Marble classification using scale spaces
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ABSTRACT: Marble texture classification is an erpyone undetaking when performed by humans. Te-
fore normalized methods are needed in order tarobe@roducible results. Technological advancedigital
image acquisition and computing allows for the dhuaiy) of systems based on such methods.

The classification will be represented here by dyadale-space models (powers of 2). We will take ac-
count the functioning of the human visual systemejproducing its natural ability to extract thetteas of
textures: opponent-colors space is used as wallyadic approaches for both light-dark multi-scaattire
detection and inter-pathway resolution ratios.

The spatial organization will be captured with tise of features from the statistical sum and difiee histo-
grams, from a model-based blob-oriented morpho&dgscale-space and from statistics of wavelet coeff
cients.

Features will then be classified with a common rodita Learning Vector Quantization network.

1 INTRODUCTION

The requirement for aesthetic appearance constan
in marble products is essential to certify thabsla
sold to the client are alike. In this way, a robiest In Tuceryan and Jain (1998) several texture defini-
ture definition is important for the classificatiai  tions are proposed, definitions intrinsically link&
slabs into homogeneous classes. Visual discrimindeature extraction methods chosen to identify the
tion of the human expert can be translated into-alg texture. They group methods into geometrical, struc
rithms in order to reduce subjectivity of the humantural, statistical, model-based and signal proogssi
classification. Classification methods will be pre-based.

sented to illustrate the benefit of using scaleedas  Structural methods assume that textures are com-

9./1 Texture definitions

models to improve the classification. posed of primitives - as textiles are composed of
threads. Texture elements are first extracted laea t
2 TEXTURE the placement rule is analyzed. Elements can be

blobs. Lindeberg's scale-space researches can be
It is always important to specify what we mean wherused to extract them at different scales (Lindeberg
discussing textures. Generally speaking, a texsire 1994). Morphology can be used to analyze them and
a repetition of pattern(s) with possible randomarar placement rule can be defined as a tree grammar us-
tions in the primitive placement rules. To be moreing symbols - the primitives - to form strings eth
precise, we have to say that unlike structuredluero textures.
organization types, the texture is strongly linked Texture is related to the spatial distribution of
the visual perception of this order. This expldims light intensities, so statistical methods such fees t
importance of the psychophysiology and of the transco-occurrence matrices are reasonable texture-analy
lation into algorithms of the multi-channel freqagn sis tools. Autocorrelation captures repetitive ptac
and orientation analysis performed by retinal andnents and drops slowly or quickly depending on
cortical neurons. In addition, a texture definitalso  whether the texture is coarse or not. This lasppro
depends on the observation scale. Therefore we wilirty can be linked to the power spectrum in signal
build a marble classification system based ansa processing models.
ual perceptiormodel ofspatial organizatiorof light Model-based methods take out a set of parameters
intensities on a givescale range defining a model generally used as a constraint for

synthesizing similar texture. Known models are



based on the Markov random fields or on the frac-
tals. Portilla and Simoncelli introduce "A paranetr
texture model based on joint statistics of wavetet
efficients” (Simoncelli & Portilla, 2000) that seem
to capture the nature of the texture - its esskiata

tures. It binds model-based methods to signal pr0(5

o0

essing ones.
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2.2 Classification comparison
Randen and Huy (1999) compare texture classifi-
cation using statistical and signal processing ar ﬂ f / —
proaches [2]. For multi-textured images the bes s 1 . 5

==

classification performance is achieved with the
highly complex Quadratic Mirror Filter f16b filter Figure 1. Using opponent color space model, welicknto a
bank. Nevertheless the computationally more effigiven scale different resolutions according to cplathways.
cient DCT approaches or QMF critically sampled fil-
ter are of interest because, as the feature dimensi
ality decreases, the classifier complexity decrease
too. They also conclude that the co-occurrence ar *
the popular Gabor filter are not superior.

The processing time must not be forgotten ir
comparative methods. A classification system has t
be viewed as a whole: the complexity of the featur:
model extracted will require an efficient clasgifie
Therefore some of the co-occurrence features suc
as mean, energy and contrast could already [
enough in some cases and lighter for a classifier.

Light-dark

Red-green

) . Figure 2. In a dyadic scale space decompositica @dlor op-
2.3 Visual perception — Color and scale ranges ponent model-based image, a given scaleil be character-

; ; jred by feature of the scale s for the light-danlarmel, 2 x &
]I‘:())Srycchoolglhy?le?:)l?ogguEggnr_)rov\cgeirae Vﬁgwusg\ty;rzogﬁf)r the red-green channel, 4 xfer the blue-yellow one.
trichromacy, the ability to arrange a color matsh u
ing three primary colors. Human oriented color> >~ /&, . e X
spaces have also been constructed to reflect the ofj/minating factor in the human classification efit
ponent-colors pathways: the light-dark, the recegre .|at1._Aqtua|1|IIy th'f '(;S.duti tofll?n induction pheg:)hrggno
and the blue-yellow channels. We will use the oppo'[? r|rr115|ca Y rolo ed in the r'] ering processrﬁ) e
nent-colors space presentedZhafng. & Wandell, 1996) y the retinal neurons: they compress the informa-

as a preliminary step to feature extraction: tion by reacting especially to transitions. .
Induction is the source of many illusions with two

opposite forms: contrast for low frequency (0.7 cpd
for blue-yellow), assimilation for high frequenc® (
cpd for blue-yellow) (Vanrell & Baldrich, 2003).
Note that for 10 cpd, we have assimilation in blue-
yellow but contrast in light-dark.

slab type, the contrast seems to be an effectise di

X= 0.6067R + 01736 G + 0.2001B
Y= 02988R + 05868G+ 0.1143B
Z= 0.0000R + 0.0661G+ 1.1149B

81 z i 842118 § : 8;3 $ 8%%% Light-dark contrast falls for resolutions above 30
O; - 0.086 X ) O. 50Y + 0'501 7 cpd, red-green for 10-20 cpd when blue-yellow for

5-6 cpd (Wandell, 1999). Undertaking a practical
]approach allows us to imagine dyadic scales (powers

resolution within opponent-color spaces: the light2f 2?. dﬁtr_)dendi:ng ?hn the pathways: glvlenga SC@;GVS
dark contrast achieves a maximum at 10 cycles p Ee Ight-dark pathway we use a scale< x $ for
degree. e red-green and s2 = 4 x sO for the blue-yellow
[1 degree corresponds to 0.89 centimeters on e lude th :
screen viewed at 50 centimeters. In this configura- . -€tS conclude the present contrast presentation

tion, 10 cycles per degree corresponds to 10/0.89 with a numerical example: a 30 centimeter tile seen
11 2 cycles per centimeters.] "7 from 50 a centimeters distance will give a maximum

We will see that, more than the mean, especialI{_)gchot;?:‘srko(i%ri‘:]rasttof%ro\;?rl'azt'O_n%g %:ga?clqugﬁﬁ the
when searching color-similar sub-classis of a given P 9 e

Less known but also important is the difference o



width of the field of view - and a resolution of30. marble slab. Such slabs are evaluated by human ex-

millimeters - corresponding to 1011 variations. Aperts with subjectivity and fatigue giving inconsis

dyadic scale will give resolution of 0.30/2 = 0.15tent results. Automatic classifications have baen i

millimeters in the red-green pathway, of 0.075 mil-troduced by Martinez & Tomas (1999) to solve this

limeters for the blue-yellow one (see Fig. 1). problem using the SDH method which computes
When we move away from a surface, we gain théeatures on small neighborhoods.

larger scales - limited by the field of view - agw  Our experiments will focus on slabs of the type

lose the smaller ones - limited by the retinal keso ‘Crema Marfil’ coming from Murcia.

tion.

4.3 Scale-space variations

3 EXPERIMENTAL MATERIAL To improve results based on statistical methods, we
will study the texture on different scales. Three

A set of Marfil slabs have been acquired using-a tr methods are presented. For each one we work in the

CCDs linear camera to obtain color images of th@pponent-color space model as described in Figure

diffuse component of the light reflected by thebsla 2. A Gaussian kernel is each time applied at angive

Images have been pre-processed to remove shadisgale and subsampled to produce the larger scale.

effects due to non-homogeneity of the lighting.sThi

set of images has been used as the basis of tlee SCYh 4 g d Diff Hist

based models discussed in the followings para- um and Litierence Histograms

graphs. The SDH algorithm is a powerful alternative to the
usual spatial grey level dependence method or co-
occurrence matrices: for a distance vector (d1,d2),

4 METHODS the combination of two pixels zx,y and zx+d1,y+d2
forms the sum and difference vectors:

Dyadic scales have been used to classify the Marfil

slabs using different image analysis methods. For sx,y = zx,y + zx+d1,y+d2

given acquisition we train color features at défer dx,y = zx,y - zx+d1,y+d2

scales by shifting dyadic pathway ratios from high

low resolution (see Fig. 2). The normalized histograms are:

: o ps (i) = hs(i)/N = #(sx,y= i)/ N
4.1 Spatial organization pd (i) = hd(i)/N = #(dx.y = i)/ N
In order to feed a vector of features to the cfassi
we have to capture the nature of the spatial organi  The statistical features used are:
tion in a digital form. In this way statistical meld
capture mean, energy, entropy, contrast and homo- 1<« . B , ,
geneity. Other features, such as uniformity, dgnsit 'U‘Ezi'Ps(') energy= > P.(i)* >, Py (i)’
coarseness, regularity, linearity, directionality...
have various implementations. A ‘texture browsing _ : Y : :
descriptor’ is considered by the MPEG-7 compres-entmpy_ Zi P.(i)log(R. (1)) Zi Py () og(Ry (1))
sion format.

But the most important is to keep relevant degnirast= i2P. (i) homog=>".
scriptors; thus depending on the texture, onlyabert Zi 1R (1) J z‘
ones are retained for defining a given model. We
will compare the use of features from the stat$tic  The Figure 3 illustrates the mean and two con-

Sum and Difference Histograms (SDH), from atrasts at different scales. The use of a scalerf4ot
model-based blob-oriented morphological scalethjs |ast feature will improve the classificatiamm
space and from statistics of wavelet coefficients. 7504 (1 scale) to 88% (6 scales) — an improvement
factor of 17%.

We have to notice the poor initial result for 1
scale related to the 90% with the same method used
Ornamental stone textures are so varied thatdifis by Martinez & Tomas (1999). This is likely due to a

ficult to build a model classifying all the posgibla-  different set of images and only the improvement
rieties found on the market. When granites seems factor should be retained.

be easily classified due to a certain homogendity o
the repeated pattern at a given scale, marble aften
characterized by the presence of veins that wil pr
duce a texture on a scale higher than the scaleeof

1
1+ j°

P (1)

4.2 Marble classification



stance, filtering with a Gaussian kernel simuldkes
T assimilation as a perceptual blurring; filteringttwi

’ : the second derivate is named the Laplacian of Gaus-
sian and it simulates the contrast as a perceptual
sharpening (Vanrell&Baldrich, 2003).

The Laplacian filter gives a strong response in
blob detection but is too sensitive to the noigeas
first Gaussian filtering has to be applied. Praatly
it is the same to filter directly by the Laplaciah
Gaussian:

I'=0°%(1*G,) =1*(0°G,)

scale 0 0 image idx The Lindeberg’'s scale-space theory introduces
normalization to allow comparison of blobs re-
sponses between scales. It automatically seleets th
N scale at which local image structures are better de
= -+ P tected by differential operators (Salvatella, 2002)
With a normalized Laplacian,

Diorm = JZD ?

blobs responses are computed for all scales and
the maximum over all scales gives all the image
blobs no matter their size.

Basing ourselves on that fact, we will present a
sharpening operator to not only find black and whit
blobs - by getting the minimas and the maximas over
image idx all scales but will produce an image with a flatka

ground and contrasted response (see Fig. 4 & 5).
We have classified the Marfil slabs using Blob
e i analysis on the segmented blobs with extraction of
’ e (N L features like the mean and maximum area, the mean
= and maximum ellipsoid major axes, the mean and
maximum of the eccentricity weighted by the corre-
sponding diameter. Results of classification of 82%
are promising because the blobs features arenstill
fully exploited. More detailed feature distribution
analysis would give better results. Luengo (2004)
uses the size distribution to characterize strestur
this distribution is estimated using a so calleahgr
lometry, which is the projection of a morphological
— 0 o mage idx scale-space on the scale axis.
The major advantage of this technique is its abil-
Figure 3. Light-dark mean, light-dark contrast dde-yellow jty to extract veins. Indeed, statistical methods d

contrast for an image set and for 6 scales. Thenmemains ot find such ‘non-textural’ feature. Actually, vei
constant whatever the scale (what is expectedjhautontrast

present discriminent profiles.

scale oo

4.5 Blob analysis in the Lindeberg’s Scale-space . A

We explained that the contrast is a very discritina ..
ing factor in the human classification criteria.tBu "
how to implement it to reflect this specificity &m !
image acquired by a static vision system? The ar. = + = = = s = =« & «
swer is the Laplacian of Gaussian. _ _ _

The Gaussian kernel and its derivates are one &f9ure 4. Foo =1, 2, 4, 8, 16, profiles of Laplacian of Gaus-
the most precious tools in image analysis. For insian and normalized Laplacian of Gaussian




applications. It uses a pyramidal approach sindar
the Laplacian pyramid but capturing orientations: a
steerable pyramid. From this representation, kay fe
tures are extracted to define four statistical con-
]L straints: capturing the pixel intensity distributio
(marginal statistics), the periodic or globallyesried
structure (raw coefficient correlation), the sturel
r information such as edges, corners...(coefficient
magnitude statistics) and illumination gradient® du
to 3D appearance (cross-scale phase statistics).
This complex representation summarizes the na-
ture of the texture in 710 feature values that can
serve for classification. An important property of
this representation is the ability to synthesizeuee

from these features to verify their validity.

Figure 5. For given profile, the top picture illietes the pro-
files of the maximums and minimums over all scalé$0G-
normalized transformations giving top and bottormers over
these scales. Their difference gives the (LoG-nized)
sharpen profile. The middle picture shows, in caxedn a Mar-
fil original image, the original profile (grey) aritie sharpen
one (dark). This sharpen operation flats the bamkgi and al-
lows an easy segmentation by threshold. The boitteages il-
lustrate a segmentation of the transformed origmabe.

are not repeated patterns producing a texturerodt p
duce a texture on a scale wider than the scalbeof t
slab: that of the tiling.

4.6 Parametric Texture Model based on Statistics
of Wavelets coefficients

Portilla and Simoncelli (2000) propose a universal
model to capture important features of various tex-
ture images. It can serve as a high-level textepe r

A N . . _Figure 6. A Marfil slab and a synthesized imagearfithe set of
resentation for characterization and segmentatio g y g

Qtatistics of wavelet coefficients.



Figure 7. An other Marfil slab and its synthesizedge illus-
trating a non-working case due to the veins extensiot cap-
tured by the model.

5 CONCLUSION

Three scale-based models have been presented.

The SDH model gives interesting classification

ones. In this way, principal component analysis or
manual discriminating feature evaluation will be
studied.

The blob-oriented classification is the only one
that is able to identify veins. Indeed the statati
models fail to capture such features due to the-no
textural’ nature of a vein. Therefore this method
seems to be the more appropriated for veins asalysi
Nevertheless, for background description the other
approaches are more complete. Another problem of
the blob-oriented model is its sensibility to the
choice of the threshold used to extract blobs.

These three scale-based methods demonstrated
the interest of scale in texture analysis. SDH over
scales is an automatic and simple model that pro-
vides significant results. PTMSWC is more sophisti-
cated and implies other studies to use the parasmete
as input to a classifier. The blob model catches th
veins but is sensitive to the blob extraction thodg
level.

In the three cases the scale is the only way te cap
ture features of different sizes.

6 REFERENCES

Lindeberg, T. 1994. Scale-space theory: A basit flmoana-
lyzing structures at different scaleémurnal of Applied Sta-
tistics, vol. 21, no. 2, 225-270, 1994.

Martinez, J. & Tomas, L.-M. 1999. Marble Slabs @yaClas-
sification System using Texture Recognition and fgku
Networks MethodologyEuropean Symposium an Artificial
Neural Networks 1999 proceeding$-80.

Randen, T. & J.H. H@y. 1999. Filtering for Texture Classifi-
cation: A Comparative StudyEEE Trans.Pattern Analysis
and Machine Intelligence vol. 21, no. 4, 291-31QyilA
1999

Salvatella, A. 2002. Texture Description based abt&ture
Components.

Simoncelli, P. & Portilla, J. 2000. A Parametric &b Based
on Joint Statistics of Complex Wavelet Coefficientger-
national Journal of Computer Vision 40(1), 49-7000.

Tuceryan, M. & Jain, A.K. 1998. Texture Analysisndbook
of Pattern Recognition and Computer Vision (2ndtigd):
207-248. World Scientific Publishing Co.

Vanrell, M; & Baldrich, R. & Salvatella, A. 2002ndiuction
operator for computational Color Texture DescaptiEl-
sevier Science.

Wandell, B. 1999. Computational Neuroimaging: CdRapre-
sentations and Processingpgnitive Neuroscience edited
by Michael Gazzaniga.

results on the Marfil slabs and we showed an imzhang, X. & Wandell, B. 1996. A Spatial Extensidn@ELab

provement by introducing scale. This improvement
seems to be essentially due to the contrast ewaluti
over scales. This probably captures features of dif
ferent sizes.

The Parametric Texture Model based on Statistics
of Wavelets coefficients (PTMSWC) is very com-
plete. It seems to be the "holy grail" of the Stttk
based models due to its fully automatic research of
inter- and intrascale features. Nevertheless the clas-
sification of the 710 parameters has to be improved
by a reduction of these parameters to the relevant

for Digital Color Image Reproductiofrroceedings of the
SID Symposium4.996.



