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1. Abstract

This paper explores the estimation error of size and shape parameters computed from
binary digital images of individual particles. The influence of sampling density
(magnification), translation and rotation of the discrete grid is studied using simulated
images of geometric and natural particles. These results are intended to serve as a basis
for selecting the most adequate size and shape estimators in image analysis. They also
warn users against abusive comparison of shape parameters obtained on particlesof
different size (or at different magnification).

2. Introduction

The literature on shape analysis is extremely extensive, particularly in the field of
geology and sedimentology, where regular review publications help to keep trace of some
major contributions. Despite the sophistication of multiscale analysis techniques making
use of Fourier spectrum analysis (Ehrlich and Weinberg, 1970), Fractal dimensions
(Kaye, 1995) or Mathematical Morphology (Serra, 1982) the practical results gained so
far are still limited. This disappointment is probably due to the fact that the quest for the
supreme morphometric method is desviating many researchers from the necessity to
compare, validate and select the methods satisfying basic quality criteria. These have
been already defined by Exner (1980) : Independency; Robustness; Sensitivity;
Accessibility; Additivity; Relevance.

It is the objective of this paper to compare the robustness of the most popular global
shape parameters with respect to the density, translation and rotation of the sampling grid.
The practical implications of the results are essential in that they indicate whether it is
acceptable to compare measurements performed using different algorithms (thus different
commercial image analyzers) and to which extent it is allowable to compare shape
parameters obtained at different magnifications as well as on particles of variable size
pictured at equal magnification. This last problem is central because most systems work
at fixed magnification to grab pictures of polydispersed materials (Fig. 1.).
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Fig. 1. Example of polydispersed granular materials (silca sand, dried food).



3. Test shapes and image simulation methods.
The robustness of shape parameters can be tested using analytical, experimental or
simulation techniques. Analytical techniques are extremely powerful because they can be
solved to compute the Best Unbiased Estimator, but they can only be developed for
simple geometric shapes (disk, rectangle,...). Experimental imaging consists in taking
pictures at different magnifications of objects lying on a turntable. Apart from being time
consuming, this method can only explore a limited set of magnifications determined by
the available optics and suffers from any additional variation that can affect the optical
system (optical abberation, heating up of the camera, change in light intensity, etc.).
Finally simulation is an idealized context in which the estimation error is on the lowest
side. But, it allows to explore a large number of situations and to analyze a wide range of
shapes without departing too much from reality.
In this study, both geometric shapes and real shapes have been studied (Fig. 2). The
shapes are represented as black pixels sets (level 0) on a white background (level 255). In
order to simulate the optics a Gaussian interpolation function is applied and thresholded
at level 128 to determine the border forming pixels for each position of the grid.
Subpixel translation of the grid has been explored using steps of Ax=Ay=0.05 (5% of the
interpixel distance) in the interval of coordinates [0,0] and [0.5,0.5]. Rotation of the grid
has been explored using steps of Aa=7.5° in the interval between 0° and 45°.

B
Fig. 2. A. Set of real particles (diamond, sand, rutile, glass bead) used for testing in addition to
ellipses and disks. B. Sand particle sampled at 9000, 2300, 600, 140 pixels and rotated 30° at 600.

4. Area, Perimeter and Aspect Ratio Estimators.
Basic stereology (Stoyan, 1995) demonstrates that the best unbiased area estimator is
obtained by counting the pixels of a systematic grid hitting the object (P;) and multiplying
by their area of influence (dA):

A=) P.dA (D

Another well known result is the perimeter estimator of a disk based on the number of
intercepts (I,) formed by a series of parallel lines with spacing d exploring N directions o
from O to = (Fig. 3). This gives the so-called Cauchy-Crofton formula :
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The vast majority of image analysis systems ignore this formula and use either a simple
count of the border pixels (4c inner perimeter) or a polygonal approximation linking these
border pixels with an eight-connected chain (8c inner perimeter), not to say that some



might use similar definitions applied to the background border pixels (outer perimeter)
(Fig.3). Dorst & Smeulders (1987) suggested a Best Linear Unbiased Estimator for the
length of a circular arc from its 8c polygonal approximation.
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Fig. 3. A. Based on the object (®) and background (o) pixels it is possible to consider different
perimetric representations : inner 4c¢ (dotted line), inner 8c or outer 8c (continuous line).
B. Some intercept configurations in both the 45° and 90° orientations.

The most common shape parameter is called circularity (shape factor, isoperimetric
deficit, etc.). It is a simple ratio obtained from the previous estimators :

F= 4.7:.% 3)

It is derived from Euclidean geometry and is used to express the departure from a perfect
disk. However, it is clear from many practical examples (fig.4) that it confuses both a
notion of elongation and roughness.
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Fig. 4. These particles are clearly different in terms of roundness or elongation. A circularity
measure will not be able to distinguish a from b (F=70%) or ¢ from d (F=61%).

The elongation of a particle is the ratio between its largest and its smallest diameter in a
2D projection. A common estimator of the diameter of the particle is the Feret diameter,
(F,) which is the length of its projection onto a segment making an angle of o with the
reference axis. From a series of projections a minimum and a maximum can be derived to
compute an aspect ratio (Russ, 1990): ELf. Inertia moments are a popular way of fitting
an equivalent ellipse to any given shape. The axial ratio of this ellipse is another possible
estimation for the elongation of the particle (Medalia, 1970): EL;

5. Data analysis
Area estimation
The dispersion of the area estimator with rotation is obtained for different sampling
densities ranging from about 20 pixels up to 10000 pixels per object. The estimator
appears clearly unbiased above 200 pixels, whereas underestimation occurs in practice at
lower resolution. For the glass bead the maximum error is only 4 % but it can be as worse
as 15 % for more elongated particles (Fig. 5).
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Fig. 5. Area estimation as a function of the sampling density (log scale) for two particles.

Perimeter estimation
The estimation of the perimeter of a perfect disk of radius 100 for a series of rotations and
translations is given in fig. 6.A. for pixel densities ranging from 15 up to 31000 pixels.
The unbiased nature of the Cauchy-Crofton estimator, even using N=4, is clear when
compared to the classical 8c perimeter. Fig. 6.B. presents the same results in terms of the
squared error of the perimeter estimation for different sampling densities.
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Fig. 6. A. Box-Whisker plots for perimeter estimates of a disk. B. Squared error on the perimeter
estimate of a disk as a function of the sampling density (log scale)

The Cauchy-Crofton formula still appears to be the most unbiased estimator for a 2:1
ellipse although the variance is quite higher than for 8c polygonal estimation (Fig. 7.A.).
This is confirmed for real irregular shapes such as the sand grain (Fig. 7.B.).
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Fig. 7. A. Box-Whisker plots for the squared error on the perimeter estimate of an ellipse as a
function of sampling density (log). B. Perimeter estimations for a sand grain.



Circularity estimation

As aratio of the area to the squared perimeter, the bias of the circularity estimator is quite
significant. Fig. 8 shows its evolution with sampling density for a perfect disk. A similar
behaviour is seen with the sand grain. This clearly demonstrates that using the 8c
perimeter estimator, not only is circularity never equal to unity, but it is hazardous to
compare circularity factors of small (200 pixels) versus large (5000 pixels) particles.
Using Crofton, the estimation is less biased, but its standard deviation is higher.
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Fig. 8. A. Plot of circularity estimations for a disk as a function of sampling density (log)
for all possible grid translations and rotations.
B. Circularity as a function of sampling (log) and rotation for a sand grain.

Elongation estimation

Except for elliptical shapes, inertia moments will not give the exact dimensions of an
object and hence its exact elongation (Fig. 9). The advantage of using inertia moments
lies in the robustness of the method with respect to the orientation of the major and minor
axes. Therefore, a suggested technique (Pirard, 2004) is to compute Feret dimensions
from the orientations given by inertial ellipses.

Shape : Ellipse Sand Grain
Aspect Ratio 2:1 All rotations
3.2 18
o
17
28 [©] Inertial Elongation o
Feret Elongation
k5 516 w o, o
g4 g &l o
a ] 8 8
u s 8 o = 8 E g B B
S £ o . B 5
2 ; o
g 20 % E% @% 2% o@ o= o= oo o= H s g e o .
[ % woqg . 2 2 8 8 9 L °
% o © g,
16 o o o Inertial Elongation
- 13 < O Feret Elongation
°
°
1.2 1.2
0 70 325 1500 6000 25 % 500 2500 7500
A Sampling Density (Nb Pixels) B Sampling Density (Nb Pixels)

Fig. 9. A. Box-Whisker plots for elongation estimations of a 2:1 ellipse as a function of sampling
density (log) for all grid rotations and translations.
B. Elongation as a function of sampling density (log) and rotation for a sand grain.

6. Conclusion
The precise estimation of size and shape properties of objects is essential in image
analysis. The simulated results clearly indicate that it might be hazardous to compare
measurements made at different scales or to compare shape parameters through the whole
size range.



Experimental imaging on real and synthetic shapes have confirmed the results presented
in this study. Though one must consider simulations as giving the lower bound of
estimation errors, it is clear that some estimators perform better than others for the range
of quasi-convex shapes explored in this work which are considered representative of
many granular materials.

As a conclusion, the Cauchy-Crofton estimator should be recommended for all perimeter
based measures and Feret ratios derived from the orientation of the main inertia moments
should be promoted as the most robust and accurate method for aspect ratio
computations.
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