, with (depending on the cases) different space or time mesh, or different numerical codes. However, the coupling is ensured thank to transfer of information between the separated models at regular meeting points. This concept is summarised on the Figure 15. It allows theoretically coupling any models together.
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Figure 15.  Scheme of a staggered coupling
When using different spatial meshes, or when coupling finite elements and finite differences codes, the transfer of information needs often an interpolation procedure, as the information to be exchanged are not defined at the points in the different meshes.

The accuracy of the coupling scheme will mainly depend on the information exchanges frequency (which is limited by the lower time step that can be used) and by the type of information exchanged. The stability and accuracy of the process has been checked by different authors (Turska et al 1993, Zienckiewicz et al, 1988). It has been shown that a good choice of the information exchange may improve highly the procedure efficiency.
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