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ABSTRACT

A general model is proposed to simulate the acoustics of coupled rooms. It is based on

a diffusion equation, solved numerically to perform acoustic predictions. The presence of

scattering objects –or the “fittings”– is also taken into account. Distinct sub-volumes can be

defined, representing either coupled volumes or zones with different fitting characteristics.

Some sample results are presented, and compared with ray-tracing results and experimental

data. Two situations are assessed: two coupled classrooms,and a room divided into two

zones, one empty, one fitted [1]. The diffusion-model predictions match the other data

satisfactorily, both in terms of sound attenuation and sound decay. Diffusion-based results

are obtained with the advantage of low computational time compared to ray-tracing results.

INTRODUCTION

Coupled volumes systems, composed of two or more spaces thatare connected through acoustically trans-

parent openings (i.e. coupling apertures), have attractedconsiderable attention in architectural acoustics.

This configuration can be found in various buildings such as concert halls, industrial halls or office spaces.
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Several models have been proposed, such as statistical theory [2], modal theory [3], or ray-tracing tech-

nique [4]. In a recent paper [5], a generalization and a numerical implementation of the so-called room-

acoustic diffusion model has been proposed to predict the reverberant field in single rooms. The main

interest of this method is its ability to give satisfactory estimations of the spatial distribution of sound

pressure level and reverberation time, with low computation times.

In this study, this model is extended to the coupled-room configuration. In addition, a solution for de-

scribing a density of obstacles scattering sound (e.g. furniture, machines etc. –the “fittings”–) within this

model is also proposed. Numerical results are provided for two cases: two coupled classrooms and a

room divided into two zones, one fitted, one empty. Results are then compared with experimental data,

together with ray-tracing based data.

GENERAL THEORY OF COUPLED SPACES WITH
AN ACOUSTIC-DIFFUSION MODEL

Single room theory. The acoustic-diffusion model has been derived by using the sound-particle concept,

and details about this analogy can be found in references [5,6]. Let us consider first a single volume

in which perfectly diffuse sound reflection –i.e., described by the Lambert’s law [2]– on the surfaces is

assumed. This room may be filled with objects scattering sound and randomly located in the room –the

“fittings”. The input parameters for the room-acoustic diffusion model are the following:

• V andS, the room volume and the area of its surfaces, respectively,and consequently its mean free

path when empty,λr = 4V/S;

• the complete geometry of the room surfaces;

• the local absorption coefficient of the surfacesαr. Arbitrary spatial variations of this coefficient are

possible;

• the sound absorption coefficientαf of the fitting objects, and their scattering area per unit volume

fd –or the fitting density, in 1/m [1, 7];

• an arbitrary numberM of omnidirectional sound sources assumed to be punctual, with output

acoustic powerPi(t) and locationri (i = 1...M ).

The time- and space-dependent reverberant acoustic energydensityw(r, t) can then be shown to be

described by a diffusion equation [6, 5]:

∂w(r, t)
∂t

− D∇
2w(r, t) + σw(r, t) =

M∑

i=1

Pi(t)δ(r − ri) in V, (1)

D
∂w(r, t)

∂n
+

cα

4
w(r, t) = 0 on S. (2)



In these equations,∇2 is the Laplace operator,V denotes the domain delimited by the room surfaces,S

denotes the room boundaries, andα is the local surface absorption coefficient. The termD is the so-called

diffusion coefficient, with expression

D =
λc

3
, (3)

λ being the mean free path of the sound particles between two collisions, either on a surface or on a fitting

object [8]:

λ =
(λr/fd)

λr + 1/fd

. (4)

The termσ in Eq. (1), with expression:

σ = cαffd, (5)

represents the absorption of sound energy by the fittings. The right-hand term of the diffusion equation,

denoted below asF (t), is a source term which models the acoustic sources in terms of power output and

location [5]. The boundary condition defined by Eq. (2) models the sound energy absorption by the room

surfaces using the Sabine’s absorption coefficient. The numerical solving of Eqs. (1) and (2) –by using a

finite-element-model (FEM) solver– permits the reverberant sound field in a single volume to be predicted

[5, 8]. The direct sound field radiated by the source can also be easily integrated into the solution.

Coupled-rooms theory. This theory can be extended to an arbitrary numberN of acoustically coupled

sub-volumesVi. Each sub-volume is described by its volumeVi, the area of its surfacesSi, the charac-

teristics of its fittings,fdi andαdi, and a source termFi(t) depending on the point-sources located within

its volume, as written in Eq. (1). Each sub-volume is then characterized by its own mean free pathλi,

depending on its shape, dimensions, and fitting characteristics. Diffuse reflections on surfaces are still

assumed. The time and space-dependent acoustic energy density w(r, t) is described in each sub-domain

Vi by a well-defined diffusion equation:

∂w(r, t)
∂t

− Di∇
2w(r, t) + σiw(r, t) = Fi(t) in Vi, (6)

with ∪iVi = V, V being the total calculation domain over which the sound energy density is to be

calculated.Di = λic/3 andσi = cαfifdi are the diffusion coefficient and fitting-absorption term for a

given sub-volume, as presented above for a single volume. The absorption of sound by surfaces is still

described by the boundary condition of Eq. (2). Two kind of different practical situations can lead, in the

context of the room-acoustic diffusion theory, to the occurrence of different sub-volumesVi:

• acoustically coupled rooms: two sub-volumes are connectedthrough a small aperture (see Fig. 1a

in the case of two empty coupled rooms). In this case the mean free pathsλi of the empty sub-

volumes –leading to the determination of the diffusion coefficient Di– is evaluated as if the two

coupled sub-volumes were uncoupled –the aperture is closed. This implies that this aperture does

not affect much the mean free path of the sub-volumes [9, 10];



• different sub-volumes can model different parts of a room with different fitting characteristics, in

terms of absorption and density (see Fig. 1b for the case of a room split into two parts with different

fitting densities).

Both cases, in fact, can be seen as particular cases of non-homogeneous diffusion, leading to sub-volumes

with different diffusion parametersD andσ.

Figure 1: a) sketch of two coupled rooms; b) sketch of a room with two zones with different fittings

characteristics.

SOME CALCULATION RESULTS AND THEIR COMPARISON
WITH RAY-TRACING AND EXPERIMENTAL DATA

Case studies. In this part, some predictions by using the room-acoustic diffusion model are presented and

compared to experimental data and ray-tracing-based results. Two cases are considered. The first is the

case of two acoustically coupled classrooms [9, 10]. A simplified sketch of this configuration is presented

in Fig. 1a; their dimensions are nearly identical(9.4×6.7×3) m3. They are both empty (fd = 0), so that

the diffusion coefficientsD1 andD2 are in this case identical. They are coupled through a(0.8× 2.1) m2

door aperture. An omnidirectional sound source is located at the center of the left room, at height1.5 m.

The absorption coefficient of these rooms has been preliminarily estimated by reverberation time (RT)

measurements when uncoupled – i.e. the door was shut. The rooms volume has been meshed by using

5400 elements with the FEM solver for obtaining diffusion results. For comparison, the spatial varia-

tions of sound field has been carefully measured in terms of sound pressure level (SPL) and RT, with

about 160 measurement locations in each coupled room (with afiner discretization around the coupling

aperture). For further comparison, numerical simulationswere also carried out with the ray-tracing based

software CATT-Acoustic.20 × 106 sound rays were emitted to calculate the spatial variationsof SPL,

and200 × 103 sound rays per receptor were used for the RT predictions.

The second case investigated is a room with dimensions(30 × 8 × 3.85) m3, split into two equal parts

with different fitting densities, initially studied by Ondet et al. [1] (simplified sketch in Fig. 1b). An om-

nidirectional sound source, with output power 100 dB, is located close to the left bottom corner, at height



0.85 m. The absorption coefficients are well-defined (see reference [1] for further details), and the fittings

were polystyrene blocks (αf = 0.3) of dimensions(0.5× 0.5× 3) m3. In configuration A, the left part is

fitted with an estimated fitting density of about 0.26 m−1, and the right one is empty. Configuration B is

the reverse (left part empty and right part fitted). Some SPL measurements has been performed along the

line indicated by the arrow on figure 1b for both configurations. For further comparison, numerical results

are given by using the ray-tracing based Rayscat software [1]. The number of rays emitted is20 × 105.

It is emphasized here that in the experimental case studied,the reflection law of the room surfaces has

been found to be purely specular [1]. As the diffusion model assumes purely diffuse reflections, the use

of the diffusion model necessitates a preliminary empirical estimation of the mean free path of the room,

when empty [8]; the extension of the acoustic-diffusion theory to rooms with arbitrary reflection laws is

currently being investigated.

Stationary sound attenuation. For the two coupled classrooms, Figs. 2a and 2b plot respectively the

SPL along two lines passing through the coupling aperture and through the wall, as indicated on Fig. 1a,

for frequency 1 kHz (the separation wall is at position6.5 m). The diffusion method and the ray-tracing

method both give satisfactory results concerning the transition of SPL through the door (maximum dis-

crepancy 2 dB with the measurement data); results are betterwith ray-tracing concerning the line passing

through the wall. On the other hand, ray-tracing calculation requires a much higher computational time

–at least ten times greater– since obtaining consistent results in the neighbouring room requires a high

number of emitted rays.

Figure 2:SPL at frequency1 kHz along the two arrows passing a) through the coupling aperture and (b)

through the separation wall, as shown in Fig. 1a. (•) Experimental data, (△) room-acoustic diffusion

model, (�) ray-tracing.

For the half-fitted room, results are given in Figs. 3a and 3b for configurations A and B, respectively,

at frequency 2 kHz. The change of sound attenuation at the separation line between the two zones, to-

gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion and

ray-tracing models –the ray-tracing method, again, givinghigher computational time.



Figure 3: SPL along the arrow shown in Fig. 1b, at frequency2 kHz.(•), Measurements data [1]; Solid

line, room-acoustic diffusion model;(◦) ray-tracing model. (a) Configuration A; (b) Configuration B.

Sound decay. Simulated and experimental RT (RT20 are calculated in this example) as a function of fre-

quency, averaged over all receiver locations for each room,are presented for the case of the two coupled

classrooms, in Figs. 4a (source room) and 4b (neighbouring room). Data also show the experimental

values of the RT20 of the rooms when uncoupled: the RT20 is notmuch affected by the coupling in

the source room. Conversely it increases significantly in the neighbouring room, due to the coupling

with the source room, more reverberant –this is due to the presence of a concrete wall in this room. The

diffusion-model and ray-tracing results are both in good agreement with the experimental data, with mean

discrepancies of about8 % for both rooms. The room-diffusion model predicts well the influence of cou-

pling on the RT20 in this experimental case; the calculationtime is8 min and gives the RT20 variations

over the whole calculation domain; on the same computer the ray-tracing requires about45 min per re-

ceptor.

Figure 4: Reverberation time (RT20). (a) Source room, (b) neighbouring room. Coupled rooms: (•)

experimental data, (△) diffusion model, (�) ray-tracing; Uncoupled rooms: (◦) experimental data. The

vertical bars indicate the dispersion of the RT measurements at all locations.



Figure 5: Temporal sound decay for Configuration A. Solid line, room-acoustic diffusion model in the

fitted (left) part;(•) room-acoustic diffusion model in the empty (right) part;(◦) ray-tracing model in the

fitted part;(∗) ray-tracing model in the empty part.

A sample example is also given for the calculation of RT30 in the case of the half-fitted room, configu-

ration A. No experimental data are available for this case. Temporal sound decay curves, as given by the

diffusion and ray-tracing models, are presented in Fig. 5. Whereas the decay is quasi-linear in the empty

zone, a phenomenon of double decay is predicted in the fitted zone, containing the source: the shorter

reverberation, due to the presence of absorbing fittings, isfirst heard; the later part of the sound decay is

then dominated by the longer reverberation of the empty zone. Both methods predict this double decay

with similar slopes, although the transition between them is differently predicted.

Double decay is usually associated with coupled rooms acoustics, but this example shows that two parts

of a same room fitted very differently is also favorable to double decay occurrence. As mentioned earlier,

coupled rooms and rooms with variable fittings are both particular cases of non-homogeneous diffusion

in the context of room-acoustic diffusion theory.

SUMMARY

A model – the so-called room-acoustic diffusion model– is proposed to simulate the acoustics of cou-

pled rooms. It is based on a diffusion equation, solved numerically to perform acoustic predictions. The

presence of scattering objects within the rooms –or the “fittings”– is also taken into account. Distinct

sub-volumes can be defined, representing either coupled volumes or zones with different fitting charac-

teristics. Some sample results are presented, and comparedwith ray-tracing results and experimental data.

Two situations are assessed: two coupled classrooms, and a room divided into two zones, one empty, one

fitted. The diffusion-model predictions match the other data satisfactorily, both in terms of sound atten-

uation and sound decay. Diffusion-based results are obtained with the advantage of low computational

time, compared to ray-tracing results. Further work will aim at simulating the acoustics of volumes con-

taining both acoustically coupled sub-volumes and zones with different fitting characteristics. Practical

applications could be industrial workrooms, and educational or professional buildings for instance, where

offices or rooms with a high amount of fittings are connected toempty and more reverberant halls.
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