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Introduction 
Industrial problems

§ Industrial context:
– Structures must be able to resist to crash situations
– Numerical simulations is a key to design structures
– Efficient time integration in the non-linear range is needed

§ Goal: 
– Numerical simulation of 

blade off and wind-milling in 
a turboengine

– Example from SNECMA 



Introduction 
Original developments

§ Original developments in implicit time integration:
– Energy-Momentum Conserving scheme for elasto-plastic 

model (based on a hypo-elastic formalism)
– Introduction of controlled numerical dissipation combined with 

elasto-plasticity
– 3D-generalization of the conserving contact formulation

§ Original developments in implicit/explicit combination:
– Numerical stability during the shift
– Automatic shift criteria

§ Numerical validation:
– On academic problems
– On semi-industrial problems
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1. Scientific motivations
Dynamics simulations

§ Scientific context:
– Solids mechanics
– Large displacements 
– Large deformations
– Non-linear mechanics 
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§ Spatial discretization into finite elements:
– Balance equation

– Internal forces formulation



1. Scientific motivations
Dynamics simulations

§ Temporal integration of the balance equation
§ 2 methods:

– Explicit method

– Implicit method 
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Very fast dynamics

Slower dynamics

• Non iterative
• Limited needs in memory
• Conditionally stable (small time step)

• Iterative
• More needs  in memory
• Unconditionally stable (large time step)



1. Scientific motivations
Implicit algorithm: our opinion

§ If wave propagation effects are negligible
Implicit schemes are more suitable 

– Sheet metal forming (springback, superplastic forming, …)
– Crashworthiness simulations (car crash, blade loss, shock 

absorber, …)

§ Nowadays, people choose explicit scheme mainly 
because of difficulties linked to implicit scheme:
– Lack of smoothness (contact, elasto-plasticity, …)

convergence can be difficult
– Lack of available methods (commercial codes)

§ Little room for improvement in explicit methods
§ Complex problems can take advantage of combining 

explicit and implicit algorithms



1. Scientific motivations
Conservation laws

§ Conservation of linear momentum (Newton’s law)
– Continuous dynamics

– Time discretization &
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§ Conservation of angular momentum
– Continuous dynamics

– Time discretization

&

§ Conservation of energy 
– Continuous dynamics

– Time discretization &



1. Scientific motivations 
Explicit algorithms

§ Central difference (no numerical dissipation)
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§ Hulbert & Chung (numerical dissipation) [CMAME, 1996]

§ Small time steps conservation conditions are 
approximated

§ Numerical oscillations may cause spurious plasticity



1. Scientific motivations
Implicit algorithms

§ α-generalized family (Chung & Hulbert [JAM, 1993])

– Newmark relations:
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– αM = 0 and  αF = 0 (no numerical dissipation)
• Linear range: consistency (i.e. physical results) demonstrated
• Non-linear range with small time steps: consistency verified
• Non-linear range with large time steps: total energy conserved but without 

consistency (e.g. plastic dissipation greater than the total energy, work of the 
normal contact forces > 0, …)

– αM ≠ 0 and/or  αF ≠ 0 (numerical dissipation)
• Numerical dissipation is proved to be positive only in the linear range

– Balance equation:



1. Scientific motivations
Numerical example: mass/spring-system
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§ Example: Mass/spring 
system (2D) with an initial 
velocity perpendicular to 
the spring (Armero & Romero 
[CMAME, 1999])

– Newmark implicit scheme 
(no numerical damping)

– Chung-Hulbert implicit 
scheme (numerical damping)

∆t=1s                             ∆t=1.5s ∆t=1s                            ∆t=1.5s
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Explicit method: ∆tcrit ~ 0.72s;

1 revolution ~ 4s
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2. Consistent scheme in the non linear range 
Principle

§ Consistent implicit algorithms in the non-linear range:
– The Energy Momentum Conserving Algorithm or EMCA 

(Simo et al. [ZAMP 92], Gonzalez & Simo [CMAME 96]):
• Conservation of the linear momentum

• Conservation of the angular momentum

• Conservation of the energy (no numerical dissipation)

– The Energy Dissipative Momentum Conserving algorithm or 
EDMC (Armero & Romero [CMAME, 2001]):

• Conservation of the linear momentum

• Conservation of the angular momentum

• Numerical dissipation of the energy is proved to be positive



2. Consistent scheme in the non linear range 
Principle
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• With            and            designed to 

verify conserving equations

• No dissipation forces and no dissipation velocities
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– Balance equation

§ Based on the mid-point scheme (Simo et al. [ZAMP, 1992])

– Relations displacements
/velocities/accelerations
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– EDMC: 
• Same internal and external forces as in the EMCA
• With             and            designed to achieve positive numerical 

dissipation without spectral bifurcation



2. Consistent scheme in the non linear range 
Dissipation property

§ Comparison of the spectral radius
– Integration of a linear oscillator:

Low numerical dissipation High numerical dissipation
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2. Consistent scheme in the non linear range 
The mass/spring system
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– Without numerical dissipation 
(EMCA) (Gonzalez & Simo
[CMAME, 1996])

– The consistency of the EMCA solution does not depend on ∆t
– The Newmark solution does-not conserve the angular momentum
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2. Consistent scheme in the non linear range 
The mass/spring system
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– With numerical dissipation 
(EDMC 1st order ) with 
dissipation parameter 0<χ<1
(Armero&Romero [CMAME, 
2001]), here χ = 0.111

– Only EDMC solution preserves the driving motion:
• The length tends towards the equilibrium length 
• Conservation of the angular momentum is achieved
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2. Consistent scheme in the non linear range
Formulations in the literature: hyperelasticity

§ Hyperelastic material (stress derived from a potential V):
– Saint Venant-Kirchhoff hyperelastic model (Simo et al. [ZAMP, 1992])

– General formulation for hyperelasticity (Gonzalez [CMAME, 2000]):
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GL: Green-Lagrange strain

V: potential

ϕ: shape functions

– Hyperelasticity with elasto-plastic behavior: energy dissipation of 
the algorithm corresponds to the internal dissipation of the material 
(Meng & Laursen [CMAME, 2001])
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2. Consistent scheme in the non linear range
Formulations in the literature: contact

§ Description of the contact interaction:
n:      normal

t:       tangent

g: gap

Fcont: force

n

t

g<0

Fcont

§ Computation of the classical contact force:
– Penalty method

– Augmented Lagrangian method

– Lagrangian method
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2. Consistent scheme in the non linear range
Formulations in the literature: contact

– Computation of a dynamic gap for slave node x projected on 
master surface y(u)
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§ Penalty contact formulation (normal force proportional to 
the penetration “gap”) (Armero & Petöcz [CMAME, 1998-1999]):

– Normal forces derived from a potential V

§ Augmented Lagrangian and Lagrangian consistent contact 
formulation (Chawla & Laursen [IJNME, 1997-1998]):
– Computation of a gap rate
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2. Consistent scheme in the non linear range
Developments for a hypoelastic model

§ Hypoelastic model:
– stress obtained incrementally from a 

hardening law
– no possible definition of an internal 

potential!
– Idea: the internal forces are 

established to be consistent 
on a loading/unloading cycle

§ The EMCA or EDMC for hypoelastic constitutive model:
– Valid for hypoelastic formulation of (visco) plasticity
– Energy dissipation from the internal forces corresponds to the 

plastic dissipation



2. Consistent scheme in the non linear range
Developments for a hypoelastic model

§ Incremental strain tensor: E n
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Σ: Cauchy stress; H: Hooke stress-strain tensor

§ Plastic stress corrections:
(radial return mapping: Wilkins [MCP, 1964], 
Maenchen & Sack [MCP, 1964], Ponthot [IJP, 2002])
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2. Consistent scheme in the non linear range
Developments for a hypoelastic model
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∆Dint: internal dissipation due to the plasticity; A: Almansi incremental strain tensor (A = Apl + Ael); 
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§ EMCA (without numerical dissipation):

– New internal forces formulation:

– Correction terms C* and C**: 
(second order correction in the plastic 
strain increment)
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– Balance equation

F: deformation gradient; f: inverse of F; D derivative of the shape function; J : Jacobian = det F; 
Σ: Cauchy stress

– Verification of the 
conservation laws
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2. Consistent scheme in the non linear range
Developments for a hypoelastic model
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§ EDMC (1st order accurate with numerical dissipation):

– New dissipation forces formulation:

– Dissipating terms D* and D**: 
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2. Consistent scheme in the non linear range 
Numerical example: Taylor bar

§ Impact of a cylinder :
– Hypoelastic model
– Elasto-plastic hardening law
– Simulation during 80 µs



2. Consistent scheme in the non linear range
Numerical example: Taylor bar
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§ Simulation without numerical dissipation: final results
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2. Consistent scheme in the non linear range
Numerical example: Taylor bar
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§ Simulations with numerical dissipation: final results
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– Constant spectral radius at infinity pulsation = 0.7 

– Constant  time step size = 0.5 µs 



2. Consistent scheme in the non linear range
Numerical example: impact of two 2D-cylinders

§ Impact of 2 cylinders (Meng&Laursen) :
– Left one has a initial velocity (initial kinetic energy 14J)
– Elasto perfectly plastic hypoelastic material
– Simulation during 4s



2. Consistent scheme in the non linear range
Numerical example: impact of two 2D-cylinders

§ Results comparison at the end of the simulation
Newmark(∆t=1.875 ms)

Newmark(∆t=15 ms)

EMCA (with cor., ∆t=1.875 ms)

EMCA (with cor., ∆t=15 ms)

0          0.089        0.178       0.266          0.355
Equivalent plastic strain Equivalent plastic strain

Equivalent plastic strain

0          0.090        0.180       0.269          0.359

0           0.305        0.609       0.914          1.22
Equivalent plastic strain

0          0.094        0.187       0.281          0.374



2. Consistent scheme in the non linear range
Numerical example: impact of two 2D-cylinders

§ Results evolution comparison

0

2

4

6

8

10

0 2 4
Time (s)

E
n

er
g

y 
p

la
st

ic
al

ly
 

d
is

is
p

at
ed

 (
J)

Newmark

EMCA  

Meng & Laursen
0
1
2
3
4
5
6

0 2 4
Time (s)

E
n

er
g

y 
p

la
st

ic
al

ly
 

d
is

si
p

at
ed

 (
J)

Newmark

EMCA  

Meng & Laursen

-0.5
0

0.5
1

1.5
2

2.5
3

0 1 2 3 4
Time (s)

W
o

rk
 o

f 
th

e 
co

n
ta

ct
 

fo
rc

es
 (

J)
Newmark

EMCA  

-0.1

-0.05

0

0.05

0.1

0 1 2 3 4
Time (s)

W
o

rk
 o

f 
th

e 
co

n
ta

ct
 f

o
rc

es
 (

J)
  

Newmark

EMCA  

∆t=15 ms∆t=1.875 ms



2. Consistent scheme in the non linear range
Numerical example: impact of two 3D-cylinders

§ Impact of 2 hollow 3D-cylinders:
– Right one has a 

initial velocity 
( )

– Elasto-plastic 
hypoelastic material 
(aluminum)

– Simulation during 
5ms

– Use of numerical 
dissipation

– Frictional contact

x
z

y

YX xx 00 10 &
r&r =



2. Consistent scheme in the non linear range
Numerical example: impact of two 3D-cylinders

– At the end of the simulation:

§ Results comparison with a reference (EMCA; ∆t=0.5µs):
– During the simulation:

25

50

75

100

0 0.0025 0.005

Time (s)

X
-l

in
ea

r 
m

o
m

en
tu

m
 o

f 
ri

g
h

t 
cy

lin
d

er
 (

kg
m

/s
)

Reference

EDCM-1

HHT

0

50

100

150

200

0 0.0025 0.005

Time (s)

Z
-a

n
g

u
la

r 
m

o
m

en
tu

m
 o

f 
ri

g
h

t 
cy

lin
d

er
 (

kg
m

²/
s)

Reference

EDCM-1

HHT
x

z
y x

z
y

-5000

-4500

-4000

-3500

-3000

1 10
Time step size (µs)

W
o

rk
 o

f 
fr

ic
ti

o
n

al
 

co
n

ta
ct

 f
o

rc
es

 (
J)

Reference

EDMC-1

HHT
-0.1

0.0

0.1

0.2

0.3

1 10
Time step size (µs)

E
n

er
g

y 
n

u
m

er
ic

al
ly

 
d

is
si

p
at

ed
 (

%
)

Reference
EDMC-1
HHT



Scope of the presentation

1. Scientific motivations
2. Consistent scheme in the non-linear range
3. Combined implicit/explicit algorithm

– Automatic shift
– Initial implicit conditions
– Numerical example: blade casing interaction

4. Complex numerical examples
5. Conclusions & perspectives



3. Combined  implicit/explicit algorithm
Automatic shift

§ Shift from an implicit algorithm to an explicit one:

– Evaluation of the ratio r*
stepexplicit1

stepimplicit1*

CPU

CPU
r =

max
expl ω

bt
Ω

=∆

5.2
1

int
old
impl

new
impl 2
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e

t

t

µ
expl

*

impl
tr

t
∆

<∆

– Explicit time step size depends on 
the mesh

– Implicit time step size depends on 
the integration error (Géradin)

– Shift criterion

Ω b: stability limit; 
ω max: maximal eigen pulsation

eint: integration error; 
Tol: user tolerance

µ : user security

ref

2
impl

3
int e

xt
xte inodesi

&&r

&&&
∆∑∆
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3. Combined  implicit/explicit algorithm
Automatic shift

§ Shift from an explicit algorithm to an implicit one:

– Evaluation of the ratio r*

max
expl ω

bt
Ω

=∆

expl
*

impl trt ∆>∆ µ

– Explicit time step size depends on 
the mesh

– Implicit time step size 
interpolated form a acceleration 
difference

– Shift criterion

Ω b: stability limit; 
ω max: maximal eigen pulsation

Tol: user tolerance

µ : user security

stepexplicit1

stepimplicit1*

CPU
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3. Combined  implicit/explicit algorithm
Initial implicit conditions

– Dissipation of the numerical modes: spectral radius at 
bifurcation equal to zero.

( )diss
2/*

int
2/*

ext
2/*

*
2

 rnrnrn
nrn FFF

xx
M +++

+ −−=
+ rrr&&r&&r

§ Stabilization of the explicit solution:

– Consistent balance of the r* last explicit steps:

tn tn+r* tn+r*+1

∆texpl

explicit implicit

∆timpl ∆timpl

tn-r*

dissipation balance



3. Combined  implicit/explicit algorithm
Numerical example: blade casing interaction

§ Blade/casing interaction :
– Rotation velocity 

3333rpm
– Rotation center is moved 

during the first half 
revolution

– EDMC-1 algorithm
– Four revolutions 

simulation



3. Combined  implicit/explicit algorithm
Numerical example: blade casing interaction

§ Final results comparison: 

Explicit part of the 
combined method
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Scope of the presentation

1. Scientific motivations
2. Consistent scheme in the non-linear range
3. Combined implicit/explicit algorithm
4. Complex numerical examples

– Blade off simulation
– Dynamic buckling of square aluminum tubes

5. Conclusions & perspectives



4. Complex numerical examples
Blade off simulation

§ Numerical simulation of a blade loss in an aero engine

casing

blades

disk

bearing

flexible 
shaft

Front 
view

Back 
view

0                              680                           1360
Von Mises stress (Mpa)



4. Complex numerical examples
Blade off simulation

§ Blade off :
– Rotation velocity 

5000rpm
– EDMC algorithm
– 29000 dof’s
– One revolution 

simulation
– 9000 time steps
– 50000 iterations (only 

9000 with stiffness 
matrix updating)



4. Complex numerical examples
Blade off simulation

§ Final results comparison:
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§ CPU time comparison before and after code optimization:
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4. Complex numerical examples
Dynamic buckling of square aluminum tubes

98.27 m/s 64.62 m/s 25.34 m/s 14.84 m/sImpact velocity :

§ Absorption of 600J with 
different impact velocities : 
– EDMC algorithm
– 16000 dof’s / 2640 elements
– Initial asymmetry
– Comparison with the 

experimental results of Yang, 
Jones and Karagiozova [IJIE, 2004]



4. Complex numerical examples
Dynamic buckling of square aluminum tubes

§ Final results comparison:

§ Time evolution for the 14.84 m/s impact velocity:
Explicit part of the 
combined method
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Scope of the presentation

1. Scientific motivations

2. Consistent scheme in the non-linear range

3. Combined implicit/explicit algorithm

4. Complex numerical examples

5. Conclusions & perspectives
– Improvements

– Advantages of new developments

– Drawbacks of new developments

– Futures works



§ Original developments in consistent implicit schemes:
– New formulation of elasto-plastic internal forces
– Controlled numerical dissipation
– Ability to simulate complex problems (blade-off, buckling)

5. Conclusions & perspectives
Improvements

§ Original developments in implicit/explicit combination:
– Stable and accurate shifts
– Automatic shift criteria
– Reduction of CPU cost for complex problems (blade-off, 

buckling)



§ Advantages of the consistent scheme:
– Conservation laws and physical consistency are verified for each

time step size in the non-linear range
– Conservation of angular momentum even if numerical 

dissipation is introduced

§ Advantages of the implicit/explicit combined scheme:
– Reduction of the CPU cost
– Automatic algorithms
– No lack of accuracy
– Remains available after code optimizations

5. Conclusions & perspectives
Advantages of new developments



§ Drawbacks of the consistent scheme:
– Mathematical developments needed for each element, material…
– More complex to implement

5. Conclusions & perspectives
Drawbacks of new developments

§ Drawback of the implicit/explicit combined scheme:
– Implicit and explicit elements must have the same formulation



5. Conclusions & perspectives
Future works

§ Development of a second order accurate EDMC scheme
§ Extension to a hyper-elastic model based on an 

incremental potential
§ Development of a thermo-mechanical consistent scheme
§ Modelization of wind-milling in a turbo-engine
§ ...
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