Contributionsaux algorithmes d’intégration

temporelle conservant I’ énergie
en dynamigue non-linéaire des structures.

Travail présenté par
Ludovic Noels
(Ingénieur civil Electro-Meécanicien, Aspirant du F.N.R.S))

Pour |’ obtention du titre de

Docteur en Sciences Appliquées
3 décembre 2004

Université de Liege Tel: +32-(0)4-366-91-26
Chemin des chevreuils 1 Fax: +32-(0)4-366-91-41 B-4000
Liege — Belgium Email : l.noels@ulg.ac.be

UNIVERSITE de Liege



= Industrial context:
— Structures must be able to resist to crash situations
— Numerical simulationsis akey to design structures
— Efficient time integration in the non-linear range is needed

= Godl:

— Numerical simulation of
blade off and wind-milling in
aturboengine

— Example from SNECMA




= Origina developments in implicit time integration:
— Energy-Momentum Conserving scheme for elasto-plastic
model (based on a hypo-elastic formalism)

— Introduction of controlled numerical dissipation combined with
elasto-plagticity
— 3D-generalization of the conserving contact formulation

= Origina developments in implicit/explicit combination:
— Numerical stability during the shift
— Automatic shift criteria

= Numerical validation:
— On academic problems
— On semi-industrial problems



1. Scientific motivations

2. Consistent scheme in the non-linear range
3. Combined implicit/explicit algorithm

4. Complex numerical examples

5. Conclusions & perspectives




1. Scientific motivations
— Dynamics simulation

— Implicit algorithm: our opinion

— Conservation laws

— Explicit algorithms

— Implicit algorithms

— Numerical example: mass/spring-system

2. Consistent scheme in the non-linear range
3. Combined implicit/explicit algorithm

4. Complex numerical examples

5. Conclusions & perspectives




= Scientific context:
— Solids mechanics
— Large displacements
— Large deformations
— Non-linear mechanics

= Spatia discretization into finite elements:
— Balance equation M X+F™ =F&

. =int _ e TR
— Internal forcesformulation  F —VOSf DJdVy
0

>: Cauchy stress; F: deformation gradient; f = F1;
D= Ti /ﬂ)*(o: derivative of the shape function; J : Jacobian



= Temporal integration of the balance equation

=

= 2 methods: .
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) ) an N
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-

- Xn U 1u 1 M + Eint - pext

_ ImpIICIt method xny Ya. @29}’@'%(@ i Xn+1y“ g.}eg,gg})g}s(@ i %n+1 = T (Rns Xy X1 xn Xn+1)
Xnb Xn+1b %Xn+1 f (Xn, %n, Fn+1: %ns Xn+1)

« lterative b
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= |f wave propagation effects are negligible

— |mplicit schemes are more suitable
— Sheet metal forming (springback, superplastic forming, ...)

— Crashworthiness ssimulations (car crash, blade | oss, shock
absorber, ...)

= Nowadays, people choose explicit scheme mainly
because of difficultieslinked to implicit scheme:

— Lack of smoothness (contact, elasto-plasticity, ...)
— convergence can be difficult
— Lack of available methods (commercial codes)

= Little room for improvement in explicit methods

= Complex problems can take advantage of combining
explicit and implicit algorithms ul



= Conservation of linear momentum (Newton's law)
— Continuous dynamics X - gex

KL |
— Timediscretization & M¥a-M%, =Dt A F12 & A Faiw2=0
nodes nodes nodes

= Conservation of angular momentum
— Continuous dynamics TRUMX _; i zex

qt
— Time discretization a A %1 UMXq4q- % UM%, =Dt Q %ne1/2 UFRSHL 2
nodes nodes nodes
& A Xn+12UFN2=0
. nodes Wint: internal energy;
= Conservation of energy )
W& external energy;
— Continuous dynamics o ﬂtw'”t :ﬁwexuomt Di: dissipation (plasticity ..
— Timediscretization ~ Wati-Wa™-DD™ = & Rl [%ns1- %l &

nodes

o 1,.,- B 1 int int int _ = ext S
A —MXni1: Xps1- 5 —MX Xn Xn +Wh1- Wy - DD a Fnti/2 - [Xn+1- Xal
nodes nodes

)



= Central difference (no numerical dissipation)

Xn+1/2 = Xn-1/2 + DU X,
)_zn+1:)_<n+Dt)_{n+1/2
> — -1 = ext = int
% =M HFS - Fl

= Hulbert & Chung (numerical dissipation) [CMAME, 1996]
i-a, )%, =M F - £l a,, %,
%- b Q)?
X1 = %, + Dt[L- g]X, + Dig X,..
= Small time steps — conservation conditions are
approximated

)_{n+1:)_{n-I_Dt)_{n-l_Dt2 n-I_Dt2b )—zn+1

= Numerical oscillations may cause spurious plasticity



.. 1 e _ - él u = U
_ Xn+1=th2é><n+1-xn-Dtxn-gz-bHthxnu
— Newmark relations; < € ] u
s -9 gy( X}.,.?E ]EDt* eb 1th2y(u
N+l . o~ &M+ T - . nU
"™ b Dt g . & U & 24 Q
— Bdanceequation: 12w mi o+ 8w v o4]gm gee]e Be [gml ge|og
eq 1_ a|: Xn+1 1_ a|: Xn [ n+1 n+1] 1_ a|: [ n n

— ay=0and ag=0 (no numerical dissipation)
 Linear range: consistency (i.e. physical results) demonstrated
* Non-linear range with small time steps: consistency verified

* Non-linear range with large time steps: total energy conserved but without
consistency (e.g. plastic dissipation greater than the total energy, work of the
normal contact forces> 0, ...)

— ay! Oand/or ar* O (numerical dissipation)
* Numerical dissipation is proved to be positive only in the linear range



Example: Mass/spring TPUAI> =15 N/m
system (2D) with an initial
velocity perpendicular to 4

the spring (Armero & Romero~ ~ =10 m
[CMAME, 1999]) Explicit method: Dtcrit ~ 0.72s;

1 revolution ~ 4s

>.<0 =10 m/s

AN

> m=2Kkg

— Newmark implicit scheme — Chung-Hulbert implicit
(no numerical damping) scheme (numerical damping)

20 20

Y (m)




1. Scientific motivations

2. Consistent scheme in the non-linear range
— Principle
— Dissipation property
— The mass/spring system
— Formulations in the literature: hyperelasticity
— Formulations in the literature: contact
— Developments for a hypoel astic model
— Numerical example: Taylor bar
— Numerical example: impact of two 2D-cylinders
— Numerical example: impact of two 3D-cylinders

3. Combined implicit/explicit algorithm
4. Complex numerical examples
5. Conclusions & perspectives ul




= Consistent implicit algorithms in the non-linear range:

— The Energy Momentum Conserving Algorithm or EMCA
(Smo et al. [ZAMP 92], Gonzalez & Simo [CMAME 96]).
» Conservation of the linear momentum
» Conservation of the angular momentum
» Conservation of the energy (no numerical dissipation)

— The Energy Dissipative Momentum Conserving algorithm or
EDMC (Armero & Romero [CMAME, 2001]):
» Conservation of the linear momentum
» Conservation of the angular momentum

* Numerical dissipation of the energy is proved to be positive



= Based on the mid-point scheme (Simo et al. [ZAMP, 1992])
g Xn +Xn —_ Xn+1 Xn

— Relations displacements >

Dt
) )_{n+1_ )—{n
Dt

Hiﬂ

/velocities/accelerations 9 5 +x% (v 50
2
— Balance equation M Kot %o
2

— [ ext = int = diss
- Fn+1/2 - |:n+1/2(' Fn+1/2)

— EMCA:
T
o With Fn+1 1 (\)Sn+1/2f61+1/2 D38+1/2dV0 and

: A/ :
verify conserving eguations

&4, designed to

« No dissipation forces and no dissipation velocities

— EDMC:

 Sameinterna and external forces asin the EMCA
. With Fi'52 and %55 designed to achieve positive numerical

dissipation without spectral bifurcation




= Comparison of the spectral radius
. . . o o
— Integration of alinear oscillator: X, = expg
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= Forces of the spring for any potential V

— Without numerical dissipation V(- V()
) int  _— + v v
(EMCA) (Gonzalez & Simo Foviz = Inzl N X + X, ]
[CMAME, 1996]) R
20 - 20 - . ~100 | | | | |
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i OO Lol islabladslislil b L
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<
-250
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— The consistency of the EMCA solution does not depend on Dt
— The Newmark solution does-not conserve the angular momentum



— With numerical dissipation
(EDMC 1st order ) with
dissipation parameter O<c<1
(Armero& Romero [CMAME,
2001]), herec =0.111

12
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— Only EDMC solution preserves the driving motion:
» The length tends towards the equilibrium length
» Conservation of the angular momentum is achieved



= Hyperelastic material (stress derived from a potential V):
— Saint Venant-Kirchhoff hyperelastic model (Smoet a. [zAMP, 1992))
— Genera formulation for hyperelasticity (Gonzalez[CMAME, 2000]):

F: deformation gradient

2 OgeHGL%ﬂ- Gl_’(‘)Hzgul'J _
N n+1é . e © 7 GL: Green-Lagrange strain
gint _  ForFo eV g8LorGLo 2y o by Usgy -
n+1/2~ 0= ?ﬂGLg 5 = 'S vme u==¥0  V: potential
¢ ] u .
¢ D=1 /T

j . shape functions

— Classical formulation: FM= oF V" DdV,
v, 1GL
— Hyperelasticity with elasto-plastic behavior: energy dissipation of
the algorithm corresponds to the internal dissipation of the material
(Meng & Laursen [CMAME, 2001]) .



= Description of the contact interaction:

—pa

n

—

—>
[=cont

t
ST

l Tao” 777

. norma
—
. tangent

g gap
—>
Feont: force

= Computation of the classical contact force:

— Penalty method

— Augmented Lagrangian method

— Lagrangian method

If cont

=-kng 1

FoOnt - (M- kg 7

gcont _| s

ky: penalty
L : Lagrangian



= Penalty contact formulation (normal force proportional to
the penetration “gap”) (Armero & Petcz [CMAME, 1998-1999)):

— Computation of a dynamic gap for dave node X projected on
master surface y{u)

d _.d, = o ,
On+1 = 9n T Nh+1/2 [Xn+1 - Xn = Yn+1(Un+1/2) + Yn (Un+1/2)]

— Normal forces derived from a potentia V

qr?f?}z = V(ggdﬂ)- Vc(jgg)ﬁnﬂ/Z
On+1- 9n

= Augmented Lagrangian and Lagrangian consistent contact

formulation (chawla& Laursen [IINME, 1997-1998]):
— Computation of agap rate

r - _ _ _ _
Dt On+1/2 =Np+1/2 [Xn+1' Xn = Yn+1(Un+1/2) + Vi (Un+1/2)]



= The EMCA or EDMC for hypoelastic constitutive mode!:

— Valid for hypoelastic formulation of (visco) plasticity

— Energy dissipation from the internal forces corresponds to the

plastic dissipation

= Hypoelastic moddl:

— stress obtained incrementally from a
hardening law

— no possible definition of an internal
potential!

— |dea: the internal forces are
established to be consistent
on aloading/unloading cycle

stress

strain



= |ncremental strain tensor:
E: natural strain tensor; F: deformation gradient

= Elastic incremental stress:

S: Cauchy stress; H: Hooke stress-strain tensor

= Plastic stress corrections:
(radial return mapping: Wilkins (mcp, 1964],
Maenchen & Sack [mcp, 1964], Ponthot [13p, 2002])
s¢: plastic corrections; sV™: yield stress;
eP: equivalent plastic strain

= Final Cauchy stresses:

(final rotation scheme: Nagtegaal &
V eldpaus [NAFP, 19841, Ponthot [1p, 2002))

R: rotation tensor;

= Classical forces formulation:

f = F1; D derivative of the shape function;
J : Jacobian

En+1:1|nan+lTFn+19
n 2 &N n

DSM*=H :E"™

n+1

s =f(s™e")

g+l — R2+1[Sn + Dszﬂ _ SC]R2+1T

Pl = oS™f5™ DV,

Vo



= EMCA (without numerical dissipation):

X X
— Balance eguation ™ ”+12 n-pged - /it
— New internal forces formulation:

I:n+1/2‘_ ¥ +Fn+1gsn+C* fn DI"+§ +fn+1ﬁsn+l+C**] fn+1 SRLE YA

4y,
O
F: deformation gradient; f: inverse of F; D derivative of the shape function; J : Jacobian = det F;
S: Cauchy stress

g o DD /35 cLm? . gn oL
— Correction terms C* and C**: GLR™ 6L ’
(second order correction in the plastic < o DD/ 95 an+tP S™
strain increment) _ Al ARt "

AD'™: internal dissipation due to the plasticity; A: Almansi incremental strain tensor (A = AP + A9);
GL: Green-Lagrange incremental strain (GL = GLP' + GL¢)

e ~ aFRt,=0 & & Xns1/2 UR,5 =0
— Verification of the ) nodes nodes
conservation laws DDM = & & FM o [t %]

~ cyclenodes .



= EDMC (1st order accurate with numerical dissipation):

: Xn41 T+ X
— Balanceequation n+12 0= Fl2- Ptz P2
— New dissipation forces formulation:

dss _1 &, pen+linnT 5, &  ¢n+liycnal
Fn+1/2—zogl+Fn &P fo D+g|+fn P 1o Ddv,

Vo
1 n+1
/Ee'n ‘H:E® J]
. . . GLn+1
— Dissipating terms D* and D**: GL“+1 GLM
/Eel H Ee|n+1Jn+1
T n ~0 An+1
An+1 An+1 n
. ~ 4FrdS,=0 & & %ns1/2 URIS, =0
— Veification of the ) nodes nodes
conservation laws DDMM = & FASS, % 1o %] +MSIS [%0hg - %]

-~ nodes

ADM™M: numerical dissipation



= |mpact of acylinder :
— Hypoelastic model
— Elasto-plastic hardening law
— Simulation during 80 us

equivolent plastic strain
0).000 0.4%5 1.25 .65 2.50



= Simulation without numerical dissipation: final results
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= Simulations with numerical dissipation: final results
— Constant spectral radius at infinity pulsation = 0.7
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o
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— Constant time step size= 0.5 us
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= |mpact of 2 cylinders (Meng& Laursen) :
— Left one hasainitial velocity (initial kinetic energy 14J)
— Elasto perfectly plastic hypoelastic material
— Simulation during 4s

£ oloistic strain
0.000 0,00 0,200 0. 500 ). 400 .



* Results comparison at the end of the simulation
Newmark(Dt=1.875 ms) EMCA (with cor., Di=1.875 ms)

Equivalent plastic strain Equivalent plastic strain
0 0.089 0.178  0.266 0.355 0.090 0.180 0.269 0.359

Newmark(Dt=15 ms) EMCA (with cor., Dt=15 ms)

Equivalent plastic strain Equivalent plastic strain
0.305 0.609 0.914 1.22 0.094 0.187 0.281 0.374



Work of the contact

= Results evolution comparison
Dt=1.875ms
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= Impact of 2 hollow 3D-cylinders:
— Right one has a
initial velocity
(%oy =10%y)
— Elasto-plastic
hypoel astic material
(aluminum)

— Simulation during
oms

— Use of numerical
dissipation
— Frictiona contact

Equivalent olastic strain
X 0.000 0.0250 0.0500 0.0750 0,100 .




= Results comparison with areference (EMCA; Dt=0.5us):
During the ssmulation:

100
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- EDCM-1
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I
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o
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<

0 0.0025
Time (s)

0.005

— At the end of the smulation:
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1. Scientific motivations

2. Consistent scheme in the non-linear range

3. Combined implicit/explicit algorithm
— Automatic shift
— Initia implicit conditions
— Numerical example: blade casing interaction

4. Complex numerical examples
5. Conclusions & perspectives




= Shift from an implicit algorithm to an explicit one:

— Evaluation of theratio r* o CPU 1 implicit step
CPU 1 explicit step

— Explicit time step sze dependson  py,,, = b

the mesh Hmax
Wh: stability limit;
w max: maximal eigen pulsation =
max genp P 3 Dtizmpl__éd qx‘i
— Implicit time step size dependson | &« "DUX >
theintegration error (Gérading < DY e 3725
ent integration error; Dti?lndl “ &7l
Tol: user tolerance - P
: . I Dlepy
— Shift criterion Dimpt < — =

M. USer security



= Shift from an explicit algorithm to an implicit one:

— Evaluation of theratio r* o CPU 1 implicit step
CPU 1 explicit step

— Explicit time step sze dependson  py,,, = b

the mesh Wmax
Wh: stability limit;
W max. maximal elgen pulsation - 25
. . ¢ N
— Implicit time step size ot lng0| €ref y Dlexpi *
. . mp .o
Interpolated form a acceleration 24 D(i( :
difference ¢ iznodes 110
Tol: user tolerance
— Shift criterion Dbjmpl > M Dy

M user security



= Stabilization of the explicit solution:

Dt Dt

impl impl

>
explicit  dissipation  balance  implicit

— Dissipation of the numerical modes: spectral radius at
bifurcation equal to zero.

— Consistent balance of the r* last explicit steps:

—

5q&n+r* +§n _ gext =int ( diss )
M 2 - I:n+r*/2' I:n+r*/2 . I:n+r*/2




= Blade/casing interaction :

— Rotation velocity
3333rpm

— Rotation center is moved
during the first half
revolution

— EDMC-1 algorithm

— Four revolutions
simulation

eq|uivallent von Mises strass
0.000 3.25&+004 4. 508+00a .7 os+005

| 508+009



~

Z

N—r”

Contact force

= Final results comparison:

Explicit part of the

combined method
1.2E+06 -
1.0E+06 - |
8.0E+05 - —— Implicit (EDMC-1)
6.0E+05 - 5 - Combined
4.0E+05 - - @ Explicit
2.0E+05 - ||

0.0E+00

B Implicit (EDMC-1) B Combined
B Explicit

0 -+ .

CPU (min)



1. Scientific motivations

2. Consistent scheme in the non-linear range
3. Combined implicit/explicit algorithm

4. Complex numerical examples
— Blade off simulation
— Dynamic buckling of sguare aluminum tubes

5. Conclusions & perspectives
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shaft

bearing
Von Mises stress (M pa)
0 630 (I) shaft

spring




= Blade off :

— Rotation velocity
5000rpm

— EDMC agorithm
— 29000 dof’s

— Onerevolution
simulation

— 9000 time steps

— 50000 iterations (only
9000 with stiffness
matrix updating)

Eciuivalant von Mises strass

0.000 5.00=-+005 1.00z-+00% 1. 00=+00% 2.00=-+009




= Final results comparison:
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= CPU time comparison before and after code optimization:

After optimization
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= Absorption of 600J with
different impact velocities :
— EDMC agorithm
— 16000 dof’s/ 2640 elements
— Initial asymmetry
— Comparison with the

experimental results of Yang,
Jones and Karagiozova e, 2004

sirsms
00,

Erp lvelsri va Ecplwclani ven klass sirss Exp luclzni ven Wisss sires Ecplvclant von [ssssiras
0.Loo 220, . o LA 220, 00, 0cco 220, s} o.cco 220, Lo,

Impact velocity :  98.27m/s 64.62m/s 2534m/s 14.84m/s .
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= Time evolution for the 14.84 m/s impact velocity:

Explicit part of the
combined method
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1. Scientific motivations

2. Consistent scheme in the non-linear range

3. Combined implicit/explicit algorithm

4. Complex numerical examples

5. Conclusions & per spectives

— Improvements

— Advantages of new developments

— Drawbacks of new developments

— Futures works




= QOriginal developments in consistent implicit schemes:
— New formulation of elasto-plastic internal forces
— Controlled numerical dissipation
— Ability to ssimulate complex problems (blade-off, buckling)

= Original developments in implicit/explicit combination:
— Stable and accurate shifts
— Automatic shift criteria

— Reduction of CPU cost for complex problems (blade-off,
buckling)



= Advantages of the consistent scheme:

— Conservation laws and physical consistency are verified for each
time step size in the non-linear range

— Conservation of angular momentum even if numerical
dissipation is introduced

= Advantages of the implicit/explicit combined scheme:
— Reduction of the CPU cost
— Automatic algorithms
— No lack of accuracy
— Remains available after code optimizations



= Drawbacks of the consistent scheme:
— Mathematical developments needed for each element, material...
— More complex to implement

= Drawback of the implicit/explicit combined scheme:
— Implicit and explicit elements must have the same formulation



Development of a second order accurate EDMC scheme

Extension to a hyper-elastic model based on an
Incremental potential

Development of athermo-mechanical consistent scheme
Modelization of wind-milling in aturbo-engine
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