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Introduction

Torsional Damper and Detuner (IDD) is q mechanism for detuning and attenuation of low-frequency
oscillations of OHI conductors galloping [1,2]. The oscillation energy is dissipated in the damping
wnit (DU), which represents a structure of wo disks inferconnected by the joint revolution axis and an
ensemble of viscous-elastic elements, which react in relative rotation of disks. One of the disks is a
leader and is connected to the phase conductors via g rigid frame. Another disk js a follower and is
nnected to the balancing lever of pendulum type.

Amathematic model of the TDD. functionality has peen developed for selection of geometric, mass and

Viscous-elastic paramerers enabling the effective operation of the device in the Jrequency range ().2-
06 Hz [3]. This model lakes into account the hysteretic type of power dissipation appropriate to the
bpe of DU under consideration,
The process of hysteretic deformaiion of viscous-elastic elements dye {0 their displacemeny mnside DUJ
isof high complexity and it cannor pe subject of a rigorous mathematic description. That is why the
Wproximate methods are traditionally employed making use of experimental data. One of the
Wproaches consists in substitution of hysteresis by viscous-elastic deformation using the tension-
tmpression  diagrams of the elastoplastic samples and o logarithmic decremeny of vibrations.
dnother possible approach consisis in the assignment of the deformation diagram in accordance 10

nodel of Drucker-Prage/: According 1o this model, the hysieresis diagram s represented by o
parallelogram inclined by a certain angle to the coordinate axes. However, the yse of such models
My cause serious errors in selection of TDD structural parameters, since they do not take into

{count the shape and size of minor loops on the deformation diagram. Representation of the DU stiff

I this work, kinematic model of hysteresis process is suggested which relates upon the hysteresis
agrams really obtained in tests. According 10 it, the lorque moment and corresponding angle of
lrsion are related one 1o another via a special differential equation of the first order, its coefficients
being defined fiom experimental values. Dye 10 this, one succeeds 1o describe, in single equation, an
ifinite set of similar cyeles; each of them is uniquely defined by o position of a Starting point on g
formation diagram inside a limit cycle. Similarity of these curves is defined by their asympiotic
Wproximation to the limir cycle curve.

|.The TDD’s mechanical mode]

dsimplified TDD’s mechanical model can be considered as 3 system (see Fig 1) of driving (1) and

tiven (2) disks, a balancer or lever (3), rubber balls (4) and, in a more general sense, an elastic insert
b) that connects 3 driven disk and a balancer.
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@, are rotation angles of driving and driven disks and balancer respectively that are
g is performed anticlockwise. Moments, arising as a result
d a balancer, are shown in Fig. 2.
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Fig. 1. Drawing of Fig. 2. Moments of interaction of Fig. 3. Different variants of
elementary TDD TDD components TDD balancer

n of driving and driven disks via the system of

f an elastic insert, m,gesing, is a moment
is a inertia

In this picture M, is a moment generated by interactio
rubber balls; M, is a moment producing torsion o
generated by balancer gravity force n,g due to central mass eccentricity e (c.m.), 1,9,

moment of a driven disk, where /5 — polar momen
For the driven disk and the balancer we have the following equations of equilibrium

t of inertia of a balancer relative to x axis.

Lo, +M,-M, =0, .
2% 1 2 (1)

L, +M, +mgesing, = 0.

is formed by moments of interaction of driving and driven disks by severd

It is assumed that the moment M, i
according to the Hook’s law,

The moment M, (¢, —#)
s running in their troughs or spout guides.
~ ¢, of the elastic insert. Then,
c insert.

()= @sinwt , where @ and o ar

rows of rubber ball
proportional to the twist angle @,
M, = (¢, —,)(GJ, /1), where GJ, is torsion stiffness of an elasti

The law of motion of the driving disk is assumed to be a form: ¢,

amplitude and frequency of harmonic motion.

Thus, the system of equations (1), describing peri
into account initial conditions, can be written in a form

odic TDD motion under harmonic disturbance taking

) GJ ) GJ :
Lis, = (0.~ 0:)—-~M(9: = ). Ly, = (0= 0,)— - —mgesings 0

o= ®dsin ot (pz(()) = d)z(o) = (03(0) = ¢3(0)'

Possible variants of a balancer that has been used for calculations are given in Fig. 3.

2. Kinematic model for hysteretic dissipation of vibration energy

Let’s turn to hysteresis diagrams M =M (a) obtained by series of experiments on the basis of i

TDD test rig (at ESSP). Some of them are shown in Fig. 4.
It is obvious that if we start from a point inside region, bounded by the limit cycle curves, our cunt
will tend to a limit cycle curve asymptotically. Itis true for both “loading” and “unloading” processs
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these are the same and the difference between them consists in the direction of angular displacement
(and the moment applied). Thus, the given limit cycle curve determines the class of similar curves that
have the unique asymptotical curve. The common asymptotic is a definition of similarity for internal
curves actually (separately for “loading” and “unloading” cases). This fact allows developing analogy
with behavior of the asymptotic solutions of differential equations. These solutions are determined
identically by the integration constants but tend to a common asymptotic curve.
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Fig. 4. Examples of complete and local hysteresis loops at quasistatic TDD oscillations

Indeed our limit hysteresis curves have two asymptotic components (see Fig. 5). The first one of them
is connected with rolling and partially sliding rubber balls along spout guides without additional
barriers.

Occurrence of the second asymptotic curve is concerned with strong deformation of balls due to

{ wpport on the spout guides. It seems the first asymptote is the straight line. The second asymptote is

nota straight line, but in the Fig. 5 it is represented as a straight line symbolically.
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Fig. 5. Asymptotic tendency of internal curves to limit cycles curves

e of possible differential (kinematic) dependencies between torque and rotation angle can be taken
5

E:;klcx +yca M, . 3)

gesl)

here coefficients 4, (i =0,...,m) and ¢, (1=0,...,n) are found via experimental limit cycle curve.
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Therefore, first of all it needs to determine limit cycle curve experimentally. It is the dependence of
torque versus relative angle of rotation: M =M (o).

The next step consists of approximating discrete data points by a spline. Mathematically, the problem
is a trivial one because the limit cycle curve is a quite simple one. Analytical approximation of the
limit cycle curve allows us to calculate derivatives dM /do easily.

Let N is a total number of coefficients £, (i=0,.,m)y and ¢ (i=0,..,n) in (4). This number

determines a total number of algebraic equations for determination of these coefficients on the basis of
(3). For that, we have to set N points on the limit curve and calculate derivatives at those points. It
gives us a system of algebraic equations for determination of coefficients in (3).

After a series of numerical experiments, it was determined for (3) that m =1, n=6 Then, if to follow

the technique described above, we obtain

k,=650.9, k =1422.2;
¢, =-239, ¢ =41, ¢, =20, ¢;=-0355, ¢,=143.2, ¢;=4198.

Then the equations (3) are written in a form

aM 5
=k, +ka+ (c(, tea+ca’ roa et o )M , @

do

Note that equation (3) can be solved analytically. But it is not change the approach concept because of
the right part of (3) can have another form with limit solution cycles.

3. Calculation of energy dissipated by the TDDs

There is of great interest to calculate capacity of dissipation (dissipation energy per unit of time)
instead of full energy:

A:HMlda:%!Mlozdt, )

Under the nonstationary motion, it is quite difficult to calculate the integral in (5). It is much simple
to convert (5) to a differential form and include the obtained equation to the system of equations (2}

(4). By differentiation of (5) we have 1A+ A=M.c , from which we obtain differential equation

dA 1 :

L =-(Ma-A4).

dr 1
Solution of this equation has a horizontal asymptote, its ordinate giving the steady motion power d
dissipation.

4. Some results of numerical analysis of TDD efficiency

Calculations were made for three TDD variants: an inertial and gravitational types (see Fig. 3), andef

mixed type that have been produced at ESSP and tested further in Kazakhstan.

Configurations of inertial, gravitational and mixed types of TDD variants are presented in Fig. 6. TiE
inertial and gravitational variants have one driving and one driven disks. The mixed variant has tf

external driven disks and one internal driving disk between driven disks. The rubber balls are insert
between driving and driven disks for all TDD variants.
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Numerical scanning of parameters has been realized for all examined TDD variants. There were
obtained the dissipation energy (dissipation capacity) values, transfer functions, as depending on
driving frequency, and hysteresis dependence of torque versus relative rotation angle.

omy =Tkg

m, =5kg m=12kg m=12kg
a) Inertia balancer  b) Gravitational balancer  ¢) Mixed type balancer
Fig. 6. Sketches of inertial. gravitational and mixed type TDD variants

As example, dissipation dependence (capacity) from driving frequency under input amplitude
®=03 rad for the inertial (Fig. 6-a) and gravitational (Fig. 6-b) TDD variants is shown in Fig. 7.
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Fig. 7. a). b) Dependence of dissipation capacity versus driving frequency under input amplitude
® =0.3 rad for the inertial and gravitational TDD versions: ¢) Transfer function

fysteresis dependencies of torque (/) versus relative rotational angle () are presented in Figs. 8-11
atdriving amplitude @ = 0.3 rad and frequencies @ =0.2, 0.4, 0.6 and 0.7 rad .
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CONCLUSIONS

ystem of dynamics equations. Finally, there appears a possibility of searching optimal combinations
ifthe TDD parameters on the basis of the approach proposed.
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