CONTRIBUTION À L’ÉTUDE QUANTITATIVE DES MODIFICATIONS DES RISQUES D’ÉROSION RÉSULTANT DES REMENBREMEMENTS (1)

M. BINARD
A. BOLLINNE

Recherches subventionnées par l'Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture (IRSIA).

1. INTRODUCTION

Les remembrements sont souvent l’objet de critiques diverses. En fait, comme le fait judicieusement remarquer J. Chaudoir (1976) leur utilité est largement reconnue et ces critiques, pour la plupart, ne remettent pas en cause leur intérêt, elles concernent seulement la manière dont ils sont réalisés.

Les remembrements ont ainsi été accusé de provoquer une augmentation de l’érosion.

La suppression d’obstacles naturels tels que haies, rideaux,... de même que les relotissements en parcelles de grande surface sont en effet réputés favoriser le ruissellement et par là l’érosion.

A notre connaissance cependant, aucun travail n’a été réalisé en vue de quantifier les modifications des risques d’érosion résultant des remembrements. C’est dans ce but que le présent travail a été entrepris.

Afin de fournir des résultats significatifs, l’étude couvre une surface assez étendue, représentative de la région limoneuse, à savoir le remembrement de Verlaine.

(1) Cette étude a été l’objet d’un travail de fin d’études présenté en 1979 par le premier auteur (Laboratoire de Géomorphologie, Professeur A. Pissart).

Binard M. - Licencié en Sciences Géographiques, Université de Liège.
Section “Lutte contre la dégradation des terres agricoles”.
Laboratoire de Géomorphologie (U.Lg.) et Laboratoire de la Science du Sol (F.S.A.Gx.), 5800 Gembloux, Belgique.
Ce remembrance a été choisi parce que, d'une part, une étude des problèmes liés aux écoulements superficiels avait attiré l'attention sur l'ampleur des phénomènes d'érosion (J. Chaudoir, 1976) et parce que d'autre part la Société Nationale Terrienne a mis à notre disposition tous les documents nécessaires à la réalisation de cette étude (2).

Verlaine est situé à 20 km à l'ouest de Liège et à 16 km au nord-est de Huy.

Les terres remembrées chevauchent le contact de la Hesbaye sèche et de la retombée mosane. Mis à part quelques plages de sols divers résultant de l'affleurement du substratum antéquaternaire, les plateaux et versants sont couverts de sols bruns lessivés développés dans les limons éoliens quaternaires. D'autre part les limons colluviaux sou-

vent épais occupent le fond des vallons et les bas de pente où ils col-

matent d'anciens ravins forestiers (A. Pecrot, 1956; A. Pissart & A.

Bollinne, 1978).

Les pentes des versants sont le plus souvent comprises entre 4 et 6 %. Les pentes plus raides sont relativement peu représentées et elles ne dépassent jamais 9 %. Les zones d'interfluve entre les vallons ont des pentes rarement supérieures à 2 %.

2. TECHNIQUE DE TRAVAIL

Pour quantifier les risques d'érosion avant et après remembrance on a utilisé le modèle américain d'évaluation des pertes de sol.

Sculps, les surfaces cultivées des plateaux et versants ont été prises en considération.

Bien qu'ayant le souci d'appliquer la formule d'évaluation des per-
tes de sol, d'une façon rigoureuse, en respectant les indications des auteurs, on a été amené à prendre certaines conventions afin d'adap-
ter le modèle aux conditions locales.

2.1. LE MODÈLE UTILISÉ

L'équation de perte de sol établie aux Etats-Unis (W. H. Wischmei-
cr & D. D. Smith, 1965, 1978) prend en compte l'ensemble des fac-
teurs qui contrôlent l'érosion et permet de quantifier chacun d'eux.
Elle a été établie sur base de mesures de 10 000 parcelles-années répar-
ties dans 49 stations. Dans ces stations, les sols limoneux, particulièr-
ment sensibles à l'érosion, sont largement représentés. Vu son intérêt,

(2) Nos plus vifs remerciements s'adressent à la Société Nationale Terrienne (Bureau de Huy) et tout particulièrement à Messieurs G. Sion, B. Bodarwe, J. Chaudoir, F. Bernard et V. Leroy qui nous ont fourni les documents.
cette équation est utilisée dans diverses régions du monde. Elle a pour expression :
\[A = R \cdot K \cdot L \cdot S \cdot C \cdot P, \]
A étant la perte de sol en t/ha,
\[R = \text{pérosivité des pluies en } \frac{t \cdot m}{ha \cdot h} \cdot 10^{-2}, \]
\[K = \text{l’érodibilité du sol en t/ha par unité de RLSCP,} \]
\[L \cdot S = \text{un facteur pente (sans dimension) qui combine l’influence de la longueur de la pente (L) et de son inclinaison (S),} \]
\[C = \text{l’influence du couvert végétal (sans dimension) et} \]
\[P = \text{l’influence des pratiques de lutte antiérosive (sans dimension).} \]

Les facteurs R, K et C ne sont pas affectés par une opération de remembrement rural. Par contre, la longueur de pente L peut se trouver modifié et par là, la valeur des facteurs L.S.

De même, le nouveau dessin parcellaire peut amener les cultivateurs à orienter différemment la direction (parallèle ou perpendiculaire à la pente) suivant laquelle sont effectuées les façons culturales (labour, semis, ...) et ainsi modifier la valeur du facteur P.

Le travail consiste à quantifier, avant et après remembrement, le risque érosif des facteurs liés à celui ci (L, S et P) et à comparer les résultats obtenus.

En pratique on a calculé, pour chaque parcelle (avant et après remembrement), les valeurs des facteurs L, S et P qui ont été pondérées en fonction de la surface des parcelles. On a ensuite effectué la somme de ces valeurs pondérées qui a été divisée par la surface prise en compte. De cette façon, l’erreur résultant du fait que des surfaces différentes sont prises en considération (avant et après remembrement) est pratiquement nulle. Les différences ont été exprimées en % par rapport à la situation avant remembrement (tableau 3).

2.2. LES SURFACES PRISES EN CONSIDÉRATION

Seules les surfaces cultivées des plateaux et versants ont été prises en considération.

En pratique, les risques d’érosion avant et après remembrement ont été estimés pour l’ensemble des sols non colluviaux. En effet, ce sont les sols qui théoriquement sont soumis à l’érosion tandis que les matériaux arrachés aux versants s’accumulent en bas de pente et dans les fonds de vallons où ils forment les sols colluviaux.

Quelquefois cependant, des formes d’érosion se développent dans les sols colluviaux. Ce sont essentiellement des remaniements de dépôts
antérieurs, souvent en relation avec des concentrations d’eau et des écoulements abondants en provenance notamment de chemins ruraux.

De plus, dans nos calculs, n’interviennent ni les surfaces boisées, ni les prairies, ni l’habitat et le réseau routier, peu ou pas exposés à l’érosion.

Les surfaces prises en considération avant remembrement couvrent 1 039 ha. Après remembrement elles sont passées à 1 079 ha. Cette augmentation des surfaces cultivées prises en considération résulte essentiellement de la diminution des surfaces sous prairies.

2.3. CONVENTIONS ET MÉTHODES DE MESURES

Cette étude nécessite que soient connus pour chaque parcelle d’exploitation (3)
- la longueur de la pente
- l’inclination de celle-ci et
- la direction des semis.

2.3.1. La longueur de la pente

W. H. Wischmeier & D. D. Smith (1965, 1978) ont défini la longueur de la pente comme étant la distance entre le point d’origine du ruissellement et le point, soit où commencent les dépôts, soit où le ruissellement est repris par un chenal d’évacuation (en Hesbaye, un chemin peut jouer ce rôle).

Cette définition a été utilisée telle quelle, sauf, lorsque plusieurs parcelles s’étalent le long du versant. Dans ce cas, la longueur de la longueur de la pente a été ramenée à la distance parcourue par le ruissellement au sein de chacune des parcelles.

Etant donné que chez nous, les labours et semis se font avec fourrière (bande cultivée perpendiculairement à la direction générale des semis à deux extrémités des parcelles), cette façon de faire se justifie pleinement pour les parcelles semées parallèlement à la pente (cas le plus fréquent en Hesbaye). En effet, la fourrière provoque généralement l’apparition de dépôts et peut donc être considérée comme la limite inférieure de pente à prendre en considération.

Dans le cas de parcelles semées perpendiculairement à la pente, cette convention tend à sous-estimer le risque érosif.

(3) Souvent, les parcelles d’exploitation regroupent plusieurs parcelles cadastrales. D’autre part, certaines parcelles cadastrales particulièrement étendues peuvent être subdivisées pour l’exploitation.
D'autre part, lorsque plusieurs parcelles s'étagent le long du versant, la succession de cultures différentes sur ce même versant tend à réduire l'érosion (bandes alternes). Il n'en a pas été tenu compte dans l'estimation du facteur P (lutte antiérosive), ce qui tend à compenser la sous-estimation du risque érosif résultant de la précédente convention.

On pourrait s'étonner que cette situation n'ait pas été prévue en tant que telle dans le modèle américain. Ceci résulte vraisemblablement de l'existence dans la grande plaine américaine d'un parcellaire nettement moins morcelé que le nôtre.

Les longueurs ont été déterminées :
— avant remembrement, à partir de photos aériennes au 1/6000, les parcelles observées sur photos ont été reportées à l'aide d'une chambre claire sur le plan cadastral au 1/5000.
— après remembrement, à partir d'observations de terrain reportées sur le nouveau plan cadastral également établi au 1/5000; en effet, on ne disposait pas de photos aériennes prises après reliotissement.

2.3.2. L'inclinaison des pentes

Plus récemment, W. H. Wischmeier (1974) a proposé une méthode pour tenir compte des variations de pente d'un versant (concavité, convexité). Elle permet une estimation plus précise des risques érosifs. Cependant, un test a montré que pour des pentes telles que celles rencontrées dans cette étude les résultats étaient peu différents. Etant donné que cette dernière technique suppose un travail particulièrement long pour une surface aussi étendue que celle d'un remembrement, elle n'a pas été retenue ici.

Dans le cas de parcelles présentant de fortes différences d'inclinaison de pente on a subdivisé les parcelles en sous-parcelles d'égale inclinaison maximum.

2.3.3. La direction des semis

La direction des semis a été observée avant remembrement sur photo aérienne et après remembrement sur le terrain.

Un semis étant rarement parallèle ou perpendiculaire à la pente, on a été amené à adopter les conventions suivantes : il a été considéré comme parallèle à la pente (P = 1) lorsque l'angle aigu entre sa direction et la direction de la ligne de plus grande pente est inférieur à 45°;
inversément, il a été considéré comme perpendiculaire à la pente lorsque ce même angle est supérieur à 45° (P ≤ 1, tableau 1).

De plus, les valeurs de P pour un semi perpendiculaire à la pente (tableau 1) ne sont valables qu'en deçà de longueurs limites fonction elles-mêmes de la pente des versants (tableau 2).

Pour des longueurs de pente supérieures à ces limites on a utilisé la valeur du facteur immédiatement supérieur à celle du tableau 1, ceci, afin de rendre compte de l'effet antiérosif du semi perpendiculaire à la pente, effet, qui dans ce cas, est certes réduit mais cependant effectif. Ainsi, pour une pente de 5 % et de 100 m de longueur on a adopté P = 0,6 au lieu de P = 0,5 (tableau 1).

Tableau 1

Valeurs du facteur P en fonction de la pente pour un semi perpendiculaire à celle-ci (d'après W. H. Wischmeier & D. D. Smith, 1965).

<table>
<thead>
<tr>
<th>Pente %</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>1,0</td>
</tr>
<tr>
<td>1,1 - 2</td>
<td>0,6</td>
</tr>
<tr>
<td>2,1 - 7</td>
<td>0,5</td>
</tr>
<tr>
<td>7,1 - 12</td>
<td>0,6</td>
</tr>
<tr>
<td>12,1 - 18</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Tableau 2

Longueur limite de la pente pour assurer la validité des valeurs de P, prévues au tableau 1, pour un semi perpendiculaire à la pente (d'après W. H. Wischmeier & D. D. Smith, 1965, modifié).

<table>
<thead>
<tr>
<th>Pente %</th>
<th>Longueur en m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>122</td>
</tr>
<tr>
<td>4,1 - 7</td>
<td>91</td>
</tr>
<tr>
<td>7,1 - 9</td>
<td>61</td>
</tr>
</tbody>
</table>

3. RÉSULTATS

Les résultats ont été rassemblés en un tableau synthétique (tableau 3) reprenant les principaux éléments ayant contribué à modifier les risques érosifs suite au remembrement (I, II et IV) et présentant les valeurs moyennes des facteurs soumis à modifications par celui-ci (III, V et VI).

Il est sans doute utile de rappeler ici que ces moyennes représentent
le risque érosif moyen à l'hectare. C'est la somme des risques érosifs de chaque parcelle (pondérés par rapport à la surface des parcelles) divisée par la surface prise en compte avant et après remembrement.

Pour la facilité de l'étude, le remembrement a été subdivisé arbitrairement en quartiers (N.O., N.E., S.O. et S.E.) de surfaces sensiblement égales.

Le remembrement a eu pour effet de réduire le nombre des parcelles et par là d'augmenter leur surface moyenne (II, tableau 3) de 133 % pour l'ensemble du remembrement. Des différences sensibles existent toutefois d'un quartier à l'autre (de + 92 % à + 191 %).

On observe une augmentation du facteur pente (L.S.) directement liée à l'augmentation de la surface moyenne des parcelles (III, tableau 3). Cette augmentation est de 13 % pour l'ensemble et varie de 4 à 21 % suivant les quartiers.

Le sens du semis joue un rôle déterminant dans le contrôle de l'érosion (tableaux 1 et 2). D'une façon générale, le semis perpendiculaire à la pente, efficace en matière de conservation des sols, est moins répandu que le semis parallèle à la pente.

Le nouveau dessin parcellaire a amené une modification de la direction des travaux et semis. En moyenne on observe une réduction des surfaces semées perpendiculairement à la pente (-4 %). Cette évolution qui favorise l'érosion est partout identique sauf dans le quartier n° 4 où, les surfaces semées perpendiculairement à la pente augmentent (+6) et dépassent même 50 %.

Conséquence directe de la réduction des surfaces semées perpendiculairement à la pente, on enregistre une augmentation de la valeur du facteur P, (+1 % en moyenne). Elle atteint 5 % dans les quartiers 1 et 3. Cependant, suite à l'augmentation des surfaces semées perpendiculairement à la pente, l'évolution dans le quartier 4 est inverse : P diminue de 4 %.

Conséquence générale du remembrement et de la réorientation des semis qui l'a accompagné, le risque érosif (L.S.P.) a augmenté, en moyenne de 14 % (VI tableau 3). Des variations importantes existent cependant d'un quartier à l'autre (0 à 27 %). Dans le quartier 4, l'augmentation du risque érosif résultant de l'agrandissement des parcelles (L.S.) a été compensé par l'augmentation des surfaces semées perpendiculairement à la pente ce qui a entraîné une diminution du facteur P. Dans les 3 autres quartiers, l'agrandissement des parcelles et la réorientation des semis parallèlement à la pente ont tous deux contribué à augmenter le risque érosif.
Tableau 3

Résultats

<table>
<thead>
<tr>
<th>Quartiers n°</th>
<th>1 (N.O)</th>
<th>2 (N.E)</th>
<th>3 (S.O)</th>
<th>4 (S.E)</th>
<th>1+2+3+4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface totale des champs hors colluvions en ha</td>
<td>1973 266</td>
<td>1978 276</td>
<td>diff. + 4 %</td>
<td>285 309</td>
<td>+ 8 %</td>
</tr>
<tr>
<td>Surface moyenne des parcelles (colluvions non comprises) en ha</td>
<td>1973 1,16</td>
<td>1978 3,37</td>
<td>diff. +191 %</td>
<td>1,16 2,86</td>
<td>+147 %</td>
</tr>
<tr>
<td>L.S. moyen</td>
<td>1973 0,73</td>
<td>1978 0,86</td>
<td>diff. + 18 %</td>
<td>0,74 0,81</td>
<td>+ 9 %</td>
</tr>
<tr>
<td>Surface des parcelles semées en ha</td>
<td>1973 115</td>
<td>1978 92</td>
<td>diff. - 10 %</td>
<td>123 124</td>
<td>- 3 %</td>
</tr>
<tr>
<td>P. moyen</td>
<td>1973 0,82</td>
<td>1978 0,86</td>
<td>diff. + 5 %</td>
<td>0,84 0,85</td>
<td>+ 1 %</td>
</tr>
<tr>
<td>L.S.P. moyen</td>
<td>1973 0,60</td>
<td>1978 0,74</td>
<td>diff. +23 %</td>
<td>0,62 0,69</td>
<td>+11 %</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

Le remembrement de Verlaine, tel qu'il a été réalisé, a provoqué une augmentation de 14 % du risque érosif moyen.

Les causes en sont, principalement, l'augmentation de la surface des parcelles et par là-même l'augmentation du facteur pente (L.S. moyen + 13 %) et, accessoirement, la diminution des surfaces semées perpendiculairement à la pente (P moyen + 1 %).

La question est de savoir si cette augmentation du risque érosif par les remembrements est inévitable ou s'il est possible de remédier à cet inconvénient.

L'analyse des résultats (tableau 3) permet de répondre à cette question : si dans les trois premiers quartiers l'augmentation du risque...
érosif est due à la fois à l’agrandissement des parcelles et au nouveau redécoupage parcellaire qui a favorisé le semiis parallèle à la pente, dans le quatrième quartier par contre, l’augmentation du risque érosif résultant de l’agrandissement des parcelles a été compensée grâce à une réduction du semiis parallèle à la pente.

Il apparaît donc que le nouveau découpage parcellaire, en favorisant le semiis perpendiculaire à la pente, peut annuler l’augmentation du risque érosif résultant de l’agrandissement des parcelles.

Il va de soi que les remembrements ne sont et ne peuvent être conçus exclusivement en vue de lutter contre l’érosion des sols. Néanmoins, si dans la conception des remembrements il était tenu compte de la possibilité de lutter contre l’érosion, il ne fait aucun doute que leur réalisation pourrait conduire à une diminution sensible du risque érosif alors qu’actuellement ils contribuent à augmenter celui-ci.

D’autre part, le redécoupage parcellaire n’est pas le seul élément d’un remembrement susceptible de réduire le risque érosif. Le tracé des chemins ruraux peut également contribuer à modifier celui-ci. Conçus sans tenir compte des problèmes d’écoulement et d’érosion, les chemins peuvent provoquer des concentrations d’eau importantes et des écoulements violents qui peuvent éroder et provoquer des dégâts non négligeables aux cultures, principalement dans les colluvions.

Par contre, si leur tracé est réalisé, notamment en tenant compte des impératifs de lutte antiérosive, ils peuvent contribuer à diminuer efficacement le risque érosif, notamment en scindant les versants. Un redécoupage parcellaire susceptible de favoriser le semiis perpendiculaire à la pente, voire même la culture en bandes alternées peut réduire le risque érosif tout en augmentant la surface des parcelles. L’influence du tracé des chemins ruraux est discutée dans une note en préparation (A. Bollinne & M. Binard).

Il est évident que pour que les remembrements soient conçus en vue de réduire le risque érosif, il faut que des critères de lutte antiérosive soient pris en compte lors de leur conception.

Jusqu’à présent en effet, on s’est montré peu attentif à ces problèmes alors que l’érosion est responsable d’une perte de rendement moyenne de l’ordre de 3 à 5 % (A. Bollinne et al., 1978). Les opérations de remembrement menées avec le souci de limiter l’érosion seraient cependant susceptibles de réduire celle-ci dans des proportion non négligeables alors qu’actuellement elles contribuent à une accélération du processus.

Bien entendu, la valeur des résultats présentés ci-dessus est fonction de l’applicabilité du modèle. Concernant le facteur pente (L.S.),
les éléments actuellement en notre possession (A. Pissart & A. Bollinne, 1978) permettent de penser que les valeurs proposées peuvent être utilisées en région limoneuse. Quant au semis perpendiculaire à la pente, il ne fait aucun doute qu’il réduit efficacement l’érosion. Cependant, étant donné les interactions entre les précipitations, cultures, sols, ... il n’est pas certain que les valeurs utilisées (tableau 1) soient valables sans restriction. Des travaux qui visent à vérifier la validité des valeurs de P utilisées sont en cours.

Malgré ces restrictions, la tendance mise en évidence par cette étude (augmentation nette du risque érosif par le remembrement) ne peut être remise en cause.

BIBLIOGRAPHIE

Contribution à l’étude quantitative des modifications des risques d’érosion résultant des remembrements. Le cas du remembrement de Verlaine.

Pédologie, 28, 233-245.

Bollinne A. & Binard M., (en préparation)
Rembrement et érosion.
Soc. Nat. Terr.

Aperçu des problèmes liés aux écoulements superficiels en Hesbaye sèche. Rapport de stage.

Etude détaillée des sols de la Hesbaye Occidentale. Application à quelques problèmes d’actualité.

L’érosion des sols limoneux cultivés de la Hesbaye. Aperçu général.
Pédologie, 28, 161-182.

New developments in estimating water erosion.
29th annual meeting of the soil conservation society of America proceedings, 179-186.

Predicting rainfall-erosion losses from cropland, east of the Rocky Mountains.
Résumé

Contribution to a quantative study of changes of erosion risks as a result of reallocation

Summary
Using the soil-loss equation (W. H. Wischmeier & D. D. Smith, 1965, 1978) we estimated the modifications of erosion hazards resulting from re-allocation of land. It appears after the re-allocation that the erosion hazards rises of 14 %. It is mainly due to the enlarging of the parcels and accessorially to the extend of the seedings parallel to the slope.

Bijdrage tot de kwantitatieve studie van veranderingen in het erosierisico als gevolg van ruilverkaveling

Samenvatting