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Abstract: The quality assessment of a nested model system of the Mediterranean Sea is realised. The model has 

two zooms in the Provençal Basin and in the Ligurian Sea, realised with a two-way nesting approach.                    

The experiment lasts for nine weeks, and at each week sea surface temperature (SST) and sea level anomaly are 

assimilated. The quality assessment of the surface temperature is done in a spatio-temporal approach, to take into 

account the high complexity of the SST distribution. We focus on the multi-scale nature of oceanic processes 

using two powerful tools for spatio-temporal analysis, wavelets and Empirical Orthogonal Functions (EOFs).  

We apply two-dimensional wavelets to decompose the high-resolution model and observed SST into different 

spatial scales. The Ligurian Sea model results are compared to observations at each of those spatial scales, with 

special attention on how the assimilation affects the model behaviour. We also use EOFs to assess the 

similarities between the Mediterranean Sea model and the observed SST. The results show that the assimilation 

mainly affects the model large-scale features, whereas the small scales show little or no improvement and 

sometimes, even a decrease in their skill. The multiresolution analysis reveals the connection between large- and 

small-scale errors, and how the choice of the maximum correlation length of the assimilation scheme affects the 

distribution of the model error among the different spatial scales. 
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1. Introduction 

The quality assessment of a three-dimensional model forecast is a difficult task, particularly when studying its 

spatio-temporal characteristics. For this kind of study we can use in situ data, but their coverage is usually 

limited in space and/or time, making difficult the comparison with a three-dimensional model. Another 

possibility is the use of satellite observations, which have very good coverage in space and time but are limited 

to the ocean surface. The comparison of the model even to such incomplete fields can however add valuable 

information to the understanding of the model behaviour. 

The comparison between these complex fields, model and observations, is not straightforward because two fields 

describing the distribution of a variable can differ in many ways (e.g. an overall bias, missing processes, bad 

positioning of a given feature, etc.)- The first step to assess the quality of a forecast is thus to establish which 

processes are being studied. The definition of the spatio-temporal scales related to these processes will then fix 

the model characteristics that we need to study. 

Forecast verification depends thus on what we want to verify, and at which spatio-temporal scales.                       

The verification process must be designed to find the answers to the questions that may arise when dealing with 

forecast results. In field forecast verification, these questions are related to the accuracy of the model with 

respect to observations, but also to the spatial distribution of the studied variable and the temporal evolution of 

this distribution. The study of the spatial distribution of a variable can help us to see if there are missing 

processes in the model (such as a recurrent gyre or a front) and to learn about the capacity of the model to 

represent the reality at different physical spatial scales. 

The study of such complex error fields cannot be done with a unique error measure. To answer questions related 

to the spatial distribution of a variable, its spatial distribution averaged over time can be studied. However, in 

field forecast verification special attention must be paid to the fact that the number of grid points in a model and 

the spatial correlation between them makes very difficult to study the skill distribution in space (Livezey and 

Chen, 1983). It is very unlikely that two adjacent points in a model grid are completely independent, so the 

interpretation of a spatial skill (temporal averaged) becomes ambiguous (Wilks, 1995; Briggs and Levine, 1997; 

Jolliffe and Stephenson, 2003). 
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Time error evolution is thus preferred to avoid the correlation problem, as long as the time between analyses is 

longer than the temporal correlation scale. An average over all points in a grid at a given time is thus commonly 

used in the verification process. The temporal evolution of the error is very useful to obtain a general idea about 

the quality of the model. It is often the only way an error measure is applied. However, to answer some of the 

questions specified above, one needs to keep the spatial distribution of the studied variable. Spatio-temporal 

techniques can help us to study the evolution of a variable in time, keeping the spatial distribution information, 

and avoiding the ambiguity of correlation between adjacent points. Multi-scale techniques allow us to study the 

behaviour of a model at different spatial scales (Daubechies, 1992; Mallat, 1998), or even to focus on a specific 

scale of interest. Nested models, as the one we are working with, can also be considered as a multi-scale 

approach. Each nested level is a refinement of the parent model, so the verification at those two model grids can 

also give us an idea about the model behaviour at different spatial and/or temporal scales (Denis et al., 2003). 

Wavelet Transforms are widely used in multi-scale decomposition studies (Daubechies, 1992; Torrence and 

Compo, 1998). They overcome the localisation problem of Fourier Transforms. By using a variable window size 

that is translated and dilated over the studied domain, wavelets allow us to separate a signal into orthogonal 

components related to the position and scale of the signal (Mallat, 1989, 1998). 

Several studies have applied a multi-scale approach to analyse the spatial behaviour of a variable. Liang and 

Robinson (2005) established a multi-scale Energy and Vorticity Analysis (MS-EVA), that uses wavelets for the 

multi-scale decomposition. Liang and Robinson (2004) used MS-EVA to study the energy and vorticity balances 

at different spatial and temporal scales of the Iceland-Faroe Front and considered the transfer and distribution of 

energy and vorticity between the large-scale, mesoscale and sub-mesoscale. A similar approach was used by 

Fournier (2002, 2003) for atmospheric fields. Yano et al. (2001) made a three-dimensional study of a convective 

cloud system, characterising preferred spatial orientations of the system. Briggs and Levine (1997) and Casati et 

al. (2004) worked with 500-hPa geopotential height fields and rain fields respectively. 

Two-dimensional wavelets have been recently applied in the frame of forecast verification (Briggs and Levine, 

1997; Casati et al., 2004). In these papers the authors decomposed a model into several spatial scales using 

wavelets, and assessed the quality of the model at each of these scales. As these scales have a physical meaning, 

we can identify the error with a physical process characteristic of each scale (Briggs and Levine, 1997). 

This last approach is exploited in this work. Wavelets are a perfect tool for spatio-temporal analyses of two-

dimensional fields. The aim is to decompose the model forecast sea surface temperature (SST) and the 

observations into different resolution levels or scales. Then, the comparison between model and observations can 

be done at each of these scales. This allows us to identify the scales that are mainly contributing to the global 

error, and thus to have a closer look into the behaviour of these fields. 

Empirical Orthogonal Functions (EOFs) are also used in this work. They can decompose a matrix into 

orthogonal modes representing the major patterns of variability found in the data. EOFs are very useful in the 

comparison between a model and observations in a spatio-temporal frame. We can study whether the model 

presents the same spatial and temporal distribution than the observations at their major modes of variability. The 

study of the spatial modes allows us to see if there are missing features in the model, or if they are represented 

with the appropriate intensity. The temporal modes allow us to see if the temporal cycle (e.g. monthly, seasonal 

or annual cycle) is accurately represented by the model, or if there is a shift or a difference in intensity between 

model and observations. Several works use EOFs to study the spatial and temporal characteristics of the ocean. 

For example, Lermusiaux (2001) studied the three-dimensional variability of the Massachusetts Bay using EOFs. 

Lermusiaux (2002) made an analysis about the sensitivity of a mapping method to the size of the considered 

subspace, the studied scales, and the system dynamics. Molcard et al. (2002) realised an EOF analysis of the 

wind stress over the Mediterranean Sea, to study the relationship between wind stress and the ocean response. 

Beckers et al. (2002) used EOFs for the intercomparison of different models in the Mediterranean Sea. 

In this work we present the quality assessment of a three-dimensional model in the Mediterranean Sea. The 

model has two zooms to the Provençal basin and to the Ligurian Sea (Barth et al., 2005). These three models are 

connected by a two-way nesting approach. The quality assessment of the different resolution models gives us an 

idea about how it behaves at different grid resolutions. We study the model error at the basin and sub-basin 

scales before applying the mentioned spatio-temporal techniques. We then apply wavelet decomposition to the 

Ligurian Sea model, and this decomposition will allow us to study the spatial characteristics from one to about a 

hundred kilometres. 

The model is forced by data assimilation. Weekly SST and SLA are assimilated during nine weeks. In addition, 
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we dispose of daily satellite SST images for the quality assessment. Thus, we focus on time scales from one day 

to a month. 

This work is organised as follows: first, a brief description of the Mediterranean and Ligurian Sea main 

characteristics is made in Section 2. Then the model and data used, and a brief description of discrete wavelet 

transforms are presented in Section 3. Section 4 presents the time evolution of the model SST error of the 

Mediterranean and Ligurian Sea models, which gives us an idea about the behaviour of the model at the basin 

and sub-basin scales. Then these models are analysed in a spatio-temporal frame: the Ligurian Sea model first, 

with two-dimensional discrete wavelet analysis in Section 5, and then the Mediterranean Sea with an EOF 

analysis in Section 6. We pay special attention to the impact of the assimilation in the model behaviour and in 

the distribution of the error at different scales. Finally, we present the conclusions of our work in Section 7 along 

with the recommendations, obtained through the error analyses, to improve the model skill. 

2. The Mediterranean sea 

The Mediterranean Sea (see Fig. 1) is a semi-enclosed sea with an extension of approximately 3000 km in the 

zonal direction and 1500 km in the meridional direction. It is connected to the Atlantic Ocean by the Strait of 

Gibraltar, a narrow canal of 20 km width and 300 m depth. 

The Mediterranean Sea freshwater input (precipitation and river discharges) does not balance the evaporation. 

This evaporation/precipitation balance mainly controls the large-scale circulation in the Mediterranean Sea: the 

evaporation makes the surface water more saline, originating a convective process that involves the entire water 

column and that leads to the formation of deep waters in zones like the Western Mediterranean and the Rhodes 

gyre. In the Strait of Gibraltar, the cooler and lighter Atlantic water enters the Mediterranean above the 

outflowing saltier and warmer Mediterranean Water (Viudez et al., 1996). Due to evaporation and mixing, the 

Atlantic Water gradually changes its physical and chemical properties, forming the Modified Atlantic Water 

(MAW). The MAW forms a surface layer of about 100-200 m depth all over the Mediterranean Sea (Millot, 

1999). Circulation in the Mediterranean Sea follows a cyclonic path all over its basins and sub-basins. The 

MAW contributes to the formation of an intermediate water mass (Levantine Intermediate Water, LIW) in the 

Eastern Mediterranean, due to warming and evaporation processes. This newly formed LIW returns to the west 

and exits the Mediterranean through the Strait of Gibraltar below the MAW. 

Fig. 1: The Mediterranean Sea grid (22 × 28 km resolution) and its bathymetry. The two successive squares 

represent the next nested domains, the Provençal Basin in solid line and the Ligurian Sea in dashed line. 

 

The circulation in the Mediterranean Sea occurs at mainly three spatial scales: basin scale, sub-basin scale and 

mesoscale. At a basin scale, the most important pattern is the zonal circulation of MAW. The sub-basin scale is 

characterised by gyres (sub-basinscale gyres) and permanent or quasi permanent cyclonic and anticyclonic 

structures (e.g. Rhodes gyre and Ierapetra Gyre) interconnected by intense jets and meandering currents 

(Malanote-Rizzoli et al., 1999). We can also think in terms of time scale, as interannual scale (e.g. deep water 

mass formation and variations in volume transport), seasonal scale (e.g. thermocline depth variations, gyres) and 

smaller scales (Brankart and Brasseur, 1998; Pinardi and Masetti, 2000). 
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2.1. Liguro-Provençal basin 

The circulation in the Ligurian Sea (dashed box in Fig. 1) describes a cyclonic gyre, which is more intense in 

winter and is mainly due to wind curl stress (Larnicol et al., 1995). Two northward currents surrounding the 

coast of Corsica, the West Corsican Current and the East Corsican Current, feed the circulation pattern of this 

area. Both branches join north of Corsica, forming the Northern Current (NC), which flows south-westward 

following the French and the Spanish coasts along the continental slope. The signal of the NC extends from the 

north of Corsica to as far as the Catalan Sea (Albérola et al., 1995; Sammari et al., 1995; Astraldi et al., 1999; 

Millot, 1999). 

The Ligurian Sea presents a marked seasonal variability, mainly noticed in the variations in volume and position 

of the NC all along the year (Albérola et al., 1995; Albérola and Millot, 2003). The modulation of the NC is 

determined by changes in the two currents that feed it, the Western and Eastern Corsican currents (Astraldi and 

Gasparini, 1992; Sammari et al., 1995; Astraldi et al., 1999). The NC is also affected by a high mesoscale 

activity (Albérola et al., 1995), mainly reflected in the formation of meandering structures all along the NC path. 

The meandering structures can be as wide as the NC and they can advance at the same velocity (Sammari et al., 

1995). These seasonal and mesoscale variations can be seen all along the NC south-westward flow (Font et al., 

1995). 

3. Material and methods 

3.1. The GHER model 

The GHER (GeoHydrodynamics and Environmental Research) model, a three-dimensional model (Beckers, 

1991) has been applied to the Mediterranean Sea. The model is governed by the primitive equations and it has a 

free surface. In the vertical, the model uses a double-sigma coordinate with 31 levels. The numerical scheme 

conserves mass, heat and salt. Other details of the GHER model can be found in Beckers (1991) and Barth et al. 

(2005). 

The Smith and Sandwell (1997) bathymetry has been used in the model. The initial salinity and temperature are 

computed from MODB (Mediterranean Ocean DataBase, Brasseur et al. (1996)). Two river freshwater inputs are 

also included: the Rhone (in France) and the Arno (in Italy) rivers, obtained from Tusseau and Mouchel (1994) 

and from Rinaldi (pers. comm.), respectively. Daily heat and momentum fluxes are calculated from bulk 

formulae. Temperature of the air at two meters, cloud coverage, wind speed at 10 m, dew point temperature and 

pressure fields are obtained from the European Center for Medium-Range Weather Forecasting (ECMWF), and 

they are used for the computation of the heat fluxes. The ECMWF analysis fields have a resolution of 1/2° and 

are produced each 6 h. The heat fluxes used in the model are interactive, i.e., they depend of the surface 

temperature provided by the GHER model. 

This model has been applied in a two-way nesting approach to the Ligurian Sea (Barth et al., 2005). The model 

consists in three nested sub-domains: the coarsest grid represents the whole Mediterranean, with 22 × 28 km 

resolution, the intermediate grid covers the Liguro-Provençal basin (4x6 km), and the finest grid is centred in the 

Ligurian Sea, with 1.5 × 1.9 km resolution. These three domains can be seen in Fig. 1, where the bathymetry is 

also represented. 

From 6 July to 1 September 2000, an assimilation experiment has been carried out. Each week SST and SLA 

satellite data are assimilated into the model via a Singular Evolutive Extended Kalman filter (Pham and Verron, 

1998; Brasseur et al., 1999; Brankart et al., 2003), which is a reduced order Kalman filter. For the computation 

of the error covariance of the model, an ensemble of 200 members was generated. Initial conditions and 

atmospheric forcings are perturbed and then the ensemble of 200 members runs for 2 weeks, beginning on 5 

July. The final ensemble is used to calculate the error covariance of the model. For further information on the 

assimilation experiment, see (Barth et al., 2007-this issue). 

The aim of this study is to learn how the SST assimilation influences the model skill. We refer to the model with 

SST assimilation as Forecast. This simulation is studied each week before the assimilation of SST and SLA, so 

the Forecast is still independent from the observations that will be assimilated into the model. To assess the 

contribution of the assimilation of SST and SLA into the model, we use a free run (i.e. a run without 

assimilation, but with the same parameterisation and forcings as the Forecast). This data set is called Free run. 

Finally, the result of the assimilation of observations is used. This data set is used to study the impact of the 

assimilation step on the model, and it is called Analysis. This data set is then dependent of observations. 
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3.2. Observations 

Advanced Very High Resolution Radiometer (AVHRR) SST data from the German Aerospace Research Center 

(DLR, http://eoweb.dlr.de:8080/servlets/ template/welcome/entryPage.vm) are assimilated into the model, and 

they will be used in the skill assessment. They have a resolution of approximately 1 km. To avoid artificial skill 

when comparing the model with assimilated data, the comparison is always done before the data is assimilated. 

DLR data are mean weekly composite temperature fields. The composite value for every pixel is computed from 

the daily maximum temperature images, and clouded pixels are excluded from the data. We refer to this data set 

as DLR SST. 

Daily AVHRR Pathfinder v5 SST data (hereafter Pathfinder SST) are also used. Pathfinder SST data are 

available via anonymous ftp at the Jet Propulsion Laboratory web site (ftp://podaac.jpl.nasa.gov). They consist 

on daily averaged global SST maps. A subset ranging from 6 July to 1 September 2000 and covering the 

Mediterranean Sea is used. Only descending (nighttime) passes are selected, to minimise skin temperature 

effects. 

They are derived from the 5-channel AVHRR on board the NOAA-7, 9, 11, 14, 16 and 17 polar orbiting 

satellites. Together with the Pathfinder SST data, quality flags can also be obtained. Clouds are identified from 

these quality flags, so each user can decide the mask that will be applied to the data. The possibility of choosing 

the level of quality of the data that we want to keep, and the fact that nighttime passes are separated from 

daytime passes, makes the Pathfinder SST a product of higher quality than the daily DLR SST. Quality flags 

classify the Pathfinder SST from 0 (the worst) to 7 (the best), but there is no linear relation between those levels. 

The quality flags are given pixel-by-pixel, and they are the result of a series of 'pass' or 'fails' of different quality 

tests. These tests penalise pixels outside the Reynolds' climatology (Reynolds and Smith, 1994), or those pixels 

situated at the edges of the scan line. Other tests include the brightness temperature, zenith angle and glint tests. 

A complete explanation about the Pathfinder products and how these tests were performed can be found in 

Kilpatrick et al. (2001). 

We have classified quality flags under 5 as clouds or missing data. The Pathfinder SST data set used in this work 

has thus some missing data. Before using them we have reconstructed the missing data with an EOF-based 

method, called DINEOF (Data INterpolating Empirical Orthogonal Functions, Beckers and Rixen, 2003; Alvera-

Azcárate et al., 2005). DINEOF is a parameter-free method that allows to reconstruct missing data in an accurate 

and fast way. The main advantages of this method is that it does not need a priori knowledge about the error 

statistics of the data, and that it can reconstruct big matrices with up to 30 times less computational time than 

other classically used methods, as optimal interpolation (Alvera-Azcárate et al., 2005), leading to the same 

accuracy of the results. The method uses a cross-validation technique to establish the optimal number of EOFs 

necessary for the reconstruction. DINEOF is thus inherently self-contained but will work well only as long as 

EOF analysis on a complete data set would work efficiently. In particular, propagating features are generally not 

well captured by the method and the orthogonality of the modes does not always allow interpreting them 

physically. 

To validate the reconstruction of missing data in the Pathfinder SST data set, we compared them to 256 in situ 

stations from the MEDAR/Medatlas database (MEDAR-Group, 2002). The Root Mean Square (RMS) error 

between the reconstruction and in situ data was 0.81 °C for initially missing points and 0.93 °C for initially 

existing points. This last error can be considered as the error between the satellite and in situ data. Note that the 

error of the initially missing points is even smaller than the error of the initially existing data. 

3.3. Discrete wavelet transforms 

In this section we give a brief presentation of the one-dimensional wavelet transform and its main characteristics, 

used afterwards in the model results analysis. For a comprehensive explanation on wavelets the reader is referred 

to Daubechies (1992), Mallat (1998) and references therein. 

Wavelets are a set of functions generated by a mother wavelet ψ(x). This real function has, among others, the 

following properties (Kumar and Foufoula-Georgiou, 1997; Torrence and Compo, 1998): 

•  Unit norm:  

•  Zero mean: This characteristic allows a wavelet to extract high-frequency variations of the 

studied function. 

•  Most wavelets have a compact support, or a exponential decay to zero. Wavelets allow therefore a localisation 
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in space in contrast to Fourier modes, which have an infinite support. 

From this mother wavelet, a set of orthogonal wavelets is obtained by (Daubechies, 1992): 

 

where ψ(x) is dilated and translated by means of parameters m and n. In order to complete this set of functions, 

we must introduce the scaling function (also called father wavelet) with the following properties: 

•  Unit norm:  

•  Unit mean: This characteristic allows a scaling function to extract low-frequency variations of 

the studied function. 

•  The mother wavelet and the scaling function are orthogonal:  

From this scaling function, a set of functions is obtained by transforming the scaling function  

 

For any M, the set of functions formed by the wavelets and the scaling function 

 is a complete set of orthogonal functions. The discrete wavelet transform consists in projecting a 

function g(x) onto these basis functions. The term "discrete" refers to the fact that the scale parameter m and the 

translation parameter n take only integer values. The scalar product between the function g(x) and all the basis 

functions are the scaling function coefficients am,n and the wavelets coefficients dm,n: 

 

for all m,  (with  the ensemble of integer numbers) and m ≤ M. Each of these coefficients is related to a 

scale and a location given by parameters m and n. This property makes wavelets very appropriate for multi-

resolution analysis (Mallat, 1998). 

From the coefficients dm,n and am,n, the original function can be reconstructed by: 

 

In particular if M → ∞, for a function with zero mean: 

 

The approximation Am(x) and the details Dm(x) are defined for all m ≤ M by: 
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The functions Am represent the variations larger or equal than the scale m, and functions Dm represent the 

variations smaller than m. Rewriting Eq. (5), a function g(x) can be decomposed into separate scales or resolution 

levels: 

 

A discrete wavelet transform can be viewed as a hierarchical decomposition that iteratively filters the high-

frequency signal out of the large-scale signal. The approximation of the previous scale is decomposed into 

approximation and details of the current scale, 

 

The wavelet decomposition can also be applied to a vector g(xi) with i = 1.. N, N= 2
M
 (i. e. a vector of dyadic 

length). The vector g(xi) can be decomposed into M scales. The wavelet coefficients are then obtained from the 

discrete wavelet ψm,n(xi) and scaling function Φm,n(xi) As before, indexes m and n determine the dilation and 

translation of the wavelet and scaling function. The approximation and detail coefficients are represented by: 

 

where m = 1...M and n = 1...2
M-m

. For the largest scale of the decomposition M, the index n is dropped for the 

approximation coefficient (aM) and the scaling function (ΦΜ(xi)) in order to simplify the notation. The 

approximation coefficient aM is related to the mean value of the vector  since: 

 

The decomposition of the vector g(xi) into M scales is given by: 

 

We will work with the detail coefficients at all scales and the approximation at the largest scale, as they retain 

the necessary information at each scale to reconstruct the initial function. There are different interpretations of 

the length scale associated to the detail coefficients. Here we follow the convention given by Lindsay et al. 

(1996) and Casati et al. (2004), which interprets the details resolution as the grid resolution. The reader should be 

aware that some authors (e.g. Yano et al., 2001) define the details resolution as the shortest wavelength that can 

be represented by the wavelet on a grid. Both conventions differ by a factor of two. If ∆x is the initial grid 
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spacing of the function g(x), then we define the resolution of the details coefficients at scale m as ∆x2
m-1

. 

The explanation on wavelet characteristics given previously can be extended to two-dimensional wavelets, which 

are obtained by the orthogonal product of one-dimensional wavelets and scaling function. The detail coefficients, 

however, are divided into horizontal, vertical and diagonal details that account for different spatially oriented 

frequency channels (Mallat, 1989; Kumar and Foufoula-Georgiou, 1993). 

The wavelet chosen to decompose a data set will undoubtedly affect its decomposition. This is why a careful 

choice of the mother wavelet is very important. Torrence and Compo (1998) name several choices that should be 

taken into account when choosing the wavelet: i) orthogonal or non-orthogonal wavelets; ii) complex or real 

wavelets (complex wavelets are also largely used in geophysics, e.g. Spedding et al. (1993), Chapa et al. (1998), 

Rao and Murthy (2001); iii) the width of the wavelet (or compact support); and iv) the shape of the wavelet; in 

fact, the shape of the wavelet should be chosen accordingly to the characteristics of the data to analyse, because 

the results change when using different wavelet forms. There are other methods to choose the more adequate 

waveform. In Briggs and Levine (1997), the wavelet that minimises the entropy of the wavelet transform is 

chosen. Casati et al. (2004) worked with binary rain fields, and the square-shaped Haar wavelet fitted the best to 

the data. In this work, two-dimensional Haar wavelets are used. 

In Oceanography, there is an additional degree of difficulty when using two-dimensional wavelets. 

Oceanographic domains often contain irregular boundaries at the limit between land and sea, which is not the 

case in the atmosphere, for example. We have treated land-sea boundaries as an extension of the one-

dimensional case: when the analysed time series does not have a dyadic length, it is normally padded with extra 

values up to the nearest dyadic length. These added points can be constructed in many different ways, e.g. with 

zeros, or a periodic extension of the original data, a gently decrease to zero, the mean value of the variable, etc. 

The same can be done in two dimensions to reach the dyadic length trying to minimise the perturbation of the 

wavelet coefficients at the land-sea boundary. Land points have been replaced by the mean value of the field, and 

discontinuities at the land-sea boundary have been reduced by the following iterative procedure: 

 

with α = 0.05, and Ns = 500 iterations performed. The width of the transition zone is approximately  

grid points. This is a very simple approach, but it has proven useful in our case. Future work should include more 

specific methods for irregular boundary treatment, as the approach by Oh et al. (2001) and Naveau and Oh 

(2004), based on a polynomial wavelet regression, specially designed to deal with irregular boundaries. Second 

generation wavelets (Sweldens, 1997; Daubechies et al., 1999) can be very helpful when working on irregular 

grids, and can also deal with irregular boundaries. 

As the wavelet is translated along the domain, it crosses land-sea boundaries. The transition from sea to land 

points results in perturbed wavelet coefficients, even after applying Eq. (17). For this reason, the use of a small 

support wavelet will help to reduce this effect. Wavelets have a determined compact support, or effectively non-

zero zone. A wide wavelet affects a higher number of data points than a narrow wavelet. For example, 

Daubechies Wavelet family has a compact support of 2No-1, with No the order of the wavelet. The Haar Wavelet 

has a support width of 2, the smallest support width of all the wavelet families. For this reason, the Haar Wavelet 

has been chosen for this work to reduce the boundary effects. 

3.3.1. Wavelets and RMS error decomposition 

As previously shown, wavelets form a complete basis of orthonormal functions. Therefore the L2 norm of a 

given function g(xi) can be decomposed into the sum of the square of its wavelets coefficients. In a discrete form, 

this relationship can be written as: 
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where g(xi) is the value of the function at point i; N is the total number of spatial points; dm,n are the detail 

coefficients at scale m and point n; and aM is the approximation coefficient at scale M, the coarsest of the 

decomposition. Given any size of the initial decomposed matrix, the term aM is a single number, which is related 

to the mean of the initial vector. 

If the vector g(xi) is the difference between a forecast F(xi) and observations O(xi), we have: 

 

with d
F
m,n the detail coefficients of the forecast at scale m and point n, d

O
m,n the detail coefficients of the 

observations, and a
F
M and α

O
M the approximation of the forecast and the observations respectively. Dividing Eq. 

(20) by the total number of points N of the vector we obtain: 

 

We can define the squared RMS of the wavelet decomposition at scale m as 

 

The term  of Eq. (21) is the square of the bias. Eq. (21) can be rewritten as the sum of the squared 

centred RMS and the squared bias (B): 

 

We have divided the RMS error of the forecast F(xi) into the sum of the RMS error of all spatial scales of the 

wavelet decomposition plus a bias term  This decomposition is an extension to the largely 

known RMS error decomposition into centred RMS and bias (see, e.g. Murphy and Epstein, 1989; Taylor, 2001). 

It is apparent from Eq. (23) that the sum of RMS
2
m over all scales m is equal to the centred RMS. 

3.3.2. Taylor diagram 

A wavelet decomposition is very useful to study the model results at different resolution levels. However, the 

results can be complex to analyse, because there are many factors that influence each scale, a different behaviour 

for each scale and error measure, and the evolution with time of those scores. A Taylor diagram (Taylor, 2001) 

can be very useful in this situation, because it groups several error measures into one graphic, allowing a joint 

interpretation of the results. The Taylor diagram has been already used in the study of atmospheric models 

(Gates et al., 1999; Boer and Lambert, 2001; Denis et al., 2003) and in the ocean (e.g. Raick et al., 2007-this 

issue). The Taylor diagram is based on the relation between the RMS error, the centred RMS error and bias (B): 
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then the centred RMS (RMS') can be expressed as: 

 

where r is the correlation and Sf and S0 are the variance of the forecast and the observations respectively NoNote 

the relation between Eq. (25) and the law of the cosines: 

 

where a, b and c are the sides of a triangle and φ is the angle opposite to c. With this relation, we can easily plot 

into one diagram several statistics of a field (their standard deviations, the correlation and the RMS'). The 

mentioned statistics are plotted as follows: 

•  The standard deviation is plotted as the radial distance to the graphic origin. 

•  The correlation between both fields is given by the azimutal position. 

•  The RMS' is the linear distance between the observations and the model points. 

The standard deviation and the RMS' can be normalised by the standard deviation of the observations 

 so that the observations lay in the abscissa axis, with a normalised 

standard deviation of 1. The other variables are plotted relative to the observations. A point represented this way 

into the graphic has the same standard deviation as the observations if it is situated at a distance of one from the 

origin. The standard deviation is higher if this distance is higher, and the opposite if the distance is smaller than 

one. A large angle separating the model from the observations indicates a bad correlation. 

4. Model skill at the basin and sub-basin scales 

The first test we will perform consists in studying the impact of the assimilation of DLR SST data at each 

assimilation cycle, to identify weaknesses or problems that may appear because of the assimilation itself. We 

compare the DLR SST data (with a resolution of ~ 1 km) to the Ligurian Sea model (with a resolution of 1.5 × 

1.9 km) and in the Mediterranean Sea model (with a resolution of 22 × 28 km). For the comparison with the 

Mediterranean Sea model, the DLR SST resolution is degraded to 10 km. This study will give us an idea about 

how the model behaves at the basin and sub-basin scales, and how this error evolves in time. 

Figs. 2 and 3 show the evolution of the SST bias of Mediterranean Sea and Ligurian Sea models respectively. 

The first thing that may be noticed is that the (lower resolution) Mediterranean Sea model has a smaller bias than 

the (higher resolution) Ligurian Sea model. The bias in the Mediterranean Sea model (Fig. 2) is always smaller 

than 0.5 °C. However, the improvement of the Forecast over the Free run is small. The assimilation of SST 

seems to have little impact on the Mediterranean Sea model bias. In the Ligurian Sea model (Fig. 3) the 

variations of bias over time are more evident. The Forecast has a smaller bias than the Free run over the first 

seven weeks of the experiment, with improvements as high as 0.5 °C. However, during the two last weeks of the 

experiment, the Free run has a much smaller bias than the Forecast. We can better understand what happens at 

the end of the experiment by looking at the temporal evolution of the mean SST over the Ligurian Sea for each 

model run and the observations (Fig. 4). In this figure we see that the Free run is systematically colder than the 

observations. The assimilation of the SST brings the model nearer to the actual temperature, so the Forecast is 

nearer to the observations than the Free run. On 24 August the Free run has a smaller bias than the Forecast, 

due to the combined action of two errors that, by coincidence, cancel each other: a too cool SST on 17 August 

and an incorrect warming trend contradicting the observations. The Forecast, on the other hand, has a correct 

mean SST on 17 August after the assimilation (the Analysis), but the erroneous warming trend results in a too 

high mean SST on 24 August. An increased assimilation rate (for example, each five days instead of each week), 

would probably improve the Forecast results, avoiding a large divergence between the model and the 

observations. The Free run presents a decreasing trend similar to the Forecast from 24 to 31 August, which 

indicates that the cooling episode at the end of the experiment is also present in the atmospheric forcings. 

However, there is a week of delay between the beginning of the decreasing trend in the observations and the 

model results. This delay can be caused by a late response of the model to the atmospheric forcings or by an 

actual delay between the observed SST and the atmospheric forcings. 
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Fig. 2: Bias time evolution for the SST of the Forecast, Free run and Analysis in the Mediterranean Sea model. 

 

Figs. 5 and 6 show the RMS error of the Mediterranean Sea and the Ligurian Sea models respectively. The 

Mediterranean Sea model Forecast has a smaller error than the Free run during the whole experiment, with 

improvements as high as 0.5 °C. The assimilation has a larger effect on RMS error than on the bias. The RMS 

error on the Mediterranean Sea model is overall better than the RMS error on the Ligurian Sea model. This is 

due to an effect called double penalty (Hoffman et al., 1995; Ebert and McBride, 2000). Low-resolution models 

represent the reality in a smooth way, without much of the observed small-scale variability. High-resolution 

models represent this small-scale variability more realistically, in the form of eddies, meanders, etc. Even if the 

later model looks more realistic, it can account for a bigger error than the low-resolution model, because of the 

incorrect positioning of the small-scale features. The high-resolution model has more degrees of freedom than 

the low-resolution model. These additional degrees of freedom correspond to small spatial scales and have thus a 

limited predictability. 

Fig. 3: Bias time evolution of Forecast, Analysis and Free run SST in the Ligurian Sea model. 

 

The Ligurian Sea model RMS error (Fig. 6) reflects again the cooling episode error on 24 August, but overall the 

Forecast performs better than the Free run. A significant fraction of the RMS error in the Ligurian Sea model is 

due to the bias. It is therefore interesting to decompose the RMS error into the contribution of the bias and the 

RMS error based on observations and model SST without their mean. The later RMS is called centred RMS, and 

one can show that RMS, bias and centred RMS are related by Eq. (24). The centred RMS error (Fig. 7) shows 

that the bias (as shown in Fig. 3) is the major source of error on 17 and 24 August. At the beginning of the 

experiment the RMS error is mainly due to the SST distribution (high centred RMS), while at the end of the 

experiment the SST bias is more important than the error in the temperature distribution of the Ligurian Sea. The 

origin of the error in the Ligurian Sea (distribution of the SST or mean value) is therefore variable in time. A 
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bias at the scale of the Ligurian Sea is more likely to be associated to errors in the heat fluxes, and an erroneous 

SST distribution may result from misrepresented hydrodynamic features such as frontal positions, phase of 

meanders and position of eddies. 

Fig. 4: Time evolution of the mean SST in the Ligurian Sea model. The mean SST of the Analysis is almost 

identical to the observed mean SST. 

 

Fig. 5: RMS error time evolution for the SST of the Forecast, Free run and Analysis in the Mediterranean Sea 

model. 

 

Fig. 6: RMS error time evolution of Forecast, Analysis and Free run SST in the Ligurian Sea model. 
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5. Spatio-temporal analysis using Wavelet Transforms 

The error analysis of the Ligurian Sea model is pursued with a wavelet transform. This decomposition 

emphasises the distribution of the error at different spatial scales, related to distinct physical processes. We have 

decomposed the Ligurian Sea model and DLR SST observations into eight resolution levels with a two-

dimensional discrete Haar wavelet. The model has been interpolated to the resolution of the observations              

(~ 1 km). As the initial model resolution is 1.5 × 1.9 km, we must bear in mind that the model is not able to 

resolve features smaller than its resolution when interpreting the results of the wavelet decomposition. The 

resolution levels reached by the wavelet decomposition are 1, 2, 4, 8, 16, 32, 64 and 128 km. The decomposition 

allows us to analyse the error at each of these spatial scales. The figures presented in this section that do not have 

information about the time distribution are time averages. 

Fig. 7: Centred RMS error time evolution for the SST of the Forecast, Free run and Analysis in the Ligurian Sea 

model. 

 

Fig. 8: Time average RMS error at each spatial scale including the bias term. 

 

 

The RMS error for each wavelet scale is depicted in Fig. 8. The highest error reduction from the Free run to the 

Forecast occurs from 16 to 128 km. The Analysis error shows a maximum at 16 km. The fast decay of the 

Analysis RMS error from this maximum to larger scales suggest that the assimilation is mainly impacting large 

scales, which we can explain as follows: the structure of the correction from the assimilation is determined by 

the observations and the model error covariance. The error covariance acts as a filter and controls which scales 

of the model are corrected by the assimilation. The error covariance matrix is obtained by an ensemble 

simulation and is therefore neither invariant in time nor isotropic. The model error covariance is limited to a 

maximum correlation length of 47 km, as explained in Barth et al. (2007-this issue). This maximum correlation 

length corresponds to scales 6 to 7 (32 to 64 km) in the wavelet decomposition. Corrections are not strictly 

limited to 47 km, but their amplitude decreases significantly for scales smaller than scale 6. Coherent features 
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with length scales higher than 47 km are also corrected. This explains the peak observed in the Analysis RMS 

error (Fig. 8) : the correction acts mainly at scales larger than 32 km, so scales 16 and smaller are less affected by 

the assimilation. 

Fig. 9: Percentage each scale, including the bias term, contributes to the time and space average total RMS 

error. 

 

 

Table 1: RMS
2
 at each scale, including the bias term, for Forecast, Free run and Analysis wavelet coefficients, 

and the total RMS
2
 of the corresponding model run 

Scale (km) 1 2 4 8 16 32 64 128 Bias RMS
2
 model 

Free 0.01 0.02 0.04 0.08 0.16 0.26 0.29 0.23 0.17 1.26 

Forecast 0.01 0.02 0.03 0.06 0.13 0.17 0.21 0.20 0.15 1.01 

Analysis 0.01 0.01 0.02 0.03 0.04 0.02 0.01 0.002 0.001 0.14 

Units are °C2. 

 

Fig. 10: Standard deviation of the correction, model trend and trend of the error for each scale. Scale 256 

stands for the basin-wide contribution calculated from the approximation at the highest scale of the 

decomposition. 

 

The percentage of RMS
2
 (in Fig. 9 and Table 1) shows how the total RMS

2
 is divided among scales, or how each 

scale contributes to the total RMS error, according to Eq. (23). The distribution of RMS is very similar in the 

Free run and in the Forecast, with scales 32 and 64 km of the Forecast contributing in a lesser amount to the 

total error than in the Free run, due to the correction of the assimilation. Scales smaller than 32 km contribute 
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little to the total error. Most of the SST model error is located at large scales, and is efficiently corrected by the 

assimilation. This finding basically confirms the choice of the maximum correlation length, but a small 

improvement can be expected by choosing a lower value of the maximum correlation length, since scale 16 km 

still accounts for 13% of the total error of the Forecast. This correlation length should not be smaller than 16 km, 

as scales 1 to 8 km have each a small impact on the total error of the model. 

Fig. 11: Evolution in time of the standard deviation of the Forecast trend of the model error. 

 

 

Fig. 12: SST for (a) observations, (b) Analysis, (c) Free run and (d) Forecast on 13 July 2000. 

 

The time evolution of the Analysis run is the cumulated effect of the "free" model evolution and the correction 

applied by the assimilation. Since both effects have very different nature, it makes sense to study them 

separately. The correction (CRt = At - Ft, with At and Ft the Analysis and the Forecast at time step t) and the 

model trend (Tt = Ft - At-1, with At-1 the Analysis at time step t-1) are calculated at each scale for the two-

dimensional SST fields: 

 

with CRm,t the correction, Tm,t the model trend, Am,t the Analysis and Fm,t the Forecast at time t and scale m. We 
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will compare these measures to the trend of the model error TEt, also decomposed at each scale: 

 

with TEm,t the trend of the model error, and Om,t the observations at time t and scale m. TE measures how the 

error of the model changes with time for each of the resolution scales. The standard deviation of these three 

measures is shown in Fig. 10. 

The assimilation mainly corrects scales larger than 32 km, as seen by the rapid increment of the standard 

deviation of the correction. This explains the error reduction from the Free run to the Forecast RMS error at 

those scales seen in Fig. 8. The correction can be viewed as the part of the trend of the model that is considered 

error by the assimilation scheme. The trend of the model, on the other hand, is also higher at large scales, 

because the large scales in the SST have higher variability than the small scales. There is a peak in the trend of 

the model at 16-32 km, corresponding to the meso-scale, which presents a high activity in the Ligurian Sea 

related to the formation of small eddies and meanders along the NC. The high values at 128 km and the mean 

term account for the basin-wide trend of summer heating. The trend of the Free run (not showed) has a similar 

distribution, so the maximums at 16 to 32 km and the basin-wide scale are not introduced by the assimilation. 

Except for the scale 64 km, the standard deviation of the model trend is higher than the standard deviation of the 

trend of the model error and of the correction. This is an indication of skill of the model at all scales except 64 

km. 

It is also interesting to see the evolution in time of the standard deviation of the trend of the model error at each 

scale (Fig. 11). Scales 1 to 16 km present a steady pattern with higher values of the trend of the model error with 

the increasing scale. Larger scales (32 to 128 km) have a variable contribution to the total error. We can identify 

the scales that cause the different errors found in Section 4. For example, scales 32 and 64 km dominate the trend 

of the model error on 13 July, when the main error found in the model was due to RMS error (Fig. 6). On the 

other hand, on 24 August scale 128 km is the most important source of error in the model, followed by the 64 km 

scale. On this day, the bias was the most important source of error on the model (Fig. 3). 

We have shown that the impact of the assimilation is stronger at scales larger than the correlation length. 

Correction at scales of 64 km and larger accounts for basin-wide changes, as the general temperature distribution 

in the Ligurian Sea. We will look now at how the correction affects the small scales. We take as an example the 

SST on 13 July, which is a day with a particular high RMS error in both the Forecast and Free run. In Fig. 12 

the SST distribution for the observations, Free run, Forecast and Analysis is shown. The observations (panel a) 

show a high variability, that the model (Free run in panel c and Forecast in panel d) fails to represent. The 

general circulation of the Ligurian Sea is clearly seen in the observations, with the warm NC describing a 

cyclonic gyre along the Italian and French coasts, and with colder temperatures in the centre of the basin. The 

Free run, in panel c, fails to represent the described main circulation, which is the cause of the high error 

obtained this day. The Free run SST distribution is very different from the observations, and the variability is 

smaller. The Forecast, in panel d, has a better SST distribution, and the path of the NC can be detected. The 

Analysis, in panel b, is the result of the assimilation of the observations shown in panel a into the Forecast 

shown in panel d. The Ligurian Sea SST in the Analysis is close to the observations since the observed SST has 

been assimilated. The spatial distribution of the correction for this day at scale 4 km is shown in Fig. 13. The 4 

km scale has been chosen as representative for the small-scale, as smaller scales may not have been well 

resolved by the model. The assimilation is mainly correcting the SST along the French coast and the NC, which 

is clearly mispositioned in the model (too far offshore). The misposition of the NC induces also an error on small 

scales. The position of this small-scale error is clearly linked to the large-scale current. From a physical point of 

view, the interpretation is straight forward, since the small-scale features are generated at the large-scale fronts. 

Such an analysis could not be possible with Fourier decomposition, since the location in space is not retained in 

the Fourier space. 
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Fig. 13: Spatial distribution of the standard deviation of the correction of the Forecast by the assimilation on 13 

July 2000 at scale 4 km. The magnitude of the wavelet coefficients ( , where D1, D2 and D3 correspond to 

the horizontal, vertical and diagonal direction of details) is used in this figure to calculate the standard 

deviation of the correction. 

 

 

Fig. 14: Spatial distribution of the standard deviation of the correction induced by the assimilation at scale 4 km 

for the 9 weeks of the experiment. The standard deviation of the correction is calculated as specified in Fig. 13. 
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Fig. 15: Taylor diagram for Free run (in grey), Forecast (in black) and Analysis (in white). 

 

 

Fig. 16: Standard deviation distribution for the Forecast, Free run, Analysis and observed SST. 

 

 

Fig. 17: Standard deviation distribution of the surface velocity and the correction of surface velocity induced by 

the assimilation. 
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The correction on the other days of the model run is shown in Fig. 14. We can see that the correction around the 

NC is done during the two first weeks of the experiment. Other zones that are corrected by the assimilation are 

the southwest corner of the model domain and the northern coast of Corsica. The correction in the centre of the 

Ligurian Sea is very small, because the variability of this zone is smaller than along the path of the coastal 

cyclonic currents (Northern Current, Eastern Corsican Current and West Corsican Current). 

Fig. 15 contains the Taylor diagram for Free run, Forecast and Analysis for the eight scales of the wavelet 

decomposition. This diagram displays the standard deviation, correlation and centred RMS of the model runs and 

compares it to observations (see description of the Taylor diagram in Section 3.3.2). The main advantage of this 

diagram is that it summarises several error measures into one graphic, and we can have a general vision of the 

model skill. Scales 16 to 128 km are very near to the observed standard deviation, but their correlation and 

centred RMS is worst than for smaller scales. In addition, in large scales the impact of assimilation is higher: the 

Forecast is systematically nearer to the observations than the Free run. At small scales, the assimilation is 

causing a decrease on the Forecast standard deviation (the Free run has already a small standard deviation, but 

this is accentuated by the assimilation). The better correlation and centred RMS observed at small scales 

indicates that they are able to represent more accurately the observations, although the effect on standard 

deviation must be further studied. 

 

Fig. 18: Variance of Free run, Forecast and observations for each EOF mode. 

 

 

Fig. 19: First spatial mode for the Free run. 
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The causes for the decrease in the SST standard deviation can be multiple. For example, a strong horizontal 

diffusion can eliminate the small features from the model results. A strong vertical mixing can also weaken the 

surface variability by increasing the thermal inertia of the surface water, and thus damp the horizontal signal of 

small-scale features. Again, the model is not able to represent features smaller than 2 km, and the small scales 

close to the model resolution are not well resolved by it. In addition, the small-scale information added by the 

assimilation of high-resolution data is related to the correlation length of the assimilation scheme. Scales smaller 

than this correlation length are not modified by the assimilation. A certain amount of variance at small scales in 

the observations is also due to noise, not present in the model. 

The variance distribution at different spatial scales of the wavelet decomposition depends strongly on the nature 

of the physical variable. The study of the standard deviation of two different variables, SST and currents, points 

out some of these differences. The SST standard deviation distribution among scales for each model run, 

Analysis and observations is shown in Fig. 16. The Analysis intersects the Forecast at about 32 km, so the 

assimilation is causing a decrease of variance at scales smaller than about the maximum correlation length.              

The Free run has a higher variance than the Forecast at all scales, so the decrease in variance at small scales is 

transmitted to large scales in the Forecast. Both Free run and Forecast present a high difference with 

observations at scales 1 to 3 (1 to 4 km), for the reason stated above. 

Fig. 20: First spatial mode for the Forecast. 

 

 

Fig. 21: First spatial mode for the observations. 
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We have compared the SST standard deviation of Fig. 16 to the surface velocity standard deviation, shown in 

Fig. 17. The surface velocity is directly related to the kinetic energy. The correction applied to the currents after 

the assimilation of SST (Eq. (27)) is also represented in this figure. The distribution of the velocity standard 

deviation (higher values for small scales) is very different to the SST distribution. The SST is mainly influenced 

by the atmospheric forcings, which have a typical variability scale larger than the variability scales found in the 

ocean. The standard deviation distribution of the surface velocity reflects the variability scales typical of the 

ocean, so small scales of the velocity have higher variability than the SST small scales. The energy distribution 

for the currents correction is however similar to the distribution of the correction of the temperature, because the 

structure of the velocity covariance is directly related to the structure of the temperature covariance. 

6. Spatio-temporal analysis using EOFs 

Wavelet transforms are very useful to analyse a model at different resolution levels. However, to analyse the 

whole Mediterranean Sea model we prefer to use EOFs. The irregular land-sea boundaries of the Mediterranean 

Sea model will affect the wavelet coefficients, making very difficult the analysis. EOFs are not affected by 

irregular boundaries, because only the sea points are retained for their calculation. Recall that for the 

computation of EOFs no missing data can be present in the analysed matrix. In this section, the reconstructed 

Pathfinder SST data introduced in Section 3.2 are used in the comparison with model results. 

Fig. 22: First temporal mode for Free run, Forecast and observations. 

 

 

Table 2: Correlation between the model and the observations for each EOF mode 

 Spatial mode Temporal mode 

Mode Forecast Free run Forecast Free run 

1st 0.89 0.78 0.96 0.96 

2nd 0.48 0.56 0.69 0.77 

3rd 0.22 0.2 0.16 0.37 

 

Model and Pathfinder SST data have different resolutions, so the number of points representing the 

Mediterranean Sea is different for each of these matrices. Pathfinder SST has 139188 sea points and the 

Mediterranean Sea model grid has 4155 sea points. Both matrices have 60 time instants. For the direct 

comparison between the EOFs obtained with Pathfinder SST and the EOFs obtained with the model results, the 

ratio between the number of points must be taken into consideration. The relationship between the number of 

points and the singular values (S) of the EOFs based on the observations and model for this case is: 
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For the direct comparison between model and observations singular values, the scaling factor  must be used. 

The right EOFs U are then multiplied by the singular values S when displayed to take into consideration the 

difference in the number of points. The spatial EOFs depicted in this section represent °C, and the spatial EOFs 

are adimensional. For the computation of the EOFs, the two-month time and space average from 6 July to 1 

September is subtracted from the matrices. 

The first six EOFs have been calculated for each of the studied matrices (Free run, Forecast and observations). 

The number of EOFs chosen corresponds to the optimal number of EOFs retained by DINEOF to reconstruct the 

Pathfinder SST data set (see Section 3.2). The variance explained by each mode is shown in Fig. 18, calculated 

as Vi=S
2
 data set, i/P data set, with Pdata set the total number of points (in space and time) of the data set, Forecast, Free 

run or observations. The three most important modes account for a big part of the total variance explained by the 

six first EOFs. Thus, only these three modes will be kept for the study. 

 

Fig. 23: Second spatial mode for the Free run. 

 

Fig. 24: Second spatial mode for the Forecast. 
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6.1. First EOF mode 

The first spatial mode (Figs. 19-21 for Free run, Forecast and observations respectively) represents the summer 

SST distribution in the Mediterranean Sea. The spatial distribution of the SST is very similar for the three data 

sets, or in other words, the model (both the Free run and the Forecast) is able to accurately represent the SST 

distribution of the first EOF in the Mediterranean Sea. In the already warm waters of the summer Mediterranean 

Sea, two zones are contributing to the surface warming: the north-western Mediterranean (Gulf of Lions and 

Ligurian Sea) and the Northern Adriatic Sea. The Gulf of Lions and the Northern Adriatic are influenced by river 

runoff of the Rhone River and the Po River respectively. Po River water is warmer than the surrounding open 

seawater in summer (e. g. Gacić et al., 1997) so it influences the warming of the Northern Adriatic. The Rhone 

River runoff has been also found to be warmer than the surrounding waters of the Gulf of Lions, at least in year 

2000 (e. g. Younes et al., 2003). On the other hand, the water entering the Mediterranean Sea by the Gibraltar 

Strait and the Bosphore Strait are the only two sources of cold water. It must be mentioned that the Black Sea is 

not explicitly included in the model. The signal observed at the Bosphore Strait is the result of the relaxation of 

the model to the climatology. 

The first temporal mode (Fig. 22) represents the summer heating trend from July to August. The correlation 

between the observations and the Forecast is better than for the Free run (see Table 2). The amplitude minimum 

found in July is slightly shifted in the model respect to the observations. The RMS error between the model and 

the observations first temporal mode is 0.04 for both Free run and Forecast. If the first temporal mode of the 

model is forwarded 2 days in time, the RMS error is minimised to 0.035, indicating a slight shift between model 

and observations. However, the maximum at the end of the experiment is reached at the same time by the model 

and the observations. The temporal shift is only present the first half of the experiment, which explains that only 

a small improvement has been reached by shifting the model. 

 

Fig. 25: Second spatial mode for the observations. 

 

 

6.2. Second EOF mode 

The second EOF spatial mode in all three fields (Figs. 23-25) presents a zonal crest-trough-crest structure. 

However, the crest of the Forecast in the Western Mediterranean is displaced to the North compared to the 

observations. The distribution of the Free run is closer to the observations than the Forecast, as indicated by the 

correlation in Table 2. On the other hand, the amplitude is better reproduced by the Forecast than by the Free 

run. The three data sets show a similar time evolution of the second EOF mode (Fig. 26). 

While the first mode represents the seasonal heating forced by the atmosphere, the second EOF mode accounts 

for the intrinsic ocean variability, mostly at the meso-scale and sub-basin scale. The second EOF mode of the 

observations shows the variability of the Rhone River Plume, an upwelling west of Corsica and Sardinia, cold 

waters off the Sicilian south coast, the Ierapetra Gyre (southeast of Crete, Ayoub et al. (1998) and Rhodes Gyre 
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(west of Cyprus, Milliff and Robinson (1992). In the second EOF mode of the observations and Free run, these 

features are correlated in the same way, except the Ierapetra Gyre in the Free run, which presents the opposite 

correlation pattern than the observations. This means that the SST of the Ierapetra Gyre decreases with time in 

the observations, and increases in the Free run. In the Forecast, the Ierapetra Gyre is in phase with the 

observations, as well as the cold waters off the Sicilian south coast and the Rhodes Gyre. The Rhone River 

Plume is not present in the Forecast. The double anticyclonic gyre system in the Alboran Sea is clearly visible in 

the second EOF of the Forecast, but is not captured by the second EOF of the observations and Free run. 

The assimilation has a positive effect on the first EOF mode. However, the second EOF mode, representing the 

dynamical features not directly forced by the heat fluxes, is deteriorated by the assimilation. This indicates that 

the assimilation adversely affects the equilibrium of these dynamical structures during the analysis. 

 

Fig. 26: Second temporal mode for Free run, Forecast and observations. 

 

 

6.3. Third EOF mode 

The third EOF of Free run and observations (Figs. 27 and 28 respectively) are in good agreement, especially in 

the Provençal Basin and the Levantine Basin. The Rhodes Gyre is again visible in the third EOF of both data 

sets. The Algerian current is also present in both, but it is stronger and better defined in the observations than in 

the Free run. However, the third EOF of these two data sets has the opposite sign on the Tunisian Shelf. The 

third EOF of the Forecast (Fig. 29) is quite different from the observations and Free run. In particular, the 

Forecast shows an East-West modulation of the Algerian Current, instead of the North-South modulation visible 

in the Free run and observations. The structures in the Levantine Basin and Ionian Sea are also different from the 

observations. Since the third and fourth EOFs of the Forecast have a similar variance (see Fig. 18), only a small 

change can alter the order of these EOFs. Indeed, we found that the fourth EOF of the Forecast (not shown) is 

very similar to the third EOF of the observations and Free run. 

7. Conclusions 

In this work we have analysed the results of a two-way nested model in the Mediterranean Sea. The overall 

behaviour of the model is good, and the assimilation of SST and SLA improves its quality in terms of RMS error 

and bias when compared to a Free run. However, some aspects of the model can be ameliorated. For example, 

when the atmospheric heating/cooling trend is in disagreement with the observed SST (as seen at the end of this 

experiment), an assimilation frequency shorter than one week is necessary to prevent the model to diverge from 

the observed SST. We have seen that the low-resolution model has a smaller RMS error than the high- resolution 

model, due to the double penalty effect. This effect is related to the increased small-scale variability in the high-

resolution model, which is less predictable. This effect has to be considered when interpreting model results at 

different resolutions. 
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Fig. 27: Third spatial mode for the Free run. 

 

 

Fig. 28: Third spatial mode for the observations. 

 

 

Fig. 29: Third spatial mode for the Forecast. 
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A detailed study of the model spatial behaviour, using two-dimensional wavelets, has allowed to point out some 

weaknesses or aspects that could be improved in the model. First, the wavelet analysis has revealed different 

behaviours for the small and large-scales in the model. 

Large scales are significantly improved by the assimilation, as noticed by the decrease in RMS error and 

correlation from the Free run to the Forecast. Also, the standard deviation of the model large scales is very close 

to the observations, even in the Free run. The RMS distribution among scales shows that most of the error in the 

model is due to the large scales, so the reduction of the total error by the assimilation is due to the improvement 

of the model accuracy at large scales. 

We have detected a problem in the position of the Northern Current (NC) in the Ligurian Sea model. Although 

only the SST has been studied, we have been able to detect the characteristics of the NC, as it has a very clear 

signal in the SST. The NC is a feature at large-scale, and its mis-positioning contributes significantly to the total 

error. However, the wavelet analysis has revealed the link between the position of this current and an error in the 

small scales. Small-scale errors are high near the NC, especially where the path of the current is mis-represented. 

The error at the small scales is therefore partially induced by large scales error. Such a finding would not be 

possible with a classical Fourier analysis, where the spatial information is lost. 

The contribution of the small scales to the total error is masked by the large-scale error. By isolating the small-

scale with the wavelet analysis, we have revealed model weaknesses at these scales. The small-scale variability 

of the model is systematically lesser than the variability of the observed SST. The assimilation further reduces 

this variability, and in addition it does not improve significantly the correlation or the RMS error of the small 

scales. 

Large-scale SST errors in the model can be attributed to poorly known atmospheric heat fluxes, and the position 

of the NC. However, the detection of the cause of the error in the small scales is more complex to determine.  

The initial condition does not contain already variability at the small scales. The inability of the model to later 

generate this variability at small scales can be due to various reasons. For example, a too high horizontal 

diffusion (explicit and implicit due to the finite resolution) can be responsible for the reduction of the variability 

at small scales. 

The scale distribution of variance depends on the nature of the variable. The SST variance distribution is very 

different from the velocity variance distribution. The SST variance is dominated by large-scale features, while 

the surface velocity variance is highest at small scales. We attribute this different behaviour to the fact that the 

SST distribution in summer is largely influenced by atmospheric forcing, and the typical atmospheric variability 

scales are much larger than the variability scales in the ocean. The velocity scale distribution reflects the typical 

size of ocean flow features in the Ligurian Sea. 

The multiresolution analysis has also shown that the choice of the maximum correlation length during the 

assimilation influences directly the error distribution of the model. The maximum correlation length of the 

assimilation scheme is 47 km, and this value is not in disagreement with the finding that the model has the 

highest error at scales 32 km and larger. However, a fine-tuning of this parameter could improve the model 

results, since scale 16 km in the model presents only a slight decrease of error with the assimilation. This scale 

could benefit from a smaller value of the maximum correlation length. This new value should not be smaller than 

16 km, as scales smaller than that contribute little to the total error. 

The EOF analysis of the Mediterranean Sea has revealed that the assimilation mainly improves the seasonal 

heating represented by the first EOF mode. The second EOF mode is degraded by the assimilation. This mode 

includes the dynamical features not directly forced by the heat fluxes, such as gyres, the Rhone River plume, and 

coastal upwellings. This indicates that the assimilation does not account for the dynamical balance of these 

features, and therefore the signal of these structures is weakened by the assimilation. 

The EOF modes of the model runs and the observations present overall the same structures for the first and 

second modes. However, when comparing EOFs, we must take into account that the ranking of the EOFs mode 

is not necessarily the same for different data sets. If eigenvalues are close (which often happens at higher order 

modes), a small perturbation can change the order of these EOFs. This happened in the Forecast fourth EOF, 

which is very similar to the third EOF of Free run and observations. 

It is worthwhile to notice that the wavelet analysis and the EOF decomposition lead to similar conclusions, 

viewed from a different perspective. The fact that the first EOF is improved by the assimilation is consistent with 
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the error decrease of large scales in the Ligurian Sea model after the assimilation noticed with the wavelet 

analysis. However, the assimilation degrades the second EOF mode, which is directly linked with the lack of 

improvement of the small-scale features in the Ligurian Sea model. 
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