Exercices de théorie des erreurs

Benoît Bidaine

1 Statistique descriptive

1.1 Mesures de distances

Considérons 15 mesures indépendantes de distances exprimées en mètres.

```
    212,22
    212,25
    212,23
    212,15
    212,23

    212,11
    212,29
    212,34
    212,22
    212,24

    212,19
    212,25
    212,27
    212,20
    212,25
```

- a) Calculez moyenne, variance et écart-type de l'échantillon.
- b) Calculez E_{50} , E_{95} et E_{99} de l'échantillon.
- c) Vérifiez l'absence de mesures grossières (à une probabilité de 95 % et de 99 %).
- d) Représentez la distribution de ces mesures au moyen d'un histogramme à 5 classes.

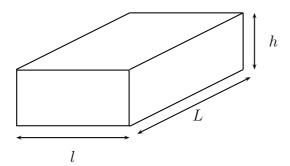
Rappel: $E_{50} = 0,6745\sigma$; $E_{95} = 1,96\sigma$; $E_{99} = 2,576\sigma$

1.2 Mesures d'angles

Soient 50 mesures d'angles d'égales précisions exprimées en degrés.

```
42.5
                                45.9
41.9
      46.3
            44.6
                   46.1
                                      45.0
                                             42.0
                                                   47.5
                                                          43,2
43,0
      45,7
            47,6
                   49,5
                         45,5
                                43,3
                                      42,6
                                             44,3
                                                   46,1
                                                          45,6
                   42,2
                         44,3
                                44,1
                                      42,6
                                             47,2
52,0
      45,5
            43,4
                                                   47,4
                                                          44,7
                         44.3
                                42.8
                                      47.1
44.2
      46.3
            49.5
                   46.0
                                             44.7
                                                   45.6
                                                          45.5
      45,5
            43,1
                   46,1
                         43,6
                               41,8 44,7
                                             46,2
43,4
                                                   43,2
                                                          46.8
```

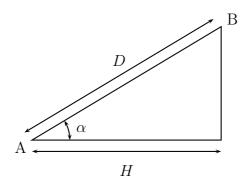
- a) Calculez la moyenne, la variance et l'écart-type de l'échantillon.
- b) Calculez E_{95} et E_{99} de l'échantillon.
- c) Vérifiez l'absence de mesures grossières (à une probabilité de 99 %).
- d) Représentez la distribution de ces mesures au moyen d'un histogramme à 10 classes.


Rappel: $E_{95} = 1,96\sigma$; $E_{99} = 2,576\sigma$

2 Propagation des erreurs

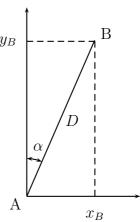
2.1 Volume d'un réservoir parallélépipédique

Les dimensions d'un réservoir parallélépipé dique mesurées de manière in-dépendante sont :


> Longueur L = 40,00m $S_L = 0,05m$ Largeur l = 20,00m $S_l = 0,03m$ Hauteur h = 10,00m $S_h = 0,02m$

- a) Quel est le volume du réservoir et son écart-type?
- b) Quelle est la quantité (L, l, h) dont la précision (le manque de précision) affecte le plus l'écart-type?

2.2 Mesure indirecte d'une distance horizontale


Un angle α à un point B est mesuré depuis un point A : $\alpha=3^{\circ}00'$ et $S_{\alpha}=1$ ". La distance D de A à B vaut 1000,000m avec $S_{D}=0,005m$. (Les mesures sont effectuées de manière indépendante.) Trouvez la distance horizontale H et S_{H} .

2.3 Mesure indirecte des coordonnées d'un point

Soit un point A de coordonnées (0,0). On mesure la distance D (au point B) et l'angle α de manière indépendante :

$$D = 456,87m$$

 $S_D = 0,002m$
 $\alpha = 23°35'26"$
 $S_\alpha = 9"$

- a) Calculer les coordonnées (x_B, y_B) du point B.
- b) Calculer la matrice de variance covariance des coordonnées du point B, $\Sigma_{x_By_B}$.
- c) Les quantités x_B, y_B sont-elles indépendantes?

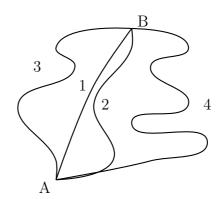
NB : n'oubliez pas de transformer les degrés en radians

3 Pondération

3.1 Mesure de distance

Une distance est mesurée à l'aide de 3 instruments de précisions différentes. Les poids attribués à ces mesures seront donc différents.

$$d_1 = 625,79m$$
 $p_1 = 1$
 $d_2 = 625,71m$ $p_2 = 2$
 $d_3 = 625,69m$ $p_3 = 4$


Calculez la valeur la plus probable de la distance, les résidus et l'écart-type correspondant.

3.2 Nivellement

On effectue du nivellement entre 2 points A et B. On utilise 4 chemins de longueurs différentes. A chacune des 4 observations, on attribue un poids inversement proportionnel à la longueur du chemin :

$$p_{i} = \frac{18 \text{ km}}{l_{i}}$$

$$\begin{array}{c|c|c} i & l_{i} \text{ [km]} & \Delta H_{i} \text{ [m]} \\ \hline 1 & 1 & 25,35 \\ 2 & 2 & 25,41 \\ 3 & 3 & 25,38 \\ 4 & 6 & 25,30 \\ \end{array}$$

Calculez

- a) la valeur la plus probable de ΔH ,
- b) les résidus d'observation,
- c) l'écart-type de poids unitaire,
- d) l'écart-type de la valeur la plus probable
- e) et l'écart-type de chacune des mesures ΔH_i .

3.3 Fermeture d'un triangle

Les 3 angles d'un triangle sont mesurés avec des instruments différents :

$$\alpha = 59^{\circ}00, 0'$$
 $\sigma_{\alpha} = \sqrt{0, 5}'$
 $\beta = 47^{\circ}00, 0'$ $\sigma_{\beta} = 0, 5'$
 $\gamma = 73^{\circ}00, 0'$ $\sigma_{\gamma} = 1'$

Ajustez les valeurs de ces angles afin d'assurer la fermeture du triangle.

4 Moindres carrés

4.1 Mesure des angles d'un triangle

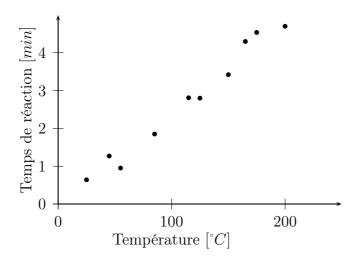
La mesure des 3 angles d'un triangle donne les valeurs $a_1 = 59, 0^{\circ}, a_2 = 47, 0^{\circ}, a_3 = 73, 0^{\circ}$. Calculez les valeurs ajustées de ces angles grâce au modèle avec équations de condition

- a) dans le cas où les mesures (indépendantes) sont d'égale précision;
- b) dans le cas où le poids des 3 observations est respectivement $p_1=2$, $p_2=4,\,p_3=1$.

Calculez le vecteur $\underline{\nu}$, la valeur ajustée des angles, la variance (a posteriori) de poids unitaire, la matrice des cofacteurs et la matrice de variance - covariance des résidus.

Quelle est la précision des angles ajustés?

Quelle est la précision (a priori) des angles mesurés?


L'ajustement permet-il d'améliorer la précision des angles?

4.2 Modèle de temps de réaction

Dans un plan d'expérience, on étudie le temps d'une réaction chimique complète l [minutes] en fonction de la température t [°C] . Cette dernière est fixée par l'expérimentateur et donc considérée comme exacte. Toutes les mesures sont supposées indépendantes.

Expérience n°	Température t_i [°C]	Temps de réaction complète l_i $[min]$
1	25	0,64
2	45	1,27
3	55	$0,\!95$
4	85	1,85
5	115	2,81
6	125	2,80
7	150	3,42
8	165	4,30
9	175	4,54
10	200	4,70

^{1.} Albert, A. Biostatistique. Liège: Editions de l'ULg, 2005. p 65-68.

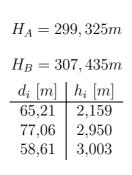
Déterminez par la méthode des moindres carrés avec équations d'observation et représentez le modèle de dépendance linéaire de l en t de la forme l=at+b.

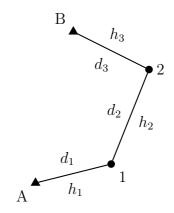
4.3 Corrections géométriques

Dans le cadre d'un contrat avec la Région Wallonne, vous devez appliquer des corrections géométriques à une image SPOT panchromatique de l'échangeur de Vottem². Pour ce faire, vous identifiez 8 points de contrôle sur l'image dont vous connaissez les coordonnées Lambert. (Les mesures en pixels sont supposées indépendantes.)

Coordonnées en pixels		Coordonnées en Lambert [m]		
X	У	x'	у'	
430	417	238175	155575	
435	212	237775	153550	
262	197	236050	153775	
127	369	235125	155725	
89	216	234400	154250	
394	34	237000	151925	
43	62	233650	152900	
219	442	236150	156250	

^{2.} Cornet, Y. Travaux dirigés et travaux pratiques de télédétection sous Idrisi KILI-MANJARO. Notes du cours GEOG0024. Liège : ULg (Géographie), 2006. p 41-49.


Déterminez par moindres carrés la transformation bilinéaire liant les deux systèmes de coordonnées.


4.4 Nivellement

Soit une ligne de nivellement joignant 2 points A et B. Les hauteurs orthométriques des points A et B, H_A et H_B , sont connues.

La ligne de nivellement est divisée en 3 parties de longueurs d_1 , d_2 et d_3 . Le long de chacune de ces sections, des différences d'altitudes h_1 , h_2 et h_3 sont mesurées. Ces mesures sont indépendantes et leurs variances sont proportionnelles aux longueurs associées.

Calculez les valeurs ajustées des hauteurs orthométriques des points 1 et 2, H_1 et H_2 , à l'aide de la méthode des moindres carrés.

